Ash Composition of Litter Fractions as an Indicator of the Stages of Litter Transformation (by an Example of Swampy Birch Forests)

Highly and roughly decomposed litters formed at 0–30 and 100–140 m from the Elovka River channel within a naturally drained swampy birch ( Betula pubescens Ehrh.) forest in Western Siberia (56°23.710′ N, 84°34.043′ E) have been studied. The weighted average metal contents (mg/kg) in the strongly dec...

Full description

Saved in:
Bibliographic Details
Published inEurasian soil science Vol. 55; no. 11; pp. 1533 - 1545
Main Authors Efremova, T. T., Efremov, S. P., Avrova, A. F.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.11.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly and roughly decomposed litters formed at 0–30 and 100–140 m from the Elovka River channel within a naturally drained swampy birch ( Betula pubescens Ehrh.) forest in Western Siberia (56°23.710′ N, 84°34.043′ E) have been studied. The weighted average metal contents (mg/kg) in the strongly decomposed litter were as follows: Ca 11515 > Fe 8502 > Al 8472 > Mg 1468 > K 1104 > Sr 471 > Na 200 > Zn 65.3 > Cu 15.6 > Pb 12.1 ≈ Ni 12.2 > Co 9.5 > Cr 6.2 > Cd 0.35 . The contents of these elements in the roughly decomposed litter were approximately 1.5–2 times lower. The input of mineral substances to the litter was determined by the composition of the ground plant cover residues in the course of their decay, as well as by the types of the swamp mineral and hydrological regimes and silt deposited during floods and aerosol fallout. The ash composition of morphometric litter fractions varied greatly ( Cv – 29–47%) in accordance with aluminum, iron and trace elements content: by 63% in strongly decomposed litter and by 84% in roughly decomposed litter. The sequential accumulation of Fe, Al and trace elements as insoluble organomineral complexes occurs during the comminution of plant fragments simultaneously to the humification process. The gradual (mainly at the fermentation stage) removal of bases as bicarbonates was enhanced by the active CO 2 formation. Using clustering algorithms, morphometric fractions of each type of litter were combined by ash composition into three clusters that characterize the stages of the mineral component transformation. The formalized associations conformed to the visual division of the litter subhorizons and characterized their size range: L > 5, F 5–1, H 1–<0.25 mm in the strongly decomposed litter of fern–nettle–meadowsweet birch forests and, respectively, >10, 10–5, 1–<0.25 mm in the roughly decomposed litter of sedge–reed grass birch forests. An objective sign of the stages of litter metamorphosis was the amount of Fe, the rankings of which at each stage of transformation was adequate to approximately double increase relative to the initial content.
AbstractList Highly and roughly decomposed litters formed at 0–30 and 100–140 m from the Elovka River channel within a naturally drained swampy birch (Betula pubescens Ehrh.) forest in Western Siberia (56°23.710′ N, 84°34.043′ E) have been studied. The weighted average metal contents (mg/kg) in the strongly decomposed litter were as follows: Ca11515 > Fe8502> Al8472> Mg1468> K1104 > Sr471 > Na200 > Zn65.3 > Cu15.6 > Pb12.1 ≈ Ni12.2 > Co9.5 > Cr6.2 > Cd0.35. The contents of these elements in the roughly decomposed litter were approximately 1.5–2 times lower. The input of mineral substances to the litter was determined by the composition of the ground plant cover residues in the course of their decay, as well as by the types of the swamp mineral and hydrological regimes and silt deposited during floods and aerosol fallout. The ash composition of morphometric litter fractions varied greatly (Cv – 29–47%) in accordance with aluminum, iron and trace elements content: by 63% in strongly decomposed litter and by 84% in roughly decomposed litter. The sequential accumulation of Fe, Al and trace elements as insoluble organomineral complexes occurs during the comminution of plant fragments simultaneously to the humification process. The gradual (mainly at the fermentation stage) removal of bases as bicarbonates was enhanced by the active CO2 formation. Using clustering algorithms, morphometric fractions of each type of litter were combined by ash composition into three clusters that characterize the stages of the mineral component transformation. The formalized associations conformed to the visual division of the litter subhorizons and characterized their size range: L > 5, F 5–1, H 1–<0.25 mm in the strongly decomposed litter of fern–nettle–meadowsweet birch forests and, respectively, >10, 10–5, 1–<0.25 mm in the roughly decomposed litter of sedge–reed grass birch forests. An objective sign of the stages of litter metamorphosis was the amount of Fe, the rankings of which at each stage of transformation was adequate to approximately double increase relative to the initial content.
Highly and roughly decomposed litters formed at 0–30 and 100–140 m from the Elovka River channel within a naturally drained swampy birch ( Betula pubescens Ehrh.) forest in Western Siberia (56°23.710′ N, 84°34.043′ E) have been studied. The weighted average metal contents (mg/kg) in the strongly decomposed litter were as follows: Ca 11515 > Fe 8502 > Al 8472 > Mg 1468 > K 1104 > Sr 471 > Na 200 > Zn 65.3 > Cu 15.6 > Pb 12.1 ≈ Ni 12.2 > Co 9.5 > Cr 6.2 > Cd 0.35 . The contents of these elements in the roughly decomposed litter were approximately 1.5–2 times lower. The input of mineral substances to the litter was determined by the composition of the ground plant cover residues in the course of their decay, as well as by the types of the swamp mineral and hydrological regimes and silt deposited during floods and aerosol fallout. The ash composition of morphometric litter fractions varied greatly ( Cv – 29–47%) in accordance with aluminum, iron and trace elements content: by 63% in strongly decomposed litter and by 84% in roughly decomposed litter. The sequential accumulation of Fe, Al and trace elements as insoluble organomineral complexes occurs during the comminution of plant fragments simultaneously to the humification process. The gradual (mainly at the fermentation stage) removal of bases as bicarbonates was enhanced by the active CO 2 formation. Using clustering algorithms, morphometric fractions of each type of litter were combined by ash composition into three clusters that characterize the stages of the mineral component transformation. The formalized associations conformed to the visual division of the litter subhorizons and characterized their size range: L > 5, F 5–1, H 1–<0.25 mm in the strongly decomposed litter of fern–nettle–meadowsweet birch forests and, respectively, >10, 10–5, 1–<0.25 mm in the roughly decomposed litter of sedge–reed grass birch forests. An objective sign of the stages of litter metamorphosis was the amount of Fe, the rankings of which at each stage of transformation was adequate to approximately double increase relative to the initial content.
Highly and roughly decomposed litters formed at 0-30 and 100-140 m from the Elovka River channel within a naturally drained swampy birch (Betula pubescens Ehrh.) forest in Western Siberia (56°23.710' N, 84°34.043' E) have been studied. The weighted average metal contents (mg/kg) in the strongly decomposed litter were as follows: Ca.sub.11515 > Fe.sub.8502> Al.sub.8472> Mg.sub.1468> K.sub.1104 > Sr.sub.471 > Na.sub.200 > Zn.sub.65.3 > Cu.sub.15.6 > Pb.sub.12.1 [almost equal to] Ni.sub.12.2 > Co.sub.9.5 > Cr.sub.6.2 > Cd.sub.0.35. The contents of these elements in the roughly decomposed litter were approximately 1.5-2 times lower. The input of mineral substances to the litter was determined by the composition of the ground plant cover residues in the course of their decay, as well as by the types of the swamp mineral and hydrological regimes and silt deposited during floods and aerosol fallout. The ash composition of morphometric litter fractions varied greatly (Cv - 29-47%) in accordance with aluminum, iron and trace elements content: by 63% in strongly decomposed litter and by 84% in roughly decomposed litter. The sequential accumulation of Fe, Al and trace elements as insoluble organomineral complexes occurs during the comminution of plant fragments simultaneously to the humification process. The gradual (mainly at the fermentation stage) removal of bases as bicarbonates was enhanced by the active CO.sub.2 formation. Using clustering algorithms, morphometric fractions of each type of litter were combined by ash composition into three clusters that characterize the stages of the mineral component transformation. The formalized associations conformed to the visual division of the litter subhorizons and characterized their size range: L > 5, F 5-1, H 1-10, 10-5, 1-<0.25 mm in the roughly decomposed litter of sedge-reed grass birch forests. An objective sign of the stages of litter metamorphosis was the amount of Fe, the rankings of which at each stage of transformation was adequate to approximately double increase relative to the initial content.
Audience Academic
Author Avrova, A. F.
Efremov, S. P.
Efremova, T. T.
Author_xml – sequence: 1
  givenname: T. T.
  surname: Efremova
  fullname: Efremova, T. T.
  email: efr2@ksc.krasn.ru
  organization: Sukachev Institute of Forest, Krasnoyarsk Federal Research Center, Russian Academy of Sciences, Akademgorodok
– sequence: 2
  givenname: S. P.
  surname: Efremov
  fullname: Efremov, S. P.
  organization: Sukachev Institute of Forest, Krasnoyarsk Federal Research Center, Russian Academy of Sciences, Akademgorodok
– sequence: 3
  givenname: A. F.
  surname: Avrova
  fullname: Avrova, A. F.
  organization: Sukachev Institute of Forest, Krasnoyarsk Federal Research Center, Russian Academy of Sciences, Akademgorodok
BookMark eNp1kcFKAzEQhoMoaKsP4C3gRQ9bk03SzR5rabVQ8NAevC3pNmlTuklNUrRXn9xZKyiIJJBh5v9mwj8ddOq80whdU9KjlPH7GSV9nucly3NKCWHiBF1QIfoZLcXLKcRQztr6OerEuAGFlFxeoI9BXOOhb3Y-2mS9w97gqU1JBzwOqm5TESu4Dk_c0tYq-dBq0lrjWVIrHX8R86BcND406qvV7eLQcqN31ey2utXN3iA84Acb6jUe-6BjineX6MyobdRX328Xzcej-fApmz4_ToaDaVYzIVJW0kXfCFVyyQtlcmOWpaakloYwroQxRhZcEpZzKZmSnCx0UYtiySTPC24Y66KbY9td8K97mFxt_D44mFiBoChpITkFVe-oWqmtrqwzPoENcJa6sTV4bizkBwU4SbigBAB6BOrgYwzaVLtgGxUOFSVVu5rqz2qAyY9MBK1b6fDzlf-hT5qCkRc
CitedBy_id crossref_primary_10_1134_S1064229323600513
Cites_doi 10.1134/S1064229309100068
10.1134/S1064229320010135
10.15244/pjoes/75823
10.1134/S1064229321050173
10.1016/j.atmosenv.2005.09.049
10.15372/GiG2019012
10.1016/j.gca.2012.05.028
10.1021/es050260m
10.1134/S0016702918100129
10.1016/j.jcis.2007.04.062
10.1016/s0048-9697(02)00028-1
10.1134/S1995425514060031
10.1016/j.scitotenv.2010.07.058
10.1134/S1064229312120034
10.1134/S1995425519040024
10.1134/S0016702918100038
10.1134/S1064229318050083
10.1016/j.gloplacha.2006.03.004
10.1134/S106422931008003X
10.1016/j.gca.2012.01.003
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022. ISSN 1064-2293, Eurasian Soil Science, 2022, Vol. 55, No. 11, pp. 1533–1545. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Pochvovedenie, 2022, No. 11, pp. 1351–1365.
COPYRIGHT 2022 Springer
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022. ISSN 1064-2293, Eurasian Soil Science, 2022, Vol. 55, No. 11, pp. 1533–1545. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Pochvovedenie, 2022, No. 11, pp. 1351–1365.
– notice: COPYRIGHT 2022 Springer
DBID AAYXX
CITATION
7QL
7ST
7T7
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
L.G
M7N
P64
SOI
DOI 10.1134/S1064229322110035
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1556-195X
EndPage 1545
ExternalDocumentID A729304510
10_1134_S1064229322110035
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
4P2
5GY
5VS
67M
6NX
7X2
7XC
88I
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IAO
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
ZMTXR
~02
~A9
AACDK
AAHBH
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
ITC
7QL
7ST
7T7
7U9
7UA
8FD
AAYZH
C1K
F1W
FR3
H94
H96
L.G
M7N
P64
SOI
ID FETCH-LOGICAL-c355t-91b6f5a94847af2ffd9e10c8f034a5fff87480324883a840be7c57d384274f33
IEDL.DBID AGYKE
ISSN 1064-2293
IngestDate Wed Nov 06 05:44:20 EST 2024
Tue Jun 18 04:24:17 EDT 2024
Thu Sep 26 16:20:49 EDT 2024
Sat Dec 16 12:05:57 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords plant debris
classification of forest litter
stages of litter transformation
multidimensional statistical analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-91b6f5a94847af2ffd9e10c8f034a5fff87480324883a840be7c57d384274f33
PQID 2747917841
PQPubID 54181
PageCount 13
ParticipantIDs proquest_journals_2747917841
gale_infotracacademiconefile_A729304510
crossref_primary_10_1134_S1064229322110035
springer_journals_10_1134_S1064229322110035
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Silver Spring
PublicationTitle Eurasian soil science
PublicationTitleAbbrev Eurasian Soil Sc
PublicationYear 2022
Publisher Pleiades Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer
– name: Springer Nature B.V
References KhalafyanA. A.STATISTICA 6. Statistical Data Analysis2007MoscowOOO Binom-Press
EfremovaT. T.SekretenkoO. P.AvrovaA. F.EfremovS. P.Geostatistical analysis of the spatial variation of the ash reserves in the litter of bog birch forests in Western SiberiaEurasian Soil Sci.201346516010.1134/S1064229312120034
SemenyukO. V.TelesninaV. M.BogatyrevL. G.BenediktovaA. I.Structural and functional organization of forest litters as indicators of biological cycling intensity in urban forest stands (an example of Moscow)Eurasian Soil Sci.20215473874910.1134/S1064229321050173
BogatyrevL. G.DeminV. V.MatyshakG. V.SapozhnikovaV. A.On some theoretical aspects of the study of forest litterLesovedenie, No.200441729
EfremovaT. T.AvrovaA. F.Regression models of acid–base properties of peat swamps as operational criteria for their chemical classificationContemp. Probl. Ecol.20191232133110.1134/S1995425519040024
EfremovaT. T.EfremovS. P.AvrovaA. F.Correlation between the morphogenetic types of litter and their properties in bog birch forestsEurasian Soil Sci.20104385886610.1134/S106422931008003X
OrlovD. S.Humic Acids of Soils and General Theory of Humification1990MoscowMosk. Univ.
LipatovD. N.ShcheglovA. I.ManakhovD. V.KarpukhinM. M.ZavgorodnyayaYu. A.TsvetnovaO. B.Distributions of heavy metals and benzo[a]pyrene in oligotrophic peat soils and peat gleyzems of Northeastern SakhalinEurasian Soil Sci.20185151852710.1134/S1064229318050083
BindlerR.Mired in the past—looking to the future: geochemistry of peat and the analysis of past environmental changesGlobal Planet. Change20065320922110.1016/j.gloplacha.2006.03.004
CogginsA. M.JenningsS. G.EbinghausR.Accumulation rates of the heavy metals, lead, mercury and cadmium in ombrotrophic peatlands in the west of IrelandAtmos. Environ.20064026027810.1016/j.atmosenv.2005.09.049
J.-O. Kim, Ch. U. Muller, U. R. Klekka, M. S. Oldenderfer, and R. K. Bleshfild, Factor, Discriminant and Cluster Analysis (Finansy i statistika, Moscow, 1989) [in Russian].
BogushA. A.BobrovV. A.KliminM. A.BychinskiiV. A.LeonovaG. A.KrivonogovS. K.Kondrat’evaL. M.PreisYu. I.Peculiarities of the formation of sediments and the concentration of elements in the profile of the Vydrinsky peat bog (southern Baikal region)Geol. Geofiz.20196019420810.15372/GiG2019012
EfremovaT. T.AvrovaA. F.EfremovS. P.Melent’evaN. V.Stages of litter transformation in bog birch forestsEurasian Soil Sci.200942112010.1134/S1064229309100068
Method for Measuring the Mass Fraction of Vanadium, Cadmium, Cobalt, Manganese, Copper, Arsenic, Nickel, Mercury, Lead, Chromium and Zinc in Soil, Ground and Bottom Sediment Samples by Atomic Absorption Spectroscopy using an Atomic Absorption Spectrometer with Electrothermal Atomization MGA-915 MD (Moscow, 2009).
SapozhnikovA. P.Forest litter - nomenclature, classification, and indexingPochvovedenie, No.1984596105
AleksandrovaL. N.Soil Organic Matter and Processes of Its Transformation1980LeningradNauka
BiesterH.HermannsY. M.Martinez CortizasA.The influence of organic matter decay on the distribution of major and trace elements in ombrotrophic mires – a case study from the Harz MountainsGeochim. Cosmochim. Acta20128412613610.1016/j.gca.2012.01.003
D. V. Moskovchenko, “Biogeochemical peculiarities of raised bogs of Western Siberia,” Geogr. Prir. Resur., No. 1, 63–70 (2006).
Perel’manA. I.KasimovN. S.Landscape Geochemistry1999MoscowAstreya
P’yavchenkoN. I.KornilovaL. I.On the diagnostic indicators of peat typesPochvovedenie, No.197810146153
Vorob’evaL. A.Theory and Practice of Chemical Analysis of Soils2006MoscowGEOS
Role of Litter in Forest Biogeocenoses (Nauka, Moscow, 1983) [in Russian].
Lur’eYu. Yu.Unified Methods for Water Analysis1973MoscowKhimiya
BergB.McClaughertyC.Plant Litter. Decomposition, Humus Formation, Carbon Sequestration2008BerlinSpringer-Verlag
EfremovaT. T.EfremovS. P.Ecological and geochemical assessment of heavy-metal and sulfur pollution levels in hilly peatbogs of southern TaimyrContemp. Probl. Ecol.2014768569310.1134/S1995425514060031
GrybosM.DavrancheM.GruauG.PetitjeanP.Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?Int. J. Coal Geol.200731449050110.1016/j.jcis.2007.04.062
RauschN.NieminenT.UkonmaanahoL.Le RouxG.KrachlerM.CheburkinA. K.BonaniG.ShotykW.Comparison of atmospheric deposition of copper, nickel, cobalt, zinc, and cadmium recorded by Finnish peat cores with monitoring data and emission recordsEnviron. Sci. Technol.2005395989599810.1021/es050260m
OlidC.Garcia-OrellanaJ.Martinez-CortizasA.MasqueP.Peiteado-ValeraE.Sanchez-CabezaJ. A.Multiple site study of recent atmospheric metal (Pb, Zn and Cu) deposition in the NW Iberian Peninsula using peat coresSci. Total Environ.20104085540554910.1016/j.scitotenv.2010.07.058
ZonnS. V.The Role of Litter in Forest Biogeocenoses1983MoscowNauka
SemenyukO. V.TelesninaV. M.BogatyrevL. G.BenediktovaA. I.KuznetsovaYa. D.Assessment of intra-biogeocenotic variability of forest litters and dwarf shrub–herbaceous vegetation in spruce standsEurasian Soil Sci.202053273810.1134/S1064229320010135
ArkhipovV. S.BernatonisV. K.RezchikovV. I.Distribution of iron, cobalt and chromium in peatlands of the central part of Western SiberiaEurasian Soil Sci.20003312651272
BaoK.WangG.PratteS.MackenzieL.KlamtA. M.Historical variation in the distribution of trace and major elements in a poor fen of Fenghuang Mountain, NE ChinaGeochem. Int.2018561003101510.1134/S0016702918100038
VasilevichR. S.Major and trace element compositions of hummocky frozen peatlands in the forest–tundra of northeastern European RussiaGeochem. Int.2018561276128810.1134/S0016702918100129
ShcheglovA. I.TsvetnovaO. B.BogatyrevL. G.Problems of Radioecology and Boundary Disciplines2005YekaterinburgIzd. Ural. Univ.
NieminenT. M.UkonmaanahoL.ShotykW.Enrichment of Cu, Ni, Zn, Pb and As in an ombrotrophic peat bog near a Cu-Ni smelter in Southwest FinlandSci. Total Environ.2002292818910.1016/s0048-9697(02)00028-1
KarpachevskiiL. O.Forest and Forest Soils1981MoscowLesnaya Promyshlennost
BogatyrevL. G.On the classification of forest littersPochvovedenie, No.19903118127
FerratM.WeissD. J.SpiroB.LargeD.The inorganic geochemistry of a peat deposit on the eastern Qinghai-Tibetan Plateau and insights into changing atmospheric circulation in central Asia during the HoloceneGeochim. Cosmochim. Acta20129173110.1016/j.gca.2012.05.028
BorgulatJ.MętrakM.StaszewskiT.WiłkomirskiB.Suska-MalawskaM.Heavy metals accumulation in soil and plants of Polish peat bogsPol. J. Environ. Stud.20182753754410.15244/pjoes/75823
O. V. Semenyuk (1724_CR23) 2020; 53
V. S. Arkhipov (1724_CR2) 2000; 33
N. I. P’yavchenko (1724_CR20) 1978; 10
T. T. Efremova (1724_CR11) 2013; 46
A. P. Sapozhnikov (1724_CR22) 1984; 5
(1724_CR25) 2006
A. M. Coggins (1724_CR34) 2006; 40
1724_CR17
1724_CR16
1724_CR14
A. I. Shcheglov (1724_CR26) 2005
J. Borgulat (1724_CR33) 2018; 27
L. G. Bogatyrev (1724_CR4) 2004; 4
M. Ferrat (1724_CR35) 2012; 91
D. N. Lipatov (1724_CR15) 2018; 51
T. T. Efremova (1724_CR7) 2009; 42
K. Bao (1724_CR29) 2018; 56
A. A. Khalafyan (1724_CR28) 2007
B. Berg (1724_CR30) 2008
H. Biester (1724_CR31) 2012; 84
S. V. Zonn (1724_CR12) 1983
R. S. Vasilevich (1724_CR6) 2018; 56
1724_CR21
L. O. Karpachevskii (1724_CR13) 1981
A. I. Perel’man (1724_CR19) 1999
O. V. Semenyuk (1724_CR24) 2021; 54
M. Grybos (1724_CR36) 2007; 314
C. Olid (1724_CR38) 2010; 408
D. S. Orlov (1724_CR18) 1990
T. T. Efremova (1724_CR8) 2019; 12
N. Rausch (1724_CR39) 2005; 39
T. M. Nieminen (1724_CR37) 2002; 292
L. N. Aleksandrova (1724_CR1) 1980
R. Bindler (1724_CR32) 2006; 53
L. G. Bogatyrev (1724_CR3) 1990; 3
T. T. Efremova (1724_CR9) 2010; 43
A. A. Bogush (1724_CR5) 2019; 60
T. T. Efremova (1724_CR10) 2014; 7
(1724_CR27) 1973
References_xml – volume: 42
  start-page: 1120
  year: 2009
  ident: 1724_CR7
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229309100068
  contributor:
    fullname: T. T. Efremova
– volume: 53
  start-page: 27
  year: 2020
  ident: 1724_CR23
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229320010135
  contributor:
    fullname: O. V. Semenyuk
– volume: 4
  start-page: 17
  year: 2004
  ident: 1724_CR4
  publication-title: Lesovedenie, No.
  contributor:
    fullname: L. G. Bogatyrev
– volume: 33
  start-page: 1265
  year: 2000
  ident: 1724_CR2
  publication-title: Eurasian Soil Sci.
  contributor:
    fullname: V. S. Arkhipov
– volume: 27
  start-page: 537
  year: 2018
  ident: 1724_CR33
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/75823
  contributor:
    fullname: J. Borgulat
– ident: 1724_CR21
– volume-title: The Role of Litter in Forest Biogeocenoses
  year: 1983
  ident: 1724_CR12
  contributor:
    fullname: S. V. Zonn
– volume: 10
  start-page: 146
  year: 1978
  ident: 1724_CR20
  publication-title: Pochvovedenie, No.
  contributor:
    fullname: N. I. P’yavchenko
– volume: 54
  start-page: 738
  year: 2021
  ident: 1724_CR24
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229321050173
  contributor:
    fullname: O. V. Semenyuk
– volume-title: STATISTICA 6. Statistical Data Analysis
  year: 2007
  ident: 1724_CR28
  contributor:
    fullname: A. A. Khalafyan
– volume: 40
  start-page: 260
  year: 2006
  ident: 1724_CR34
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.09.049
  contributor:
    fullname: A. M. Coggins
– volume: 60
  start-page: 194
  year: 2019
  ident: 1724_CR5
  publication-title: Geol. Geofiz.
  doi: 10.15372/GiG2019012
  contributor:
    fullname: A. A. Bogush
– volume: 91
  start-page: 7
  year: 2012
  ident: 1724_CR35
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.05.028
  contributor:
    fullname: M. Ferrat
– volume: 39
  start-page: 5989
  year: 2005
  ident: 1724_CR39
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050260m
  contributor:
    fullname: N. Rausch
– ident: 1724_CR17
– volume-title: Theory and Practice of Chemical Analysis of Soils
  year: 2006
  ident: 1724_CR25
– volume: 56
  start-page: 1276
  year: 2018
  ident: 1724_CR6
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702918100129
  contributor:
    fullname: R. S. Vasilevich
– volume-title: Problems of Radioecology and Boundary Disciplines
  year: 2005
  ident: 1724_CR26
  contributor:
    fullname: A. I. Shcheglov
– volume: 314
  start-page: 490
  year: 2007
  ident: 1724_CR36
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.jcis.2007.04.062
  contributor:
    fullname: M. Grybos
– volume: 292
  start-page: 81
  year: 2002
  ident: 1724_CR37
  publication-title: Sci. Total Environ.
  doi: 10.1016/s0048-9697(02)00028-1
  contributor:
    fullname: T. M. Nieminen
– volume: 5
  start-page: 96
  year: 1984
  ident: 1724_CR22
  publication-title: Pochvovedenie, No.
  contributor:
    fullname: A. P. Sapozhnikov
– volume: 7
  start-page: 685
  year: 2014
  ident: 1724_CR10
  publication-title: Contemp. Probl. Ecol.
  doi: 10.1134/S1995425514060031
  contributor:
    fullname: T. T. Efremova
– volume: 408
  start-page: 5540
  year: 2010
  ident: 1724_CR38
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.07.058
  contributor:
    fullname: C. Olid
– ident: 1724_CR14
– volume: 3
  start-page: 118
  year: 1990
  ident: 1724_CR3
  publication-title: Pochvovedenie, No.
  contributor:
    fullname: L. G. Bogatyrev
– volume-title: Soil Organic Matter and Processes of Its Transformation
  year: 1980
  ident: 1724_CR1
  contributor:
    fullname: L. N. Aleksandrova
– volume-title: Humic Acids of Soils and General Theory of Humification
  year: 1990
  ident: 1724_CR18
  contributor:
    fullname: D. S. Orlov
– volume: 46
  start-page: 51
  year: 2013
  ident: 1724_CR11
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229312120034
  contributor:
    fullname: T. T. Efremova
– volume-title: Landscape Geochemistry
  year: 1999
  ident: 1724_CR19
  contributor:
    fullname: A. I. Perel’man
– volume-title: Unified Methods for Water Analysis
  year: 1973
  ident: 1724_CR27
– volume-title: Forest and Forest Soils
  year: 1981
  ident: 1724_CR13
  contributor:
    fullname: L. O. Karpachevskii
– volume-title: Plant Litter. Decomposition, Humus Formation, Carbon Sequestration
  year: 2008
  ident: 1724_CR30
  contributor:
    fullname: B. Berg
– volume: 12
  start-page: 321
  year: 2019
  ident: 1724_CR8
  publication-title: Contemp. Probl. Ecol.
  doi: 10.1134/S1995425519040024
  contributor:
    fullname: T. T. Efremova
– volume: 56
  start-page: 1003
  year: 2018
  ident: 1724_CR29
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702918100038
  contributor:
    fullname: K. Bao
– volume: 51
  start-page: 518
  year: 2018
  ident: 1724_CR15
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229318050083
  contributor:
    fullname: D. N. Lipatov
– ident: 1724_CR16
– volume: 53
  start-page: 209
  year: 2006
  ident: 1724_CR32
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2006.03.004
  contributor:
    fullname: R. Bindler
– volume: 43
  start-page: 858
  year: 2010
  ident: 1724_CR9
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S106422931008003X
  contributor:
    fullname: T. T. Efremova
– volume: 84
  start-page: 126
  year: 2012
  ident: 1724_CR31
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.01.003
  contributor:
    fullname: H. Biester
SSID ssj0038848
Score 2.2946339
Snippet Highly and roughly decomposed litters formed at 0–30 and 100–140 m from the Elovka River channel within a naturally drained swampy birch ( Betula pubescens...
Highly and roughly decomposed litters formed at 0-30 and 100-140 m from the Elovka River channel within a naturally drained swampy birch (Betula pubescens...
Highly and roughly decomposed litters formed at 0–30 and 100–140 m from the Elovka River channel within a naturally drained swampy birch (Betula pubescens...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1533
SubjectTerms Algorithms
Aluminium
Aluminum
Ashes
Bicarbonates
Carbon dioxide
Clustering
Composition
Decay
Decomposition
Earth and Environmental Science
Earth Sciences
Fallout
Fermentation
Ferns
Forests
Forests and forestry
Fractions
Geotechnical Engineering & Applied Earth Sciences
Humification
Hydrologic regime
Hydrology
Iron
Litter
Metals
Metamorphosis
Minerals
Morphometry
Plant cover
Soil Chemistry
Swamps
Trace elements
Transformations
Title Ash Composition of Litter Fractions as an Indicator of the Stages of Litter Transformation (by an Example of Swampy Birch Forests)
URI https://link.springer.com/article/10.1134/S1064229322110035
https://www.proquest.com/docview/2747917841
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71caEHnkVsKZUPlSigLEnsrL3HLNqlLbSXLlI5RXZiL1WlbLXJCsqRX85M4kBh20OlHKLED8UzHn9fxjMG2C-clXIoNUpgUATIN6JA5YkNjEuMlIWNTZNd_-R0cPhFHJ8n52sQ__l1UV72O49kY6jbY0fE-7OIoDIuTjFRlpAn67Dp4043049fP407-8uVEm0A3EAEVMH7Mm9t5J_V6H-bvOIcbdacyaM2DrBqUhXSVpPL_rI2_fznaiLHe3zOY3joIShLW515Amu2fApb6Wzh03DYZ_Arrb4xMhV-SxebO_b5ggJ_2GTRhkJUTONVsqOSPD3I3KkMokmG8HVmqxs1pjewMTZ1YK6p3viHpsTEVO7sO95es9EFzjlGZ4VWdfVmG6aT8fTDYeBPawhyxCw1Wk0zcIkeClzvtIudK4Y2CnPlQi504pxTUqgQ8ZtSXCOtNFbmiSy4EkiMHefPYaOcl_YFMBVqE-s4l5FJBOIrneMDVJwi0prHherB205o2VWbkyNruAwX2cq49uA1iTWj-VrjCGkfdoBdUearLEV2Qd7iKOzBbif5zE_kKiPSjoxWiagH7zpJ_n19Z7c79yr9Eh7EFFbRxDjuwka9WNpXCHZqs4faPRmNTve8lv8GC3bz2Q
link.rule.ids 315,783,787,27936,27937,41093,42162,52123
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAceCMWCviAxEspie3E3mNAu2zptpcGqZwiO7FLhZSiTSooR345M4kjSguHSjlEiR-Jx575Po1nDPC89k6pmTIogayOkG8kka5SF1mfWqVqx22fXX93L1t-kh8P0oMQx92Ou91Hl2SvqYdzR-Tb_YSwMlonTpwlFulV2JA8yfgENvIPn3fmowIWWsshAi6TEVUIzsx_NvKXOTqvlC94R3ujs7gFxfi5w16Tr1snnd2qfp7L5HjJ_7kNNwMIZfkwa-7AFdfchRv54Tok4nD34FfefmGkLMKmLnbs2eqIQn_YYj0EQ7TM4NWw7YZ8PcjdqQziSYYA9tC1Z2oUZ9AxNvXSnlK9-Q9DqYmp3P53vD1l745w1TE6LbTt2lf3oVjMi_fLKJzXEFWIWjrUmzbzqZlJtHjGc-_rmUviSvtYSJN677WSOkYEp7UwSCytU1WqaqElUmMvxAOYNMeNewhMx8ZywyuV2FQiwjIVPsCpUyfGCF7rKbwepVZ-G7JylD2bEbK8MK5TeEFyLWnFdjhCJgQeYFeU-6rMkV-QvziJp7A5ir4MS7ktibYjp9UymcKbUZJ_Xv-320eXKv0Mri2L3VW52t7beQzXOQVZ9BGPmzDp1ifuCUKfzj4NU_03yFn2MQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRULlUCht1aU8fECiDwWS2Fl7j4HulldRJbYSPaV2YgNCCmgT1MKxv7wzG0dQoIeqUg5R4kfix8z3aTwzAGuFs1L2pcYZ6BUB8o0oUHliA-MSI2VhYzOJrv_5sLfzVewdJ8c-z2nVnnZvTZKNTwNFaSrrzcvC-RwkYvMoItyMmiom_hLy5AlMCwqM1IHp9NO3_UErjLlSovGG64mAKnjD5qON_KGa7gvoB5bSiQIazsH39tObcyfnG1e12chv7kV1_I9_m4dnHpyytFlNz2HKlgswm56MfYAO-wJ-pdUpIyHiD3uxC8cOzsgliA3HjZNExTReJdstyQaEnJ7KIM5kCGxPbHWnxugOasam3pprqjf4qSlkMZU7-oG312zrDHcjoyyiVV29ewmj4WC0vRP4PA5BjmimRnlqei7RfYGaULvYuaJvozBXLuRCJ845JYUKEdkpxTUSTmNlnsiCK4GU2XH-CjrlRWlfA1OhNrGOcxmZRCDy0jk-wCVVRFrzuFBdeN_OYHbZROvIJiyHi-zBuHZhneY4o51c4whp75CAXVFMrCxF3kF25CjswlK7DDK_xauM6DxyXSWiLnxoZ_X29V-7Xfyn0qsw8-XjMDvYPdx_A09j8r2YOEIuQaceX9llRES1WfGr_jeOzP8V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ash+Composition+of+Litter+Fractions+as+an+Indicator+of+the+Stages+of+Litter+Transformation+%28by+an+Example+of+Swampy+Birch+Forests%29&rft.jtitle=Eurasian+soil+science&rft.au=Efremova%2C+T+T&rft.au=Efremov%2C+S+P&rft.au=Avrova%2C+A+F&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-2293&rft.eissn=1556-195X&rft.volume=55&rft.issue=11&rft.spage=1533&rft.epage=1545&rft_id=info:doi/10.1134%2FS1064229322110035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-2293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-2293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-2293&client=summon