Pseudo expected improvement criterion for parallel EGO algorithm

The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cyc...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 68; no. 3; pp. 641 - 662
Main Authors Zhan, Dawei, Qian, Jiachang, Cheng, Yuansheng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2017
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cycle, which is time-wasting when parallel computing can be used. In this work, a new criterion called pseudo expected improvement (PEI) is proposed for developing parallel EGO algorithms. In each cycle, the first updating point is selected by the initial EI function. After that, the PEI function is built to approximate the real updated EI function by multiplying the initial EI function by an influence function of the updating point. The influence function is designed to simulate the impact that the updating point will have on the EI function, and is only corresponding to the position of the updating point (not the function value of the updating point). Therefore, the next updating point can be identified by maximizing the PEI function without evaluating the first updating point. As the sequential process goes on, a desired number of updating points can be selected by the PEI criterion within one optimization cycle. The efficiency of the proposed PEI criterion is validated by six benchmarks with dimension from 2 to 6. The results show that the proposed PEI algorithm performs significantly better than the standard EGO algorithm, and gains significant improvements over five of the six test problems compared against a state-of-the-art parallel EGO algorithm. Furthermore, additional experiments show that it affects the convergence of the proposed algorithm significantly when the global maximum of the PEI function is not found. It is recommended to use as much evaluations as one can afford to find the global maximum of the PEI function.
AbstractList The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cycle, which is time-wasting when parallel computing can be used. In this work, a new criterion called pseudo expected improvement (PEI) is proposed for developing parallel EGO algorithms. In each cycle, the first updating point is selected by the initial EI function. After that, the PEI function is built to approximate the real updated EI function by multiplying the initial EI function by an influence function of the updating point. The influence function is designed to simulate the impact that the updating point will have on the EI function, and is only corresponding to the position of the updating point (not the function value of the updating point). Therefore, the next updating point can be identified by maximizing the PEI function without evaluating the first updating point. As the sequential process goes on, a desired number of updating points can be selected by the PEI criterion within one optimization cycle. The efficiency of the proposed PEI criterion is validated by six benchmarks with dimension from 2 to 6. The results show that the proposed PEI algorithm performs significantly better than the standard EGO algorithm, and gains significant improvements over five of the six test problems compared against a state-of-the-art parallel EGO algorithm. Furthermore, additional experiments show that it affects the convergence of the proposed algorithm significantly when the global maximum of the PEI function is not found. It is recommended to use as much evaluations as one can afford to find the global maximum of the PEI function.
Audience Academic
Author Cheng, Yuansheng
Zhan, Dawei
Qian, Jiachang
Author_xml – sequence: 1
  givenname: Dawei
  surname: Zhan
  fullname: Zhan, Dawei
  organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology
– sequence: 2
  givenname: Jiachang
  surname: Qian
  fullname: Qian, Jiachang
  organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Yuansheng
  surname: Cheng
  fullname: Cheng, Yuansheng
  email: yscheng@hust.edu.cn
  organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology
BookMark eNp9kM9LwzAUx4NMcJv-Ad4KnjtffjXpzTHmFAbzoOeQtunMaJuadKL_vRn1IIKSw4Pk-3kv7zNDk851BqFrDAsMIG4DBpnLFHCWApMsFWdoirmgKclxNkFTyAlPOQC-QLMQDgCQS06m6O4pmGPlEvPRm3IwVWLb3rt305puSEpvB-Ot65La-aTXXjeNaZL1ZpfoZu_i62t7ic5r3QRz9V3n6OV-_bx6SLe7zeNquU1LyvmQUslEVYiiFAJyJqUucsIKZnBBJNZFRgpZMV6IStOMEFFnXEpBIcfAKa-wpHN0M_aN33s7mjCogzv6Lo5UOAdBKGU8i6nFmNrrxijb1W7wuoynMq0to7LaxvulwJJhRgWNgBiB0rsQvKlVaQc9xJ0jaBuFQZ38qtGvin7Vya8SkcS_yN7bVvvPfxkyMiFmu73xP5b4E_oCB7SNBw
CitedBy_id crossref_primary_10_1016_j_ijimpeng_2023_104524
crossref_primary_10_1038_s41598_024_58313_2
crossref_primary_10_1016_j_cma_2023_116456
crossref_primary_10_1016_j_probengmech_2023_103573
crossref_primary_10_1016_j_asoc_2020_106934
crossref_primary_10_1016_j_apm_2021_09_038
crossref_primary_10_1007_s00366_020_01043_6
crossref_primary_10_1080_0305215X_2021_2004409
crossref_primary_10_32604_cmes_2022_019424
crossref_primary_10_1063_5_0214337
crossref_primary_10_1016_j_jksuci_2022_12_007
crossref_primary_10_1080_0305215X_2024_2328788
crossref_primary_10_1021_acs_jcim_1c00670
crossref_primary_10_1109_TAP_2020_3044393
crossref_primary_10_1016_j_asoc_2021_107276
crossref_primary_10_1016_j_eswa_2024_123252
crossref_primary_10_1016_j_ress_2024_110052
crossref_primary_10_1115_1_4064244
crossref_primary_10_1016_j_strusafe_2024_102557
crossref_primary_10_1002_er_7828
crossref_primary_10_1016_j_cma_2025_117752
crossref_primary_10_1016_j_ast_2021_106572
crossref_primary_10_1016_j_oceaneng_2024_116820
crossref_primary_10_1115_1_4067076
crossref_primary_10_1016_j_cie_2024_110361
crossref_primary_10_1016_j_compeleceng_2021_107029
crossref_primary_10_1016_j_ress_2024_110090
crossref_primary_10_1080_0305215X_2020_1722118
crossref_primary_10_1137_21M1404260
crossref_primary_10_1016_j_knosys_2021_106919
crossref_primary_10_1080_00949655_2024_2436013
crossref_primary_10_1016_j_ast_2020_106006
crossref_primary_10_1088_1742_6596_2030_1_012067
crossref_primary_10_1016_j_jsv_2023_117701
crossref_primary_10_1016_j_ress_2024_110536
crossref_primary_10_1063_5_0200900
crossref_primary_10_1007_s00158_022_03310_0
crossref_primary_10_1016_j_ast_2024_109412
crossref_primary_10_1016_j_apm_2022_03_031
crossref_primary_10_1016_j_advengsoft_2018_06_001
crossref_primary_10_1016_j_cie_2022_108299
crossref_primary_10_1016_j_cma_2024_117524
crossref_primary_10_1109_ACCESS_2023_3244996
crossref_primary_10_1016_j_jocs_2022_101903
crossref_primary_10_1007_s10470_020_01585_1
crossref_primary_10_1016_j_ast_2019_105555
crossref_primary_10_2514_1_T6687
crossref_primary_10_1007_s40747_022_00923_2
crossref_primary_10_1016_j_ast_2023_108725
crossref_primary_10_1016_j_future_2020_07_005
crossref_primary_10_1016_j_seta_2024_103676
crossref_primary_10_1007_s10898_020_00923_x
crossref_primary_10_1109_TCYB_2022_3168551
crossref_primary_10_3390_math10234467
crossref_primary_10_1142_S0219876220500334
crossref_primary_10_1007_s00158_021_03038_3
crossref_primary_10_1080_0305215X_2021_1960985
crossref_primary_10_1007_s00158_022_03323_9
crossref_primary_10_1016_j_apm_2021_07_020
crossref_primary_10_1016_j_actaastro_2024_12_042
crossref_primary_10_1016_j_cma_2024_117150
crossref_primary_10_1007_s00158_022_03283_0
crossref_primary_10_1007_s11081_020_09526_7
crossref_primary_10_1016_j_ins_2020_09_073
crossref_primary_10_3389_fphar_2022_837261
crossref_primary_10_1080_21680566_2023_2195984
crossref_primary_10_1016_j_asoc_2021_107380
crossref_primary_10_1177_09544100211002571
crossref_primary_10_1109_TEVC_2022_3168060
crossref_primary_10_1007_s00158_021_02931_1
crossref_primary_10_1038_s41598_021_04553_5
Cites_doi 10.2514/1.20068
10.1080/0305215X.2011.637556
10.1287/ijoc.5.1.2
10.2514/1.J052375
10.1214/ss/1177012413
10.1016/j.ejor.2006.08.040
10.1080/03052150211751
10.1023/A:1012771025575
10.1002/9780470770801
10.1080/0305215X.2013.827672
10.1007/s10898-014-0210-2
10.1016/j.ejor.2015.12.018
10.1023/A:1008306431147
10.1007/s10898-013-0118-2
10.1109/TEVC.2005.851274
10.1007/s00158-004-0397-9
10.1007/s10898-005-2454-3
10.1007/s10898-012-9951-y
10.1115/1.2429697
10.1007/s10898-012-9892-5
10.1007/978-3-642-34413-8_5
10.1007/978-3-319-09584-4_17
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
COPYRIGHT 2017 Springer
Journal of Global Optimization is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: COPYRIGHT 2017 Springer
– notice: Journal of Global Optimization is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-016-0484-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 662
ExternalDocumentID A718414373
10_1007_s10898_016_0484_7
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c355t-3847db7bc7709488ab924b4e1b281ab62b8d45b7da36227f6588730910535d183
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 16 11:42:25 EDT 2025
Tue Jun 10 20:37:38 EDT 2025
Tue Jul 01 00:52:58 EDT 2025
Thu Apr 24 22:54:52 EDT 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Expected improvement
Parallel computing
Influence function
Efficient global optimization
Pseudo expected improvement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-3847db7bc7709488ab924b4e1b281ab62b8d45b7da36227f6588730910535d183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1907233456
PQPubID 29930
PageCount 22
ParticipantIDs proquest_journals_1907233456
gale_infotracacademiconefile_A718414373
crossref_citationtrail_10_1007_s10898_016_0484_7
crossref_primary_10_1007_s10898_016_0484_7
springer_journals_10_1007_s10898_016_0484_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170700
2017-7-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 7
  year: 2017
  text: 20170700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2017
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Couckuyt, Deschrijver, Dhaene (CR12) 2014; 60
Rios, Sahinidis (CR1) 2013; 56
Hamza, Shalaby (CR18) 2014; 46
CR19
Huang, Allen, Notz, Zeng (CR9) 2006; 34
CR17
Sóbester, Leary, Keane (CR14) 2004; 27
Boukouvala, Misener, Floudas (CR2) 2016; 252
Ginsbourger, Le Riche, Carraro, Tenne, Goh (CR13) 2010
Dixon, Szego, Dixon, Szego (CR23) 1978
Sasena (CR24) 2002
Jones (CR6) 2001; 21
Sasena, Papalambros, Goovaerts (CR7) 2002; 34
Forrester, Keane, Bressloff (CR10) 2006; 44
Torn, Zilinskas (CR22) 1987
Sacks, Welch, Mitchell, Wynn (CR21) 1989; 4
Barr, Hickman (CR28) 1993; 5
Feng, Zhang, Zhang, Tang, Yang, Ma (CR15) 2015; 61
Jones, Schonlau, Welch (CR5) 1998; 13
Wang, Shan (CR3) 2007; 129
Knowles (CR11) 2006; 10
CR27
Viana, Haftka, Watson (CR20) 2013; 56
CR26
Parr, Keane, Forrester, Holden (CR8) 2012; 44
CR25
Forrester, Sóbester, Keane (CR16) 2008
Viana, Simpson, Balabanov, Toropov (CR4) 2014; 52
Regis, Shoemaker (CR29) 2007; 182
RG Regis (484_CR29) 2007; 182
MJ Sasena (484_CR7) 2002; 34
I Couckuyt (484_CR12) 2014; 60
MJ Sasena (484_CR24) 2002
J Sacks (484_CR21) 1989; 4
FAC Viana (484_CR4) 2014; 52
JM Parr (484_CR8) 2012; 44
D Huang (484_CR9) 2006; 34
ZW Feng (484_CR15) 2015; 61
484_CR25
484_CR26
484_CR27
LCW Dixon (484_CR23) 1978
RS Barr (484_CR28) 1993; 5
D Ginsbourger (484_CR13) 2010
GG Wang (484_CR3) 2007; 129
DR Jones (484_CR5) 1998; 13
J Knowles (484_CR11) 2006; 10
DR Jones (484_CR6) 2001; 21
F Boukouvala (484_CR2) 2016; 252
A Sóbester (484_CR14) 2004; 27
A Torn (484_CR22) 1987
AI Forrester (484_CR10) 2006; 44
484_CR17
A Forrester (484_CR16) 2008
484_CR19
LM Rios (484_CR1) 2013; 56
K Hamza (484_CR18) 2014; 46
FA Viana (484_CR20) 2013; 56
References_xml – volume: 44
  start-page: 2331
  issue: 10
  year: 2006
  end-page: 2339
  ident: CR10
  article-title: Design and analysis of noisy computer experiments
  publication-title: AIAA J
  doi: 10.2514/1.20068
– volume: 44
  start-page: 1147
  issue: 10
  year: 2012
  end-page: 1166
  ident: CR8
  article-title: Infill sampling criteria for surrogate-based optimization with constraint handling
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.637556
– volume: 5
  start-page: 2
  issue: 1
  year: 1993
  end-page: 18
  ident: CR28
  article-title: Reporting computational experiments with parallel algorithms: issues, measures, and experts’ opinions
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.5.1.2
– volume: 52
  start-page: 670
  issue: 4
  year: 2014
  end-page: 690
  ident: CR4
  article-title: Metamodeling in multidisciplinary design optimization: how far have we really come?
  publication-title: AIAA J.
  doi: 10.2514/1.J052375
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  end-page: 423
  ident: CR21
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– volume: 182
  start-page: 514
  issue: 2
  year: 2007
  end-page: 535
  ident: CR29
  article-title: Parallel radial basis function methods for the global optimization of expensive functions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.040
– year: 2002
  ident: CR24
  publication-title: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations
– volume: 34
  start-page: 263
  issue: 3
  year: 2002
  end-page: 278
  ident: CR7
  article-title: Exploration of metamodeling sampling criteria for constrained global optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150211751
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  end-page: 383
  ident: CR6
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– year: 2008
  ident: CR16
  publication-title: Engineering Design Via Surrogate Aodelling: A Practical Guide
  doi: 10.1002/9780470770801
– volume: 46
  start-page: 1200
  issue: 9
  year: 2014
  end-page: 1221
  ident: CR18
  article-title: A framework for parallelized efficient global optimization with application to vehicle crashworthiness optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.827672
– volume: 61
  start-page: 677
  issue: 4
  year: 2015
  end-page: 694
  ident: CR15
  article-title: A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0210-2
– ident: CR25
– ident: CR27
– volume: 252
  start-page: 701
  issue: 3
  year: 2016
  end-page: 727
  ident: CR2
  article-title: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.12.018
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  end-page: 492
  ident: CR5
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 60
  start-page: 575
  issue: 3
  year: 2014
  end-page: 594
  ident: CR12
  article-title: Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0118-2
– ident: CR19
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  end-page: 66
  ident: CR11
  article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2005.851274
– year: 1978
  ident: CR23
  article-title: The optimization problem: an introduction
  publication-title: Towards Global Optimization II
– volume: 27
  start-page: 371
  issue: 5
  year: 2004
  end-page: 383
  ident: CR14
  article-title: A parallel updating scheme for approximating and optimizing high fidelity computer simulations
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-004-0397-9
– ident: CR17
– volume: 34
  start-page: 441
  issue: 3
  year: 2006
  end-page: 466
  ident: CR9
  article-title: Global optimization of stochastic black-box systems via sequential Kriging meta-models
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-005-2454-3
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  end-page: 1293
  ident: CR1
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9951-y
– start-page: 131
  year: 2010
  end-page: 162
  ident: CR13
  article-title: Kriging is well-suited to parallelize optimization
  publication-title: Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization
– volume: 129
  start-page: 370
  issue: 2
  year: 2007
  end-page: 380
  ident: CR3
  article-title: Review of metamodeling techniques in support of engineering design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2429697
– ident: CR26
– volume: 56
  start-page: 669
  issue: 02
  year: 2013
  end-page: 689
  ident: CR20
  article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9892-5
– year: 1987
  ident: CR22
  publication-title: Global Optimization
– ident: 484_CR26
– volume: 44
  start-page: 2331
  issue: 10
  year: 2006
  ident: 484_CR10
  publication-title: AIAA J
  doi: 10.2514/1.20068
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 484_CR1
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9951-y
– ident: 484_CR19
  doi: 10.1007/978-3-642-34413-8_5
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 484_CR21
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– ident: 484_CR17
  doi: 10.1007/978-3-319-09584-4_17
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 484_CR5
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 44
  start-page: 1147
  issue: 10
  year: 2012
  ident: 484_CR8
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.637556
– volume: 34
  start-page: 441
  issue: 3
  year: 2006
  ident: 484_CR9
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-005-2454-3
– volume: 46
  start-page: 1200
  issue: 9
  year: 2014
  ident: 484_CR18
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.827672
– ident: 484_CR25
– volume: 182
  start-page: 514
  issue: 2
  year: 2007
  ident: 484_CR29
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.040
– volume-title: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations
  year: 2002
  ident: 484_CR24
– start-page: 131
  volume-title: Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization
  year: 2010
  ident: 484_CR13
– ident: 484_CR27
– volume-title: Global Optimization
  year: 1987
  ident: 484_CR22
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 484_CR11
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 5
  start-page: 2
  issue: 1
  year: 1993
  ident: 484_CR28
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.5.1.2
– volume-title: Towards Global Optimization II
  year: 1978
  ident: 484_CR23
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 484_CR6
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– volume: 56
  start-page: 669
  issue: 02
  year: 2013
  ident: 484_CR20
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9892-5
– volume: 61
  start-page: 677
  issue: 4
  year: 2015
  ident: 484_CR15
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0210-2
– volume: 252
  start-page: 701
  issue: 3
  year: 2016
  ident: 484_CR2
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.12.018
– volume-title: Engineering Design Via Surrogate Aodelling: A Practical Guide
  year: 2008
  ident: 484_CR16
  doi: 10.1002/9780470770801
– volume: 129
  start-page: 370
  issue: 2
  year: 2007
  ident: 484_CR3
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2429697
– volume: 52
  start-page: 670
  issue: 4
  year: 2014
  ident: 484_CR4
  publication-title: AIAA J.
  doi: 10.2514/1.J052375
– volume: 60
  start-page: 575
  issue: 3
  year: 2014
  ident: 484_CR12
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0118-2
– volume: 27
  start-page: 371
  issue: 5
  year: 2004
  ident: 484_CR14
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-004-0397-9
– volume: 34
  start-page: 263
  issue: 3
  year: 2002
  ident: 484_CR7
  publication-title: Eng. Optim.
  doi: 10.1080/03052150211751
SSID ssj0009852
Score 2.4976456
Snippet The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 641
SubjectTerms Algorithms
Benchmarks
Computer Science
Computer simulation
Computing time
Convergence
Criteria
Design analysis
Efficiency
Global optimization
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Parallel processing
Real Functions
State of the art
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4ovOiDEdSIoumDib_SCFu31idFAxITkRhJeFvWtVOTydDB_-91dIIaed7WbW3vvu-u7XcAR0jZI8mUolEcc8o4xqyh5pIKN0bEEQ3l55sxH3p-d8Duh97QJtwyu62y8Im5o1ZpZHLkFwhc3HFdxPur8Qc1VaPM6qotobEKZXTBAoOv8k2713-ay-6KvOZO49LxqIceuVjXnB2eE-Z4WRMjaiYY5T-Q6bd__rNQmuNPZxM2LHEkrdlIV2BFj6qwviAnWIWKNdSMnFg16dMtuO5neqpSYqT8I6SX5C1PI-RZQYIuw2g1pyOC3JUYGfAk0Qlp3z2SMHnB35-8vm_DoNN-vu1SWzaBRkgeJtRFwFGSy4hzjN2ECCXGWJLppnREM5S-I4VinuQqRPByeIwcRKCdI2_wXE-hie9AaZSO9C4QtH7f4b6PtqkYPiE14pmW3I2VRubn1qBRdFkQWU1xU9oiCeZqyKaXA7OPzPRywGtw9v3IeCaosezmYzMOgTE2bDcK7ZkB_DojWxW0EFlZ06gz1aBeDFVgrTAL5nOmBufF8C1c_u-1e8sb24c1x4B7vmm3DqXJ51QfIDWZyEM7_74AbsbcNQ
  priority: 102
  providerName: ProQuest
Title Pseudo expected improvement criterion for parallel EGO algorithm
URI https://link.springer.com/article/10.1007/s10898-016-0484-7
https://www.proquest.com/docview/1907233456
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPSgghpRJHsw8ZUm0G67600wPKIBiZEET023u1WTCsbC_3e2bAGfiadNs482nZ2Zb_bxDcAxQvZQUCmtMIqYRRnGrIFiwuJOhB6H16SXHsbs9b3ukN6M3JG5x51kp92zLcnUUq9cduP6OlgdI2DKqcVyUHB16I6TeGg3lky7PE2zU7u0XctFI5xtZf40xCdn9NUkf9sbTV1Oexs2DVYkjblwi7CmxiXYyvIwEKOWJdhYIRXEp96CiTUpQdG0SsipYZg-24GrQaJmckI0vX-IkJO8pEsL6UohQTOi-ZsnY4J4lmhq8DhWMWl17kgQP02w9vl1F4bt1sN11zKpFKwQAcXUctAJScFEyBjGc5wHAuMuQVVd2LweCM8WXFJXMBmgQ7NZhLiEo-4jlnAdV6La70F-PBmrfSBoETybeR7qq6TYQyj0cUowJ5IK0aBThlr2T_3Q8IzrdBexv2RI1mLw9dkyLQafleF80eVtTrLxV-MTLShfKyCOGwbmHgF-naay8hvobWldMzaVoZLJ0jeamfgIgJjtOIgby3CRyXel-rfXHvyr9SGs29r_p-d6K5Cfvs_UEaKXqahCjrc7VSg02s1mX5edx9sWls1Wf3BfTefyBz4u59w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxRBEK0gHpADEdQwgNoHjajpuNvdM90cjBLdL9ldPUDCrZ2e7gGSYRfYJcQ_5W-0anbGRQncOM9O76S66r2q_ngF8ApT9swp73mW55orjTVrGrTjRubIOKbhk_Iw5mCYdA_Ut8P4cAF-13dh6FhljYklUPtxRmvkH5C4tJAS-f7T2TmnrlG0u1q30Ji5xV74dYUl2-Rj7yvO72sh2q39L11edRXgGXLrlEvEY--0y7TG0saY1GEJ4lRoOmGaqUuEM17FTvsUsV3oHCnaYBggrcYy9hgBOO4DeKik3KGIMu3OXOTXlB1-Gjsi5jHif72LOruqZ-gyWxPrd2UU1__w4P9scGNbtmS79mNYqdJUtjvzq1VYCKM1WL4mXrgGqxUsTNh2pV399gl8_jEJl37MqHFAhsksOykXLco1SIYARcrQ4xHDTJmR6HhRhIK1Ot9ZWhyhsafHp0_h4F7M-QwWR-NRWAeGWJMInSSIBF7hGy4gewanZe4D5pkygkZtMptVCubUSKOwc-1lsrKlU2tkZasjePf3lbOZfMddP35D82AptHHcLK1uKODXkUiW3UUeV03Sgopgq54qW8X8xM49NIL39fRde3zb327cPdhLWOruD_q23xvubcIjQWlFeVx4CxanF5fhOSZFU_ei9EQGP-_b9f8AiMAVZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbhMxEB21qYTKAdECIlCoDyCgyGri9a7NoaKFJrQUQlS1Um9mvfYC0pIUkgr11_g6njdeUkD01vNmndV4_N6MPX5D9Aghe2Glc7woS8WlQs6ae2W5Tkowju64rC7GfD_I9o7l25P0ZIF-NndhQlllg4k1ULtxEfbIN0FcSiQJ-H6zjGURw93-y9NvPHSQCietTTuNmYsc-PMfSN8mW_u7mOvHQvR7R6_3eOwwwAvw7JQnwGZnlS2UQpqjdW6Rjljpu1bobm4zYbWTqVUuB84LVYKuNZYEKDZNUofVgHEXaUkhK-q0aOlVbzA8nEv-6rrfT-eFSHkKNmjOVGcX93S42tZFNi-15OoPVvybG_45pK25r3-TbsSgle3MvGyFFvxola5fkDJcpZUIEhP2NCpZP7tF28OJP3NjFtoIFAht2Zd6C6PekWSAq6ATPR4xxM0sSJBXla9Y780HllefYO7p56-36fhKDHqHWqPxyN8lBuTJhMoy4IKTeMN6cKm3KimdR9SZtKnTmMwUUc88tNWozFyJOVjZhBq2YGWj2rTx-5XTmZjHZT9-EubBhIWOcYs83lfA1wXJLLMDVpfdoAzVprVmqkxEgImZ-2ubnjfTd-Hx__723uWDrdM1uL15tz84uE_LIsQYde3wGrWm38_8A0RIU_swuiKjj1ft_b8AhrEa9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo+expected+improvement+criterion+for+parallel+EGO+algorithm&rft.jtitle=Journal+of+global+optimization&rft.au=Zhan%2C+Dawei&rft.au=Qian%2C+Jiachang&rft.au=Cheng%2C+Yuansheng&rft.date=2017-07-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=68&rft.issue=3&rft.spage=641&rft.epage=662&rft_id=info:doi/10.1007%2Fs10898-016-0484-7&rft.externalDocID=10_1007_s10898_016_0484_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon