Performance of bio-oil modified paving asphalt: chemical and rheological characterization

Asphalt binders modified with bio-oils derived from various biomasses have been developed for addressing pavement sustainability and environmental concerns. This study evaluated the bio-binders modified with bio-oils derived from waste cooking oil, and was aimed for the chemical and rheological char...

Full description

Saved in:
Bibliographic Details
Published inMaterials and structures Vol. 52; no. 5
Main Authors Wang, Chao, Xie, Tingting, Cao, Wei
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Asphalt binders modified with bio-oils derived from various biomasses have been developed for addressing pavement sustainability and environmental concerns. This study evaluated the bio-binders modified with bio-oils derived from waste cooking oil, and was aimed for the chemical and rheological characterization under different oxidative aging conditions and the aging susceptibility of the bio-binders. The chemical analysis was based on saturates, aromatics, resins, and asphaltenes (SARA) fractionation, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The rheological characterization consisted of multiple stress creep recovery, linear amplitude sweep, and elastic recovery tests. The results indicated that aging caused shift from the light components to the asphaltenes or heavy molecules. The bio-oil modification balanced the effect of aging by producing relatively well-dispersed asphalt systems in comparison to the petroleum control. According to the SARA and GPC analyses, the petroleum asphalt was less susceptible to aging. The TGA results suggested that once aged the bio-binders were less stable under high temperatures presumably due to thermal degradation of the bio-oil molecules. The addition of bio-oil lowered the rutting resistance and marginally reduced the elastic recovery potential; according to the corresponding evaluation parameters, the aging resistance of the bio-binders was similar or slightly lower as compared to the control. The bio-oil modification improved the fatigue cracking performance and also reduced the aging susceptibility within the context of fatigue resistance. The correlation between the chemical and rheological properties of the bio-binders were in line with the implications based on the colloidal model for petroleum asphalts.
AbstractList Asphalt binders modified with bio-oils derived from various biomasses have been developed for addressing pavement sustainability and environmental concerns. This study evaluated the bio-binders modified with bio-oils derived from waste cooking oil, and was aimed for the chemical and rheological characterization under different oxidative aging conditions and the aging susceptibility of the bio-binders. The chemical analysis was based on saturates, aromatics, resins, and asphaltenes (SARA) fractionation, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The rheological characterization consisted of multiple stress creep recovery, linear amplitude sweep, and elastic recovery tests. The results indicated that aging caused shift from the light components to the asphaltenes or heavy molecules. The bio-oil modification balanced the effect of aging by producing relatively well-dispersed asphalt systems in comparison to the petroleum control. According to the SARA and GPC analyses, the petroleum asphalt was less susceptible to aging. The TGA results suggested that once aged the bio-binders were less stable under high temperatures presumably due to thermal degradation of the bio-oil molecules. The addition of bio-oil lowered the rutting resistance and marginally reduced the elastic recovery potential; according to the corresponding evaluation parameters, the aging resistance of the bio-binders was similar or slightly lower as compared to the control. The bio-oil modification improved the fatigue cracking performance and also reduced the aging susceptibility within the context of fatigue resistance. The correlation between the chemical and rheological properties of the bio-binders were in line with the implications based on the colloidal model for petroleum asphalts.
ArticleNumber 98
Author Wang, Chao
Xie, Tingting
Cao, Wei
Author_xml – sequence: 1
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Department of Road and Railway Engineering, Beijing University of Technology
– sequence: 2
  givenname: Tingting
  surname: Xie
  fullname: Xie, Tingting
  organization: Department of Road and Railway Engineering, Beijing University of Technology
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-0904-1146
  surname: Cao
  fullname: Cao, Wei
  email: wcao@lsu.edu
  organization: Department of Civil and Environmental Engineering, Louisiana State University
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqOZpNlsvEnxCwQ96MFTSPPRpuxu1mQr6K932wqCoKeZgfeZd-adoFEbW4fQKZBzKEFcZABOBSYgMTApsTxAY6gE4LISbDT0jEvMpRRHaJLzmhAmAegYvT655GNqdGtcEX2xCBHHUBdNtMEHZ4tOv4d2WejcrXTdXxZm5ZpgdF3o1hZp5WIdl7vZrHTSpncpfOo-xPYYHXpdZ3fyXafo5eb6eX6HHx5v7-dXD9gwznssiPEOKit4OZOmpEAEc2LhPa24dZpRZmU1c2BBUi59CYSDYMRKz4W1VLMpOtvv7VJ827jcq3XcpHawVJRWs1JUIPmggr3KpJhzcl51KTQ6fSggapug2ieohgTVNkElB0b8Ykzod7_1SYf6X5LuyTy4tEuXfm76G_oCkcKHaQ
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_128853
crossref_primary_10_1016_j_conbuildmat_2022_129965
crossref_primary_10_5937_GK23055112M
crossref_primary_10_1007_s11356_023_28383_2
crossref_primary_10_1139_cjce_2022_0467
crossref_primary_10_18273_revuin_v22n2_2023002
crossref_primary_10_3390_molecules29163835
crossref_primary_10_1016_j_scitotenv_2022_154489
crossref_primary_10_1016_j_conbuildmat_2021_126039
crossref_primary_10_1016_j_conbuildmat_2022_127784
crossref_primary_10_1016_j_indcrop_2024_120304
crossref_primary_10_1007_s42947_023_00411_x
crossref_primary_10_3390_ma16155357
crossref_primary_10_1016_j_fuel_2024_133409
crossref_primary_10_1016_j_jclepro_2023_140483
crossref_primary_10_1016_j_psep_2021_01_032
crossref_primary_10_3390_ma16041341
crossref_primary_10_1016_j_conbuildmat_2024_135156
crossref_primary_10_1021_acssuschemeng_4c04498
crossref_primary_10_1016_j_conbuildmat_2022_126907
crossref_primary_10_1016_j_conbuildmat_2020_120528
crossref_primary_10_1080_10298436_2023_2181961
crossref_primary_10_1061__ASCE_MT_1943_5533_0004306
crossref_primary_10_1177_03611981241308864
crossref_primary_10_1016_j_conbuildmat_2022_126364
crossref_primary_10_1016_j_treng_2024_100295
crossref_primary_10_1016_j_conbuildmat_2022_129735
crossref_primary_10_3390_buildings13040994
crossref_primary_10_3390_ma15186454
crossref_primary_10_1016_j_fuel_2024_132602
crossref_primary_10_1061__ASCE_MT_1943_5533_0003939
crossref_primary_10_1016_j_conbuildmat_2023_133580
crossref_primary_10_1002_bbb_2354
crossref_primary_10_1016_j_jclepro_2022_131151
crossref_primary_10_1080_10916466_2024_2356732
crossref_primary_10_1080_08927022_2024_2324953
crossref_primary_10_1016_j_conbuildmat_2022_127945
crossref_primary_10_1016_j_jtte_2021_02_002
crossref_primary_10_3390_molecules26165049
Cites_doi 10.1016/j.conbuildmat.2018.02.038
10.1016/j.jclepro.2017.06.155
10.1016/j.conbuildmat.2017.03.114
10.1016/j.conbuildmat.2016.05.157
10.17226/24850
10.1016/j.matdes.2015.10.086
10.1016/S0016-2361(98)00054-4
10.1016/j.rser.2012.04.028
10.1016/j.matdes.2016.07.124
10.1016/j.conbuildmat.2015.06.044
10.1016/j.conbuildmat.2014.05.033
10.1061/(ASCE)0899-1561(1995)7:1(41)
10.1080/14680629.2015.1077010
10.1016/j.matdes.2016.05.095
10.1002/app.1969.070130415
10.1016/j.ijfatigue.2018.09.028
10.1016/j.conbuildmat.2018.03.125
10.1021/acs.jpcc.6b11966
10.1016/j.fuel.2010.03.033
10.1061/(ASCE)MT.1943-5533.0001117
10.1016/j.conbuildmat.2017.07.151
10.1016/j.conbuildmat.2015.10.173
10.1016/j.conbuildmat.2016.08.032
10.1016/j.conbuildmat.2017.06.146
10.1016/j.fuel.2011.10.006
10.1016/j.conbuildmat.2017.05.004
10.1617/s11527-016-0957-7
10.4186/ej.2012.16.4.99
10.1016/j.fuel.2017.04.069
10.1080/14680629.2009.9690236
ContentType Journal Article
Copyright RILEM 2019
RILEM 2019.
Copyright_xml – notice: RILEM 2019
– notice: RILEM 2019.
DBID AAYXX
CITATION
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.1617/s11527-019-1399-9
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1871-6873
ExternalDocumentID 10_1617_s11527_019_1399_9
GrantInformation_xml – fundername: Beijing Municipal Education Commission
  grantid: KM201810005020
– fundername: Beijing Natural Science Foundation
  grantid: 8174059
– fundername: National Natural Science Foundation of China
  grantid: 51608018
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9P
PDBOC
PF0
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WIP
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
ZMTXR
ZY4
_50
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
ABRTQ
FR3
JG9
KR7
PQGLB
PUEGO
ID FETCH-LOGICAL-c355t-70cfe18d75649c621073e7bff285dea323d984e1d19259f61051730d9f57dd2a3
IEDL.DBID U2A
ISSN 1359-5997
IngestDate Sat Aug 23 22:40:25 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
Tue Jul 01 03:14:28 EDT 2025
Fri Feb 21 02:39:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Durability
Aging susceptibility
Fatigue cracking
Bio-oil
Rutting resistance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-70cfe18d75649c621073e7bff285dea323d984e1d19259f61051730d9f57dd2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0904-1146
PQID 2284678195
PQPubID 326281
ParticipantIDs proquest_journals_2284678195
crossref_primary_10_1617_s11527_019_1399_9
crossref_citationtrail_10_1617_s11527_019_1399_9
springer_journals_10_1617_s11527_019_1399_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Materials and structures
PublicationTitleAbbrev Mater Struct
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References SunDSunGDuYZhuXLuTPangQShiSDaiZEvaluation of optimized bio-asphalt containing high content waste cooking oil residuesFuel201720252954010.1016/j.fuel.2017.04.069
YangXYouZMills-BealeJAsphalt binders blended with a high percentage of biobinders: aging mechanism using FTIR and rheologyJ Mater Civ Eng20152740401415710.1061/(ASCE)MT.1943-5533.0001117
AASHTOStandard method of test for effect of heat and air on a moving film of asphalt binder (rolling thin-film oven test)2013WashingtonAASHTO T240
Norambuena-ContrerasJGarcíaASelf-healing of asphalt mixture by microwave and induction heatingMater Des201610640441410.1016/j.matdes.2016.05.095
TraxlerRNAsphalt: its composition, properties and uses1961New YorkReinhold
ASTMStandard test method for separation of asphalt into four fractions2009West ConshohockenASTM D4124
MangiaficoSDi BenedettoHSauzéatCOlardFPougetSPlanqueLEffect of colloidal structure of bituminous binder blends on linear viscoelastic behaviour of mixtures containing reclaimed asphalt pavementMater Des201611112613910.1016/j.matdes.2016.07.124
ZhangJFarukANMKarkiPHolleranIHuXWalubitaLFRelating asphalt binder elastic recovery properties to HMA cracking and fracture propertiesConstr Build Mater201612123624510.1016/j.conbuildmat.2016.05.157
ChurchillEVAmirkhanianSNBuratiJLJrHP-GPC characterization of asphalt aging and selected propertiesJ Mater Civ Eng199571414910.1061/(ASCE)0899-1561(1995)7:1(41)
CaoWWangCFatigue performance characterization and prediction of asphalt binders using the linear amplitude sweep based viscoelastic continuum damage approachInt J Fatigue201911911212510.1016/j.ijfatigue.2018.09.028
ChenMLengBWuSSangYPhysical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt bindersConstr Build Mater20146628629810.1016/j.conbuildmat.2014.05.033
FiniEHHøgsaaBChristiansenJCSanporeanCGJensenEAMousaviMPahlavanFMultiscale investigation of a bioresidue as a novel intercalant for sodium montmorilloniteJ Phys Chem C20171211794180210.1021/acs.jpcc.6b11966
ZhaoSHuangBShuXWoodsMEQuantitative evaluation of blending and diffusion in high RAP and RAS mixturesMater Des2016891161117010.1016/j.matdes.2015.10.086
ClopotelCSBahiaHUImportance of elastic recovery in the DSR for binders and masticsEng J20121649910610.4186/ej.2012.16.4.99
Onochie A, Fini E, Yang X, Mills-Beale J, You Z (2013) Rheological characterization of nano-particle based bio-modified binder. Paper no. 13-4895, TRB 92nd annual meeting compendium of papers
SunZYiJHuangYFengDGuoCProperties of asphalt binder modified by bio-oil derived from waste cooking oilConstr Build Mater201610249650410.1016/j.conbuildmat.2015.10.173
ZhangJWalubitaLFFarukANMKarkiPSimateGSUse of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance—a laboratory studyConstr Build Mater20159421822710.1016/j.conbuildmat.2015.06.044
D’AngeloJAThe relationship of the MSCR test to ruttingRoad Mater Pavement Des200910s1618010.1080/14680629.2009.9690236
AASHTOStandard method of test for measuring asphalt binder yield energy and elastic recovery using the dynamic shear rheometer2016WashingtonAASHTO TP123
WeigelSStephanDModelling of rheological and ageing properties of bitumen based on its chemical structureMater Struct20175018310.1617/s11527-016-0957-7
HanZShaATongZLiuZGaoJZouXStudy on the optimum rice husk ash content added in asphalt binder and its modification with bio-oilConstr Build Mater201714777678910.1016/j.conbuildmat.2017.05.004
SunDLuTXiaoFZhuXSunGFormulation and aging resistance of modified bio-asphalt containing high percentage of waste cooking oil residuesJ Clean Prod20171611203121410.1016/j.jclepro.2017.06.155
JenningsPWPribanicJASDawsonKRBriccaCEUse of HPLC and NMR spectroscopy to characterize asphaltic materialsAm Chem Soc Div Pet Chem1981264915922
CrossMMPolymer rheology: influence of molecular weight and polydispersityJ Appl Polym Sci19691376577410.1002/app.1969.070130415
WangCXueLXieWYouZYangXLaboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oilConstr Build Mater201816734835810.1016/j.conbuildmat.2018.02.038
HiltenRNDasKCComparison of three accelerated aging procedures to assess bio-oil stabilityFuel201089102741274910.1016/j.fuel.2010.03.033
DunnKChilingarianGVLianHWangYYYenTFAnalysis of asphalt and its components by thin-layer chromatographyDev Pet Sci200040B305317
WangCCastorenaCZhangJKimYRUnified failure criterion for asphalt binder under cyclic fatigue loadingRoad Mater Pavement Des201516s212514810.1080/14680629.2015.1077010
PolaccoGFilippiSPaciMGiulianiFMerusiFStructural and rheological characterization of wax modified bitumensFuel20129540741610.1016/j.fuel.2011.10.006
YuHLengZGaoZThermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additivesConstr Build Mater201612516817410.1016/j.conbuildmat.2016.08.032
Transportation Research BoardAlternative binders for sustainable asphalt pavements2012WashingtonTransportation Research Circular E-C165
AASHTOStandard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV)2012WashingtonAASHTO R28
XiuSShahbaziABio-oil production and upgrading research: a reviewRenew Sustain Energy Rev2012164406441410.1016/j.rser.2012.04.028
GongMZhuHPauliTYangJWeiJYaoZEvaluation of bio-binder modified asphalt’s adhesion behavior using sessile drop device and atomic force microscopyConstr Build Mater2017145425110.1016/j.conbuildmat.2017.03.114
Daly WH (2017) Relationship between chemical makeup of binders and engineering performance: a synthesis of highway practice. NCHRP Synthesis 511, Transportation Research Board, Washington
FiniEHOldhamDBuabengFSNezhadSHInvestigating the aging susceptibility of bio-modified asphaltsAirfield Highw Pavements201520156273
AASHTOStandard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR)2014WashingtonAASHTO T350
D’AngeloJAKluttzRDongreRNStephensKZanzottoLRevision of the Superpave high temperature binder specification: the multiple stress creep recovery testJ Assoc Asph Paving Technol200776123162
WangCZhaoLCaoWCaoDTianBDevelopment of paving performance index system for selection of modified asphalt binderConstr Build Mater201715369570310.1016/j.conbuildmat.2017.07.151
CaoWWangCA new comprehensive analysis framework for fatigue characterization of asphalt binder using the linear amplitude sweep testConstr Build Mater201817111210.1016/j.conbuildmat.2018.03.125
HaoGHuangWYuanJTangNXiaoFEffect of aging on chemical and rheological properties of SBS modified asphalt with different compositionsConstr Build Mater201715690291010.1016/j.conbuildmat.2017.06.146
LoeberLMullerGMorelJSuttonOBitumen in colloidal science: a chemical, structural and rheological approachFuel199877131443145010.1016/S0016-2361(98)00054-4
PW Jennings (1399_CR20) 1981; 26
D Sun (1399_CR8) 2017; 202
W Cao (1399_CR32) 2019; 119
M Chen (1399_CR5) 2014; 66
JA D’Angelo (1399_CR28) 2009; 10
CS Clopotel (1399_CR33) 2012; 16
ASTM (1399_CR19) 2009
S Mangiafico (1399_CR17) 2016; 111
J Zhang (1399_CR35) 2016; 121
H Yu (1399_CR40) 2016; 125
RN Traxler (1399_CR41) 1961
K Dunn (1399_CR38) 2000; 40
MM Cross (1399_CR42) 1969; 13
G Hao (1399_CR23) 2017; 156
S Zhao (1399_CR22) 2016; 89
C Wang (1399_CR30) 2015; 16
J Norambuena-Contreras (1399_CR25) 2016; 106
Z Han (1399_CR4) 2017; 147
EH Fini (1399_CR14) 2015; 2015
D Sun (1399_CR9) 2017; 161
W Cao (1399_CR31) 2018; 171
L Loeber (1399_CR39) 1998; 77
EH Fini (1399_CR3) 2017; 121
EV Churchill (1399_CR21) 1995; 7
X Yang (1399_CR13) 2015; 27
1399_CR37
C Wang (1399_CR10) 2018; 167
RN Hilten (1399_CR11) 2010; 89
S Weigel (1399_CR18) 2017; 50
AASHTO (1399_CR16) 2012
Transportation Research Board (1399_CR1) 2012
S Xiu (1399_CR2) 2012; 16
M Gong (1399_CR7) 2017; 145
AASHTO (1399_CR26) 2014
Z Sun (1399_CR6) 2016; 102
AASHTO (1399_CR15) 2013
C Wang (1399_CR34) 2017; 153
AASHTO (1399_CR36) 2016
JA D’Angelo (1399_CR27) 2007; 76
G Polacco (1399_CR24) 2012; 95
1399_CR12
J Zhang (1399_CR29) 2015; 94
References_xml – reference: FiniEHHøgsaaBChristiansenJCSanporeanCGJensenEAMousaviMPahlavanFMultiscale investigation of a bioresidue as a novel intercalant for sodium montmorilloniteJ Phys Chem C20171211794180210.1021/acs.jpcc.6b11966
– reference: HaoGHuangWYuanJTangNXiaoFEffect of aging on chemical and rheological properties of SBS modified asphalt with different compositionsConstr Build Mater201715690291010.1016/j.conbuildmat.2017.06.146
– reference: AASHTOStandard method of test for effect of heat and air on a moving film of asphalt binder (rolling thin-film oven test)2013WashingtonAASHTO T240
– reference: D’AngeloJAThe relationship of the MSCR test to ruttingRoad Mater Pavement Des200910s1618010.1080/14680629.2009.9690236
– reference: ChurchillEVAmirkhanianSNBuratiJLJrHP-GPC characterization of asphalt aging and selected propertiesJ Mater Civ Eng199571414910.1061/(ASCE)0899-1561(1995)7:1(41)
– reference: ZhangJFarukANMKarkiPHolleranIHuXWalubitaLFRelating asphalt binder elastic recovery properties to HMA cracking and fracture propertiesConstr Build Mater201612123624510.1016/j.conbuildmat.2016.05.157
– reference: WeigelSStephanDModelling of rheological and ageing properties of bitumen based on its chemical structureMater Struct20175018310.1617/s11527-016-0957-7
– reference: D’AngeloJAKluttzRDongreRNStephensKZanzottoLRevision of the Superpave high temperature binder specification: the multiple stress creep recovery testJ Assoc Asph Paving Technol200776123162
– reference: Daly WH (2017) Relationship between chemical makeup of binders and engineering performance: a synthesis of highway practice. NCHRP Synthesis 511, Transportation Research Board, Washington
– reference: TraxlerRNAsphalt: its composition, properties and uses1961New YorkReinhold
– reference: PolaccoGFilippiSPaciMGiulianiFMerusiFStructural and rheological characterization of wax modified bitumensFuel20129540741610.1016/j.fuel.2011.10.006
– reference: GongMZhuHPauliTYangJWeiJYaoZEvaluation of bio-binder modified asphalt’s adhesion behavior using sessile drop device and atomic force microscopyConstr Build Mater2017145425110.1016/j.conbuildmat.2017.03.114
– reference: SunDLuTXiaoFZhuXSunGFormulation and aging resistance of modified bio-asphalt containing high percentage of waste cooking oil residuesJ Clean Prod20171611203121410.1016/j.jclepro.2017.06.155
– reference: HanZShaATongZLiuZGaoJZouXStudy on the optimum rice husk ash content added in asphalt binder and its modification with bio-oilConstr Build Mater201714777678910.1016/j.conbuildmat.2017.05.004
– reference: DunnKChilingarianGVLianHWangYYYenTFAnalysis of asphalt and its components by thin-layer chromatographyDev Pet Sci200040B305317
– reference: WangCCastorenaCZhangJKimYRUnified failure criterion for asphalt binder under cyclic fatigue loadingRoad Mater Pavement Des201516s212514810.1080/14680629.2015.1077010
– reference: AASHTOStandard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV)2012WashingtonAASHTO R28
– reference: WangCXueLXieWYouZYangXLaboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oilConstr Build Mater201816734835810.1016/j.conbuildmat.2018.02.038
– reference: FiniEHOldhamDBuabengFSNezhadSHInvestigating the aging susceptibility of bio-modified asphaltsAirfield Highw Pavements201520156273
– reference: AASHTOStandard method of test for measuring asphalt binder yield energy and elastic recovery using the dynamic shear rheometer2016WashingtonAASHTO TP123
– reference: Norambuena-ContrerasJGarcíaASelf-healing of asphalt mixture by microwave and induction heatingMater Des201610640441410.1016/j.matdes.2016.05.095
– reference: LoeberLMullerGMorelJSuttonOBitumen in colloidal science: a chemical, structural and rheological approachFuel199877131443145010.1016/S0016-2361(98)00054-4
– reference: CaoWWangCFatigue performance characterization and prediction of asphalt binders using the linear amplitude sweep based viscoelastic continuum damage approachInt J Fatigue201911911212510.1016/j.ijfatigue.2018.09.028
– reference: SunZYiJHuangYFengDGuoCProperties of asphalt binder modified by bio-oil derived from waste cooking oilConstr Build Mater201610249650410.1016/j.conbuildmat.2015.10.173
– reference: ChenMLengBWuSSangYPhysical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt bindersConstr Build Mater20146628629810.1016/j.conbuildmat.2014.05.033
– reference: CrossMMPolymer rheology: influence of molecular weight and polydispersityJ Appl Polym Sci19691376577410.1002/app.1969.070130415
– reference: CaoWWangCA new comprehensive analysis framework for fatigue characterization of asphalt binder using the linear amplitude sweep testConstr Build Mater201817111210.1016/j.conbuildmat.2018.03.125
– reference: AASHTOStandard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR)2014WashingtonAASHTO T350
– reference: JenningsPWPribanicJASDawsonKRBriccaCEUse of HPLC and NMR spectroscopy to characterize asphaltic materialsAm Chem Soc Div Pet Chem1981264915922
– reference: XiuSShahbaziABio-oil production and upgrading research: a reviewRenew Sustain Energy Rev2012164406441410.1016/j.rser.2012.04.028
– reference: HiltenRNDasKCComparison of three accelerated aging procedures to assess bio-oil stabilityFuel201089102741274910.1016/j.fuel.2010.03.033
– reference: Onochie A, Fini E, Yang X, Mills-Beale J, You Z (2013) Rheological characterization of nano-particle based bio-modified binder. Paper no. 13-4895, TRB 92nd annual meeting compendium of papers
– reference: WangCZhaoLCaoWCaoDTianBDevelopment of paving performance index system for selection of modified asphalt binderConstr Build Mater201715369570310.1016/j.conbuildmat.2017.07.151
– reference: YangXYouZMills-BealeJAsphalt binders blended with a high percentage of biobinders: aging mechanism using FTIR and rheologyJ Mater Civ Eng20152740401415710.1061/(ASCE)MT.1943-5533.0001117
– reference: ZhaoSHuangBShuXWoodsMEQuantitative evaluation of blending and diffusion in high RAP and RAS mixturesMater Des2016891161117010.1016/j.matdes.2015.10.086
– reference: Transportation Research BoardAlternative binders for sustainable asphalt pavements2012WashingtonTransportation Research Circular E-C165
– reference: SunDSunGDuYZhuXLuTPangQShiSDaiZEvaluation of optimized bio-asphalt containing high content waste cooking oil residuesFuel201720252954010.1016/j.fuel.2017.04.069
– reference: MangiaficoSDi BenedettoHSauzéatCOlardFPougetSPlanqueLEffect of colloidal structure of bituminous binder blends on linear viscoelastic behaviour of mixtures containing reclaimed asphalt pavementMater Des201611112613910.1016/j.matdes.2016.07.124
– reference: ClopotelCSBahiaHUImportance of elastic recovery in the DSR for binders and masticsEng J20121649910610.4186/ej.2012.16.4.99
– reference: YuHLengZGaoZThermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additivesConstr Build Mater201612516817410.1016/j.conbuildmat.2016.08.032
– reference: ZhangJWalubitaLFFarukANMKarkiPSimateGSUse of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance—a laboratory studyConstr Build Mater20159421822710.1016/j.conbuildmat.2015.06.044
– reference: ASTMStandard test method for separation of asphalt into four fractions2009West ConshohockenASTM D4124
– volume: 167
  start-page: 348
  year: 2018
  ident: 1399_CR10
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.02.038
– volume-title: Asphalt: its composition, properties and uses
  year: 1961
  ident: 1399_CR41
– volume: 161
  start-page: 1203
  year: 2017
  ident: 1399_CR9
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.06.155
– volume: 145
  start-page: 42
  year: 2017
  ident: 1399_CR7
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.03.114
– volume: 121
  start-page: 236
  year: 2016
  ident: 1399_CR35
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.05.157
– volume-title: Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV)
  year: 2012
  ident: 1399_CR16
– ident: 1399_CR37
  doi: 10.17226/24850
– volume: 89
  start-page: 1161
  year: 2016
  ident: 1399_CR22
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.10.086
– volume: 77
  start-page: 1443
  issue: 13
  year: 1998
  ident: 1399_CR39
  publication-title: Fuel
  doi: 10.1016/S0016-2361(98)00054-4
– volume-title: Standard test method for separation of asphalt into four fractions
  year: 2009
  ident: 1399_CR19
– volume: 16
  start-page: 4406
  year: 2012
  ident: 1399_CR2
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.04.028
– volume: 111
  start-page: 126
  year: 2016
  ident: 1399_CR17
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.07.124
– volume: 40
  start-page: 305
  issue: B
  year: 2000
  ident: 1399_CR38
  publication-title: Dev Pet Sci
– volume: 94
  start-page: 218
  year: 2015
  ident: 1399_CR29
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.06.044
– volume: 66
  start-page: 286
  year: 2014
  ident: 1399_CR5
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.05.033
– ident: 1399_CR12
– volume: 7
  start-page: 41
  issue: 1
  year: 1995
  ident: 1399_CR21
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(1995)7:1(41)
– volume-title: Standard method of test for measuring asphalt binder yield energy and elastic recovery using the dynamic shear rheometer
  year: 2016
  ident: 1399_CR36
– volume: 76
  start-page: 123
  year: 2007
  ident: 1399_CR27
  publication-title: J Assoc Asph Paving Technol
– volume-title: Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR)
  year: 2014
  ident: 1399_CR26
– volume: 16
  start-page: 125
  issue: s2
  year: 2015
  ident: 1399_CR30
  publication-title: Road Mater Pavement Des
  doi: 10.1080/14680629.2015.1077010
– volume: 106
  start-page: 404
  year: 2016
  ident: 1399_CR25
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.05.095
– volume: 13
  start-page: 765
  year: 1969
  ident: 1399_CR42
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.1969.070130415
– volume: 119
  start-page: 112
  year: 2019
  ident: 1399_CR32
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.09.028
– volume: 171
  start-page: 1
  year: 2018
  ident: 1399_CR31
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.03.125
– volume: 121
  start-page: 1794
  year: 2017
  ident: 1399_CR3
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b11966
– volume-title: Alternative binders for sustainable asphalt pavements
  year: 2012
  ident: 1399_CR1
– volume-title: Standard method of test for effect of heat and air on a moving film of asphalt binder (rolling thin-film oven test)
  year: 2013
  ident: 1399_CR15
– volume: 89
  start-page: 2741
  issue: 10
  year: 2010
  ident: 1399_CR11
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.03.033
– volume: 27
  start-page: 04014157
  issue: 4
  year: 2015
  ident: 1399_CR13
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0001117
– volume: 153
  start-page: 695
  year: 2017
  ident: 1399_CR34
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.07.151
– volume: 102
  start-page: 496
  year: 2016
  ident: 1399_CR6
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.10.173
– volume: 2015
  start-page: 62
  year: 2015
  ident: 1399_CR14
  publication-title: Airfield Highw Pavements
– volume: 125
  start-page: 168
  year: 2016
  ident: 1399_CR40
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.08.032
– volume: 26
  start-page: 915
  issue: 4
  year: 1981
  ident: 1399_CR20
  publication-title: Am Chem Soc Div Pet Chem
– volume: 156
  start-page: 902
  year: 2017
  ident: 1399_CR23
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.06.146
– volume: 95
  start-page: 407
  year: 2012
  ident: 1399_CR24
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.10.006
– volume: 147
  start-page: 776
  year: 2017
  ident: 1399_CR4
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.05.004
– volume: 50
  start-page: 83
  issue: 1
  year: 2017
  ident: 1399_CR18
  publication-title: Mater Struct
  doi: 10.1617/s11527-016-0957-7
– volume: 16
  start-page: 99
  issue: 4
  year: 2012
  ident: 1399_CR33
  publication-title: Eng J
  doi: 10.4186/ej.2012.16.4.99
– volume: 202
  start-page: 529
  year: 2017
  ident: 1399_CR8
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.04.069
– volume: 10
  start-page: 61
  issue: s1
  year: 2009
  ident: 1399_CR28
  publication-title: Road Mater Pavement Des
  doi: 10.1080/14680629.2009.9690236
SSID ssj0039112
Score 2.4164689
Snippet Asphalt binders modified with bio-oils derived from various biomasses have been developed for addressing pavement sustainability and environmental concerns....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aging
Asphalt
Asphaltenes
Building construction
Building Materials
Chemical analysis
Civil Engineering
Cooking
Crack propagation
Creep recovery
Elastic recovery
Engineering
Fatigue cracking
Fatigue failure
Fatigue strength
Fractionation
Fracture mechanics
Liquid chromatography
Machines
Manufacturing
Materials Science
Organic chemistry
Original Article
Processes
Rheological properties
Rheology
Solid Mechanics
Theoretical and Applied Mechanics
Thermal degradation
Thermogravimetric analysis
Title Performance of bio-oil modified paving asphalt: chemical and rheological characterization
URI https://link.springer.com/article/10.1617/s11527-019-1399-9
https://www.proquest.com/docview/2284678195
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ULnowPiOKpAdPmka23bJbb2BAopF4kAROm24fkQR3CYv_3-k-QI2aeNpDH5tMO-03nZlvELqUgecbFVMC4JgTP3QPTSyUBJByaH1rAEG7ROGnUWc49h8mfFLmcWdVtHvlksxPaqfWcM3eZJ6rwAqmryCAWgQR26jOwXR3cVxj2q2OXwbam7s4GfyWCxGUrswfp_h6GW0Q5jenaH7XDPbRXgkScbdY1QO0ZZJDtPuJOvAITZ83Ef84tTiepSSdzfFbqmcWYCVeSPdUgGW2cB7xW6xKZgAsE42Xr6Y69LBaUzYXGZnHaDzov9wNSVkmgSgACysStJU1XqgD3vGF6oANFzATxNbSkGsjGWVahL7xNIA5LizgJe6BXmtheaA1lewE1ZI0MacIO_KYUPmKOxY5GBhyyiVTCuTsx7ESDdSu5BWpkkPclbKYR86WABFHhYgjEHHkRBzBkKv1kEVBoPFX52a1CFGpS1lEqcNIzt_XQNfVwmyaf53s7F-9z9EOzTeGi9Nrotpq-W4uAG-s4haqdwe93sh976eP_Va-3z4AhoLNew
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60HtSD-MRH1Rz0ogS72U03ETyID-oTDxb0FHfzwELtFlsRf49_1Ml216qo4MHzJiE7mcx8k8l8AdhI4iCyOmUUwTGnkfAHTaFIKCJl4SJnEUH7QuGLy3qjGZ3e8JsReC1rYfLb7mVKMrfUflujm93pBf4FVgx9JUXUIqksblKe2ZdnjNN6eyeHuKibjB0fXR80aPGUANXoUPs0rmlnA2FiXo-krmOcE4c2Tp1jghubhCw0UkQ2MAh4uHSIKXiAum-k47ExLAlx3FEYQ-wh_NZpsv3S3IdoLfKUaoi_yaWMi9Tpt1P-7PyGiPZLEjb3bcfTMFWAUrI_0KIZGLGdWZj8QFU4B7dXwwoDkjmStjKatdrkITMthzCWdBN_NEGSXtdn4HeJLpgISNIx5PHelkaW6HeK6EEF6Dw0_0WWC1DpZB27CMST1Qgdae5Z67Cj4Iwnodac1aI01XIJaqW8lC44y_3TGW3lYxcUsRqIWKGIlRexwi5b7126A8KO3xpXy0VQxd7tKcY8JvP5xSXYLhdm-PnHwZb_1HodxhvXF-fq_OTybAUmWK4k_o5gFSr9xye7ilinn67lukbg7r-V-w2H0AZJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyQNCHSsvDh3IBWbtx7E2MxAEBq6U8xIGVtic38UNdCZKIbFXxq_iLjPNgAQFSD3uObTnjGc83Hs9ngB9JFHCrU0YRHAvKY3_QFMYJRaQcO-4sImhfKHx23hsM-c-RGM3BXVsLU912b1OSdU2DZ2nKJp3CuMrE0eV2ysC_xophsKSIYCSVza3KE3v7D2O2cu_4EBd4i7H-0eXBgDbPClCNznVCo652NohNJHpc6h7GPFFoo9Q5Fgtjk5CFRsbcBgbBj5AO8YUI0A6MdCIyhiUhjvsOFrgvPkYDGrL9dusPceeo0qsh_rKQMmrSqC9O-akjnKLbZwnZys_1l2GpAahkv9aoFZiz2UdYfERb-Al-XUyrDUjuSDrOaT6-Ite5GTuEtKRI_DEFScrCZ-N3iW5YCUiSGXLzx7YbLtEPdNF1NehnGM5Ell9gPssz-xWIJ66JNdfCM9hhx1gwkYRaC9blaarlKnRbeSnd8Jf7ZzSulI9jUMSqFrFCESsvYoVdth-6FDV5x1uN19pFUI0dl4oxj898rnEVdtqFmX5-dbBv_9V6E95fHPbV6fH5yXf4wCod8dcF12B-cvPXriPsmaQblaoR-D1r3b4HIg0KfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+bio-oil+modified+paving+asphalt%3A+chemical+and+rheological+characterization&rft.jtitle=Materials+and+structures&rft.au=Wang%2C+Chao&rft.au=Xie%2C+Tingting&rft.au=Cao%2C+Wei&rft.date=2019-10-01&rft.pub=Springer+Netherlands&rft.issn=1359-5997&rft.eissn=1871-6873&rft.volume=52&rft.issue=5&rft_id=info:doi/10.1617%2Fs11527-019-1399-9&rft.externalDocID=10_1617_s11527_019_1399_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-5997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-5997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-5997&client=summon