Validation of the Remote Method of Determining the Temperature and Concentration of High-temperature Water Vapor from the Reference Transmission Spectra

The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concent...

Full description

Saved in:
Bibliographic Details
Published inRussian physics journal Vol. 60; no. 11; pp. 1961 - 1970
Main Authors Egorov, O. V., Voitsekhovskaya, O. K., Kashirskii, D. E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concentrations 0.17–1 atm with resolution of 1 cm –1 . When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at Т ≈ 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000–2500 and 2600–4400 cm –1 are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function.
AbstractList The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concentrations 0.17–1 atm with resolution of 1 cm–1. When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at Т ≈ 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000–2500 and 2600–4400 cm–1 are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function.
The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500-1770 K and concentrations 0.171 atm with resolution of 1 [cm.sup.-1]. When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at T [approximately equal to] 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000-2500 and 2600-4400 [cm.sup.-1] are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function. Keywords: water vapor, transmission spectrum, high temperatures, concentration, inverse optical problem, HITEMP2010, intensity, temperature coefficients.
The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concentrations 0.17–1 atm with resolution of 1 cm –1 . When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at Т ≈ 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000–2500 and 2600–4400 cm –1 are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function.
Audience Academic
Author Kashirskii, D. E.
Egorov, O. V.
Voitsekhovskaya, O. K.
Author_xml – sequence: 1
  givenname: O. V.
  surname: Egorov
  fullname: Egorov, O. V.
  email: egorov@mail.tsu.ru
  organization: National Research Tomsk State University
– sequence: 2
  givenname: O. K.
  surname: Voitsekhovskaya
  fullname: Voitsekhovskaya, O. K.
  organization: National Research Tomsk State University
– sequence: 3
  givenname: D. E.
  surname: Kashirskii
  fullname: Kashirskii, D. E.
  organization: National Research Tomsk State University
BookMark eNp1kU9PHCEYh0ljk6rtB-iNxDPKn2FgjmZrq4nGRFc9EnbmZRezAyOwh36TftyyjrFeGg4Q8jy_901-R-ggxAAIfWf0lFGqzjJjTHNCmSZM0I60n9Ahk0qQjnN9UN-0bYjWWn1BRzk_U1qtVh2iP4926wdbfAw4Olw2gO9gjAXwDZRNHPafP6BAGn3wYf0KLGGcINmyS4BtGPAihh5CSe8pl369IeUD9WRrAn60U0zYpTi-zXGQoKp4mWzIo895799P0Nesr-izs9sM397uY_Tw82K5uCTXt7-uFufXpBdSFqI6WCnJ2kbwljvJFdOgldSMiQY4bftBdRyg4Z0YHF11wDUHtlp1Wje8aak4Ridz7pTiyw5yMc9xl0IdaThlUqsKdpU6nam13YLxwcW6Yl_PAKPvaxXO1_9zKbRiQja8CmwW-hRzTuDMlPxo02_DqNk3ZubGTG3M7BszbXX47OTKhjWkf6v8X_oLfJWbYA
CitedBy_id crossref_primary_10_1088_1742_6596_1680_1_012016
crossref_primary_10_1016_j_jqsrt_2019_06_018
Cites_doi 10.1007/s11182-017-1070-2
10.1016/j.jqsrt.2011.12.013
10.1016/j.molstruc.2005.01.027
10.1117/12.2075131
10.1016/j.jqsrt.2013.07.002
10.1016/j.saa.2016.04.004
10.1007/s11182-012-9820-7
10.1117/12.2248861
10.1016/j.jms.2016.01.001
10.1364/AO.55.003814
10.1016/j.jms.2016.04.006
10.1016/j.jqsrt.2010.05.001
10.1063/1.4868327
10.1016/j.jqsrt.2014.02.006
10.1016/S0022-4073(98)00091-0
10.1016/j.jqsrt.2017.03.040
10.1111/j.1365-2966.2006.10184.x
10.1016/j.jqsrt.2014.05.001
10.1117/12.2248843
10.1007/s11182-013-0057-x
10.1016/j.jqsrt.2016.07.014
10.1016/j.jms.2016.05.002
10.1364/JOT.77.000554
10.1088/0953-4075/49/7/074003
10.1007/s11182-017-1135-2
10.1016/j.jqsrt.2015.01.016
10.1016/j.jqsrt.2017.04.023
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
COPYRIGHT 2018 Springer
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: COPYRIGHT 2018 Springer
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s11182-018-1309-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1573-9228
EndPage 1970
ExternalDocumentID A538713542
10_1007_s11182_018_1309_6
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
ID FETCH-LOGICAL-c355t-79eb751643262f52718e87581134e206cd792ee4293df0b9e282e1bb988424603
IEDL.DBID U2A
ISSN 1064-8887
IngestDate Thu Oct 10 17:38:24 EDT 2024
Fri Feb 02 03:56:11 EST 2024
Thu Sep 12 17:58:18 EDT 2024
Sat Dec 16 12:01:41 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords intensity
transmission spectrum
HITEMP2010
water vapor
high temperatures
inverse optical problem
temperature coefficients
concentration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-79eb751643262f52718e87581134e206cd792ee4293df0b9e282e1bb988424603
PQID 2015878849
PQPubID 2043529
PageCount 10
ParticipantIDs proquest_journals_2015878849
gale_infotracacademiconefile_A538713542
crossref_primary_10_1007_s11182_018_1309_6
springer_journals_10_1007_s11182_018_1309_6
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Russian physics journal
PublicationTitleAbbrev Russ Phys J
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References HuangXSchwenkeDWLeeTJJ. Chem. Phys.20141401143112014JChPh.140k4311H10.1063/1.4868327
AkhlyostinAApanovichZFazlievAProc. SPIE201610035100350D1
VoitsekhovskayaOKEgorovOVKashirskiiDEJ. Quant. Spectrosc. Radiat. Transfer201414738462014JQSRT.147...38E10.1016/j.jqsrt.2014.05.001
BirkMWagnerGLoosJJ. Quant. Spectrosc. Radiat. Transfer2017203881022017JQSRT.203...88B10.1016/j.jqsrt.2017.03.040
VoitsekhovskayaOKEgorovOVRuss. Phys. J.201255436236810.1007/s11182-012-9820-7
Jacquinet-HussonNArmanteRScottNAJ. Quant. Spectrosc. Radiat. Transfer20163273172
H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, J. Mol. Structure, 742, 215–227 (2005).
BirkMWagnerGQuantJSpectrosc. Radiat. Transfer20121138899282012JQSRT.113..889B10.1016/j.jqsrt.2011.12.013
BarberRJTennysonJHarrisGJMon. Not. R. Astron. Soc.2006368108710942006MNRAS.368.1087B10.1111/j.1365-2966.2006.10184.x
VoitsekhovskayaOKEgorovOVKashirskiiDERuss. Phys. J.201356447348210.1007/s11182-013-0057-x
R. A. Toth, URL: http://mark4sun.jpl.nasa.gov/h2o.html.
EgorovOVVoitsekhovskayaOKKashirskiiDEProc. SPIE201610035100350410.1117/12.2248843
RothmanLSGordonIEBarberRJJ. Quant. Spectrosc. Radiat. Transfer2010111213921502010JQSRT.111.2139R10.1016/j.jqsrt.2010.05.001
VoitsekhovskayaOKEgorovOVKashirskiiDESpectrochimica Acta A201616547532016AcSpA.165...47V10.1016/j.saa.2016.04.004
VoitsekhovskayaOKEgorovOVKashirskiiDERuss. Phys. J.201760226127210.1007/s11182-017-1070-2
VoitsekhovskayaOKEgorovOVKashirskiiDERuss. Phys. J.201760574975710.1007/s11182-017-1135-2
MikhailenkoSNBabikovYLGolovkoVFOpt. Atm. Okeana2005189765776
EgorovOVVoitsekhovskayaOKKashirskiiDEProc. SPIE201610035100350510.1117/12.2248861
VoitsekhovskayaOKVoitsekhovskiiAVEgorovOVKashirskiiDEProc. SPIE2014929292921110.1117/12.2075131
VoitsekhovskayaOKKashirskiiDEEgorovOVSheferOVAppl. Opt.20165514381438232016ApOpt..55.3814V10.1364/AO.55.003814
TennysonJYurchenkoSNAl-RefaieAFJ. Mol. Spectrosc.201632773942016JMoSp.327...73T10.1016/j.jms.2016.05.002
MikhailenkoSNRegaliaLMolJSpectrosc.20163271591702016JMoSp.327..159M10.1016/j.jms.2016.01.001
VoitsekhovskiiAVVoitsekhovskayaOKKashirskiiDESuslovaISJ. Opt. Technol.201077955455910.1364/JOT.77.000554
MikhailenkoSNMondelainDKassiSJ. Quant. Spectrosc. Radiat. Transfer201414048572014JQSRT.140...48M10.1016/j.jqsrt.2014.02.006
O. K. Voitsekhovskaya and O. V. Egorov, Vestn. Mosk. Univ. Ser. 3. Fiz., Astron., No. 2, 38–45 (2013).
M. Rey, A. V. Nikitin, Y. L. Babikov, and V. G. Tyuterev, J. Mol. Spectrosc., 327, 138–158 (2016).
PickettHMPoynterRLCohenEAJ. Quant. Spectrosc. Radiat. Transfer19886058838901998JQSRT..60..883P10.1016/S0022-4073(98)00091-0
LukashevskayaAALavrentievaNNDudaryonokACPerevalovVIQuantJSpectrosc. Radiat. Transfer20161842052172016JQSRT.184..205L10.1016/j.jqsrt.2016.07.014
RothmanLSGordonIEBabikovYJ. Quant. Spectrosc. Radiat. Transfer20131304502013JQSRT.130....4R10.1016/j.jqsrt.2013.07.002
DubernetMLAntonyBKBaYAJ. Phys. B2016490740032016JPhB...49g4003D10.1088/0953-4075/49/7/074003
SchroederPJPfotenhauerDJYangJJ. Quant. Spectrosc. Radiat. Transfer20172031942052017JQSRT.203..194S10.1016/j.jqsrt.2017.04.023
AlbertiMWeberRManciniMJ. Quant. Spectrosc. Radiat. Transfer201515714232015JQSRT.157...14A10.1016/j.jqsrt.2015.01.016
HM Pickett (1309_CR25) 1988; 60
M Birk (1309_CR22) 2012; 113
OK Voitsekhovskaya (1309_CR8) 2016; 165
X Huang (1309_CR6) 2014; 140
OK Voitsekhovskaya (1309_CR5) 2014; 9292
SN Mikhailenko (1309_CR31) 2014; 140
OK Voitsekhovskaya (1309_CR4) 2013; 56
OV Egorov (1309_CR10) 2016; 10035
OV Egorov (1309_CR11) 2016; 10035
J Tennyson (1309_CR12) 2016; 327
1309_CR13
A Akhlyostin (1309_CR28) 2016; 10035
OK Voitsekhovskaya (1309_CR17) 2017; 60
M Alberti (1309_CR18) 2015; 157
LS Rothman (1309_CR21) 2013; 130
SN Mikhailenko (1309_CR27) 2005; 18
OK Voitsekhovskaya (1309_CR16) 2014; 147
LS Rothman (1309_CR1) 2010; 111
OK Voitsekhovskaya (1309_CR2) 2012; 55
OK Voitsekhovskaya (1309_CR14) 2017; 60
M Birk (1309_CR30) 2017; 203
AV Voitsekhovskii (1309_CR15) 2010; 77
PJ Schroeder (1309_CR23) 2017; 203
AA Lukashevskaya (1309_CR7) 2016; 184
SN Mikhailenko (1309_CR19) 2016; 327
ML Dubernet (1309_CR29) 2016; 49
RJ Barber (1309_CR32) 2006; 368
OK Voitsekhovskaya (1309_CR9) 2016; 55
1309_CR26
N Jacquinet-Husson (1309_CR24) 2016; 327
1309_CR3
1309_CR20
References_xml – volume: 60
  start-page: 261
  issue: 2
  year: 2017
  ident: 1309_CR14
  publication-title: Russ. Phys. J.
  doi: 10.1007/s11182-017-1070-2
  contributor:
    fullname: OK Voitsekhovskaya
– volume: 10035
  start-page: 100350D
  year: 2016
  ident: 1309_CR28
  publication-title: Proc. SPIE
  contributor:
    fullname: A Akhlyostin
– volume: 113
  start-page: 889
  year: 2012
  ident: 1309_CR22
  publication-title: Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2011.12.013
  contributor:
    fullname: M Birk
– ident: 1309_CR26
  doi: 10.1016/j.molstruc.2005.01.027
– volume: 9292
  start-page: 929211
  year: 2014
  ident: 1309_CR5
  publication-title: Proc. SPIE
  doi: 10.1117/12.2075131
  contributor:
    fullname: OK Voitsekhovskaya
– volume: 130
  start-page: 4
  year: 2013
  ident: 1309_CR21
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2013.07.002
  contributor:
    fullname: LS Rothman
– volume: 165
  start-page: 47
  year: 2016
  ident: 1309_CR8
  publication-title: Spectrochimica Acta A
  doi: 10.1016/j.saa.2016.04.004
  contributor:
    fullname: OK Voitsekhovskaya
– volume: 55
  start-page: 362
  issue: 4
  year: 2012
  ident: 1309_CR2
  publication-title: Russ. Phys. J.
  doi: 10.1007/s11182-012-9820-7
  contributor:
    fullname: OK Voitsekhovskaya
– volume: 10035
  start-page: 1003505
  year: 2016
  ident: 1309_CR11
  publication-title: Proc. SPIE
  doi: 10.1117/12.2248861
  contributor:
    fullname: OV Egorov
– ident: 1309_CR3
– volume: 327
  start-page: 159
  year: 2016
  ident: 1309_CR19
  publication-title: Spectrosc.
  doi: 10.1016/j.jms.2016.01.001
  contributor:
    fullname: SN Mikhailenko
– volume: 55
  start-page: 3814
  issue: 14
  year: 2016
  ident: 1309_CR9
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.003814
  contributor:
    fullname: OK Voitsekhovskaya
– ident: 1309_CR13
  doi: 10.1016/j.jms.2016.04.006
– volume: 111
  start-page: 2139
  year: 2010
  ident: 1309_CR1
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2010.05.001
  contributor:
    fullname: LS Rothman
– volume: 18
  start-page: 765
  issue: 9
  year: 2005
  ident: 1309_CR27
  publication-title: Opt. Atm. Okeana
  contributor:
    fullname: SN Mikhailenko
– volume: 140
  start-page: 114311
  year: 2014
  ident: 1309_CR6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4868327
  contributor:
    fullname: X Huang
– volume: 140
  start-page: 48
  year: 2014
  ident: 1309_CR31
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2014.02.006
  contributor:
    fullname: SN Mikhailenko
– volume: 60
  start-page: 883
  issue: 5
  year: 1988
  ident: 1309_CR25
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/S0022-4073(98)00091-0
  contributor:
    fullname: HM Pickett
– volume: 203
  start-page: 88
  year: 2017
  ident: 1309_CR30
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2017.03.040
  contributor:
    fullname: M Birk
– volume: 368
  start-page: 1087
  year: 2006
  ident: 1309_CR32
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2006.10184.x
  contributor:
    fullname: RJ Barber
– volume: 147
  start-page: 38
  year: 2014
  ident: 1309_CR16
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2014.05.001
  contributor:
    fullname: OK Voitsekhovskaya
– volume: 10035
  start-page: 1003504
  year: 2016
  ident: 1309_CR10
  publication-title: Proc. SPIE
  doi: 10.1117/12.2248843
  contributor:
    fullname: OV Egorov
– volume: 327
  start-page: 31
  year: 2016
  ident: 1309_CR24
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  contributor:
    fullname: N Jacquinet-Husson
– volume: 56
  start-page: 473
  issue: 4
  year: 2013
  ident: 1309_CR4
  publication-title: Russ. Phys. J.
  doi: 10.1007/s11182-013-0057-x
  contributor:
    fullname: OK Voitsekhovskaya
– ident: 1309_CR20
– volume: 184
  start-page: 205
  year: 2016
  ident: 1309_CR7
  publication-title: Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2016.07.014
  contributor:
    fullname: AA Lukashevskaya
– volume: 327
  start-page: 73
  year: 2016
  ident: 1309_CR12
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2016.05.002
  contributor:
    fullname: J Tennyson
– volume: 77
  start-page: 554
  issue: 9
  year: 2010
  ident: 1309_CR15
  publication-title: J. Opt. Technol.
  doi: 10.1364/JOT.77.000554
  contributor:
    fullname: AV Voitsekhovskii
– volume: 49
  start-page: 074003
  year: 2016
  ident: 1309_CR29
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/49/7/074003
  contributor:
    fullname: ML Dubernet
– volume: 60
  start-page: 749
  issue: 5
  year: 2017
  ident: 1309_CR17
  publication-title: Russ. Phys. J.
  doi: 10.1007/s11182-017-1135-2
  contributor:
    fullname: OK Voitsekhovskaya
– volume: 157
  start-page: 14
  year: 2015
  ident: 1309_CR18
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2015.01.016
  contributor:
    fullname: M Alberti
– volume: 203
  start-page: 194
  year: 2017
  ident: 1309_CR23
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2017.04.023
  contributor:
    fullname: PJ Schroeder
SSID ssj0010067
Score 2.1205757
Snippet The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1961
SubjectTerms Absorption spectra
Condensed Matter Physics
Error analysis
Hadrons
Heavy Ions
Lasers
Line spectra
Mathematical and Computational Physics
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Temperature
Theoretical
Vapors
Water vapor
Title Validation of the Remote Method of Determining the Temperature and Concentration of High-temperature Water Vapor from the Reference Transmission Spectra
URI https://link.springer.com/article/10.1007/s11182-018-1309-6
https://www.proquest.com/docview/2015878849
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qi-BFfGK1lj0IgrKSbjbJ5thWa1H0IG2tp5DH5CJEsfW_-HOd2SbW58FTINnshp3NzvftvACOPAxJqXuZjHNHSx1gLmMPHWkyw2a73E1tnu2bW3841ldTb1oD9XF0UTyeVRZJu1EvY90YChPzJdLDVgF_BRqEHTS7cY1V98NywNuvtXD6WhK7CypL5m9dfNFF33fkH6ZRq3EGG7BeQkXRXch2E2pYbMGqddlMZ9vwNiEIvaiIJJ5yQUBO3CFNPIobWxWab56Xzi7Uv20wQkLJiyzKIi4y0eegxaLMnMsvsNuHnH9qdU9Y9EVMYoLpgkNRynHKKEFhVR0tFT5zE1zLnvragfHgYtQfyrLOgkwJbcxlEGISeMSbCMqp3FOkrpBojOl0XI3K8dMsCBUiaS43y50kRKJp2EmS0BittO-4u1AvngrcA-EkTuwEcZgq4nWYZIZUQewSKsnQqCQwTTipZjx6XqTTiJaJk1k8EYmHbWxh5DfhmGUS8a9GX5_GZcQADcVJq6IubdZcYVCrJrQqsUXlPziLCNp4hhi-DptwWoly-fjPYff_1foA1hSvKOuW1oL6_OUVDwmnzJM2NLq9896Ar5cP1xdtu1DfAdCD4jg
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoheeKMuLeADEhLIVdZxEue4Ki0L7fYA21JOlp1MLkhptZte-kv4ucw4ThcKHHpNnIzjGXu-ybwA3mRYklLPaumaREtdYCNdhok0tWG3XZNWoc72_DifnejPZ9lZzONeDdHug0synNTrZDfGwmT6ktXDboH8LmxoRWh_BBvTj98P96-dB3wCBydnriUZeMXgzPzXS_5QRzcP5b-8o0HpHDyExTDdPtbkx-5l53erqxuVHG_5PY_gQQShYtpLzWO4g-0TuBeCQavVU_h5SuC877UkzhtBEFF8QWIpinnoN80XP8QwGqIYBiyQ8Hdfn1m4thZ7nA7Zxpq8_AAHlMjut1HfCOUuxakjA0BwkkukE_MPRVCiJIT8N0985XzQpXsGJwf7i72ZjB0cZEU4ppNFib7IiEcEElWTKVKESAaSmUxSjSrJq7ooFSLpxLRuEl8iGYA48b40RiudJ-lzGLXnLW6BSHziksKVlSKLEX1tSMm4lPBOjUb5wozh3cBIe9EX6rDrksy81JaWmr13pc3H8JZZbXkT0-wrF3MRiBSXw7JTUgPcu1CrMewM0mDj7l5ZAk2ZKWiO5RjeD8xd3_4v2Re3Gv0a7s8W8yN79On4cBs2FUtKCH7bgVG3vMSXhIY6_ypK_y_6Zv9N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BUBGXqrQgAgH2UAmpaIWzXtvrYwSNwlOoSgK3lR_jo0GJ-1_6czuzXjdtgQPXZLMbeXZ3vs_fPAC-RpiSU49KmVWBljrBSmYRBtKUhmW7Kixcne3bu3gy01eP0aPvc7rsot07SbLNaeAqTXVz9lxWZ6vEN8bFRIOJAbFEEK_DBnmikNnXTI3-yAh8Fzu5M9aSqF7SyZqvTfGPY_r_en6hkzr3M_4EHz1uFKPW0NuwhvVn-ODiN4vlF_g1JzzdtkcST5UgVCd-IFkBxa1rEc0fXvjIF5rfDZgiQea2pLLI6lKccwZj7cvo8g84BkQ2f416IGC6EPOMMLvgvBS_jk8ZFM7v0b7hF3CCG9vTXDswG3-fnk-kb7ogC4IejUxSzJOISBThOlVFinwXEqcxw2GoUQVxUSapQiQ3FpZVkKdInA2HeZ4ao5WOg3AXevVTjXsggjzIgiRLC0UkD_PSkF_IQoIoJRqVJ6YP37onbp_b2hp2VUWZzWPJPCy4pTbuwwnbxPK5o39fZD59gJbiClZ2RDc3txvUqg-DzmzWH8ilJZwTGaL7Ou3DaWfK1ddvLrv_rtHHsHl_MbY3l3fXB7CleHO5cLUB9JrFTzwk_NLkR26P_gbijebS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+the+Remote+Method+of+Determining+the+Temperature+and+Concentration+of+High-temperature+Water+Vapor+from+the+Reference+Transmission+Spectra&rft.jtitle=Russian+physics+journal&rft.au=Egorov%2C+O.+V.&rft.au=Voitsekhovskaya%2C+O.+K.&rft.au=Kashirskii%2C+D.+E.&rft.date=2018-03-01&rft.pub=Springer+US&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=60&rft.issue=11&rft.spage=1961&rft.epage=1970&rft_id=info:doi/10.1007%2Fs11182-018-1309-6&rft.externalDocID=10_1007_s11182_018_1309_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon