Validation of the Remote Method of Determining the Temperature and Concentration of High-temperature Water Vapor from the Reference Transmission Spectra
The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concent...
Saved in:
Published in | Russian physics journal Vol. 60; no. 11; pp. 1961 - 1970 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concentrations 0.17–1 atm with resolution of 1 cm
–1
. When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at Т ≈ 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000–2500 and 2600–4400 cm
–1
are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function. |
---|---|
AbstractList | The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concentrations 0.17–1 atm with resolution of 1 cm–1. When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at Т ≈ 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000–2500 and 2600–4400 cm–1 are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function. The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500-1770 K and concentrations 0.171 atm with resolution of 1 [cm.sup.-1]. When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at T [approximately equal to] 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000-2500 and 2600-4400 [cm.sup.-1] are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function. Keywords: water vapor, transmission spectrum, high temperatures, concentration, inverse optical problem, HITEMP2010, intensity, temperature coefficients. The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on the example of the transmission spectra of water vapor measured with an average error of 5% at temperatures in the range 500–1770 K and concentrations 0.17–1 atm with resolution of 1 cm –1 . When solving the direct optical problem, the parameters of water vapor spectral lines comprised in the HITEMP2010 database are analyzed with allowance for the last measurements of the absorption spectra with high resolution at Т ≈ 1300 K. It is demonstrated that overestimated values of the intensities of some hot water vapor spectral lines can be a reason for the deviation of the theoretical absorption predicted on the basis of the HITEMP2010 database from the experimental one. To increase the accuracy of solving the inverse optical problem, the data from several (up to eight) fragments of the spectral ranges 1000–2500 and 2600–4400 cm –1 are used. As a result, it is demonstrated that this allows the average error of determining reference values of the water vapor temperature and concentration to be decreased approximately to 0.3%, which corresponds to the average approximation error of theoretical values of its transmission function. |
Audience | Academic |
Author | Kashirskii, D. E. Egorov, O. V. Voitsekhovskaya, O. K. |
Author_xml | – sequence: 1 givenname: O. V. surname: Egorov fullname: Egorov, O. V. email: egorov@mail.tsu.ru organization: National Research Tomsk State University – sequence: 2 givenname: O. K. surname: Voitsekhovskaya fullname: Voitsekhovskaya, O. K. organization: National Research Tomsk State University – sequence: 3 givenname: D. E. surname: Kashirskii fullname: Kashirskii, D. E. organization: National Research Tomsk State University |
BookMark | eNp1kU9PHCEYh0ljk6rtB-iNxDPKn2FgjmZrq4nGRFc9EnbmZRezAyOwh36TftyyjrFeGg4Q8jy_901-R-ggxAAIfWf0lFGqzjJjTHNCmSZM0I60n9Ahk0qQjnN9UN-0bYjWWn1BRzk_U1qtVh2iP4926wdbfAw4Olw2gO9gjAXwDZRNHPafP6BAGn3wYf0KLGGcINmyS4BtGPAihh5CSe8pl369IeUD9WRrAn60U0zYpTi-zXGQoKp4mWzIo895799P0Nesr-izs9sM397uY_Tw82K5uCTXt7-uFufXpBdSFqI6WCnJ2kbwljvJFdOgldSMiQY4bftBdRyg4Z0YHF11wDUHtlp1Wje8aak4Ridz7pTiyw5yMc9xl0IdaThlUqsKdpU6nam13YLxwcW6Yl_PAKPvaxXO1_9zKbRiQja8CmwW-hRzTuDMlPxo02_DqNk3ZubGTG3M7BszbXX47OTKhjWkf6v8X_oLfJWbYA |
CitedBy_id | crossref_primary_10_1088_1742_6596_1680_1_012016 crossref_primary_10_1016_j_jqsrt_2019_06_018 |
Cites_doi | 10.1007/s11182-017-1070-2 10.1016/j.jqsrt.2011.12.013 10.1016/j.molstruc.2005.01.027 10.1117/12.2075131 10.1016/j.jqsrt.2013.07.002 10.1016/j.saa.2016.04.004 10.1007/s11182-012-9820-7 10.1117/12.2248861 10.1016/j.jms.2016.01.001 10.1364/AO.55.003814 10.1016/j.jms.2016.04.006 10.1016/j.jqsrt.2010.05.001 10.1063/1.4868327 10.1016/j.jqsrt.2014.02.006 10.1016/S0022-4073(98)00091-0 10.1016/j.jqsrt.2017.03.040 10.1111/j.1365-2966.2006.10184.x 10.1016/j.jqsrt.2014.05.001 10.1117/12.2248843 10.1007/s11182-013-0057-x 10.1016/j.jqsrt.2016.07.014 10.1016/j.jms.2016.05.002 10.1364/JOT.77.000554 10.1088/0953-4075/49/7/074003 10.1007/s11182-017-1135-2 10.1016/j.jqsrt.2015.01.016 10.1016/j.jqsrt.2017.04.023 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 COPYRIGHT 2018 Springer Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: COPYRIGHT 2018 Springer – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11182-018-1309-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1573-9228 |
EndPage | 1970 |
ExternalDocumentID | A538713542 10_1007_s11182_018_1309_6 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION |
ID | FETCH-LOGICAL-c355t-79eb751643262f52718e87581134e206cd792ee4293df0b9e282e1bb988424603 |
IEDL.DBID | U2A |
ISSN | 1064-8887 |
IngestDate | Thu Oct 10 17:38:24 EDT 2024 Fri Feb 02 03:56:11 EST 2024 Thu Sep 12 17:58:18 EDT 2024 Sat Dec 16 12:01:41 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | intensity transmission spectrum HITEMP2010 water vapor high temperatures inverse optical problem temperature coefficients concentration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-79eb751643262f52718e87581134e206cd792ee4293df0b9e282e1bb988424603 |
PQID | 2015878849 |
PQPubID | 2043529 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2015878849 gale_infotracacademiconefile_A538713542 crossref_primary_10_1007_s11182_018_1309_6 springer_journals_10_1007_s11182_018_1309_6 |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Russian physics journal |
PublicationTitleAbbrev | Russ Phys J |
PublicationYear | 2018 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | HuangXSchwenkeDWLeeTJJ. Chem. Phys.20141401143112014JChPh.140k4311H10.1063/1.4868327 AkhlyostinAApanovichZFazlievAProc. SPIE201610035100350D1 VoitsekhovskayaOKEgorovOVKashirskiiDEJ. Quant. Spectrosc. Radiat. Transfer201414738462014JQSRT.147...38E10.1016/j.jqsrt.2014.05.001 BirkMWagnerGLoosJJ. Quant. Spectrosc. Radiat. Transfer2017203881022017JQSRT.203...88B10.1016/j.jqsrt.2017.03.040 VoitsekhovskayaOKEgorovOVRuss. Phys. J.201255436236810.1007/s11182-012-9820-7 Jacquinet-HussonNArmanteRScottNAJ. Quant. Spectrosc. Radiat. Transfer20163273172 H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, J. Mol. Structure, 742, 215–227 (2005). BirkMWagnerGQuantJSpectrosc. Radiat. Transfer20121138899282012JQSRT.113..889B10.1016/j.jqsrt.2011.12.013 BarberRJTennysonJHarrisGJMon. Not. R. Astron. Soc.2006368108710942006MNRAS.368.1087B10.1111/j.1365-2966.2006.10184.x VoitsekhovskayaOKEgorovOVKashirskiiDERuss. Phys. J.201356447348210.1007/s11182-013-0057-x R. A. Toth, URL: http://mark4sun.jpl.nasa.gov/h2o.html. EgorovOVVoitsekhovskayaOKKashirskiiDEProc. SPIE201610035100350410.1117/12.2248843 RothmanLSGordonIEBarberRJJ. Quant. Spectrosc. Radiat. Transfer2010111213921502010JQSRT.111.2139R10.1016/j.jqsrt.2010.05.001 VoitsekhovskayaOKEgorovOVKashirskiiDESpectrochimica Acta A201616547532016AcSpA.165...47V10.1016/j.saa.2016.04.004 VoitsekhovskayaOKEgorovOVKashirskiiDERuss. Phys. J.201760226127210.1007/s11182-017-1070-2 VoitsekhovskayaOKEgorovOVKashirskiiDERuss. Phys. J.201760574975710.1007/s11182-017-1135-2 MikhailenkoSNBabikovYLGolovkoVFOpt. Atm. Okeana2005189765776 EgorovOVVoitsekhovskayaOKKashirskiiDEProc. SPIE201610035100350510.1117/12.2248861 VoitsekhovskayaOKVoitsekhovskiiAVEgorovOVKashirskiiDEProc. SPIE2014929292921110.1117/12.2075131 VoitsekhovskayaOKKashirskiiDEEgorovOVSheferOVAppl. Opt.20165514381438232016ApOpt..55.3814V10.1364/AO.55.003814 TennysonJYurchenkoSNAl-RefaieAFJ. Mol. Spectrosc.201632773942016JMoSp.327...73T10.1016/j.jms.2016.05.002 MikhailenkoSNRegaliaLMolJSpectrosc.20163271591702016JMoSp.327..159M10.1016/j.jms.2016.01.001 VoitsekhovskiiAVVoitsekhovskayaOKKashirskiiDESuslovaISJ. Opt. Technol.201077955455910.1364/JOT.77.000554 MikhailenkoSNMondelainDKassiSJ. Quant. Spectrosc. Radiat. Transfer201414048572014JQSRT.140...48M10.1016/j.jqsrt.2014.02.006 O. K. Voitsekhovskaya and O. V. Egorov, Vestn. Mosk. Univ. Ser. 3. Fiz., Astron., No. 2, 38–45 (2013). M. Rey, A. V. Nikitin, Y. L. Babikov, and V. G. Tyuterev, J. Mol. Spectrosc., 327, 138–158 (2016). PickettHMPoynterRLCohenEAJ. Quant. Spectrosc. Radiat. Transfer19886058838901998JQSRT..60..883P10.1016/S0022-4073(98)00091-0 LukashevskayaAALavrentievaNNDudaryonokACPerevalovVIQuantJSpectrosc. Radiat. Transfer20161842052172016JQSRT.184..205L10.1016/j.jqsrt.2016.07.014 RothmanLSGordonIEBabikovYJ. Quant. Spectrosc. Radiat. Transfer20131304502013JQSRT.130....4R10.1016/j.jqsrt.2013.07.002 DubernetMLAntonyBKBaYAJ. Phys. B2016490740032016JPhB...49g4003D10.1088/0953-4075/49/7/074003 SchroederPJPfotenhauerDJYangJJ. Quant. Spectrosc. Radiat. Transfer20172031942052017JQSRT.203..194S10.1016/j.jqsrt.2017.04.023 AlbertiMWeberRManciniMJ. Quant. Spectrosc. Radiat. Transfer201515714232015JQSRT.157...14A10.1016/j.jqsrt.2015.01.016 HM Pickett (1309_CR25) 1988; 60 M Birk (1309_CR22) 2012; 113 OK Voitsekhovskaya (1309_CR8) 2016; 165 X Huang (1309_CR6) 2014; 140 OK Voitsekhovskaya (1309_CR5) 2014; 9292 SN Mikhailenko (1309_CR31) 2014; 140 OK Voitsekhovskaya (1309_CR4) 2013; 56 OV Egorov (1309_CR10) 2016; 10035 OV Egorov (1309_CR11) 2016; 10035 J Tennyson (1309_CR12) 2016; 327 1309_CR13 A Akhlyostin (1309_CR28) 2016; 10035 OK Voitsekhovskaya (1309_CR17) 2017; 60 M Alberti (1309_CR18) 2015; 157 LS Rothman (1309_CR21) 2013; 130 SN Mikhailenko (1309_CR27) 2005; 18 OK Voitsekhovskaya (1309_CR16) 2014; 147 LS Rothman (1309_CR1) 2010; 111 OK Voitsekhovskaya (1309_CR2) 2012; 55 OK Voitsekhovskaya (1309_CR14) 2017; 60 M Birk (1309_CR30) 2017; 203 AV Voitsekhovskii (1309_CR15) 2010; 77 PJ Schroeder (1309_CR23) 2017; 203 AA Lukashevskaya (1309_CR7) 2016; 184 SN Mikhailenko (1309_CR19) 2016; 327 ML Dubernet (1309_CR29) 2016; 49 RJ Barber (1309_CR32) 2006; 368 OK Voitsekhovskaya (1309_CR9) 2016; 55 1309_CR26 N Jacquinet-Husson (1309_CR24) 2016; 327 1309_CR3 1309_CR20 |
References_xml | – volume: 60 start-page: 261 issue: 2 year: 2017 ident: 1309_CR14 publication-title: Russ. Phys. J. doi: 10.1007/s11182-017-1070-2 contributor: fullname: OK Voitsekhovskaya – volume: 10035 start-page: 100350D year: 2016 ident: 1309_CR28 publication-title: Proc. SPIE contributor: fullname: A Akhlyostin – volume: 113 start-page: 889 year: 2012 ident: 1309_CR22 publication-title: Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2011.12.013 contributor: fullname: M Birk – ident: 1309_CR26 doi: 10.1016/j.molstruc.2005.01.027 – volume: 9292 start-page: 929211 year: 2014 ident: 1309_CR5 publication-title: Proc. SPIE doi: 10.1117/12.2075131 contributor: fullname: OK Voitsekhovskaya – volume: 130 start-page: 4 year: 2013 ident: 1309_CR21 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2013.07.002 contributor: fullname: LS Rothman – volume: 165 start-page: 47 year: 2016 ident: 1309_CR8 publication-title: Spectrochimica Acta A doi: 10.1016/j.saa.2016.04.004 contributor: fullname: OK Voitsekhovskaya – volume: 55 start-page: 362 issue: 4 year: 2012 ident: 1309_CR2 publication-title: Russ. Phys. J. doi: 10.1007/s11182-012-9820-7 contributor: fullname: OK Voitsekhovskaya – volume: 10035 start-page: 1003505 year: 2016 ident: 1309_CR11 publication-title: Proc. SPIE doi: 10.1117/12.2248861 contributor: fullname: OV Egorov – ident: 1309_CR3 – volume: 327 start-page: 159 year: 2016 ident: 1309_CR19 publication-title: Spectrosc. doi: 10.1016/j.jms.2016.01.001 contributor: fullname: SN Mikhailenko – volume: 55 start-page: 3814 issue: 14 year: 2016 ident: 1309_CR9 publication-title: Appl. Opt. doi: 10.1364/AO.55.003814 contributor: fullname: OK Voitsekhovskaya – ident: 1309_CR13 doi: 10.1016/j.jms.2016.04.006 – volume: 111 start-page: 2139 year: 2010 ident: 1309_CR1 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2010.05.001 contributor: fullname: LS Rothman – volume: 18 start-page: 765 issue: 9 year: 2005 ident: 1309_CR27 publication-title: Opt. Atm. Okeana contributor: fullname: SN Mikhailenko – volume: 140 start-page: 114311 year: 2014 ident: 1309_CR6 publication-title: J. Chem. Phys. doi: 10.1063/1.4868327 contributor: fullname: X Huang – volume: 140 start-page: 48 year: 2014 ident: 1309_CR31 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2014.02.006 contributor: fullname: SN Mikhailenko – volume: 60 start-page: 883 issue: 5 year: 1988 ident: 1309_CR25 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/S0022-4073(98)00091-0 contributor: fullname: HM Pickett – volume: 203 start-page: 88 year: 2017 ident: 1309_CR30 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2017.03.040 contributor: fullname: M Birk – volume: 368 start-page: 1087 year: 2006 ident: 1309_CR32 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2006.10184.x contributor: fullname: RJ Barber – volume: 147 start-page: 38 year: 2014 ident: 1309_CR16 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2014.05.001 contributor: fullname: OK Voitsekhovskaya – volume: 10035 start-page: 1003504 year: 2016 ident: 1309_CR10 publication-title: Proc. SPIE doi: 10.1117/12.2248843 contributor: fullname: OV Egorov – volume: 327 start-page: 31 year: 2016 ident: 1309_CR24 publication-title: J. Quant. Spectrosc. Radiat. Transfer contributor: fullname: N Jacquinet-Husson – volume: 56 start-page: 473 issue: 4 year: 2013 ident: 1309_CR4 publication-title: Russ. Phys. J. doi: 10.1007/s11182-013-0057-x contributor: fullname: OK Voitsekhovskaya – ident: 1309_CR20 – volume: 184 start-page: 205 year: 2016 ident: 1309_CR7 publication-title: Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2016.07.014 contributor: fullname: AA Lukashevskaya – volume: 327 start-page: 73 year: 2016 ident: 1309_CR12 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2016.05.002 contributor: fullname: J Tennyson – volume: 77 start-page: 554 issue: 9 year: 2010 ident: 1309_CR15 publication-title: J. Opt. Technol. doi: 10.1364/JOT.77.000554 contributor: fullname: AV Voitsekhovskii – volume: 49 start-page: 074003 year: 2016 ident: 1309_CR29 publication-title: J. Phys. B doi: 10.1088/0953-4075/49/7/074003 contributor: fullname: ML Dubernet – volume: 60 start-page: 749 issue: 5 year: 2017 ident: 1309_CR17 publication-title: Russ. Phys. J. doi: 10.1007/s11182-017-1135-2 contributor: fullname: OK Voitsekhovskaya – volume: 157 start-page: 14 year: 2015 ident: 1309_CR18 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2015.01.016 contributor: fullname: M Alberti – volume: 203 start-page: 194 year: 2017 ident: 1309_CR23 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2017.04.023 contributor: fullname: PJ Schroeder |
SSID | ssj0010067 |
Score | 2.1205757 |
Snippet | The remote method of simultaneous determination of the temperature and concentration of hot gases from experimental spectral characteristics is validated on... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1961 |
SubjectTerms | Absorption spectra Condensed Matter Physics Error analysis Hadrons Heavy Ions Lasers Line spectra Mathematical and Computational Physics Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Temperature Theoretical Vapors Water vapor |
Title | Validation of the Remote Method of Determining the Temperature and Concentration of High-temperature Water Vapor from the Reference Transmission Spectra |
URI | https://link.springer.com/article/10.1007/s11182-018-1309-6 https://www.proquest.com/docview/2015878849 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qi-BFfGK1lj0IgrKSbjbJ5thWa1H0IG2tp5DH5CJEsfW_-HOd2SbW58FTINnshp3NzvftvACOPAxJqXuZjHNHSx1gLmMPHWkyw2a73E1tnu2bW3841ldTb1oD9XF0UTyeVRZJu1EvY90YChPzJdLDVgF_BRqEHTS7cY1V98NywNuvtXD6WhK7CypL5m9dfNFF33fkH6ZRq3EGG7BeQkXRXch2E2pYbMGqddlMZ9vwNiEIvaiIJJ5yQUBO3CFNPIobWxWab56Xzi7Uv20wQkLJiyzKIi4y0eegxaLMnMsvsNuHnH9qdU9Y9EVMYoLpgkNRynHKKEFhVR0tFT5zE1zLnvragfHgYtQfyrLOgkwJbcxlEGISeMSbCMqp3FOkrpBojOl0XI3K8dMsCBUiaS43y50kRKJp2EmS0BittO-4u1AvngrcA-EkTuwEcZgq4nWYZIZUQewSKsnQqCQwTTipZjx6XqTTiJaJk1k8EYmHbWxh5DfhmGUS8a9GX5_GZcQADcVJq6IubdZcYVCrJrQqsUXlPziLCNp4hhi-DptwWoly-fjPYff_1foA1hSvKOuW1oL6_OUVDwmnzJM2NLq9896Ar5cP1xdtu1DfAdCD4jg |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoheeKMuLeADEhLIVdZxEue4Ki0L7fYA21JOlp1MLkhptZte-kv4ucw4ThcKHHpNnIzjGXu-ybwA3mRYklLPaumaREtdYCNdhok0tWG3XZNWoc72_DifnejPZ9lZzONeDdHug0synNTrZDfGwmT6ktXDboH8LmxoRWh_BBvTj98P96-dB3wCBydnriUZeMXgzPzXS_5QRzcP5b-8o0HpHDyExTDdPtbkx-5l53erqxuVHG_5PY_gQQShYtpLzWO4g-0TuBeCQavVU_h5SuC877UkzhtBEFF8QWIpinnoN80XP8QwGqIYBiyQ8Hdfn1m4thZ7nA7Zxpq8_AAHlMjut1HfCOUuxakjA0BwkkukE_MPRVCiJIT8N0985XzQpXsGJwf7i72ZjB0cZEU4ppNFib7IiEcEElWTKVKESAaSmUxSjSrJq7ooFSLpxLRuEl8iGYA48b40RiudJ-lzGLXnLW6BSHziksKVlSKLEX1tSMm4lPBOjUb5wozh3cBIe9EX6rDrksy81JaWmr13pc3H8JZZbXkT0-wrF3MRiBSXw7JTUgPcu1CrMewM0mDj7l5ZAk2ZKWiO5RjeD8xd3_4v2Re3Gv0a7s8W8yN79On4cBs2FUtKCH7bgVG3vMSXhIY6_ypK_y_6Zv9N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BUBGXqrQgAgH2UAmpaIWzXtvrYwSNwlOoSgK3lR_jo0GJ-1_6czuzXjdtgQPXZLMbeXZ3vs_fPAC-RpiSU49KmVWBljrBSmYRBtKUhmW7Kixcne3bu3gy01eP0aPvc7rsot07SbLNaeAqTXVz9lxWZ6vEN8bFRIOJAbFEEK_DBnmikNnXTI3-yAh8Fzu5M9aSqF7SyZqvTfGPY_r_en6hkzr3M_4EHz1uFKPW0NuwhvVn-ODiN4vlF_g1JzzdtkcST5UgVCd-IFkBxa1rEc0fXvjIF5rfDZgiQea2pLLI6lKccwZj7cvo8g84BkQ2f416IGC6EPOMMLvgvBS_jk8ZFM7v0b7hF3CCG9vTXDswG3-fnk-kb7ogC4IejUxSzJOISBThOlVFinwXEqcxw2GoUQVxUSapQiQ3FpZVkKdInA2HeZ4ao5WOg3AXevVTjXsggjzIgiRLC0UkD_PSkF_IQoIoJRqVJ6YP37onbp_b2hp2VUWZzWPJPCy4pTbuwwnbxPK5o39fZD59gJbiClZ2RDc3txvUqg-DzmzWH8ilJZwTGaL7Ou3DaWfK1ddvLrv_rtHHsHl_MbY3l3fXB7CleHO5cLUB9JrFTzwk_NLkR26P_gbijebS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+the+Remote+Method+of+Determining+the+Temperature+and+Concentration+of+High-temperature+Water+Vapor+from+the+Reference+Transmission+Spectra&rft.jtitle=Russian+physics+journal&rft.au=Egorov%2C+O.+V.&rft.au=Voitsekhovskaya%2C+O.+K.&rft.au=Kashirskii%2C+D.+E.&rft.date=2018-03-01&rft.pub=Springer+US&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=60&rft.issue=11&rft.spage=1961&rft.epage=1970&rft_id=info:doi/10.1007%2Fs11182-018-1309-6&rft.externalDocID=10_1007_s11182_018_1309_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon |