A Robust Approach to Chance Constrained Optimal Power Flow With Renewable Generation

Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 31; no. 5; pp. 3840 - 3849
Main Authors Lubin, Miles, Dvorkin, Yury, Backhaus, Scott
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. Deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.
AbstractList Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. Deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.
Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.
Author Dvorkin, Yury
Lubin, Miles
Backhaus, Scott
Author_xml – sequence: 1
  givenname: Miles
  surname: Lubin
  fullname: Lubin, Miles
  email: mlubin@mit.edu
  organization: Oper. Res. Center, Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 2
  givenname: Yury
  surname: Dvorkin
  fullname: Dvorkin, Yury
  email: dvorkin@uw.edu
  organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA
– sequence: 3
  givenname: Scott
  surname: Backhaus
  fullname: Backhaus, Scott
  email: backhaus@lanl.gov
  organization: Center for Nonlinear Studies, Los Alamos Nat. Lab., Los Alamos, NM, USA
BackLink https://www.osti.gov/servlets/purl/1329591$$D View this record in Osti.gov
BookMark eNp9kUFLYzEUhYMoWB3_gLMJ42Y2r5ObvLyXLEuxjiAoteIypHm39MkzqUlKmX8_qRUXLlzlQr6T3HPOGTn2wSMhl8DGAEz_WTw8zx_HnIEc81rrVoojMgIpVcWaVh-TEVNKVkpLdkrOUnphjDXlYkQWEzoPy23KdLLZxGDdmuZAp2vrHdJp8ClH23vs6P0m9692oA9hh5HOhrCjz31e0zl63NnlgPSmTNHmPvgf5GRlh4QXH-c5eZpdL6Z_q7v7m9vp5K5yQspc1Z1uYAlQq1oDV1w0Xc1brZ0TqjhwXDqwksOqdW4pAFfCgnbYtRJVy7pOnJNfh3dDyr1Jrs_o1i54jy4bEFxLDQX6fYCKvbctpmxe--RwGKzHsE0GVFmmJNaogl59QV_CNvpioVDAZd2AkIXiB8rFkFLEldnEEk38Z4CZfRvmvQ2zb8N8tFFE6ouobPse1j7g4Xvpz4O0R8TPv1pR_Gku_gOiMJgj
CODEN ITPSEG
CitedBy_id crossref_primary_10_1109_TCNS_2019_2922508
crossref_primary_10_1049_iet_rpg_2018_5834
crossref_primary_10_1109_TPWRS_2017_2699121
crossref_primary_10_1109_TSTE_2024_3388388
crossref_primary_10_1016_j_ijepes_2023_109249
crossref_primary_10_1109_ACCESS_2019_2946460
crossref_primary_10_1049_iet_rpg_2019_0794
crossref_primary_10_1016_j_ejor_2021_04_015
crossref_primary_10_1109_TSTE_2017_2718735
crossref_primary_10_1109_TPWRS_2024_3450369
crossref_primary_10_1109_TPWRS_2022_3180111
crossref_primary_10_1038_s41598_025_91940_x
crossref_primary_10_1109_TSG_2019_2903767
crossref_primary_10_3389_fenrg_2023_1075889
crossref_primary_10_1016_j_ejco_2022_100030
crossref_primary_10_1016_j_renene_2020_04_057
crossref_primary_10_1109_TPWRS_2018_2890732
crossref_primary_10_1109_TSTE_2018_2860901
crossref_primary_10_1016_j_ijepes_2021_106890
crossref_primary_10_1088_1742_6596_2564_1_012048
crossref_primary_10_1109_TPWRS_2020_3038840
crossref_primary_10_1002_tee_22673
crossref_primary_10_1007_s11750_022_00634_4
crossref_primary_10_1109_TSG_2024_3383396
crossref_primary_10_1109_TSG_2023_3236019
crossref_primary_10_1109_TPWRS_2017_2760699
crossref_primary_10_1287_ijoc_2020_0956
crossref_primary_10_1109_TPWRS_2020_2971684
crossref_primary_10_1109_TSG_2018_2878757
crossref_primary_10_1109_TCNS_2019_2921300
crossref_primary_10_1109_TSTE_2019_2929687
crossref_primary_10_5687_sss_2021_46
crossref_primary_10_1016_j_ijepes_2019_105533
crossref_primary_10_1109_TPWRS_2019_2940288
crossref_primary_10_1137_15M1020575
crossref_primary_10_1016_j_arcontrol_2019_05_005
crossref_primary_10_1109_TPWRS_2023_3257259
crossref_primary_10_1016_j_segan_2023_101168
crossref_primary_10_1109_TPWRS_2015_2476664
crossref_primary_10_1109_TPWRS_2021_3115521
crossref_primary_10_1109_TSTE_2018_2815651
crossref_primary_10_3233_JIFS_169788
crossref_primary_10_1049_iet_gtd_2018_5887
crossref_primary_10_1016_j_ijepes_2018_11_017
crossref_primary_10_1002_er_6379
crossref_primary_10_1109_JPROC_2020_2983388
crossref_primary_10_1016_j_epsr_2024_110704
crossref_primary_10_1016_j_epsr_2022_108060
crossref_primary_10_1049_iet_gtd_2019_0316
crossref_primary_10_1109_TPWRS_2021_3065465
crossref_primary_10_1109_TPWRS_2022_3200941
crossref_primary_10_1007_s13042_024_02325_x
crossref_primary_10_1016_j_orl_2021_01_012
crossref_primary_10_1109_TSG_2020_2966620
crossref_primary_10_1016_j_ijepes_2019_105522
crossref_primary_10_1109_TPWRS_2018_2881131
crossref_primary_10_3390_en14164763
crossref_primary_10_1109_TPWRS_2019_2960389
crossref_primary_10_1109_TPWRS_2019_2895122
crossref_primary_10_1109_TPWRS_2019_2961231
crossref_primary_10_1109_TSG_2017_2773603
crossref_primary_10_1109_TEC_2018_2821922
crossref_primary_10_1287_ijoc_2023_0299
crossref_primary_10_1016_j_ijepes_2019_04_028
crossref_primary_10_1016_j_jclepro_2023_138290
crossref_primary_10_1016_j_jprocont_2017_11_003
crossref_primary_10_1002_eng2_12995
crossref_primary_10_1109_TPWRS_2022_3230320
crossref_primary_10_1007_s10589_018_0015_1
crossref_primary_10_1016_j_epsr_2022_108725
crossref_primary_10_1109_TPWRS_2018_2890767
crossref_primary_10_1016_j_solener_2020_07_066
crossref_primary_10_1109_TPWRS_2017_2656080
crossref_primary_10_1109_TSG_2017_2664816
crossref_primary_10_1109_TPWRS_2018_2865184
crossref_primary_10_1109_TPWRS_2022_3223884
crossref_primary_10_1049_esi2_12016
crossref_primary_10_1109_ACCESS_2020_3013151
crossref_primary_10_1016_j_rser_2023_113713
crossref_primary_10_1007_s40518_019_00132_5
crossref_primary_10_1016_j_cie_2024_110230
crossref_primary_10_1109_TPWRS_2018_2878380
crossref_primary_10_1109_TPWRS_2018_2878385
crossref_primary_10_1016_j_enconman_2022_115863
crossref_primary_10_1007_s12667_020_00378_9
crossref_primary_10_1109_TPWRS_2022_3221348
crossref_primary_10_1109_TPWRS_2017_2695002
crossref_primary_10_1109_TSG_2021_3051088
crossref_primary_10_1109_JPROC_2020_3005505
crossref_primary_10_1109_TSG_2018_2792322
crossref_primary_10_1049_iet_gtd_2018_6549
crossref_primary_10_1016_j_ijepes_2018_04_028
crossref_primary_10_1016_j_solener_2020_06_083
crossref_primary_10_1109_TPWRS_2016_2572104
crossref_primary_10_1109_LCSYS_2017_2711140
crossref_primary_10_1109_TPWRS_2018_2807623
crossref_primary_10_1109_TPWRS_2022_3211397
crossref_primary_10_1007_s40998_020_00316_6
crossref_primary_10_1016_j_apenergy_2022_119291
crossref_primary_10_1016_j_epsr_2020_106804
crossref_primary_10_1109_TPWRS_2017_2741506
crossref_primary_10_1016_j_apenergy_2020_116064
crossref_primary_10_1080_15567036_2021_1972059
crossref_primary_10_3390_en14185618
crossref_primary_10_1016_j_ejor_2022_10_024
crossref_primary_10_1109_TPWRS_2017_2743348
crossref_primary_10_1016_j_jclepro_2023_136087
crossref_primary_10_1109_TPWRS_2024_3415652
crossref_primary_10_1109_TSTE_2017_2673120
crossref_primary_10_1109_TPWRS_2019_2954971
crossref_primary_10_3390_en11113142
crossref_primary_10_1016_j_energy_2021_120182
crossref_primary_10_1109_TPWRS_2023_3256131
crossref_primary_10_1007_s40565_019_0519_4
crossref_primary_10_1109_TCNS_2024_3432188
crossref_primary_10_1007_s11750_022_00639_z
crossref_primary_10_1109_TPWRS_2022_3217941
crossref_primary_10_1016_j_epsr_2020_106792
crossref_primary_10_1049_iet_gtd_2018_5834
crossref_primary_10_1109_TPWRS_2017_2655078
crossref_primary_10_1007_s11081_022_09761_0
crossref_primary_10_1016_j_ifacol_2022_09_010
crossref_primary_10_1007_s12667_022_00561_0
crossref_primary_10_1109_TPWRS_2018_2844356
crossref_primary_10_1109_TSTE_2017_2748463
crossref_primary_10_1109_LCSYS_2018_2836870
crossref_primary_10_1109_TPWRS_2018_2880406
crossref_primary_10_1109_TPWRS_2017_2672750
crossref_primary_10_1109_TPWRS_2020_2978934
crossref_primary_10_1109_TPWRS_2020_3046710
crossref_primary_10_1109_JPETS_2017_2749256
crossref_primary_10_1109_TCNS_2023_3330232
crossref_primary_10_1109_TPWRS_2021_3096144
crossref_primary_10_3390_computers9020032
crossref_primary_10_1109_TSTE_2021_3105525
crossref_primary_10_1109_TCNS_2019_2919210
crossref_primary_10_1109_TSG_2020_3038651
crossref_primary_10_1109_TCNS_2019_2930872
crossref_primary_10_1109_TCST_2023_3298230
crossref_primary_10_1109_ACCESS_2020_2995620
Cites_doi 10.1109/TPWRS.2014.2322909
10.1109/PESMG.2013.6672534
10.1109/TPWRS.2011.2121095
10.1109/TPWRS.2010.2045774
10.1109/59.192961
10.1109/PESMG.2013.6673013
10.1109/TPWRS.2015.2434848
10.1109/TSTE.2012.2212471
10.1007/s10287-015-0236-z
10.1287/opre.1030.0065
10.1137/050622328
10.1109/59.207324
10.1109/TPWRS.2014.2357714
10.1109/TPWRS.2005.846206
10.1109/59.317636
10.1109/TPWRS.2013.2275013
10.1109/PTC.2011.6019318
10.1109/TPWRS.2013.2251916
10.1109/TPWRS.2008.926719
10.1109/TPWRS.2012.2192141
10.1016/j.energy.2014.05.073
10.1109/TPWRS.2012.2185816
10.1137/130910312
10.1515/9781400831050
10.1109/TPWRS.2009.2016598
10.1287/opre.1090.0795
10.1287/ijoc.2014.0623
10.1109/TPWRS.2008.2012180
10.1109/TPWRS.2010.2100050
10.1109/TPWRS.2014.2353647
10.1109/TPWRS.2015.2449667
10.1109/TPWRS.2011.2164947
10.1080/02331930701421046
10.1109/TPWRS.2014.2365835
10.1109/TPWRS.2012.2205021
10.1109/TPWRS.2014.2341354
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
F28
OIOZB
OTOTI
DOI 10.1109/TPWRS.2015.2499753
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 3849
ExternalDocumentID 1329591
4152314591
10_1109_TPWRS_2015_2499753
7332992
Genre orig-research
GrantInformation_xml – fundername: DOE Computational Science Graduate Fellowship
  grantid: DE-FG02-97ER25308
– fundername: Clean Energy Institute Student Training & Exploration Grant
– fundername: Advanced Grid Modeling Program
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
F28
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c355t-4d961b114849128236d42799cc38753c25c1a521f7ccb31ef3a19ced75e870dd3
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri May 19 01:59:48 EDT 2023
Fri Jul 11 16:04:30 EDT 2025
Mon Jun 30 06:44:38 EDT 2025
Tue Jul 01 01:35:34 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 02:51:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-4d961b114849128236d42799cc38753c25c1a521f7ccb31ef3a19ced75e870dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
LA-UR-15-22280
USDOE
AC52-06NA25396
OpenAccessLink https://www.osti.gov/servlets/purl/1329591
PQID 1812546135
PQPubID 85441
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TPWRS_2015_2499753
osti_scitechconnect_1329591
proquest_journals_1812546135
crossref_primary_10_1109_TPWRS_2015_2499753
proquest_miscellaneous_1835597568
ieee_primary_7332992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Sept.
2016-9-00
20160901
2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
dupacova (ref24) 2000
ref11
ref10
ref16
(ref49) 2011
ref19
ref18
ben tal (ref36) 2009
ref51
ref50
ref46
ref45
ref47
ref44
ref8
ref7
ref5
lei (ref17) 2012; 27
(ref48) 0
(ref42) 2015
ref37
ref31
ref33
(ref3) 2012
ref2
lew (ref9) 2010
ref1
ref39
(ref34) 2014
ref38
(ref41) 2015
dvorkin (ref6) 2015
(ref43) 2015
ref23
ref26
lubin (ref30) 2015
ref25
ref20
ref22
ref21
(ref35) 2014
ref28
ref27
ref29
(ref40) 2015
prékopa (ref32) 1995; 324
(ref4) 2007
(ref52) 2015
References_xml – ident: ref2
  doi: 10.1109/TPWRS.2014.2322909
– ident: ref47
  doi: 10.1109/PESMG.2013.6672534
– ident: ref13
  doi: 10.1109/TPWRS.2011.2121095
– ident: ref22
  doi: 10.1109/TPWRS.2010.2045774
– volume: 324
  start-page: 301
  year: 1995
  ident: ref32
  publication-title: Convexity Theory of Probabilistic Constrained Problems
– year: 2010
  ident: ref9
  article-title: The western wind and solar integration study
  publication-title: Nat Renew Energy Lab
– ident: ref7
  doi: 10.1109/59.192961
– ident: ref15
  doi: 10.1109/PESMG.2013.6673013
– year: 2011
  ident: ref49
  publication-title: Balancing and Frequency Control
– year: 2015
  ident: ref43
– ident: ref26
  doi: 10.1109/TPWRS.2015.2434848
– year: 2014
  ident: ref35
  publication-title: Gurobi Optimizer Reference Manual
– year: 2000
  ident: ref24
  publication-title: Scenario Reduction in Stochastic Programming An Approach Using Probability Metrics Institut fr Mathematik
– ident: ref1
  doi: 10.1109/TSTE.2012.2212471
– ident: ref37
  doi: 10.1007/s10287-015-0236-z
– ident: ref27
  doi: 10.1287/opre.1030.0065
– ident: ref31
  doi: 10.1137/050622328
– ident: ref45
  doi: 10.1109/59.207324
– ident: ref29
  doi: 10.1109/TPWRS.2014.2357714
– ident: ref10
  doi: 10.1109/TPWRS.2005.846206
– ident: ref46
  doi: 10.1109/59.317636
– ident: ref18
  doi: 10.1109/TPWRS.2013.2275013
– year: 2015
  ident: ref40
  publication-title: Maps of the Bonneville Power Administration System
– ident: ref44
  doi: 10.1109/PTC.2011.6019318
– year: 2015
  ident: ref52
  publication-title: Hyak High-Performance Computer Cluster
– ident: ref25
  doi: 10.1109/TPWRS.2013.2251916
– ident: ref14
  doi: 10.1109/TPWRS.2008.926719
– ident: ref50
  doi: 10.1109/TPWRS.2012.2192141
– year: 2015
  ident: ref41
– ident: ref5
  doi: 10.1016/j.energy.2014.05.073
– ident: ref8
  doi: 10.1109/TPWRS.2012.2185816
– ident: ref21
  doi: 10.1137/130910312
– year: 0
  ident: ref48
  publication-title: RCC OPF Code and Input Data Repository
– year: 2009
  ident: ref36
  publication-title: Robust optimization
  doi: 10.1515/9781400831050
– ident: ref38
  doi: 10.1287/opre.1030.0065
– year: 2012
  ident: ref3
  publication-title: Federal Energy Regulatory Comission (FERC) Order No 764
– ident: ref12
  doi: 10.1109/TPWRS.2009.2016598
– year: 2015
  ident: ref42
  publication-title: Wind Generation & Total Load in the BPA Balancing Authority
– ident: ref39
  doi: 10.1287/opre.1090.0795
– year: 2015
  ident: ref30
  publication-title: JuMPChance jl JuMPChance 0 1 0
– ident: ref53
  doi: 10.1287/ijoc.2014.0623
– ident: ref11
  doi: 10.1109/TPWRS.2008.2012180
– ident: ref16
  doi: 10.1109/TPWRS.2010.2100050
– ident: ref51
  doi: 10.1109/TPWRS.2014.2353647
– year: 2015
  ident: ref6
  article-title: Uncertainty sets for wind power generation
  publication-title: IEEE Trans Power Syst
– ident: ref28
  doi: 10.1109/TPWRS.2015.2449667
– volume: 27
  start-page: 913
  year: 2012
  ident: ref17
  article-title: Comparison of scenario-based and interval optimization approaches to stochastic SCUC
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2164947
– ident: ref33
  doi: 10.1080/02331930701421046
– year: 2014
  ident: ref34
  publication-title: IBM ILOG CPLEX Optimizer
– ident: ref19
  doi: 10.1109/TPWRS.2014.2365835
– ident: ref20
  doi: 10.1109/TPWRS.2012.2205021
– year: 2007
  ident: ref4
  publication-title: Federal Energy Regulatory Comission (FERC) Order No 890
– ident: ref23
  doi: 10.1109/TPWRS.2014.2341354
SSID ssj0006679
Score 2.5986884
Snippet Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The...
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3840
SubjectTerms Chance constrained optimization
Computational modeling
Constraints
Data buses
distributionally robust optimization
Electric utilities
ENERGY PLANNING, POLICY, AND ECONOMY
Energy Sciences
Generators
Mathematical models
Minimum cost
optimal power flow
Optimization
optimization methods
Power flow
power system economics
POWER TRANSMISSION AND DISTRIBUTION
Programming
Robustness
Uncertainty
Wind forecasting
wind power integration
wind power uncertainty
wind power variability
Title A Robust Approach to Chance Constrained Optimal Power Flow With Renewable Generation
URI https://ieeexplore.ieee.org/document/7332992
https://www.proquest.com/docview/1812546135
https://www.proquest.com/docview/1835597568
https://www.osti.gov/servlets/purl/1329591
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3AASkGElspI3CDbTfyIfVwhVhUSUC1btTfLGTsC0W4qmqgSv54ZJxvxEuKUSHES2-MZz5fMfMPYS9wR5sJXPi9MrXNcITo30srcgjSl9aLwMbF9ftAnZ_LdhbrYYa-nXJgYYwo-izM6Tf_yQws9fSo7roRA64kG9w4CtyFXa7K6Wg-8esao3Fg13ybIzO3x-vR89YmiuNQMwQZlkv6yCaWqKnhoUaf-sMhpm1k-YO-3HRyiS77O-q6ewfffuBv_dwQP2f3R3-SLYYHssZ24ecTu_cRCuM_WC75q6_6m44uRYJx3Lae0A4icCnqmMhIx8I9oXq7wYadUWY0vL9tbfv6l-8xXaC9vKQWLDyTWJOvH7Gz5dv3mJB-LLeSALkeXy2B1URM6khb3rFLoIMvKWgBBkAZKBYVHyTYVQC2K2AhfWIihUhFVPgTxhO1u2k18yngVEbRAGSV4K6vY-AAGdBO0NqVsIGSs2M6-g5GJnEZy6RIimVuXJOZIYm6UWMZeTfdcDzwc_2y9T3M_tRynPWMHJGSHzgUx5AKFEkHnEJBbZYuMHW5l70ZFvnHkACmJPo_K2IvpMqog_Vfxm9j21EYQLlPaPPv7ew_YXeydHkLTDtlu962Pz9GX6eqjtIh_APCS7is
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcyqMgQgsYiRtku4kfiY8rxGqBtlTLVu3NSsaOQLQbRBNV4tczk2QjXkKcEilOYns8L3vmG4AXpBGmssiKOMlLE9MKMXGurIotqjy1hUyK0KF9HpvFqXp3rs-34NWYCxNC6ILPwoRvu7N8X2PLW2UHmZQkPUng3iC9r5M-W2uUu8b0yHp5ruPc6ukmRWZqD1YnZ8uPHMelJ-RucC7pL2qoq6tCl5q46g-Z3Cma-R042nSxjy_5MmmbcoLff0Nv_N8x3IWdweIUs36J3IOtsL4Pt3_CIdyF1Uws67K9asRsgBgXTS048QCD4JKeXSGJ4MUHEjCX9LETrq0m5hf1tTj73HwSS5KY15yEJXoYa6b2Azidv1m9XsRDuYUYyehoYuWtSUr2j5QlrZVK41WaWYso2anBVGNSEG2rDLGUSahkkVgMPtOBmN57-RC21_U6PAKRBXJbMA0KC6uyUBUeczSVNyZPVYU-gmQz-w4HLHIeyYXrfJKpdR3FHFPMDRSL4OX4ztceieOfrXd57seWw7RHsMdEdmReMEYucjARNo5ccqttEsH-hvZuYOUrxyaQVmT16Aiej4-JCflkpViHuuU2kj0zbfLHf__vM7i5WB0dusO3x-_34Bb11PSBavuw3XxrwxOybJryabegfwCBzvF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Approach+to+Chance+Constrained+Optimal+Power+Flow+With+Renewable+Generation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Lubin%2C+Miles&rft.au=Dvorkin%2C+Yury&rft.au=Backhaus%2C+Scott&rft.date=2016-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=31&rft.issue=5&rft.spage=3840&rft_id=info:doi/10.1109%2FTPWRS.2015.2499753&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4152314591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon