A Robust Approach to Chance Constrained Optimal Power Flow With Renewable Generation
Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF u...
Saved in:
Published in | IEEE transactions on power systems Vol. 31; no. 5; pp. 3840 - 3849 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. Deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance. |
---|---|
AbstractList | Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. Deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance. Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance. |
Author | Dvorkin, Yury Lubin, Miles Backhaus, Scott |
Author_xml | – sequence: 1 givenname: Miles surname: Lubin fullname: Lubin, Miles email: mlubin@mit.edu organization: Oper. Res. Center, Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 2 givenname: Yury surname: Dvorkin fullname: Dvorkin, Yury email: dvorkin@uw.edu organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA – sequence: 3 givenname: Scott surname: Backhaus fullname: Backhaus, Scott email: backhaus@lanl.gov organization: Center for Nonlinear Studies, Los Alamos Nat. Lab., Los Alamos, NM, USA |
BackLink | https://www.osti.gov/servlets/purl/1329591$$D View this record in Osti.gov |
BookMark | eNp9kUFLYzEUhYMoWB3_gLMJ42Y2r5ObvLyXLEuxjiAoteIypHm39MkzqUlKmX8_qRUXLlzlQr6T3HPOGTn2wSMhl8DGAEz_WTw8zx_HnIEc81rrVoojMgIpVcWaVh-TEVNKVkpLdkrOUnphjDXlYkQWEzoPy23KdLLZxGDdmuZAp2vrHdJp8ClH23vs6P0m9692oA9hh5HOhrCjz31e0zl63NnlgPSmTNHmPvgf5GRlh4QXH-c5eZpdL6Z_q7v7m9vp5K5yQspc1Z1uYAlQq1oDV1w0Xc1brZ0TqjhwXDqwksOqdW4pAFfCgnbYtRJVy7pOnJNfh3dDyr1Jrs_o1i54jy4bEFxLDQX6fYCKvbctpmxe--RwGKzHsE0GVFmmJNaogl59QV_CNvpioVDAZd2AkIXiB8rFkFLEldnEEk38Z4CZfRvmvQ2zb8N8tFFE6ouobPse1j7g4Xvpz4O0R8TPv1pR_Gku_gOiMJgj |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_1109_TCNS_2019_2922508 crossref_primary_10_1049_iet_rpg_2018_5834 crossref_primary_10_1109_TPWRS_2017_2699121 crossref_primary_10_1109_TSTE_2024_3388388 crossref_primary_10_1016_j_ijepes_2023_109249 crossref_primary_10_1109_ACCESS_2019_2946460 crossref_primary_10_1049_iet_rpg_2019_0794 crossref_primary_10_1016_j_ejor_2021_04_015 crossref_primary_10_1109_TSTE_2017_2718735 crossref_primary_10_1109_TPWRS_2024_3450369 crossref_primary_10_1109_TPWRS_2022_3180111 crossref_primary_10_1038_s41598_025_91940_x crossref_primary_10_1109_TSG_2019_2903767 crossref_primary_10_3389_fenrg_2023_1075889 crossref_primary_10_1016_j_ejco_2022_100030 crossref_primary_10_1016_j_renene_2020_04_057 crossref_primary_10_1109_TPWRS_2018_2890732 crossref_primary_10_1109_TSTE_2018_2860901 crossref_primary_10_1016_j_ijepes_2021_106890 crossref_primary_10_1088_1742_6596_2564_1_012048 crossref_primary_10_1109_TPWRS_2020_3038840 crossref_primary_10_1002_tee_22673 crossref_primary_10_1007_s11750_022_00634_4 crossref_primary_10_1109_TSG_2024_3383396 crossref_primary_10_1109_TSG_2023_3236019 crossref_primary_10_1109_TPWRS_2017_2760699 crossref_primary_10_1287_ijoc_2020_0956 crossref_primary_10_1109_TPWRS_2020_2971684 crossref_primary_10_1109_TSG_2018_2878757 crossref_primary_10_1109_TCNS_2019_2921300 crossref_primary_10_1109_TSTE_2019_2929687 crossref_primary_10_5687_sss_2021_46 crossref_primary_10_1016_j_ijepes_2019_105533 crossref_primary_10_1109_TPWRS_2019_2940288 crossref_primary_10_1137_15M1020575 crossref_primary_10_1016_j_arcontrol_2019_05_005 crossref_primary_10_1109_TPWRS_2023_3257259 crossref_primary_10_1016_j_segan_2023_101168 crossref_primary_10_1109_TPWRS_2015_2476664 crossref_primary_10_1109_TPWRS_2021_3115521 crossref_primary_10_1109_TSTE_2018_2815651 crossref_primary_10_3233_JIFS_169788 crossref_primary_10_1049_iet_gtd_2018_5887 crossref_primary_10_1016_j_ijepes_2018_11_017 crossref_primary_10_1002_er_6379 crossref_primary_10_1109_JPROC_2020_2983388 crossref_primary_10_1016_j_epsr_2024_110704 crossref_primary_10_1016_j_epsr_2022_108060 crossref_primary_10_1049_iet_gtd_2019_0316 crossref_primary_10_1109_TPWRS_2021_3065465 crossref_primary_10_1109_TPWRS_2022_3200941 crossref_primary_10_1007_s13042_024_02325_x crossref_primary_10_1016_j_orl_2021_01_012 crossref_primary_10_1109_TSG_2020_2966620 crossref_primary_10_1016_j_ijepes_2019_105522 crossref_primary_10_1109_TPWRS_2018_2881131 crossref_primary_10_3390_en14164763 crossref_primary_10_1109_TPWRS_2019_2960389 crossref_primary_10_1109_TPWRS_2019_2895122 crossref_primary_10_1109_TPWRS_2019_2961231 crossref_primary_10_1109_TSG_2017_2773603 crossref_primary_10_1109_TEC_2018_2821922 crossref_primary_10_1287_ijoc_2023_0299 crossref_primary_10_1016_j_ijepes_2019_04_028 crossref_primary_10_1016_j_jclepro_2023_138290 crossref_primary_10_1016_j_jprocont_2017_11_003 crossref_primary_10_1002_eng2_12995 crossref_primary_10_1109_TPWRS_2022_3230320 crossref_primary_10_1007_s10589_018_0015_1 crossref_primary_10_1016_j_epsr_2022_108725 crossref_primary_10_1109_TPWRS_2018_2890767 crossref_primary_10_1016_j_solener_2020_07_066 crossref_primary_10_1109_TPWRS_2017_2656080 crossref_primary_10_1109_TSG_2017_2664816 crossref_primary_10_1109_TPWRS_2018_2865184 crossref_primary_10_1109_TPWRS_2022_3223884 crossref_primary_10_1049_esi2_12016 crossref_primary_10_1109_ACCESS_2020_3013151 crossref_primary_10_1016_j_rser_2023_113713 crossref_primary_10_1007_s40518_019_00132_5 crossref_primary_10_1016_j_cie_2024_110230 crossref_primary_10_1109_TPWRS_2018_2878380 crossref_primary_10_1109_TPWRS_2018_2878385 crossref_primary_10_1016_j_enconman_2022_115863 crossref_primary_10_1007_s12667_020_00378_9 crossref_primary_10_1109_TPWRS_2022_3221348 crossref_primary_10_1109_TPWRS_2017_2695002 crossref_primary_10_1109_TSG_2021_3051088 crossref_primary_10_1109_JPROC_2020_3005505 crossref_primary_10_1109_TSG_2018_2792322 crossref_primary_10_1049_iet_gtd_2018_6549 crossref_primary_10_1016_j_ijepes_2018_04_028 crossref_primary_10_1016_j_solener_2020_06_083 crossref_primary_10_1109_TPWRS_2016_2572104 crossref_primary_10_1109_LCSYS_2017_2711140 crossref_primary_10_1109_TPWRS_2018_2807623 crossref_primary_10_1109_TPWRS_2022_3211397 crossref_primary_10_1007_s40998_020_00316_6 crossref_primary_10_1016_j_apenergy_2022_119291 crossref_primary_10_1016_j_epsr_2020_106804 crossref_primary_10_1109_TPWRS_2017_2741506 crossref_primary_10_1016_j_apenergy_2020_116064 crossref_primary_10_1080_15567036_2021_1972059 crossref_primary_10_3390_en14185618 crossref_primary_10_1016_j_ejor_2022_10_024 crossref_primary_10_1109_TPWRS_2017_2743348 crossref_primary_10_1016_j_jclepro_2023_136087 crossref_primary_10_1109_TPWRS_2024_3415652 crossref_primary_10_1109_TSTE_2017_2673120 crossref_primary_10_1109_TPWRS_2019_2954971 crossref_primary_10_3390_en11113142 crossref_primary_10_1016_j_energy_2021_120182 crossref_primary_10_1109_TPWRS_2023_3256131 crossref_primary_10_1007_s40565_019_0519_4 crossref_primary_10_1109_TCNS_2024_3432188 crossref_primary_10_1007_s11750_022_00639_z crossref_primary_10_1109_TPWRS_2022_3217941 crossref_primary_10_1016_j_epsr_2020_106792 crossref_primary_10_1049_iet_gtd_2018_5834 crossref_primary_10_1109_TPWRS_2017_2655078 crossref_primary_10_1007_s11081_022_09761_0 crossref_primary_10_1016_j_ifacol_2022_09_010 crossref_primary_10_1007_s12667_022_00561_0 crossref_primary_10_1109_TPWRS_2018_2844356 crossref_primary_10_1109_TSTE_2017_2748463 crossref_primary_10_1109_LCSYS_2018_2836870 crossref_primary_10_1109_TPWRS_2018_2880406 crossref_primary_10_1109_TPWRS_2017_2672750 crossref_primary_10_1109_TPWRS_2020_2978934 crossref_primary_10_1109_TPWRS_2020_3046710 crossref_primary_10_1109_JPETS_2017_2749256 crossref_primary_10_1109_TCNS_2023_3330232 crossref_primary_10_1109_TPWRS_2021_3096144 crossref_primary_10_3390_computers9020032 crossref_primary_10_1109_TSTE_2021_3105525 crossref_primary_10_1109_TCNS_2019_2919210 crossref_primary_10_1109_TSG_2020_3038651 crossref_primary_10_1109_TCNS_2019_2930872 crossref_primary_10_1109_TCST_2023_3298230 crossref_primary_10_1109_ACCESS_2020_2995620 |
Cites_doi | 10.1109/TPWRS.2014.2322909 10.1109/PESMG.2013.6672534 10.1109/TPWRS.2011.2121095 10.1109/TPWRS.2010.2045774 10.1109/59.192961 10.1109/PESMG.2013.6673013 10.1109/TPWRS.2015.2434848 10.1109/TSTE.2012.2212471 10.1007/s10287-015-0236-z 10.1287/opre.1030.0065 10.1137/050622328 10.1109/59.207324 10.1109/TPWRS.2014.2357714 10.1109/TPWRS.2005.846206 10.1109/59.317636 10.1109/TPWRS.2013.2275013 10.1109/PTC.2011.6019318 10.1109/TPWRS.2013.2251916 10.1109/TPWRS.2008.926719 10.1109/TPWRS.2012.2192141 10.1016/j.energy.2014.05.073 10.1109/TPWRS.2012.2185816 10.1137/130910312 10.1515/9781400831050 10.1109/TPWRS.2009.2016598 10.1287/opre.1090.0795 10.1287/ijoc.2014.0623 10.1109/TPWRS.2008.2012180 10.1109/TPWRS.2010.2100050 10.1109/TPWRS.2014.2353647 10.1109/TPWRS.2015.2449667 10.1109/TPWRS.2011.2164947 10.1080/02331930701421046 10.1109/TPWRS.2014.2365835 10.1109/TPWRS.2012.2205021 10.1109/TPWRS.2014.2341354 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M F28 OIOZB OTOTI |
DOI | 10.1109/TPWRS.2015.2499753 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0679 |
EndPage | 3849 |
ExternalDocumentID | 1329591 4152314591 10_1109_TPWRS_2015_2499753 7332992 |
Genre | orig-research |
GrantInformation_xml | – fundername: DOE Computational Science Graduate Fellowship grantid: DE-FG02-97ER25308 – fundername: Clean Energy Institute Student Training & Exploration Grant – fundername: Advanced Grid Modeling Program |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M F28 ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c355t-4d961b114849128236d42799cc38753c25c1a521f7ccb31ef3a19ced75e870dd3 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Fri May 19 01:59:48 EDT 2023 Fri Jul 11 16:04:30 EDT 2025 Mon Jun 30 06:44:38 EDT 2025 Tue Jul 01 01:35:34 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Aug 27 02:51:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-4d961b114849128236d42799cc38753c25c1a521f7ccb31ef3a19ced75e870dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 LA-UR-15-22280 USDOE AC52-06NA25396 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1329591 |
PQID | 1812546135 |
PQPubID | 85441 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TPWRS_2015_2499753 osti_scitechconnect_1329591 proquest_journals_1812546135 crossref_primary_10_1109_TPWRS_2015_2499753 proquest_miscellaneous_1835597568 ieee_primary_7332992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. 2016-9-00 20160901 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 dupacova (ref24) 2000 ref11 ref10 ref16 (ref49) 2011 ref19 ref18 ben tal (ref36) 2009 ref51 ref50 ref46 ref45 ref47 ref44 ref8 ref7 ref5 lei (ref17) 2012; 27 (ref48) 0 (ref42) 2015 ref37 ref31 ref33 (ref3) 2012 ref2 lew (ref9) 2010 ref1 ref39 (ref34) 2014 ref38 (ref41) 2015 dvorkin (ref6) 2015 (ref43) 2015 ref23 ref26 lubin (ref30) 2015 ref25 ref20 ref22 ref21 (ref35) 2014 ref28 ref27 ref29 (ref40) 2015 prékopa (ref32) 1995; 324 (ref4) 2007 (ref52) 2015 |
References_xml | – ident: ref2 doi: 10.1109/TPWRS.2014.2322909 – ident: ref47 doi: 10.1109/PESMG.2013.6672534 – ident: ref13 doi: 10.1109/TPWRS.2011.2121095 – ident: ref22 doi: 10.1109/TPWRS.2010.2045774 – volume: 324 start-page: 301 year: 1995 ident: ref32 publication-title: Convexity Theory of Probabilistic Constrained Problems – year: 2010 ident: ref9 article-title: The western wind and solar integration study publication-title: Nat Renew Energy Lab – ident: ref7 doi: 10.1109/59.192961 – ident: ref15 doi: 10.1109/PESMG.2013.6673013 – year: 2011 ident: ref49 publication-title: Balancing and Frequency Control – year: 2015 ident: ref43 – ident: ref26 doi: 10.1109/TPWRS.2015.2434848 – year: 2014 ident: ref35 publication-title: Gurobi Optimizer Reference Manual – year: 2000 ident: ref24 publication-title: Scenario Reduction in Stochastic Programming An Approach Using Probability Metrics Institut fr Mathematik – ident: ref1 doi: 10.1109/TSTE.2012.2212471 – ident: ref37 doi: 10.1007/s10287-015-0236-z – ident: ref27 doi: 10.1287/opre.1030.0065 – ident: ref31 doi: 10.1137/050622328 – ident: ref45 doi: 10.1109/59.207324 – ident: ref29 doi: 10.1109/TPWRS.2014.2357714 – ident: ref10 doi: 10.1109/TPWRS.2005.846206 – ident: ref46 doi: 10.1109/59.317636 – ident: ref18 doi: 10.1109/TPWRS.2013.2275013 – year: 2015 ident: ref40 publication-title: Maps of the Bonneville Power Administration System – ident: ref44 doi: 10.1109/PTC.2011.6019318 – year: 2015 ident: ref52 publication-title: Hyak High-Performance Computer Cluster – ident: ref25 doi: 10.1109/TPWRS.2013.2251916 – ident: ref14 doi: 10.1109/TPWRS.2008.926719 – ident: ref50 doi: 10.1109/TPWRS.2012.2192141 – year: 2015 ident: ref41 – ident: ref5 doi: 10.1016/j.energy.2014.05.073 – ident: ref8 doi: 10.1109/TPWRS.2012.2185816 – ident: ref21 doi: 10.1137/130910312 – year: 0 ident: ref48 publication-title: RCC OPF Code and Input Data Repository – year: 2009 ident: ref36 publication-title: Robust optimization doi: 10.1515/9781400831050 – ident: ref38 doi: 10.1287/opre.1030.0065 – year: 2012 ident: ref3 publication-title: Federal Energy Regulatory Comission (FERC) Order No 764 – ident: ref12 doi: 10.1109/TPWRS.2009.2016598 – year: 2015 ident: ref42 publication-title: Wind Generation & Total Load in the BPA Balancing Authority – ident: ref39 doi: 10.1287/opre.1090.0795 – year: 2015 ident: ref30 publication-title: JuMPChance jl JuMPChance 0 1 0 – ident: ref53 doi: 10.1287/ijoc.2014.0623 – ident: ref11 doi: 10.1109/TPWRS.2008.2012180 – ident: ref16 doi: 10.1109/TPWRS.2010.2100050 – ident: ref51 doi: 10.1109/TPWRS.2014.2353647 – year: 2015 ident: ref6 article-title: Uncertainty sets for wind power generation publication-title: IEEE Trans Power Syst – ident: ref28 doi: 10.1109/TPWRS.2015.2449667 – volume: 27 start-page: 913 year: 2012 ident: ref17 article-title: Comparison of scenario-based and interval optimization approaches to stochastic SCUC publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2164947 – ident: ref33 doi: 10.1080/02331930701421046 – year: 2014 ident: ref34 publication-title: IBM ILOG CPLEX Optimizer – ident: ref19 doi: 10.1109/TPWRS.2014.2365835 – ident: ref20 doi: 10.1109/TPWRS.2012.2205021 – year: 2007 ident: ref4 publication-title: Federal Energy Regulatory Comission (FERC) Order No 890 – ident: ref23 doi: 10.1109/TPWRS.2014.2341354 |
SSID | ssj0006679 |
Score | 2.5986884 |
Snippet | Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The... |
SourceID | osti proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3840 |
SubjectTerms | Chance constrained optimization Computational modeling Constraints Data buses distributionally robust optimization Electric utilities ENERGY PLANNING, POLICY, AND ECONOMY Energy Sciences Generators Mathematical models Minimum cost optimal power flow Optimization optimization methods Power flow power system economics POWER TRANSMISSION AND DISTRIBUTION Programming Robustness Uncertainty Wind forecasting wind power integration wind power uncertainty wind power variability |
Title | A Robust Approach to Chance Constrained Optimal Power Flow With Renewable Generation |
URI | https://ieeexplore.ieee.org/document/7332992 https://www.proquest.com/docview/1812546135 https://www.proquest.com/docview/1835597568 https://www.osti.gov/servlets/purl/1329591 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3AASkGElspI3CDbTfyIfVwhVhUSUC1btTfLGTsC0W4qmqgSv54ZJxvxEuKUSHES2-MZz5fMfMPYS9wR5sJXPi9MrXNcITo30srcgjSl9aLwMbF9ftAnZ_LdhbrYYa-nXJgYYwo-izM6Tf_yQws9fSo7roRA64kG9w4CtyFXa7K6Wg-8esao3Fg13ybIzO3x-vR89YmiuNQMwQZlkv6yCaWqKnhoUaf-sMhpm1k-YO-3HRyiS77O-q6ewfffuBv_dwQP2f3R3-SLYYHssZ24ecTu_cRCuM_WC75q6_6m44uRYJx3Lae0A4icCnqmMhIx8I9oXq7wYadUWY0vL9tbfv6l-8xXaC9vKQWLDyTWJOvH7Gz5dv3mJB-LLeSALkeXy2B1URM6khb3rFLoIMvKWgBBkAZKBYVHyTYVQC2K2AhfWIihUhFVPgTxhO1u2k18yngVEbRAGSV4K6vY-AAGdBO0NqVsIGSs2M6-g5GJnEZy6RIimVuXJOZIYm6UWMZeTfdcDzwc_2y9T3M_tRynPWMHJGSHzgUx5AKFEkHnEJBbZYuMHW5l70ZFvnHkACmJPo_K2IvpMqog_Vfxm9j21EYQLlPaPPv7ew_YXeydHkLTDtlu962Pz9GX6eqjtIh_APCS7is |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcyqMgQgsYiRtku4kfiY8rxGqBtlTLVu3NSsaOQLQbRBNV4tczk2QjXkKcEilOYns8L3vmG4AXpBGmssiKOMlLE9MKMXGurIotqjy1hUyK0KF9HpvFqXp3rs-34NWYCxNC6ILPwoRvu7N8X2PLW2UHmZQkPUng3iC9r5M-W2uUu8b0yHp5ruPc6ukmRWZqD1YnZ8uPHMelJ-RucC7pL2qoq6tCl5q46g-Z3Cma-R042nSxjy_5MmmbcoLff0Nv_N8x3IWdweIUs36J3IOtsL4Pt3_CIdyF1Uws67K9asRsgBgXTS048QCD4JKeXSGJ4MUHEjCX9LETrq0m5hf1tTj73HwSS5KY15yEJXoYa6b2Azidv1m9XsRDuYUYyehoYuWtSUr2j5QlrZVK41WaWYso2anBVGNSEG2rDLGUSahkkVgMPtOBmN57-RC21_U6PAKRBXJbMA0KC6uyUBUeczSVNyZPVYU-gmQz-w4HLHIeyYXrfJKpdR3FHFPMDRSL4OX4ztceieOfrXd57seWw7RHsMdEdmReMEYucjARNo5ccqttEsH-hvZuYOUrxyaQVmT16Aiej4-JCflkpViHuuU2kj0zbfLHf__vM7i5WB0dusO3x-_34Bb11PSBavuw3XxrwxOybJryabegfwCBzvF0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Approach+to+Chance+Constrained+Optimal+Power+Flow+With+Renewable+Generation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Lubin%2C+Miles&rft.au=Dvorkin%2C+Yury&rft.au=Backhaus%2C+Scott&rft.date=2016-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=31&rft.issue=5&rft.spage=3840&rft_id=info:doi/10.1109%2FTPWRS.2015.2499753&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4152314591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |