MLMFNet: A multi-level modality fusion network for multi-modal accelerated MRI reconstruction

Magnetic resonance imaging produces detailed anatomical and physiological images of the human body that can be used in the clinical diagnosis and treatment of diseases. However, MRI suffers its comparatively longer acquisition time than other imaging methods and is thus vulnerable to motion artifact...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 111; pp. 246 - 255
Main Authors Zhou, Xiuyun, Zhang, Zhenxi, Du, Hongwei, Qiu, Bensheng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic resonance imaging produces detailed anatomical and physiological images of the human body that can be used in the clinical diagnosis and treatment of diseases. However, MRI suffers its comparatively longer acquisition time than other imaging methods and is thus vulnerable to motion artifacts, which ultimately lead to likely failed or even wrong diagnosis. In order to perform faster reconstruction, deep learning-based methods along with traditional strategies such as parallel imaging and compressed sensing come into play in recent years in this field. Meanwhile, in order to better analyze the diseases, it is also often necessary to acquire images in the same region of interest under different modalities, which yield images with different contrast levels. However, most of these aforementioned methods tend to use single-modal images for reconstruction, neglecting the correlation and redundancy information embedded in MR images acquired with different modalities. While there are works on multi-modal reconstruction, the information is yet to be efficiently explored. In this paper, we propose an end-to-end neural network called MLMFNet, which helps the reconstruction of the target modality by using information from the auxiliary modality across feature channels and layers. Specifically, this is highlighted by three components: (I) An encoder based on UNet with a single-stream strategy that fuses auxiliary and target modalities; (II) a decoder that tends to multi-level features from all layers of the encoder, and (III) a channel attention module. Quantitative and qualitative analyses are performed on a public brain dataset and knee brain dataset, which show that the proposed method achieves satisfying results in MRI reconstruction within the multi-modal context, and also demonstrate its effectiveness and potential to be used in clinical practice.
AbstractList Magnetic resonance imaging produces detailed anatomical and physiological images of the human body that can be used in the clinical diagnosis and treatment of diseases. However, MRI suffers its comparatively longer acquisition time than other imaging methods and is thus vulnerable to motion artifacts, which ultimately lead to likely failed or even wrong diagnosis. In order to perform faster reconstruction, deep learning-based methods along with traditional strategies such as parallel imaging and compressed sensing come into play in recent years in this field. Meanwhile, in order to better analyze the diseases, it is also often necessary to acquire images in the same region of interest under different modalities, which yield images with different contrast levels. However, most of these aforementioned methods tend to use single-modal images for reconstruction, neglecting the correlation and redundancy information embedded in MR images acquired with different modalities. While there are works on multi-modal reconstruction, the information is yet to be efficiently explored. In this paper, we propose an end-to-end neural network called MLMFNet, which helps the reconstruction of the target modality by using information from the auxiliary modality across feature channels and layers. Specifically, this is highlighted by three components: (I) An encoder based on UNet with a single-stream strategy that fuses auxiliary and target modalities; (II) a decoder that tends to multi-level features from all layers of the encoder, and (III) a channel attention module. Quantitative and qualitative analyses are performed on a public brain dataset and knee brain dataset, which show that the proposed method achieves satisfying results in MRI reconstruction within the multi-modal context, and also demonstrate its effectiveness and potential to be used in clinical practice.
Magnetic resonance imaging produces detailed anatomical and physiological images of the human body that can be used in the clinical diagnosis and treatment of diseases. However, MRI suffers its comparatively longer acquisition time than other imaging methods and is thus vulnerable to motion artifacts, which ultimately lead to likely failed or even wrong diagnosis. In order to perform faster reconstruction, deep learning-based methods along with traditional strategies such as parallel imaging and compressed sensing come into play in recent years in this field. Meanwhile, in order to better analyze the diseases, it is also often necessary to acquire images in the same region of interest under different modalities, which yield images with different contrast levels. However, most of these aforementioned methods tend to use single-modal images for reconstruction, neglecting the correlation and redundancy information embedded in MR images acquired with different modalities. While there are works on multi-modal reconstruction, the information is yet to be efficiently explored. In this paper, we propose an end-to-end neural network called MLMFNet, which helps the reconstruction of the target modality by using information from the auxiliary modality across feature channels and layers. Specifically, this is highlighted by three components: (I) An encoder based on UNet with a single-stream strategy that fuses auxiliary and target modalities; (II) a decoder that tends to multi-level features from all layers of the encoder, and (III) a channel attention module. Quantitative and qualitative analyses are performed on a public brain dataset and knee brain dataset, which show that the proposed method achieves satisfying results in MRI reconstruction within the multi-modal context, and also demonstrate its effectiveness and potential to be used in clinical practice.Magnetic resonance imaging produces detailed anatomical and physiological images of the human body that can be used in the clinical diagnosis and treatment of diseases. However, MRI suffers its comparatively longer acquisition time than other imaging methods and is thus vulnerable to motion artifacts, which ultimately lead to likely failed or even wrong diagnosis. In order to perform faster reconstruction, deep learning-based methods along with traditional strategies such as parallel imaging and compressed sensing come into play in recent years in this field. Meanwhile, in order to better analyze the diseases, it is also often necessary to acquire images in the same region of interest under different modalities, which yield images with different contrast levels. However, most of these aforementioned methods tend to use single-modal images for reconstruction, neglecting the correlation and redundancy information embedded in MR images acquired with different modalities. While there are works on multi-modal reconstruction, the information is yet to be efficiently explored. In this paper, we propose an end-to-end neural network called MLMFNet, which helps the reconstruction of the target modality by using information from the auxiliary modality across feature channels and layers. Specifically, this is highlighted by three components: (I) An encoder based on UNet with a single-stream strategy that fuses auxiliary and target modalities; (II) a decoder that tends to multi-level features from all layers of the encoder, and (III) a channel attention module. Quantitative and qualitative analyses are performed on a public brain dataset and knee brain dataset, which show that the proposed method achieves satisfying results in MRI reconstruction within the multi-modal context, and also demonstrate its effectiveness and potential to be used in clinical practice.
Author Zhou, Xiuyun
Zhang, Zhenxi
Du, Hongwei
Qiu, Bensheng
Author_xml – sequence: 1
  givenname: Xiuyun
  surname: Zhou
  fullname: Zhou, Xiuyun
– sequence: 2
  givenname: Zhenxi
  surname: Zhang
  fullname: Zhang, Zhenxi
– sequence: 3
  givenname: Hongwei
  surname: Du
  fullname: Du, Hongwei
  email: duhw@ustc.edu.cn
– sequence: 4
  givenname: Bensheng
  surname: Qiu
  fullname: Qiu, Bensheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38663831$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFLHDEUgINYdLX9AV5Kjl5mfUkmOzP1JFKrsNtCaaGXErLJG8iamWiSsey_b-yuPfRQ4UEu3xfe-07I4RhGJOSMwZwBW1xs5kN0cw68nkMZ3h6QGWsbUcm2qw_JDBoBVcPlj2NyktIGACQX8ogci3axEK1gM_JztVzdfMb8gV7RYfLZVR6f0NMhWO1d3tJ-Si6MdMT8K8R72oe45_4QVBuDHqPOaOnq6x2NaMKYcpxMLtpb8qbXPuG7_XtKvt98_HZ9Wy2_fLq7vlpWRkiZK9mZVjNpa7HWnQHNe4SONUZwzXprpOZmXet-0YMFblEiN60EXRIAYsOFOCXnu38fYnicMGU1uFQW83rEMCUloG66mtVdU9D3e3RaD2jVQ3SDjlv1kqQAbAeYGFKK2P9FGKjn7GqjSnb1nF1BGd4W53LnYDnyyWFUyTgcDVpXgmRlg_uv3f1jG-9GZ7S_x-0r7m8RPp3Z
Cites_doi 10.1109/TMI.2010.2090538
10.1109/TBME.2018.2883958
10.1002/mrm.21391
10.1109/TMI.2014.2377694
10.1002/mrm.26977
10.1109/TMI.2017.2760978
10.1088/1361-6560/aac71a
10.1109/TIT.2006.871582
10.1155/2012/864827
10.1016/0960-1686(93)90410-Z
10.1148/rg.255045202
10.1109/TIP.2003.819861
10.1109/TIP.2017.2713099
10.1109/TRPMS.2018.2890359
10.1109/TMI.2022.3164050
10.1038/sdata.2017.117
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2024.04.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 255
ExternalDocumentID 38663831
10_1016_j_mri_2024_04_028
S0730725X24001413
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
AFCTW
AFKWA
AJOXV
AMFUW
G8K
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c355t-59c8a15d43ba9c0a2fe0917c32a1fdc5a2cb4af6f0d02de5e2c850a0160ee7233
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Fri Jul 11 15:24:33 EDT 2025
Thu Apr 03 07:04:03 EDT 2025
Tue Jul 01 01:55:29 EDT 2025
Tue Jun 18 08:50:46 EDT 2024
Tue Aug 26 18:33:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fast MRI reconstruction
Multi-modal reconstruction
Language English
License Copyright © 2023. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-59c8a15d43ba9c0a2fe0917c32a1fdc5a2cb4af6f0d02de5e2c850a0160ee7233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38663831
PQID 3047941497
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3047941497
pubmed_primary_38663831
crossref_primary_10_1016_j_mri_2024_04_028
elsevier_sciencedirect_doi_10_1016_j_mri_2024_04_028
elsevier_clinicalkey_doi_10_1016_j_mri_2024_04_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
2024-Sep
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bakas, Akbari, Sotiras, Bilello, Rozycki, Kirby (bb0135) 2017; 4
Liang, Cheng, Ke, Ying (bb0055) 2019
Guo, Li, Huang, Guo, Li (bb0090) 2019; 3
Wang, Su, Ying, Peng, Zhu, Liang (bb0035) 2016
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby (bb0130) 2014; 34
Xiang, Chen, Chang, Zhan, Lin, Wang (bb0095) 2018; 66
Donoho (bb0005) 2006; 52
Jin, McCann, Froustey, Unser (bb0040) 2017; 26
He, Zhang, Ren, Sun (bb0125) 2016
Hyun, Kim, Lee, Lee, Seo (bb0050) 2018; 63
Smith, Gore, Yankeelov, Welch (bb0025) 2012; 2012
Wang, Bovik, Sheikh, Simoncelli (bb0160) 2004; 13
Huang, Yang, Wu, Qu, Yi, Metaxas (bb0060) 2019
Muckley, Riemenschneider, Radmanesh, Kim, Jeong, Ko (bb0065) 2020; 2
Xuan, Xiang, Huang, Zhang, Liao, Shen (bb0115) 2022; 41
Chlemper, Caballero, Hajnal, Price, Rueckert (bb0120) 2017; 37
Yiasemis, Sonke, Sánchez, Teuwen (bb0080) 2022
Ramzi, Ciuciu, Starck (bb0070) 2020
Paszke, Gross, Massa, Lerer, Bradbury, Chanan (bb0155) 2019; 32
Candès (bb0010) 2006; vol. 3
Bakas, Akbari, Sotiras, Bilello, Rozycki, Kirby (bb0145) 2017; 286
Bakas, Reyes, Jakab, Bauer, Rempfler, Crimi (bb0140) 2018
Horé, Ziou (bb0165) 2010
Feng, Fu, Zhou, Xu, Shao, Zhang (bb0105) 2021
Lustig, Donoho, Pauly (bb0015) 2007; 58
Xuan, Xiang, Huang, Zhang, Liao, Shen (bb0100) 2022; 41
Zhou, Zhou (bb0110) 2020
Ravishankar, Bresler (bb0020) 2010; 30
Glockner, Hu, Stanley, Angelos, King (bb0030) 2005; 25
Zbontar, Knoll, Sriram, Murrell, Huang, Muckley (bb0150) 2018
Hammernik, Klatzer, Kobler, Recht, Sodickson, Pock (bb0045) 2018; 79
Poli, Cirillo (bb0170) 1993; 27
Sriram, Zbontar, Murrell, Defazio, Zitnick, Yakubova (bb0075) 2020
Ronneberger, Fischer, Brox (bb0085) 2015
Candès (10.1016/j.mri.2024.04.028_bb0010) 2006; vol. 3
Glockner (10.1016/j.mri.2024.04.028_bb0030) 2005; 25
Feng (10.1016/j.mri.2024.04.028_bb0105) 2021
Wang (10.1016/j.mri.2024.04.028_bb0035) 2016
Hyun (10.1016/j.mri.2024.04.028_bb0050) 2018; 63
Horé (10.1016/j.mri.2024.04.028_bb0165) 2010
Yiasemis (10.1016/j.mri.2024.04.028_bb0080) 2022
Guo (10.1016/j.mri.2024.04.028_bb0090) 2019; 3
Zbontar (10.1016/j.mri.2024.04.028_bb0150) 2018
Menze (10.1016/j.mri.2024.04.028_bb0130) 2014; 34
Sriram (10.1016/j.mri.2024.04.028_bb0075) 2020
Ramzi (10.1016/j.mri.2024.04.028_bb0070) 2020
Xiang (10.1016/j.mri.2024.04.028_bb0095) 2018; 66
Bakas (10.1016/j.mri.2024.04.028_bb0135) 2017; 4
Smith (10.1016/j.mri.2024.04.028_bb0025) 2012; 2012
Poli (10.1016/j.mri.2024.04.028_bb0170) 1993; 27
Liang (10.1016/j.mri.2024.04.028_bb0055) 2019
Ronneberger (10.1016/j.mri.2024.04.028_bb0085) 2015
Ravishankar (10.1016/j.mri.2024.04.028_bb0020) 2010; 30
Lustig (10.1016/j.mri.2024.04.028_bb0015) 2007; 58
Xuan (10.1016/j.mri.2024.04.028_bb0115) 2022; 41
Zhou (10.1016/j.mri.2024.04.028_bb0110) 2020
Paszke (10.1016/j.mri.2024.04.028_bb0155) 2019; 32
Donoho (10.1016/j.mri.2024.04.028_bb0005) 2006; 52
Jin (10.1016/j.mri.2024.04.028_bb0040) 2017; 26
Hammernik (10.1016/j.mri.2024.04.028_bb0045) 2018; 79
Muckley (10.1016/j.mri.2024.04.028_bb0065) 2020; 2
Bakas (10.1016/j.mri.2024.04.028_bb0145) 2017; 286
Xuan (10.1016/j.mri.2024.04.028_bb0100) 2022; 41
Wang (10.1016/j.mri.2024.04.028_bb0160) 2004; 13
Bakas (10.1016/j.mri.2024.04.028_bb0140) 2018
Chlemper (10.1016/j.mri.2024.04.028_bb0120) 2017; 37
He (10.1016/j.mri.2024.04.028_bb0125) 2016
Huang (10.1016/j.mri.2024.04.028_bb0060) 2019
References_xml – start-page: 234
  year: 2015
  end-page: 241
  ident: bb0085
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18
– volume: 66
  start-page: 2105
  year: 2018
  end-page: 2114
  ident: bb0095
  article-title: Deep-learning-based multi-modal fusion for fast mr reconstruction
  publication-title: IEEE Trans Biomed Eng
– volume: 25
  start-page: 1279
  year: 2005
  end-page: 1297
  ident: bb0030
  article-title: Parallel mr imaging: a user’s guide
  publication-title: Radiographics
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bb0005
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
– volume: 2
  start-page: 7
  year: 2020
  ident: bb0065
  article-title: State-of-the-art machine learning mri reconstruction in 2020: Results of the second fastmri challenge
  publication-title: arXiv preprint
– volume: 27
  start-page: 2427
  year: 1993
  end-page: 2434
  ident: bb0170
  article-title: On the use of the normalized mean square error in evaluating dispersion model performance
  publication-title: Atmos Environ Part A
– start-page: 2366
  year: 2010
  end-page: 2369
  ident: bb0165
  article-title: Image quality metrics: Psnr vs. ssim
  publication-title: 2010 20th International Conference on Pattern Recognition
– start-page: 64
  year: 2020
  end-page: 73
  ident: bb0075
  article-title: End-to-end variational networks for accelerated mri reconstruction
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 41
  start-page: 2499
  year: 2022
  end-page: 2509
  ident: bb0115
  article-title: Multi-modal mri reconstruction assisted with spatial alignment network
  publication-title: IEEE Trans Med Imaging
– volume: 3
  start-page: 162
  year: 2019
  end-page: 169
  ident: bb0090
  article-title: Deep learning-based image segmentation on multimodal medical imaging
  publication-title: IEEE Transact Radiat Plasma Med Sci
– year: 2018
  ident: bb0150
  article-title: fastmri: An open dataset and benchmarks for accelerated mri
  publication-title: arXiv preprint
– volume: vol. 3
  start-page: 1433
  year: 2006
  end-page: 1452
  ident: bb0010
  article-title: Compressive sampling, in: Proceedings of the international congress of mathematicians
– volume: 41
  start-page: 2499
  year: 2022
  end-page: 2509
  ident: bb0100
  article-title: Multimodal mri reconstruction assisted with spatial alignment network
  publication-title: IEEE Trans Med Imaging
– volume: 63
  year: 2018
  ident: bb0050
  article-title: Deep learning for undersampled mri reconstruction
  publication-title: Phys Med Biol
– volume: 286
  year: 2017
  ident: bb0145
  article-title: Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection
  publication-title: Cancer Imag Arch
– volume: 30
  start-page: 1028
  year: 2010
  end-page: 1041
  ident: bb0020
  article-title: Mr image reconstruction from highly undersampled k-space data by dictionary learning
  publication-title: IEEE Trans Med Imaging
– year: 2020
  ident: bb0070
  article-title: Xpdnet for mri reconstruction: An application to the 2020 fastmri challenge
  publication-title: arXiv preprint
– volume: 32
  year: 2019
  ident: bb0155
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Adv Neural Inf Proces Syst
– volume: 37
  start-page: 491
  year: 2017
  end-page: 503
  ident: bb0120
  article-title: A deep cascade of convolutional neural networks for dynamic mr image reconstructio
  publication-title: IEEE Trans Med Imaging
– year: 2019
  ident: bb0055
  article-title: Deep mri reconstruction: unrolled optimization algorithms meet neural networks
  publication-title: arXiv preprint
– year: 2018
  ident: bb0140
  article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge
  publication-title: arXiv preprint
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0125
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 4273
  year: 2020
  end-page: 4282
  ident: bb0110
  article-title: Dudornet: learning a dual-domain recurrent network for fast mri reconstruction with deep t1 prior
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– year: 2021
  ident: bb0105
  article-title: Deep multi-modal aggregation network for mr image reconstruction with auxiliary modality
  publication-title: arXiv e-prints
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bb0015
  article-title: Sparse mri: the application of compressed sensing for rapid mr imaging, magnetic resonance in medicine: an official journal of the international society for
  publication-title: Magn Reson Med
– volume: 2012
  year: 2012
  ident: bb0025
  article-title: Real-time compressive sensing mri reconstruction using gpu computing and split bregman methods
  publication-title: Intern J Biomed Imag
– volume: 34
  start-page: 1993
  year: 2014
  end-page: 2024
  ident: bb0130
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans Med Imaging
– volume: 4
  start-page: 1
  year: 2017
  end-page: 13
  ident: bb0135
  article-title: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features
  publication-title: Scientific Data
– start-page: 514
  year: 2016
  end-page: 517
  ident: bb0035
  article-title: Accelerating magnetic resonance imaging via deep learning
  publication-title: 2016 IEEE 13th international symposium on biomedical imaging (ISBI)
– start-page: 1622
  year: 2019
  end-page: 1626
  ident: bb0060
  article-title: Mri reconstruction via cascaded channel-wise attention network
  publication-title: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019)
– volume: 79
  start-page: 3055
  year: 2018
  end-page: 3071
  ident: bb0045
  article-title: Learning a variational network for reconstruction of accelerated mri data
  publication-title: Magn Reson Med
– volume: 26
  start-page: 4509
  year: 2017
  end-page: 4522
  ident: bb0040
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans Image Process
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bb0160
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– start-page: 732
  year: 2022
  end-page: 741
  ident: bb0080
  article-title: Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated mri reconstruction
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 30
  start-page: 1028
  issue: 5
  year: 2010
  ident: 10.1016/j.mri.2024.04.028_bb0020
  article-title: Mr image reconstruction from highly undersampled k-space data by dictionary learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2090538
– start-page: 514
  year: 2016
  ident: 10.1016/j.mri.2024.04.028_bb0035
  article-title: Accelerating magnetic resonance imaging via deep learning
– volume: 66
  start-page: 2105
  issue: 7
  year: 2018
  ident: 10.1016/j.mri.2024.04.028_bb0095
  article-title: Deep-learning-based multi-modal fusion for fast mr reconstruction
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2883958
– year: 2021
  ident: 10.1016/j.mri.2024.04.028_bb0105
  article-title: Deep multi-modal aggregation network for mr image reconstruction with auxiliary modality
  publication-title: arXiv e-prints
– start-page: 4273
  year: 2020
  ident: 10.1016/j.mri.2024.04.028_bb0110
  article-title: Dudornet: learning a dual-domain recurrent network for fast mri reconstruction with deep t1 prior
– start-page: 1622
  year: 2019
  ident: 10.1016/j.mri.2024.04.028_bb0060
  article-title: Mri reconstruction via cascaded channel-wise attention network
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  ident: 10.1016/j.mri.2024.04.028_bb0015
  article-title: Sparse mri: the application of compressed sensing for rapid mr imaging, magnetic resonance in medicine: an official journal of the international society for
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– volume: 2
  start-page: 7
  issue: 6
  year: 2020
  ident: 10.1016/j.mri.2024.04.028_bb0065
  article-title: State-of-the-art machine learning mri reconstruction in 2020: Results of the second fastmri challenge
  publication-title: arXiv preprint
– start-page: 234
  year: 2015
  ident: 10.1016/j.mri.2024.04.028_bb0085
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 770
  year: 2016
  ident: 10.1016/j.mri.2024.04.028_bb0125
  article-title: Deep residual learning for image recognition
– volume: 34
  start-page: 1993
  issue: 10
  year: 2014
  ident: 10.1016/j.mri.2024.04.028_bb0130
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 79
  start-page: 3055
  issue: 6
  year: 2018
  ident: 10.1016/j.mri.2024.04.028_bb0045
  article-title: Learning a variational network for reconstruction of accelerated mri data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26977
– start-page: 64
  year: 2020
  ident: 10.1016/j.mri.2024.04.028_bb0075
  article-title: End-to-end variational networks for accelerated mri reconstruction
– volume: 37
  start-page: 491
  year: 2017
  ident: 10.1016/j.mri.2024.04.028_bb0120
  article-title: A deep cascade of convolutional neural networks for dynamic mr image reconstructio
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2760978
– volume: vol. 3
  start-page: 1433
  year: 2006
  ident: 10.1016/j.mri.2024.04.028_bb0010
– volume: 63
  issue: 13
  year: 2018
  ident: 10.1016/j.mri.2024.04.028_bb0050
  article-title: Deep learning for undersampled mri reconstruction
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aac71a
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.mri.2024.04.028_bb0005
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2006.871582
– volume: 2012
  year: 2012
  ident: 10.1016/j.mri.2024.04.028_bb0025
  article-title: Real-time compressive sensing mri reconstruction using gpu computing and split bregman methods
  publication-title: Intern J Biomed Imag
  doi: 10.1155/2012/864827
– volume: 27
  start-page: 2427
  year: 1993
  ident: 10.1016/j.mri.2024.04.028_bb0170
  article-title: On the use of the normalized mean square error in evaluating dispersion model performance
  publication-title: Atmos Environ Part A
  doi: 10.1016/0960-1686(93)90410-Z
– volume: 25
  start-page: 1279
  issue: 5
  year: 2005
  ident: 10.1016/j.mri.2024.04.028_bb0030
  article-title: Parallel mr imaging: a user’s guide
  publication-title: Radiographics
  doi: 10.1148/rg.255045202
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.mri.2024.04.028_bb0160
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– year: 2019
  ident: 10.1016/j.mri.2024.04.028_bb0055
  article-title: Deep mri reconstruction: unrolled optimization algorithms meet neural networks
  publication-title: arXiv preprint
– volume: 26
  start-page: 4509
  issue: 9
  year: 2017
  ident: 10.1016/j.mri.2024.04.028_bb0040
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2713099
– start-page: 2366
  year: 2010
  ident: 10.1016/j.mri.2024.04.028_bb0165
  article-title: Image quality metrics: Psnr vs. ssim
– year: 2020
  ident: 10.1016/j.mri.2024.04.028_bb0070
  article-title: Xpdnet for mri reconstruction: An application to the 2020 fastmri challenge
  publication-title: arXiv preprint
– volume: 3
  start-page: 162
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2024.04.028_bb0090
  article-title: Deep learning-based image segmentation on multimodal medical imaging
  publication-title: IEEE Transact Radiat Plasma Med Sci
  doi: 10.1109/TRPMS.2018.2890359
– volume: 41
  start-page: 2499
  issue: 9
  year: 2022
  ident: 10.1016/j.mri.2024.04.028_bb0115
  article-title: Multi-modal mri reconstruction assisted with spatial alignment network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3164050
– volume: 4
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.mri.2024.04.028_bb0135
  article-title: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features
  publication-title: Scientific Data
  doi: 10.1038/sdata.2017.117
– start-page: 732
  year: 2022
  ident: 10.1016/j.mri.2024.04.028_bb0080
  article-title: Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated mri reconstruction
– year: 2018
  ident: 10.1016/j.mri.2024.04.028_bb0140
  article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge
  publication-title: arXiv preprint
– volume: 286
  year: 2017
  ident: 10.1016/j.mri.2024.04.028_bb0145
  article-title: Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection
  publication-title: Cancer Imag Arch
– volume: 32
  year: 2019
  ident: 10.1016/j.mri.2024.04.028_bb0155
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Adv Neural Inf Proces Syst
– volume: 41
  start-page: 2499
  issue: 9
  year: 2022
  ident: 10.1016/j.mri.2024.04.028_bb0100
  article-title: Multimodal mri reconstruction assisted with spatial alignment network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3164050
– year: 2018
  ident: 10.1016/j.mri.2024.04.028_bb0150
  article-title: fastmri: An open dataset and benchmarks for accelerated mri
  publication-title: arXiv preprint
SSID ssj0005235
Score 2.4367926
Snippet Magnetic resonance imaging produces detailed anatomical and physiological images of the human body that can be used in the clinical diagnosis and treatment of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 246
SubjectTerms Algorithms
Brain - diagnostic imaging
Deep Learning
Fast MRI reconstruction
Humans
Image Processing, Computer-Assisted - methods
Knee - diagnostic imaging
Magnetic Resonance Imaging - methods
Multi-modal reconstruction
Multimodal Imaging - methods
Neural Networks, Computer
Title MLMFNet: A multi-level modality fusion network for multi-modal accelerated MRI reconstruction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X24001413
https://dx.doi.org/10.1016/j.mri.2024.04.028
https://www.ncbi.nlm.nih.gov/pubmed/38663831
https://www.proquest.com/docview/3047941497
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jgvgifjs_RgSfhLg2ST_m2xiOTe0e1MFeJCRpChPXDd1e_du9pO1Q8AOEvrRcaLi73v2u-eWC0LmGLG6YMiRsx5pwahhRYQbBEGbNQ-0r7djuyTDsj_jNOBjXULfaC2NplWXsL2K6i9blk1apzdZ8Mmk9WOeMKBRb3LEVbcdPziPr5Zfvn2kexSGbIEysdLWy6The09cJlIiUu26n9kD273PTT9jT5aDeFtoswSPuFPPbRjWT76D1pFwe30VPyV3SG5rFFe5gxxQkL5YThKez1MFtnC3tzzGcF9xvDIC1lHMSWGoNWcg2j0hxcj_ArlpedZjdQ6Pe9WO3T8rzE4gGFLEgQVvH0g9SzpRsa0_SzAA6iDSj0s9SHUiqFZdZmHmpR1MTGAqW86TtOWdMRBnbR_V8lptDhKGOzKIoY4rq0Ko7VtRTYGMeBamWPG2gi0pzYl60yRAVf-xZgJqFVbPw4KJxA9FKt6La_wkRS0AQ_20QXw364iB_DTurjCfgw7GrITI3s-WbYK65PhSIUQMdFFZdTZ3FAMRi5h_976XHaMPeFVS0E1QHO5lTwC4L1XTO2URrncFtf_gBx-7tsw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8APVF_HZ-RvBJqOuS9GO-jeGYuu5BN_BFQpKmMHGd6Hz1b_eStkPBDxD61F5ouEvvftf8cgdwqjGKG6aMFzZj7XFqmKfCDJ0hzpqHuqG0Y7sn_bA75Nf3wf0ctKuzMJZWWfr-wqc7b13eqZfarD-PRvU7uzgjiskWd2xFNg-LHD9f28bg_P0zz6PosonSnhWvtjYdyWv8MsIckXJX7tR2ZP8-OP0EPl0Q6qzBaokeSauY4DrMmXwDlpJyf3wTHpJe0umb6QVpEUcV9J4sKYiMJ6nD2yR7s3_HSF6Qvwki1lLOSRCpNYYhWz0iJcntFXHp8qzE7BYMO5eDdtcrGyh4GmHE1AuaOpaNIOVMyab2Jc0MwoNIMyobWaoDSbXiMgszP_VpagJD0XS-tEXnjIkoY9uwkE9yswsEE8ksijKmqA6tvmNFfYVG5lGQasnTGpxVmhPPRZ0MURHIHgWqWVg1Cx8vGteAVroV1QFQdFkCvfhvg_hs0JcV8tewk8p4Ar8cux0iczN5exXMVdfHDDGqwU5h1dnUWYxILGaNvf-99BiWu4OkJ3pX_Zt9WLFPCl7aASygzcwhApmpOnIL9QM_Ku9B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLMFNet%3A+A+multi-level+modality+fusion+network+for+multi-modal+accelerated+MRI+reconstruction&rft.jtitle=Magnetic+resonance+imaging&rft.au=Zhou%2C+Xiuyun&rft.au=Zhang%2C+Zhenxi&rft.au=Du%2C+Hongwei&rft.au=Qiu%2C+Bensheng&rft.date=2024-09-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=111&rft.spage=246&rft.epage=255&rft_id=info:doi/10.1016%2Fj.mri.2024.04.028&rft.externalDocID=S0730725X24001413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon