Bug Triaging Based on Tossing Sequence Modeling

Bug triaging, which routes the bug reports to potential fixers, is an integral step in software development and maintenance. To make bug triaging more efficient, many researchers propose to adopt machine learning and information retrieval techniques to identify some suitable fixers for a given bug r...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 34; no. 5; pp. 942 - 956
Main Authors Xi, Sheng-Qu, Yao, Yuan, Xiao, Xu-Sheng, Xu, Feng, Lv, Jian
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-019-1953-5

Cover

Loading…
Abstract Bug triaging, which routes the bug reports to potential fixers, is an integral step in software development and maintenance. To make bug triaging more efficient, many researchers propose to adopt machine learning and information retrieval techniques to identify some suitable fixers for a given bug report. However, none of the existing proposals simultaneously take into account the following three aspects that matter for the efficiency of bug triaging: 1) the textual content in the bug reports, 2) the metadata in the bug reports, and 3) the tossing sequence of the bug reports. To simultaneously make use of the above three aspects, we propose i T riage which first adopts a sequence-to-sequence model to jointly learn the features of textual content and tossing sequence, and then uses a classification model to integrate the features from textual content, metadata, and tossing sequence. Evaluation results on three different open-source projects show that the proposed approach has significantly improved the accuracy of bug triaging compared with the state-of-the-art approaches.
AbstractList Bug triaging, which routes the bug reports to potential fixers, is an integral step in software development and maintenance. To make bug triaging more efficient, many researchers propose to adopt machine learning and information retrieval techniques to identify some suitable fixers for a given bug report. However, none of the existing proposals simultaneously take into account the following three aspects that matter for the efficiency of bug triaging: 1) the textual content in the bug reports, 2) the metadata in the bug reports, and 3) the tossing sequence of the bug reports. To simultaneously make use of the above three aspects, we propose iTriage which first adopts a sequence-to-sequence model to jointly learn the features of textual content and tossing sequence, and then uses a classification model to integrate the features from textual content, metadata, and tossing sequence. Evaluation results on three different open-source projects show that the proposed approach has significantly improved the accuracy of bug triaging compared with the state-of-the-art approaches.
Bug triaging, which routes the bug reports to potential fixers, is an integral step in software development and maintenance. To make bug triaging more efficient, many researchers propose to adopt machine learning and information retrieval techniques to identify some suitable fixers for a given bug report. However, none of the existing proposals simultaneously take into account the following three aspects that matter for the efficiency of bug triaging: 1) the textual content in the bug reports, 2) the metadata in the bug reports, and 3) the tossing sequence of the bug reports. To simultaneously make use of the above three aspects, we propose iTriage which first adopts a sequence-to-sequence model to jointly learn the features of textual content and tossing sequence, and then uses a classification model to integrate the features from textual content, metadata, and tossing sequence. Evaluation results on three different open-source projects show that the proposed approach has significantly improved the accuracy of bug triaging compared with the state-of-the-art approaches. Keywords bug triaging, tossing sequence, software repository mining
Bug triaging, which routes the bug reports to potential fixers, is an integral step in software development and maintenance. To make bug triaging more efficient, many researchers propose to adopt machine learning and information retrieval techniques to identify some suitable fixers for a given bug report. However, none of the existing proposals simultaneously take into account the following three aspects that matter for the efficiency of bug triaging: 1) the textual content in the bug reports, 2) the metadata in the bug reports, and 3) the tossing sequence of the bug reports. To simultaneously make use of the above three aspects, we propose i T riage which first adopts a sequence-to-sequence model to jointly learn the features of textual content and tossing sequence, and then uses a classification model to integrate the features from textual content, metadata, and tossing sequence. Evaluation results on three different open-source projects show that the proposed approach has significantly improved the accuracy of bug triaging compared with the state-of-the-art approaches.
Audience Academic
Author Xi, Sheng-Qu
Xiao, Xu-Sheng
Xu, Feng
Yao, Yuan
Lv, Jian
Author_xml – sequence: 1
  givenname: Sheng-Qu
  surname: Xi
  fullname: Xi, Sheng-Qu
  organization: State Key Laboratory for Novel Software Technology, Nanjing University
– sequence: 2
  givenname: Yuan
  surname: Yao
  fullname: Yao, Yuan
  email: y.yao@nju.edu.cn
  organization: State Key Laboratory for Novel Software Technology, Nanjing University
– sequence: 3
  givenname: Xu-Sheng
  surname: Xiao
  fullname: Xiao, Xu-Sheng
  organization: Department of Electrical Engineering and Computer Science, Case Western Reserve University
– sequence: 4
  givenname: Feng
  surname: Xu
  fullname: Xu, Feng
  organization: State Key Laboratory for Novel Software Technology, Nanjing University
– sequence: 5
  givenname: Jian
  surname: Lv
  fullname: Lv, Jian
  organization: State Key Laboratory for Novel Software Technology, Nanjing University
BookMark eNp9kF1LwzAUhoNMcJv-AO8KXnc7aZqmudyGXzDxwnkdsnyUjC6dSXfhvzelgiAogSQcznPe874zNPGdNwjdYlhgALaMGBMOOWCeY05JTi_QFNcV5CUr-ST9ASDn6bpCsxgPAIRBWU7Rcn1usl1wsnG-ydYyGp11Ptt1MQ6FN_NxNl6Z7KXTpk2Va3RpZRvNzfc7R-8P97vNU759fXzerLa5IpT2OeF7pbHag2YVI6wikkNNjNFFZS0UVjPQqqC0UppKzhjR-6pkVpbWVrioKZmju3HuKXRphdiLQ3cOPkmKgg_GalLi1LUYuxrZGuG87fogVTraHJ1KCVmX6iuGeY05qSABeARUSA6DseIU3FGGT4FBDEGKMUiRghRDkGJYhf1ilOtl7zqfxFz7L1mMZEwqvjHhx8Tf0BePIIbh
CitedBy_id crossref_primary_10_1007_s42044_023_00153_w
crossref_primary_10_1109_ACCESS_2023_3329732
crossref_primary_10_3390_computers12070128
crossref_primary_10_3390_app14114723
crossref_primary_10_1016_j_knosys_2022_108308
crossref_primary_10_1109_TSE_2021_3070269
crossref_primary_10_1007_s10115_022_01735_z
crossref_primary_10_1109_ACCESS_2022_3153075
crossref_primary_10_1016_j_jss_2021_111133
crossref_primary_10_1007_s13198_023_01902_7
crossref_primary_10_1016_j_jksuci_2022_01_020
crossref_primary_10_3390_app13158788
crossref_primary_10_1007_s10664_020_09898_5
crossref_primary_10_3390_app12189358
crossref_primary_10_48084_etasr_8829
crossref_primary_10_1016_j_jjimei_2022_100153
crossref_primary_10_1016_j_scico_2023_102945
crossref_primary_10_1016_j_infsof_2024_107642
crossref_primary_10_1016_j_infsof_2021_106540
Cites_doi 10.4304/jsw.8.9.2185-2190
10.1016/j.infsof.2015.10.004
10.1049/iet-sen.2017.0159
10.1109/ISSRE.2014.17
10.1145/1368088.1368151
10.1109/ESEM.2013.24
10.1109/APSEC.2017.39
10.1109/ICSM.2008.4658082
10.1145/3275219.3275228
10.1109/CSMR.2013.42
10.1109/MSP.2012.2205597
10.1145/1718918.1718972
10.1145/1134285.1134336
10.1609/aaai.v25i1.7839
10.1109/COMPSAC.2011.80
10.1145/1595696.1595715
10.1145/1370750.1370786
10.1109/ICSE.2013.6606653
10.1109/APSEC.2014.43
10.1145/2025113.2025163
10.1109/CSMR.2012.48
10.1109/MSR.2013.6623999
10.18653/v1/N16-1174
10.1007/s11219-011-9164-5
10.1109/TSE.2016.2576454
10.1109/CSMR.2010.52
10.1109/TSE.2018.2864217
10.3115/v1/D14-1162
10.1145/2351676.2351687
10.1145/1961189.1961199
10.1109/ICSE.2007.32
10.1109/ESEM.2009.5315994
10.1109/ICSM.2010.5609736
10.1145/3106237.3117776
10.1109/COMPSAC.2014.16
10.1145/1321631.1321639
ContentType Journal Article
Copyright Springer Science+Business Media, LLC & Science Press, China 2019
COPYRIGHT 2019 Springer
Springer Science+Business Media, LLC & Science Press, China 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC & Science Press, China 2019
– notice: COPYRIGHT 2019 Springer
– notice: Springer Science+Business Media, LLC & Science Press, China 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11390-019-1953-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 956
ExternalDocumentID A719819360
10_1007_s11390_019_1953_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
TGMPQ
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c355t-39bcd1cb0d7673763a9083eed26ff02fd70dc2556cd5a9773db647fa4ff612853
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Fri Jul 25 09:56:21 EDT 2025
Tue Jun 10 20:52:12 EDT 2025
Thu Apr 24 23:02:08 EDT 2025
Tue Jul 01 01:48:56 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords software repository minings
bug triaging
tossing sequence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-39bcd1cb0d7673763a9083eed26ff02fd70dc2556cd5a9773db647fa4ff612853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918608341
PQPubID 326258
PageCount 15
ParticipantIDs proquest_journals_2918608341
gale_infotracacademiconefile_A719819360
crossref_primary_10_1007_s11390_019_1953_5
crossref_citationtrail_10_1007_s11390_019_1953_5
springer_journals_10_1007_s11390_019_1953_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190900
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 9
  year: 2019
  text: 20190900
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Zhang X F, Yao Y, Wang Y J, Xu F, Lu J. Exploring metadata in bug reports for bug localization. In Proc. the 24th Asia-Pacific Software Engineering Conference, December 2017, pp.328-337.
HintonGDengLYuDDeep neural networks for acoustic modeling in speech recognition: The shared views of four research groupsIEEE Signal Processing Magazine2012296829710.1109/MSP.2012.2205597
Hiew L. Assisted detection of duplicate bug reports [Ph.D. Thesis]. University of British Columbia, 2006.
Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In Proc. the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, August 2009, pp.111-120.
Park J, Lee M W, Kim J, Hwang S, Kim S. CosTriage: A cost-aware triage algorithm for bug reporting systems. In Proc. the 25th AAAI Conference on Artificial Intelligence, August 2011, Article No. 22.
Bertram D, Voida A, Greenberg S, Walker R. Communication, collaboration, and bugs: The social nature of issue tracking in small, collocated teams. In Proc. the 2010 ACM Conference on Computer Supported Cooperative Work, February 2010, pp.291-300.
XiaXLoDDingYAl-KofahiJMNguyenTNWangXImproving automated bug triaging with specialized topic modelIEEE Transactions on Software Engineering201743327229710.1109/TSE.2016.2576454
Johnson R, Zhang T. Supervised and semi-supervised text categorization using LSTM for region embeddings. arXiv:1602.02373, 2016. https://arxiv.org/pdf/1602.02373.pdf, June 2019.
Lin Z P, Shu F D, Ye Y, Hu C Y, Wang Q. An empirical study on bug assignment automation using Chinese bug data. In Proc. the 3rd International Symposium on Empirical Software Engineering & Measurement, October 2009, pp.451-455.
Xi S Q, Yao Y, Xiao X S, Xu F, Lu J. An effective approach for routing the bug reports to the right fixers. In Proc. the 10th Asia-Pacific Symposium on Internetware, September 2018, Article No. 11.
WuHRLiuHYMaYTEmpirical study on developer factors affecting tossing path length of bug reportsIET Software201812325827010.1049/iet-sen.2017.0159
Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In Proc. the 30th International Conference on Machine Learning, June 2013, pp.1139-1147.
CavalcantiYCAlmeidaESCunhaCEAThe bug report duplication problem: An exploratory studySoftware Quality Journal2013211396610.1007/s11219-011-9164-5
XiSQYaoYXuFLuJBug triaging approach based on recurrent neural networksJournal of Software20182982322233507028896(in Chinese)
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014. https://arxiv.org/pdf/1409.0473.pdf, June 2019.
AleneziMMagelKBanitaanSEfficient bug triaging using text miningJournal of Software2013892185219010.4304/jsw.8.9.2185-2190
Chang C C, Lin C J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article No. 27.
Yang Z C, Yang D Y, Dyer C, He X D, Smola A, Hovy E. Hierarchical attention networks for document classification. In Proc. the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, June 2016, pp.1480-1489.
Hoffman M, Bach F R, Blei D M. Online learning for latent Dirichlet allocation. In Proc. the 24th Annual Conference on Neural Information Processing Systems, December 2010, pp.856-864.
Zanetti M S, Scholtes I, Tessone C J, Schweitzer F. Categorizing bugs with social networks: A case study on four open source software communities. In Proc. the 35th International Conference on Software Engineering, May 2013, pp.1032-1041.
Cho K, van Merrienboer B, G¨ul¸cehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014. https://arxiv.org/pdf/1406.1078.pdf, June 2019.
Runeson P, Alexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing. In Proc. the 29th International Conference on Software Engineering, May 2007, pp.499-510.
Cubranic D, Murphy G C. Automatic bug triage using text categorization. In Proc. the 16th International Conference on Software Engineering & Knowledge Engineering, June 2004, pp.92-97.
Fan Y R, Xia X, Lo D, Hassan A E. Chaff from the wheat: Characterizing and determining valid bug reports. IEEE Transactions on Software Engineering. doi:https://doi.org/10.1109/TSE.2018.2864217.
Tian Y, Sun C, Lo D. Improved duplicate bug report identification. In Proc. the 16th European Conference on Software Maintenance and Reengineering, March 2012, pp.385-390.
Naguib H, Narayan N, Br¨ugge B, Helal D. Bug report assignee recommendation using activity profiles. In Proc. the 10th Working Conference on Mining Software Repositories, May 2013, pp.22-30.
ZouWQ, Hu Y, Xuan J F, Jiang H. Towards training set reduction for bug triage. In Proc. the 35th Annual Computer Software and Applications Conference, July 2011, pp.576-581.
Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012. https://arxiv.org/pdf/1207.0580.pdf, June 2019.
Bhattacharya P, Neamtiu I. Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging. In Proc. the 2010 IEEE International Conference on Software Maintenance, September 2010, Article No. 41.
Mani S, Sankaran A, Aralikatte R. DeepTriage: Exploring the effectiveness of deep learning for bug triaging. arXiv:1801.01275, 2018. https://arxiv.org/pdf/1801.01275.pdf, June 2019.
Hu H, Zhang H Y, Xuan J F, Sun W G. Effective bug triage based on historical bug-fix information. In Proc. the 25th International Symposium on Software Reliability Engineering, November 2014, pp.122-132.
Herraiz I, Germán D M, González-Barahona J M, Robles G. Towards a simplification of the bug report form in Eclipse. In Proc. the 2008 International Working Conference on Mining Software Repositories, May 2008, pp.145-148.
ZhangWWangSWangQKSAP: An approach to bug report assignment using KNN search and heterogeneous proximityInformation and Software Technology201670688410.1016/j.infsof.2015.10.004
Anvik J, Hiew L, Murphy G C. Who should fix this bug? In Proc. the 28th International Conference on Software Engineering, May 2006, pp.361-370.
Tamrawi A, Nguyen T T, Al-Kofahi J M, Nguyen T N. Fuzzy set and cache-based approach for bug triaging. In Proc. the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, September 2011, pp.365-375.
Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In Proc. the 2014 Conference on Empirical Methods in Natural Language Processing, October 2014, pp.1532-1543.
Hooimeijer P, Weimer W. Modeling bug report quality. In Proc. the 22nd IEEE/ACM International Conference on Automated Software Engineering, November 2007, pp.34-43.
Demeyer S, Lamkanfi A. Predicting reassignments of bug reports —An exploratory investigation. In Proc. the 17th European Conference on Software Maintenance and Reengineering, March 2013, pp.327-330.
Zhang T, Yang G, Lee B, Lua E K. A novel developer ranking algorithm for automatic bug triage using topic model and developer relations. In Proc. the 21st Asia-Pacific Software Engineering Conference, December 2014, pp.223-230.
Nguyen A T, Nguyen T T, Nguyen T N, Lo D, Sun C. Duplicate bug report detection with a combination of information retrieval and topic modeling. In Proc. the 27th IEEE/ACM International Conference on Automated Software Engineering, September 2012, pp.70-79.
Wu L, Xie B Y, Kaiser G E, Passonneau R J. BUGMINER: Software reliability analysis via data mining of bug reports. In Proc the 23rd International Conference on Software Engineering & Knowledge Engineering, July 2011, pp.95-100.
Lee S R, Heo M J, Lee C G, Kim M, Jeong G. Applying deep learning based automatic bug triager to industrial projects. In Proc. the 11th Joint Meeting on Foundations of Software Engineering, September 2017, pp.926-931.
Bettenburg N, Premraj R, Zimmermann T, Kim S. Duplicate bug reports considered harmful ... really? In Proc. the 24th International Conference on Software Maintenance, September 2008, pp.337-345.
Wang S, Zhang W, Yang Y, Wang Q. DevNet: Exploring developer collaboration in heterogeneous networks of bug repositories. In Proc. the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, October 2013, pp.193-202.
Cavalcanti Y C, de Almeida E S, da Cunha C E A, Lucrédio D, Meira S R. An initial study on the bug report duplication problem. In Proc. the 14th European Conference on Software Maintenance & Reengineering, March 2010, pp.264-267.
Yang G, Zhang T, Lee B. Towards semi-automatic bug triage and severity prediction based on topic model and multi-feature of bug reports. In Proc. the 38th Annual Computer Software and Applications Conference, July 2014, pp.97-106.
Wang X Y, Zhang L, Xie T, Anvik J, Sun J. An approach to detecting duplicate bug reports using natural language and execution information. In Proc. the 30th International Conference on Software Engineering, May 2008, pp.461-470.
X Xia (1953_CR6) 2017; 43
1953_CR22
1953_CR44
1953_CR23
1953_CR45
1953_CR24
1953_CR46
1953_CR25
1953_CR26
1953_CR28
1953_CR29
HR Wu (1953_CR33) 2018; 12
1953_CR40
M Alenezi (1953_CR27) 2013; 8
1953_CR41
1953_CR20
1953_CR42
1953_CR21
1953_CR43
SQ Xi (1953_CR17) 2018; 29
G Hinton (1953_CR13) 2012; 29
1953_CR11
1953_CR1
1953_CR12
1953_CR34
1953_CR2
1953_CR35
1953_CR3
1953_CR14
1953_CR36
1953_CR4
1953_CR15
1953_CR37
1953_CR5
1953_CR16
1953_CR38
1953_CR39
1953_CR7
1953_CR18
1953_CR30
1953_CR10
1953_CR32
YC Cavalcanti (1953_CR47) 2013; 21
W Zhang (1953_CR31) 2016; 70
1953_CR8
1953_CR19
1953_CR9
References_xml – reference: Bhattacharya P, Neamtiu I. Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging. In Proc. the 2010 IEEE International Conference on Software Maintenance, September 2010, Article No. 41.
– reference: Lee S R, Heo M J, Lee C G, Kim M, Jeong G. Applying deep learning based automatic bug triager to industrial projects. In Proc. the 11th Joint Meeting on Foundations of Software Engineering, September 2017, pp.926-931.
– reference: Mani S, Sankaran A, Aralikatte R. DeepTriage: Exploring the effectiveness of deep learning for bug triaging. arXiv:1801.01275, 2018. https://arxiv.org/pdf/1801.01275.pdf, June 2019.
– reference: Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014. https://arxiv.org/pdf/1409.0473.pdf, June 2019.
– reference: HintonGDengLYuDDeep neural networks for acoustic modeling in speech recognition: The shared views of four research groupsIEEE Signal Processing Magazine2012296829710.1109/MSP.2012.2205597
– reference: Cavalcanti Y C, de Almeida E S, da Cunha C E A, Lucrédio D, Meira S R. An initial study on the bug report duplication problem. In Proc. the 14th European Conference on Software Maintenance & Reengineering, March 2010, pp.264-267.
– reference: Tian Y, Sun C, Lo D. Improved duplicate bug report identification. In Proc. the 16th European Conference on Software Maintenance and Reengineering, March 2012, pp.385-390.
– reference: AleneziMMagelKBanitaanSEfficient bug triaging using text miningJournal of Software2013892185219010.4304/jsw.8.9.2185-2190
– reference: ZouWQ, Hu Y, Xuan J F, Jiang H. Towards training set reduction for bug triage. In Proc. the 35th Annual Computer Software and Applications Conference, July 2011, pp.576-581.
– reference: WuHRLiuHYMaYTEmpirical study on developer factors affecting tossing path length of bug reportsIET Software201812325827010.1049/iet-sen.2017.0159
– reference: Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In Proc. the 30th International Conference on Machine Learning, June 2013, pp.1139-1147.
– reference: Cho K, van Merrienboer B, G¨ul¸cehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014. https://arxiv.org/pdf/1406.1078.pdf, June 2019.
– reference: Bettenburg N, Premraj R, Zimmermann T, Kim S. Duplicate bug reports considered harmful ... really? In Proc. the 24th International Conference on Software Maintenance, September 2008, pp.337-345.
– reference: Tamrawi A, Nguyen T T, Al-Kofahi J M, Nguyen T N. Fuzzy set and cache-based approach for bug triaging. In Proc. the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, September 2011, pp.365-375.
– reference: Lin Z P, Shu F D, Ye Y, Hu C Y, Wang Q. An empirical study on bug assignment automation using Chinese bug data. In Proc. the 3rd International Symposium on Empirical Software Engineering & Measurement, October 2009, pp.451-455.
– reference: Hoffman M, Bach F R, Blei D M. Online learning for latent Dirichlet allocation. In Proc. the 24th Annual Conference on Neural Information Processing Systems, December 2010, pp.856-864.
– reference: XiaXLoDDingYAl-KofahiJMNguyenTNWangXImproving automated bug triaging with specialized topic modelIEEE Transactions on Software Engineering201743327229710.1109/TSE.2016.2576454
– reference: Cubranic D, Murphy G C. Automatic bug triage using text categorization. In Proc. the 16th International Conference on Software Engineering & Knowledge Engineering, June 2004, pp.92-97.
– reference: CavalcantiYCAlmeidaESCunhaCEAThe bug report duplication problem: An exploratory studySoftware Quality Journal2013211396610.1007/s11219-011-9164-5
– reference: Yang Z C, Yang D Y, Dyer C, He X D, Smola A, Hovy E. Hierarchical attention networks for document classification. In Proc. the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, June 2016, pp.1480-1489.
– reference: Park J, Lee M W, Kim J, Hwang S, Kim S. CosTriage: A cost-aware triage algorithm for bug reporting systems. In Proc. the 25th AAAI Conference on Artificial Intelligence, August 2011, Article No. 22.
– reference: Hiew L. Assisted detection of duplicate bug reports [Ph.D. Thesis]. University of British Columbia, 2006.
– reference: Wang X Y, Zhang L, Xie T, Anvik J, Sun J. An approach to detecting duplicate bug reports using natural language and execution information. In Proc. the 30th International Conference on Software Engineering, May 2008, pp.461-470.
– reference: Anvik J, Hiew L, Murphy G C. Who should fix this bug? In Proc. the 28th International Conference on Software Engineering, May 2006, pp.361-370.
– reference: Naguib H, Narayan N, Br¨ugge B, Helal D. Bug report assignee recommendation using activity profiles. In Proc. the 10th Working Conference on Mining Software Repositories, May 2013, pp.22-30.
– reference: Demeyer S, Lamkanfi A. Predicting reassignments of bug reports —An exploratory investigation. In Proc. the 17th European Conference on Software Maintenance and Reengineering, March 2013, pp.327-330.
– reference: Wu L, Xie B Y, Kaiser G E, Passonneau R J. BUGMINER: Software reliability analysis via data mining of bug reports. In Proc the 23rd International Conference on Software Engineering & Knowledge Engineering, July 2011, pp.95-100.
– reference: Zhang T, Yang G, Lee B, Lua E K. A novel developer ranking algorithm for automatic bug triage using topic model and developer relations. In Proc. the 21st Asia-Pacific Software Engineering Conference, December 2014, pp.223-230.
– reference: Zhang X F, Yao Y, Wang Y J, Xu F, Lu J. Exploring metadata in bug reports for bug localization. In Proc. the 24th Asia-Pacific Software Engineering Conference, December 2017, pp.328-337.
– reference: Runeson P, Alexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing. In Proc. the 29th International Conference on Software Engineering, May 2007, pp.499-510.
– reference: Hu H, Zhang H Y, Xuan J F, Sun W G. Effective bug triage based on historical bug-fix information. In Proc. the 25th International Symposium on Software Reliability Engineering, November 2014, pp.122-132.
– reference: Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In Proc. the 2014 Conference on Empirical Methods in Natural Language Processing, October 2014, pp.1532-1543.
– reference: Chang C C, Lin C J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article No. 27.
– reference: Zanetti M S, Scholtes I, Tessone C J, Schweitzer F. Categorizing bugs with social networks: A case study on four open source software communities. In Proc. the 35th International Conference on Software Engineering, May 2013, pp.1032-1041.
– reference: Fan Y R, Xia X, Lo D, Hassan A E. Chaff from the wheat: Characterizing and determining valid bug reports. IEEE Transactions on Software Engineering. doi:https://doi.org/10.1109/TSE.2018.2864217.
– reference: Bertram D, Voida A, Greenberg S, Walker R. Communication, collaboration, and bugs: The social nature of issue tracking in small, collocated teams. In Proc. the 2010 ACM Conference on Computer Supported Cooperative Work, February 2010, pp.291-300.
– reference: Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012. https://arxiv.org/pdf/1207.0580.pdf, June 2019.
– reference: Nguyen A T, Nguyen T T, Nguyen T N, Lo D, Sun C. Duplicate bug report detection with a combination of information retrieval and topic modeling. In Proc. the 27th IEEE/ACM International Conference on Automated Software Engineering, September 2012, pp.70-79.
– reference: Xi S Q, Yao Y, Xiao X S, Xu F, Lu J. An effective approach for routing the bug reports to the right fixers. In Proc. the 10th Asia-Pacific Symposium on Internetware, September 2018, Article No. 11.
– reference: Wang S, Zhang W, Yang Y, Wang Q. DevNet: Exploring developer collaboration in heterogeneous networks of bug repositories. In Proc. the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, October 2013, pp.193-202.
– reference: Hooimeijer P, Weimer W. Modeling bug report quality. In Proc. the 22nd IEEE/ACM International Conference on Automated Software Engineering, November 2007, pp.34-43.
– reference: XiSQYaoYXuFLuJBug triaging approach based on recurrent neural networksJournal of Software20182982322233507028896(in Chinese)
– reference: Johnson R, Zhang T. Supervised and semi-supervised text categorization using LSTM for region embeddings. arXiv:1602.02373, 2016. https://arxiv.org/pdf/1602.02373.pdf, June 2019.
– reference: Herraiz I, Germán D M, González-Barahona J M, Robles G. Towards a simplification of the bug report form in Eclipse. In Proc. the 2008 International Working Conference on Mining Software Repositories, May 2008, pp.145-148.
– reference: Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In Proc. the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, August 2009, pp.111-120.
– reference: Yang G, Zhang T, Lee B. Towards semi-automatic bug triage and severity prediction based on topic model and multi-feature of bug reports. In Proc. the 38th Annual Computer Software and Applications Conference, July 2014, pp.97-106.
– reference: ZhangWWangSWangQKSAP: An approach to bug report assignment using KNN search and heterogeneous proximityInformation and Software Technology201670688410.1016/j.infsof.2015.10.004
– volume: 8
  start-page: 2185
  issue: 9
  year: 2013
  ident: 1953_CR27
  publication-title: Journal of Software
  doi: 10.4304/jsw.8.9.2185-2190
– volume: 70
  start-page: 68
  year: 2016
  ident: 1953_CR31
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2015.10.004
– volume: 12
  start-page: 258
  issue: 3
  year: 2018
  ident: 1953_CR33
  publication-title: IET Software
  doi: 10.1049/iet-sen.2017.0159
– ident: 1953_CR9
– ident: 1953_CR30
  doi: 10.1109/ISSRE.2014.17
– ident: 1953_CR40
– ident: 1953_CR26
– ident: 1953_CR42
  doi: 10.1145/1368088.1368151
– ident: 1953_CR32
  doi: 10.1109/ESEM.2013.24
– ident: 1953_CR11
  doi: 10.1109/APSEC.2017.39
– ident: 1953_CR45
  doi: 10.1109/ICSM.2008.4658082
– ident: 1953_CR10
  doi: 10.1145/3275219.3275228
– ident: 1953_CR23
– ident: 1953_CR35
  doi: 10.1109/CSMR.2013.42
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 1953_CR13
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– ident: 1953_CR1
  doi: 10.1145/1718918.1718972
– ident: 1953_CR3
  doi: 10.1145/1134285.1134336
– ident: 1953_CR29
  doi: 10.1609/aaai.v25i1.7839
– ident: 1953_CR28
  doi: 10.1109/COMPSAC.2011.80
– ident: 1953_CR2
  doi: 10.1145/1595696.1595715
– ident: 1953_CR36
  doi: 10.1145/1370750.1370786
– ident: 1953_CR38
  doi: 10.1109/ICSE.2013.6606653
– ident: 1953_CR7
  doi: 10.1109/APSEC.2014.43
– ident: 1953_CR18
  doi: 10.1145/2025113.2025163
– ident: 1953_CR44
  doi: 10.1109/CSMR.2012.48
– ident: 1953_CR25
  doi: 10.1109/MSR.2013.6623999
– ident: 1953_CR15
  doi: 10.18653/v1/N16-1174
– volume: 21
  start-page: 39
  issue: 1
  year: 2013
  ident: 1953_CR47
  publication-title: Software Quality Journal
  doi: 10.1007/s11219-011-9164-5
– volume: 29
  start-page: 2322
  issue: 8
  year: 2018
  ident: 1953_CR17
  publication-title: Journal of Software
– volume: 43
  start-page: 272
  issue: 3
  year: 2017
  ident: 1953_CR6
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2016.2576454
– ident: 1953_CR37
– ident: 1953_CR46
  doi: 10.1109/CSMR.2010.52
– ident: 1953_CR39
  doi: 10.1109/TSE.2018.2864217
– ident: 1953_CR20
– ident: 1953_CR21
  doi: 10.3115/v1/D14-1162
– ident: 1953_CR22
– ident: 1953_CR43
  doi: 10.1145/2351676.2351687
– ident: 1953_CR19
  doi: 10.1145/1961189.1961199
– ident: 1953_CR41
  doi: 10.1109/ICSE.2007.32
– ident: 1953_CR24
  doi: 10.1109/ESEM.2009.5315994
– ident: 1953_CR4
  doi: 10.1109/ICSM.2010.5609736
– ident: 1953_CR16
– ident: 1953_CR8
  doi: 10.1145/3106237.3117776
– ident: 1953_CR14
– ident: 1953_CR5
  doi: 10.1109/COMPSAC.2014.16
– ident: 1953_CR12
– ident: 1953_CR34
  doi: 10.1145/1321631.1321639
SSID ssj0037044
Score 2.3674905
Snippet Bug triaging, which routes the bug reports to potential fixers, is an integral step in software development and maintenance. To make bug triaging more...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 942
SubjectTerms Analysis
Artificial Intelligence
Computer Science
Data Structures and Information Theory
Debugging
Information retrieval
Information Systems Applications (incl.Internet)
Machine learning
Metadata
Regular Paper
Software development
Software Engineering
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vvjitzid0gdBUIJtkybtk2wyEUER3cC3kI_WF-mmm_-_dzV1qOhr2yTll8vdcXe5H8CxMM6rIpdMGMuZ8KlleaoS5lxVSedRqgwF9G_v5PVY3DxlTyHgNgtlla1ObBS1nziKkZ-nRZJL9BdEcjF9ZcQaRdnVQKGxDCuogvOsAyuD4d39Q6uLuYobOlcKYjOix2zzms3lOXR-qCirYJRKYtk3y_RTP_9KlDb252oD1oLjGPU_d3oTlsp6C9ZbUoYonNFtOB-8P0cjFCtiH4oGaKR8NKmjES5JDx5D6XREJGh0FX0HxlfD0eU1C6wIzKFvMGe8sM4nzsZeEceM5KZAWNDUpbKq4rTyKvaOGos5nxn07ri3UqjKCASfMOK70KkndbkHkeCiLKwVxjgnKmUMz6yXyiTcZWWhki7ELSLahZbhxFzxohfNjglEjSBqAlFnXTj9GjL97Jfx38cnBLOms4TzOhOuBODfUVcq3VdJgR4Ll3EXeu1O6HDIZnohEl04a3dn8frPZff_n-wAVlOSiqaQrAed-dt7eYiex9weBfH6ACPn0nk
  priority: 102
  providerName: ProQuest
Title Bug Triaging Based on Tossing Sequence Modeling
URI https://link.springer.com/article/10.1007/s11390-019-1953-5
https://www.proquest.com/docview/2918608341
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XLz4FlfXpQdBUIJtkybtcVf2gaKI7oKeQh6tF6mi6_93ptu6-ARPhTZN0plJZpp5fACHwjivslQyYSxnwseWpbGKmHNFIZ1HqTJ0oH95JUcTcX6X3NV53K9NtHvjkqx26nmyGxorFESVMXL9sGQRlhP8dac4vkncbbZfrsIKwZXOrRkhYjauzJ-6-KSMvm7J33yjlcoZrMNqbSsG3RlzN2AhLzdhrcFhCOpluQWnvbeHYIySRIBDQQ_1kg-eymCMQ9KN2zpaOiDcM8o-34bJoD8-G7EaCIE5NAemjGfW-cjZ0CuClZHcZGg5oXaLZVGEceFV6B3VEnM-MWjQcW-lUIURSG_UPwnfgaXyqcx3IRBc5Jm1whjnRKGM4Yn1UpmIuyTPVNSCsKGIdnWVcAKreNTz-sZERI1E1EREnbTg-OOV51mJjL8aHxGZNS0f7NeZOgsAZ0eFqHRXRRkaKVyGLWg3nND1unrVcRalEr9d4ERPGu7MH_867N6_Wu_DSkxCUoWStWFp-vKWH6DtMbUdWEwHww4sd4f3F3289vpX1zedSgLfAdVl0bQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOJRLaUtRF2jxoVWlVhZJ7NjrA6pYCloKrBBdJG7Gj4QL2uWxqOqf6m9kJhuzKlW5cc3DjsafZyaexwfwUboQtekqLp0XXMbC826hcx5CXasQEVWODvSPBqp_Kn-clWdz8CfVwlBaZdKJjaKO40Bn5JuFybsK_QWZf7u65sQaRdHVRKExhcVB9fsX_rLdbu1_x_X9VBR7u8OdPm9ZBXhA2zrhwvgQ8-CzqImjRQlncFg0FYWq66yoo85ioMZcIZYOvSMRvZK6dhI_HpU5sUSgyl9AN8PgLlro7Q6OT5LuFzpr6GPp0JwTHWeKozbFeuhsURKY4RS64uVflvCxPfgnMNvYu71X8LJ1VNn2FFmvYa4avYGlRALBWp2wDJu9uws2RBgT2xHroVGMbDxiQ5ySLvxsU7UZka5R6ftbOH0Wea3A_Gg8qt4Bk0JWxnvpXAiy1s6J0kelXS5CWRmddyBLErGhbVFOTBmXdtZcmYRoUYiWhGjLDnx5eOVq2p_jqYc_k5gt7V0cN7i2BAG_jrpg2W2dG_SQhMo6sJ5Wwrab-tbOINiBr2l1Zrf_O-3q04NtwIv-8OjQHu4PDtZgsSCENEls6zA_ubmr3qPXM_EfWqgxOH9udN8DNLMPvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRaq4AG2pWF7NoVKlIrNJ7Nib4_JYoLSoUheJnlw_Eg6gLILshV_PzK7dVSmtVPWaOI49M_aMPOPvA3gvjPOq7EsmjOVM-Nyyfq4y5lxdS-fRqgwd6H85lycX4tNlcRl4Tu9jtXtMSc7uNBBKU9P2bn3dm198w8CFCqpKRmkgVizAoiBs9g4sDo6_nx3FzZirdMrnSqfYjPgxY2LzuU5-cU1PN-jfMqVTBzRcgR9x6LO6k-u9SWv33MMTVMf_mNsqLIfgNBnMrOkVvKia17ASiR-SsA-8gd7-5CoZoekSw1Gyj47QJ-MmGeGs6MG3UJ6dENEaXXdfg4vh0ejghAXmBeYw_mgZL63zmbOpV8RjI7kpMVRDd5rLuk7z2qvUOwIvc74wGEFyb6VQtRGoYHR4BX8LnWbcVOuQCC6q0lphjHOiVsbwwnqpTMZdUZUq60Iaha5dgCUndowbPQdUJoFoFIgmgeiiCx9_fnI7w-T4W-MPpElN6xX7dSZcO8DREfKVHqisxKiIy7QLW1HZOizke52XWV_i3AUOdDfqbv76j7_d-KfW7-Dl18Oh_nx6frYJSznpflrGtgWd9m5SbWPc09qdYNuPJkX2PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bug+Triaging+Based+on+Tossing+Sequence+Modeling&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Xi%2C+Sheng-Qu&rft.au=Yao%2C+Yuan&rft.au=Xiao%2C+Xu-Sheng&rft.au=Xu%2C+Feng&rft.date=2019-09-01&rft.pub=Springer&rft.issn=1000-9000&rft.volume=34&rft.issue=5&rft.spage=942&rft_id=info:doi/10.1007%2Fs11390-019-1953-5&rft.externalDocID=A719819360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-9000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-9000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-9000&client=summon