Pseudo expected improvement criterion for parallel EGO algorithm
The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cyc...
Saved in:
Published in | Journal of global optimization Vol. 68; no. 3; pp. 641 - 662 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2017
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cycle, which is time-wasting when parallel computing can be used. In this work, a new criterion called pseudo expected improvement (PEI) is proposed for developing parallel EGO algorithms. In each cycle, the first updating point is selected by the initial EI function. After that, the PEI function is built to approximate the real updated EI function by multiplying the initial EI function by an influence function of the updating point. The influence function is designed to simulate the impact that the updating point will have on the EI function, and is only corresponding to the position of the updating point (not the function value of the updating point). Therefore, the next updating point can be identified by maximizing the PEI function without evaluating the first updating point. As the sequential process goes on, a desired number of updating points can be selected by the PEI criterion within one optimization cycle. The efficiency of the proposed PEI criterion is validated by six benchmarks with dimension from 2 to 6. The results show that the proposed PEI algorithm performs significantly better than the standard EGO algorithm, and gains significant improvements over five of the six test problems compared against a state-of-the-art parallel EGO algorithm. Furthermore, additional experiments show that it affects the convergence of the proposed algorithm significantly when the global maximum of the PEI function is not found. It is recommended to use as much evaluations as one can afford to find the global maximum of the PEI function. |
---|---|
AbstractList | The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cycle, which is time-wasting when parallel computing can be used. In this work, a new criterion called pseudo expected improvement (PEI) is proposed for developing parallel EGO algorithms. In each cycle, the first updating point is selected by the initial EI function. After that, the PEI function is built to approximate the real updated EI function by multiplying the initial EI function by an influence function of the updating point. The influence function is designed to simulate the impact that the updating point will have on the EI function, and is only corresponding to the position of the updating point (not the function value of the updating point). Therefore, the next updating point can be identified by maximizing the PEI function without evaluating the first updating point. As the sequential process goes on, a desired number of updating points can be selected by the PEI criterion within one optimization cycle. The efficiency of the proposed PEI criterion is validated by six benchmarks with dimension from 2 to 6. The results show that the proposed PEI algorithm performs significantly better than the standard EGO algorithm, and gains significant improvements over five of the six test problems compared against a state-of-the-art parallel EGO algorithm. Furthermore, additional experiments show that it affects the convergence of the proposed algorithm significantly when the global maximum of the PEI function is not found. It is recommended to use as much evaluations as one can afford to find the global maximum of the PEI function. |
Audience | Academic |
Author | Cheng, Yuansheng Zhan, Dawei Qian, Jiachang |
Author_xml | – sequence: 1 givenname: Dawei surname: Zhan fullname: Zhan, Dawei organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: Jiachang surname: Qian fullname: Qian, Jiachang organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Yuansheng surname: Cheng fullname: Cheng, Yuansheng email: yscheng@hust.edu.cn organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology |
BookMark | eNp9kM9LwzAUx4NMcJv-Ad4KnjtffjXpzTHmFAbzoOeQtunMaJuadKL_vRn1IIKSw4Pk-3kv7zNDk851BqFrDAsMIG4DBpnLFHCWApMsFWdoirmgKclxNkFTyAlPOQC-QLMQDgCQS06m6O4pmGPlEvPRm3IwVWLb3rt305puSEpvB-Ot65La-aTXXjeNaZL1ZpfoZu_i62t7ic5r3QRz9V3n6OV-_bx6SLe7zeNquU1LyvmQUslEVYiiFAJyJqUucsIKZnBBJNZFRgpZMV6IStOMEFFnXEpBIcfAKa-wpHN0M_aN33s7mjCogzv6Lo5UOAdBKGU8i6nFmNrrxijb1W7wuoynMq0to7LaxvulwJJhRgWNgBiB0rsQvKlVaQc9xJ0jaBuFQZ38qtGvin7Vya8SkcS_yN7bVvvPfxkyMiFmu73xP5b4E_oCB7SNBw |
CitedBy_id | crossref_primary_10_1016_j_ijimpeng_2023_104524 crossref_primary_10_1038_s41598_024_58313_2 crossref_primary_10_1016_j_cma_2023_116456 crossref_primary_10_1016_j_probengmech_2023_103573 crossref_primary_10_1016_j_asoc_2020_106934 crossref_primary_10_1016_j_apm_2021_09_038 crossref_primary_10_1007_s00366_020_01043_6 crossref_primary_10_1080_0305215X_2021_2004409 crossref_primary_10_32604_cmes_2022_019424 crossref_primary_10_1063_5_0214337 crossref_primary_10_1016_j_jksuci_2022_12_007 crossref_primary_10_1080_0305215X_2024_2328788 crossref_primary_10_1021_acs_jcim_1c00670 crossref_primary_10_1109_TAP_2020_3044393 crossref_primary_10_1016_j_asoc_2021_107276 crossref_primary_10_1016_j_eswa_2024_123252 crossref_primary_10_1016_j_ress_2024_110052 crossref_primary_10_1115_1_4064244 crossref_primary_10_1016_j_strusafe_2024_102557 crossref_primary_10_1002_er_7828 crossref_primary_10_1016_j_cma_2025_117752 crossref_primary_10_1016_j_ast_2021_106572 crossref_primary_10_1016_j_oceaneng_2024_116820 crossref_primary_10_1115_1_4067076 crossref_primary_10_1016_j_cie_2024_110361 crossref_primary_10_1016_j_compeleceng_2021_107029 crossref_primary_10_1016_j_ress_2024_110090 crossref_primary_10_1080_0305215X_2020_1722118 crossref_primary_10_1137_21M1404260 crossref_primary_10_1016_j_knosys_2021_106919 crossref_primary_10_1080_00949655_2024_2436013 crossref_primary_10_1016_j_ast_2020_106006 crossref_primary_10_1088_1742_6596_2030_1_012067 crossref_primary_10_1016_j_jsv_2023_117701 crossref_primary_10_1016_j_ress_2024_110536 crossref_primary_10_1063_5_0200900 crossref_primary_10_1007_s00158_022_03310_0 crossref_primary_10_1016_j_ast_2024_109412 crossref_primary_10_1016_j_apm_2022_03_031 crossref_primary_10_1016_j_advengsoft_2018_06_001 crossref_primary_10_1016_j_cie_2022_108299 crossref_primary_10_1016_j_cma_2024_117524 crossref_primary_10_1109_ACCESS_2023_3244996 crossref_primary_10_1016_j_jocs_2022_101903 crossref_primary_10_1007_s10470_020_01585_1 crossref_primary_10_1016_j_ast_2019_105555 crossref_primary_10_2514_1_T6687 crossref_primary_10_1007_s40747_022_00923_2 crossref_primary_10_1016_j_ast_2023_108725 crossref_primary_10_1016_j_future_2020_07_005 crossref_primary_10_1016_j_seta_2024_103676 crossref_primary_10_1007_s10898_020_00923_x crossref_primary_10_1109_TCYB_2022_3168551 crossref_primary_10_3390_math10234467 crossref_primary_10_1142_S0219876220500334 crossref_primary_10_1007_s00158_021_03038_3 crossref_primary_10_1080_0305215X_2021_1960985 crossref_primary_10_1007_s00158_022_03323_9 crossref_primary_10_1016_j_apm_2021_07_020 crossref_primary_10_1016_j_actaastro_2024_12_042 crossref_primary_10_1016_j_cma_2024_117150 crossref_primary_10_1007_s00158_022_03283_0 crossref_primary_10_1007_s11081_020_09526_7 crossref_primary_10_1016_j_ins_2020_09_073 crossref_primary_10_3389_fphar_2022_837261 crossref_primary_10_1080_21680566_2023_2195984 crossref_primary_10_1016_j_asoc_2021_107380 crossref_primary_10_1177_09544100211002571 crossref_primary_10_1109_TEVC_2022_3168060 crossref_primary_10_1007_s00158_021_02931_1 crossref_primary_10_1038_s41598_021_04553_5 |
Cites_doi | 10.2514/1.20068 10.1080/0305215X.2011.637556 10.1287/ijoc.5.1.2 10.2514/1.J052375 10.1214/ss/1177012413 10.1016/j.ejor.2006.08.040 10.1080/03052150211751 10.1023/A:1012771025575 10.1002/9780470770801 10.1080/0305215X.2013.827672 10.1007/s10898-014-0210-2 10.1016/j.ejor.2015.12.018 10.1023/A:1008306431147 10.1007/s10898-013-0118-2 10.1109/TEVC.2005.851274 10.1007/s00158-004-0397-9 10.1007/s10898-005-2454-3 10.1007/s10898-012-9951-y 10.1115/1.2429697 10.1007/s10898-012-9892-5 10.1007/978-3-642-34413-8_5 10.1007/978-3-319-09584-4_17 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 COPYRIGHT 2017 Springer Journal of Global Optimization is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: COPYRIGHT 2017 Springer – notice: Journal of Global Optimization is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10898-016-0484-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 662 |
ExternalDocumentID | A718414373 10_1007_s10898_016_0484_7 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c355t-3847db7bc7709488ab924b4e1b281ab62b8d45b7da36227f6588730910535d183 |
IEDL.DBID | U2A |
ISSN | 0925-5001 |
IngestDate | Sat Aug 16 11:42:25 EDT 2025 Tue Jun 10 20:37:38 EDT 2025 Tue Jul 01 00:52:58 EDT 2025 Thu Apr 24 22:54:52 EDT 2025 Fri Feb 21 02:42:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Expected improvement Parallel computing Influence function Efficient global optimization Pseudo expected improvement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-3847db7bc7709488ab924b4e1b281ab62b8d45b7da36227f6588730910535d183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1907233456 |
PQPubID | 29930 |
PageCount | 22 |
ParticipantIDs | proquest_journals_1907233456 gale_infotracacademiconefile_A718414373 crossref_citationtrail_10_1007_s10898_016_0484_7 crossref_primary_10_1007_s10898_016_0484_7 springer_journals_10_1007_s10898_016_0484_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170700 2017-7-00 20170701 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 7 year: 2017 text: 20170700 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2017 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Couckuyt, Deschrijver, Dhaene (CR12) 2014; 60 Rios, Sahinidis (CR1) 2013; 56 Hamza, Shalaby (CR18) 2014; 46 CR19 Huang, Allen, Notz, Zeng (CR9) 2006; 34 CR17 Sóbester, Leary, Keane (CR14) 2004; 27 Boukouvala, Misener, Floudas (CR2) 2016; 252 Ginsbourger, Le Riche, Carraro, Tenne, Goh (CR13) 2010 Dixon, Szego, Dixon, Szego (CR23) 1978 Sasena (CR24) 2002 Jones (CR6) 2001; 21 Sasena, Papalambros, Goovaerts (CR7) 2002; 34 Forrester, Keane, Bressloff (CR10) 2006; 44 Torn, Zilinskas (CR22) 1987 Sacks, Welch, Mitchell, Wynn (CR21) 1989; 4 Barr, Hickman (CR28) 1993; 5 Feng, Zhang, Zhang, Tang, Yang, Ma (CR15) 2015; 61 Jones, Schonlau, Welch (CR5) 1998; 13 Wang, Shan (CR3) 2007; 129 Knowles (CR11) 2006; 10 CR27 Viana, Haftka, Watson (CR20) 2013; 56 CR26 Parr, Keane, Forrester, Holden (CR8) 2012; 44 CR25 Forrester, Sóbester, Keane (CR16) 2008 Viana, Simpson, Balabanov, Toropov (CR4) 2014; 52 Regis, Shoemaker (CR29) 2007; 182 RG Regis (484_CR29) 2007; 182 MJ Sasena (484_CR7) 2002; 34 I Couckuyt (484_CR12) 2014; 60 MJ Sasena (484_CR24) 2002 J Sacks (484_CR21) 1989; 4 FAC Viana (484_CR4) 2014; 52 JM Parr (484_CR8) 2012; 44 D Huang (484_CR9) 2006; 34 ZW Feng (484_CR15) 2015; 61 484_CR25 484_CR26 484_CR27 LCW Dixon (484_CR23) 1978 RS Barr (484_CR28) 1993; 5 D Ginsbourger (484_CR13) 2010 GG Wang (484_CR3) 2007; 129 DR Jones (484_CR5) 1998; 13 J Knowles (484_CR11) 2006; 10 DR Jones (484_CR6) 2001; 21 F Boukouvala (484_CR2) 2016; 252 A Sóbester (484_CR14) 2004; 27 A Torn (484_CR22) 1987 AI Forrester (484_CR10) 2006; 44 484_CR17 A Forrester (484_CR16) 2008 484_CR19 LM Rios (484_CR1) 2013; 56 K Hamza (484_CR18) 2014; 46 FA Viana (484_CR20) 2013; 56 |
References_xml | – volume: 44 start-page: 2331 issue: 10 year: 2006 end-page: 2339 ident: CR10 article-title: Design and analysis of noisy computer experiments publication-title: AIAA J doi: 10.2514/1.20068 – volume: 44 start-page: 1147 issue: 10 year: 2012 end-page: 1166 ident: CR8 article-title: Infill sampling criteria for surrogate-based optimization with constraint handling publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.637556 – volume: 5 start-page: 2 issue: 1 year: 1993 end-page: 18 ident: CR28 article-title: Reporting computational experiments with parallel algorithms: issues, measures, and experts’ opinions publication-title: ORSA J. Comput. doi: 10.1287/ijoc.5.1.2 – volume: 52 start-page: 670 issue: 4 year: 2014 end-page: 690 ident: CR4 article-title: Metamodeling in multidisciplinary design optimization: how far have we really come? publication-title: AIAA J. doi: 10.2514/1.J052375 – volume: 4 start-page: 409 issue: 4 year: 1989 end-page: 423 ident: CR21 article-title: Design and analysis of computer experiments publication-title: Stat. Sci. doi: 10.1214/ss/1177012413 – volume: 182 start-page: 514 issue: 2 year: 2007 end-page: 535 ident: CR29 article-title: Parallel radial basis function methods for the global optimization of expensive functions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.08.040 – year: 2002 ident: CR24 publication-title: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations – volume: 34 start-page: 263 issue: 3 year: 2002 end-page: 278 ident: CR7 article-title: Exploration of metamodeling sampling criteria for constrained global optimization publication-title: Eng. Optim. doi: 10.1080/03052150211751 – volume: 21 start-page: 345 issue: 4 year: 2001 end-page: 383 ident: CR6 article-title: A taxonomy of global optimization methods based on response surfaces publication-title: J. Glob. Optim. doi: 10.1023/A:1012771025575 – year: 2008 ident: CR16 publication-title: Engineering Design Via Surrogate Aodelling: A Practical Guide doi: 10.1002/9780470770801 – volume: 46 start-page: 1200 issue: 9 year: 2014 end-page: 1221 ident: CR18 article-title: A framework for parallelized efficient global optimization with application to vehicle crashworthiness optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.827672 – volume: 61 start-page: 677 issue: 4 year: 2015 end-page: 694 ident: CR15 article-title: A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0210-2 – ident: CR25 – ident: CR27 – volume: 252 start-page: 701 issue: 3 year: 2016 end-page: 727 ident: CR2 article-title: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.12.018 – volume: 13 start-page: 455 issue: 4 year: 1998 end-page: 492 ident: CR5 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 60 start-page: 575 issue: 3 year: 2014 end-page: 594 ident: CR12 article-title: Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0118-2 – ident: CR19 – volume: 10 start-page: 50 issue: 1 year: 2006 end-page: 66 ident: CR11 article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2005.851274 – year: 1978 ident: CR23 article-title: The optimization problem: an introduction publication-title: Towards Global Optimization II – volume: 27 start-page: 371 issue: 5 year: 2004 end-page: 383 ident: CR14 article-title: A parallel updating scheme for approximating and optimizing high fidelity computer simulations publication-title: Struct. Multidiscipl. Optim. doi: 10.1007/s00158-004-0397-9 – ident: CR17 – volume: 34 start-page: 441 issue: 3 year: 2006 end-page: 466 ident: CR9 article-title: Global optimization of stochastic black-box systems via sequential Kriging meta-models publication-title: J. Glob. Optim. doi: 10.1007/s10898-005-2454-3 – volume: 56 start-page: 1247 issue: 3 year: 2013 end-page: 1293 ident: CR1 article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9951-y – start-page: 131 year: 2010 end-page: 162 ident: CR13 article-title: Kriging is well-suited to parallelize optimization publication-title: Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization – volume: 129 start-page: 370 issue: 2 year: 2007 end-page: 380 ident: CR3 article-title: Review of metamodeling techniques in support of engineering design optimization publication-title: J. Mech. Des. doi: 10.1115/1.2429697 – ident: CR26 – volume: 56 start-page: 669 issue: 02 year: 2013 end-page: 689 ident: CR20 article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9892-5 – year: 1987 ident: CR22 publication-title: Global Optimization – ident: 484_CR26 – volume: 44 start-page: 2331 issue: 10 year: 2006 ident: 484_CR10 publication-title: AIAA J doi: 10.2514/1.20068 – volume: 56 start-page: 1247 issue: 3 year: 2013 ident: 484_CR1 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9951-y – ident: 484_CR19 doi: 10.1007/978-3-642-34413-8_5 – volume: 4 start-page: 409 issue: 4 year: 1989 ident: 484_CR21 publication-title: Stat. Sci. doi: 10.1214/ss/1177012413 – ident: 484_CR17 doi: 10.1007/978-3-319-09584-4_17 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 484_CR5 publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 44 start-page: 1147 issue: 10 year: 2012 ident: 484_CR8 publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.637556 – volume: 34 start-page: 441 issue: 3 year: 2006 ident: 484_CR9 publication-title: J. Glob. Optim. doi: 10.1007/s10898-005-2454-3 – volume: 46 start-page: 1200 issue: 9 year: 2014 ident: 484_CR18 publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.827672 – ident: 484_CR25 – volume: 182 start-page: 514 issue: 2 year: 2007 ident: 484_CR29 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.08.040 – volume-title: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations year: 2002 ident: 484_CR24 – start-page: 131 volume-title: Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization year: 2010 ident: 484_CR13 – ident: 484_CR27 – volume-title: Global Optimization year: 1987 ident: 484_CR22 – volume: 10 start-page: 50 issue: 1 year: 2006 ident: 484_CR11 publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2005.851274 – volume: 5 start-page: 2 issue: 1 year: 1993 ident: 484_CR28 publication-title: ORSA J. Comput. doi: 10.1287/ijoc.5.1.2 – volume-title: Towards Global Optimization II year: 1978 ident: 484_CR23 – volume: 21 start-page: 345 issue: 4 year: 2001 ident: 484_CR6 publication-title: J. Glob. Optim. doi: 10.1023/A:1012771025575 – volume: 56 start-page: 669 issue: 02 year: 2013 ident: 484_CR20 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9892-5 – volume: 61 start-page: 677 issue: 4 year: 2015 ident: 484_CR15 publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0210-2 – volume: 252 start-page: 701 issue: 3 year: 2016 ident: 484_CR2 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.12.018 – volume-title: Engineering Design Via Surrogate Aodelling: A Practical Guide year: 2008 ident: 484_CR16 doi: 10.1002/9780470770801 – volume: 129 start-page: 370 issue: 2 year: 2007 ident: 484_CR3 publication-title: J. Mech. Des. doi: 10.1115/1.2429697 – volume: 52 start-page: 670 issue: 4 year: 2014 ident: 484_CR4 publication-title: AIAA J. doi: 10.2514/1.J052375 – volume: 60 start-page: 575 issue: 3 year: 2014 ident: 484_CR12 publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0118-2 – volume: 27 start-page: 371 issue: 5 year: 2004 ident: 484_CR14 publication-title: Struct. Multidiscipl. Optim. doi: 10.1007/s00158-004-0397-9 – volume: 34 start-page: 263 issue: 3 year: 2002 ident: 484_CR7 publication-title: Eng. Optim. doi: 10.1080/03052150211751 |
SSID | ssj0009852 |
Score | 2.4976456 |
Snippet | The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 641 |
SubjectTerms | Algorithms Benchmarks Computer Science Computer simulation Computing time Convergence Criteria Design analysis Efficiency Global optimization Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Parallel processing Real Functions State of the art |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4ovOiDEdSIoumDib_SCFu31idFAxITkRhJeFvWtVOTydDB_-91dIIaed7WbW3vvu-u7XcAR0jZI8mUolEcc8o4xqyh5pIKN0bEEQ3l55sxH3p-d8Duh97QJtwyu62y8Im5o1ZpZHLkFwhc3HFdxPur8Qc1VaPM6qotobEKZXTBAoOv8k2713-ay-6KvOZO49LxqIceuVjXnB2eE-Z4WRMjaiYY5T-Q6bd__rNQmuNPZxM2LHEkrdlIV2BFj6qwviAnWIWKNdSMnFg16dMtuO5neqpSYqT8I6SX5C1PI-RZQYIuw2g1pyOC3JUYGfAk0Qlp3z2SMHnB35-8vm_DoNN-vu1SWzaBRkgeJtRFwFGSy4hzjN2ECCXGWJLppnREM5S-I4VinuQqRPByeIwcRKCdI2_wXE-hie9AaZSO9C4QtH7f4b6PtqkYPiE14pmW3I2VRubn1qBRdFkQWU1xU9oiCeZqyKaXA7OPzPRywGtw9v3IeCaosezmYzMOgTE2bDcK7ZkB_DojWxW0EFlZ06gz1aBeDFVgrTAL5nOmBufF8C1c_u-1e8sb24c1x4B7vmm3DqXJ51QfIDWZyEM7_74AbsbcNQ priority: 102 providerName: ProQuest |
Title | Pseudo expected improvement criterion for parallel EGO algorithm |
URI | https://link.springer.com/article/10.1007/s10898-016-0484-7 https://www.proquest.com/docview/1907233456 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPSgghpRJHsw8ZUm0G67600wPKIBiZEET023u1WTCsbC_3e2bAGfiadNs482nZ2Zb_bxDcAxQvZQUCmtMIqYRRnGrIFiwuJOhB6H16SXHsbs9b3ukN6M3JG5x51kp92zLcnUUq9cduP6OlgdI2DKqcVyUHB16I6TeGg3lky7PE2zU7u0XctFI5xtZf40xCdn9NUkf9sbTV1Oexs2DVYkjblwi7CmxiXYyvIwEKOWJdhYIRXEp96CiTUpQdG0SsipYZg-24GrQaJmckI0vX-IkJO8pEsL6UohQTOi-ZsnY4J4lmhq8DhWMWl17kgQP02w9vl1F4bt1sN11zKpFKwQAcXUctAJScFEyBjGc5wHAuMuQVVd2LweCM8WXFJXMBmgQ7NZhLiEo-4jlnAdV6La70F-PBmrfSBoETybeR7qq6TYQyj0cUowJ5IK0aBThlr2T_3Q8IzrdBexv2RI1mLw9dkyLQafleF80eVtTrLxV-MTLShfKyCOGwbmHgF-naay8hvobWldMzaVoZLJ0jeamfgIgJjtOIgby3CRyXel-rfXHvyr9SGs29r_p-d6K5Cfvs_UEaKXqahCjrc7VSg02s1mX5edx9sWls1Wf3BfTefyBz4u59w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxRBEK0gHpADEdQwgNoHjajpuNvdM90cjBLdL9ldPUDCrZ2e7gGSYRfYJcQ_5W-0anbGRQncOM9O76S66r2q_ngF8ApT9swp73mW55orjTVrGrTjRubIOKbhk_Iw5mCYdA_Ut8P4cAF-13dh6FhljYklUPtxRmvkH5C4tJAS-f7T2TmnrlG0u1q30Ji5xV74dYUl2-Rj7yvO72sh2q39L11edRXgGXLrlEvEY--0y7TG0saY1GEJ4lRoOmGaqUuEM17FTvsUsV3oHCnaYBggrcYy9hgBOO4DeKik3KGIMu3OXOTXlB1-Gjsi5jHif72LOruqZ-gyWxPrd2UU1__w4P9scGNbtmS79mNYqdJUtjvzq1VYCKM1WL4mXrgGqxUsTNh2pV399gl8_jEJl37MqHFAhsksOykXLco1SIYARcrQ4xHDTJmR6HhRhIK1Ot9ZWhyhsafHp0_h4F7M-QwWR-NRWAeGWJMInSSIBF7hGy4gewanZe4D5pkygkZtMptVCubUSKOwc-1lsrKlU2tkZasjePf3lbOZfMddP35D82AptHHcLK1uKODXkUiW3UUeV03Sgopgq54qW8X8xM49NIL39fRde3zb327cPdhLWOruD_q23xvubcIjQWlFeVx4CxanF5fhOSZFU_ei9EQGP-_b9f8AiMAVZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbhMxEB21qYTKAdECIlCoDyCgyGri9a7NoaKFJrQUQlS1Um9mvfYC0pIUkgr11_g6njdeUkD01vNmndV4_N6MPX5D9Aghe2Glc7woS8WlQs6ae2W5Tkowju64rC7GfD_I9o7l25P0ZIF-NndhQlllg4k1ULtxEfbIN0FcSiQJ-H6zjGURw93-y9NvPHSQCietTTuNmYsc-PMfSN8mW_u7mOvHQvR7R6_3eOwwwAvw7JQnwGZnlS2UQpqjdW6Rjljpu1bobm4zYbWTqVUuB84LVYKuNZYEKDZNUofVgHEXaUkhK-q0aOlVbzA8nEv-6rrfT-eFSHkKNmjOVGcX93S42tZFNi-15OoPVvybG_45pK25r3-TbsSgle3MvGyFFvxola5fkDJcpZUIEhP2NCpZP7tF28OJP3NjFtoIFAht2Zd6C6PekWSAq6ATPR4xxM0sSJBXla9Y780HllefYO7p56-36fhKDHqHWqPxyN8lBuTJhMoy4IKTeMN6cKm3KimdR9SZtKnTmMwUUc88tNWozFyJOVjZhBq2YGWj2rTx-5XTmZjHZT9-EubBhIWOcYs83lfA1wXJLLMDVpfdoAzVprVmqkxEgImZ-2ubnjfTd-Hx__723uWDrdM1uL15tz84uE_LIsQYde3wGrWm38_8A0RIU_swuiKjj1ft_b8AhrEa9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo+expected+improvement+criterion+for+parallel+EGO+algorithm&rft.jtitle=Journal+of+global+optimization&rft.au=Zhan%2C+Dawei&rft.au=Qian%2C+Jiachang&rft.au=Cheng%2C+Yuansheng&rft.date=2017-07-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=68&rft.issue=3&rft.spage=641&rft.epage=662&rft_id=info:doi/10.1007%2Fs10898-016-0484-7&rft.externalDocID=10_1007_s10898_016_0484_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |