Nagumo viability theorem. Revisited

We consider the nonlinear ordinary differential equation u ′ ( t ) = f ( t , u ( t ) ) + h ( t , u ( t ) ) , where X is a real Banach space, I is a nonempty and open interval, K a nonempty and locally closed subset in X, f : I × K → X a compact function, and h : I × K → X continuous on I × K and loc...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis Vol. 64; no. 9; pp. 2043 - 2052
Main Author Vrabie, Ioan I.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the nonlinear ordinary differential equation u ′ ( t ) = f ( t , u ( t ) ) + h ( t , u ( t ) ) , where X is a real Banach space, I is a nonempty and open interval, K a nonempty and locally closed subset in X, f : I × K → X a compact function, and h : I × K → X continuous on I × K and locally Lipschitz with respect to its last argument. We prove that a necessary and sufficient condition in order that for each ( τ , ξ ) ∈ I × K there exists T > τ such that the equation above has at least one solution u : [ τ , T ] → K is the tangency condition below lim inf s ↓ 0 1 s d ( ξ + s [ f ( τ , ξ ) + h ( τ , ξ ) ] ; K ) = 0 for each ( τ , ξ ) ∈ I × K . As an application, we deduce the existence of positive solutions for a class of pseudoparabolic semilinear equations.
AbstractList We consider the nonlinear ordinary differential equation u'(t)=f(t,u(t))+h(t,u(t)), where X is a real Banach space, I is a nonempty and open interval, K a nonempty and locally closed subset in X, f:IXK- > X a compact function, and h:IXK- > X continuous on IXK and locally Lipschitz with respect to its last argument. We prove that a necessary and sufficient condition in order that for each (tau,&D*x)IXK there exists T > tau such that the equation above has at least one solution u:[tau,T]- > K is the tangency condition below
We consider the nonlinear ordinary differential equation u ′ ( t ) = f ( t , u ( t ) ) + h ( t , u ( t ) ) , where X is a real Banach space, I is a nonempty and open interval, K a nonempty and locally closed subset in X, f : I × K → X a compact function, and h : I × K → X continuous on I × K and locally Lipschitz with respect to its last argument. We prove that a necessary and sufficient condition in order that for each ( τ , ξ ) ∈ I × K there exists T > τ such that the equation above has at least one solution u : [ τ , T ] → K is the tangency condition below lim inf s ↓ 0 1 s d ( ξ + s [ f ( τ , ξ ) + h ( τ , ξ ) ] ; K ) = 0 for each ( τ , ξ ) ∈ I × K . As an application, we deduce the existence of positive solutions for a class of pseudoparabolic semilinear equations.
Author Vrabie, Ioan I.
Author_xml – sequence: 1
  givenname: Ioan I.
  surname: Vrabie
  fullname: Vrabie, Ioan I.
  email: ivrabie@uaic.ro
  organization: Faculty of Mathematics, “Al. I. Cuza” University of Iaşi & “O. Mayer” Mathematics Institute of the Romanian Academy, Iaşi, Romania
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17590100$$DView record in Pascal Francis
BookMark eNp1kEtLw0AUhQepYFvduyyI7hLvPJO4k1IfUBREwd0wmdzolGRSZ9JC_70pLbhydTffOYf7TcjIdx4JuaSQUqDqdpV6kzIAmUKWAs9OyJjmGU8ko3JExsAVS6RQn2dkEuMKAGjG1ZhcvZivTdvNts6UrnH9btZ_YxewTWdvuHXR9Vidk9PaNBEvjndKPh4W7_OnZPn6-Dy_XyaWS9knw1BR51JUEqmqWQGqLjhVjPEcpKBGQSkMLausrIwUYEUukXPLRFkVZa4En5KbQ-86dD8bjL1uXbTYNMZjt4maFQKGkXwA4QDa0MUYsNbr4FoTdpqC3tvQK-2N3tvQkOnBxhC5PnabaE1TB-Oti3-5TBZAAQbu7sDh8OjWYdDROvQWKxfQ9rrq3P8jv0uRcwU
CODEN NOANDD
CitedBy_id crossref_primary_10_1016_j_na_2010_11_009
Cites_doi 10.1007/BF01703268
10.1016/S1874-5725(05)80005-7
10.1007/BF01695169
10.1007/978-1-4612-0091-8
10.1016/S0022-247X(02)00200-7
10.1002/cpa.3160230211
ContentType Journal Article
Copyright 2005 Elsevier Ltd
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Ltd
– notice: 2006 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7QF
7SC
7TB
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.na.2005.07.037
DatabaseName Pascal-Francis
CrossRef
Aluminium Industry Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1873-5215
EndPage 2052
ExternalDocumentID 10_1016_j_na_2005_07_037
17590100
S0362546X05007340
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
08R
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
CITATION
7QF
7SC
7TB
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c355t-2159f854d5e16f2906f931622380541a60b4a1bd7bda540c485e33c24bd9b8643
IEDL.DBID AIKHN
ISSN 0362-546X
IngestDate Fri Oct 25 23:20:13 EDT 2024
Thu Sep 26 17:49:38 EDT 2024
Sun Oct 22 16:08:03 EDT 2023
Fri Feb 23 02:23:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Tangency condition
Slow fluids
Viable set
Pseudoparabolic equation
secondary 35K70
b-compact function
Lipschitz function
80A20
Primary 34G20
47J35
b compact function
Slow fluid
Viability
80A20 Viable set
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-2159f854d5e16f2906f931622380541a60b4a1bd7bda540c485e33c24bd9b8643
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29402158
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_29402158
crossref_primary_10_1016_j_na_2005_07_037
pascalfrancis_primary_17590100
elsevier_sciencedirect_doi_10_1016_j_na_2005_07_037
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Nonlinear analysis
PublicationYear 2006
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yorke (bib13) 1968; 2
Nagumo (bib8) 1942; 24
Brezis (bib2) 1970; 23
Díaz, Quintanilla (bib5) 2002; 273
Yorke (bib12) 1967; 1
I.I. Vrabie
Vrabie (bib11) 2004
S.N. Antontsev, J.I. Díaz, S.I. Shmarev, Energy methods for free boundary problems: Applications to nonlinear PDSs and fluid mechanics, Progress in Nonlinear Differential Equations and Their Applications, vol. 48, Birkhäuser, Basel, Boston, Berlin, 2002.
O. Cârjă, I.I. Vrabie, Differential equations on closed sets, in: A. Cañada, P. Drabek, A. Fonda (Eds.), Handbook of Differential Equations vol. 2, Ordinary Differential Equations, 2005, pp. 147–238 .
Hartman (bib7) 1972; 32
I.I. Vrabie, Compactness methods for nonlinear evolutions, second ed., Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, Longman, 1995.
Frigon, O’Reagan (bib6) 1994; 2
semigroups and applications, North-Holland Mathematics Studies, vol. 191, Elsevier, Amsterdam, 2003.
Crandall (bib4) 1972; 36
10.1016/j.na.2005.07.037_bib9
Vrabie (10.1016/j.na.2005.07.037_bib11) 2004
Yorke (10.1016/j.na.2005.07.037_bib12) 1967; 1
10.1016/j.na.2005.07.037_bib10
Brezis (10.1016/j.na.2005.07.037_bib2) 1970; 23
Yorke (10.1016/j.na.2005.07.037_bib13) 1968; 2
Crandall (10.1016/j.na.2005.07.037_bib4) 1972; 36
10.1016/j.na.2005.07.037_bib3
10.1016/j.na.2005.07.037_bib1
Hartman (10.1016/j.na.2005.07.037_bib7) 1972; 32
Díaz (10.1016/j.na.2005.07.037_bib5) 2002; 273
Frigon (10.1016/j.na.2005.07.037_bib6) 1994; 2
Nagumo (10.1016/j.na.2005.07.037_bib8) 1942; 24
References_xml – volume: 2
  start-page: 41
  year: 1994
  end-page: 48
  ident: bib6
  article-title: Existence results for initial value problems in Banach spaces
  publication-title: Differential Equations Dynamical Syst.
  contributor:
    fullname: O’Reagan
– volume: 2
  start-page: 381
  year: 1968
  ident: bib13
  article-title: Invariance for ordinary differential equations: correction
  publication-title: Math. Syst. Theory
  contributor:
    fullname: Yorke
– volume: 23
  start-page: 261
  year: 1970
  end-page: 263
  ident: bib2
  article-title: On a characterization of flow-invariant sets
  publication-title: Comm. Pure Appl. Math.
  contributor:
    fullname: Brezis
– year: 2004
  ident: bib11
  article-title: Differential Equations. An Introduction to Basic Concepts, Results and Applications
  contributor:
    fullname: Vrabie
– volume: 1
  start-page: 353
  year: 1967
  end-page: 372
  ident: bib12
  article-title: Invariance for ordinary differential equations
  publication-title: Math. Syst. Theory
  contributor:
    fullname: Yorke
– volume: 32
  start-page: 511
  year: 1972
  end-page: 520
  ident: bib7
  article-title: On invariant sets and on a theorem of Ważewski
  publication-title: Proc. Am. Math. Soc.
  contributor:
    fullname: Hartman
– volume: 273
  start-page: 1
  year: 2002
  end-page: 16
  ident: bib5
  article-title: Spatial and continuous dependence estimates in linear viscoelasticity
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Quintanilla
– volume: 36
  start-page: 151
  year: 1972
  end-page: 155
  ident: bib4
  article-title: A generalization of Peano's existence theorem and flow-invariance
  publication-title: Proc. Am. Math. Soc.
  contributor:
    fullname: Crandall
– volume: 24
  start-page: 551
  year: 1942
  end-page: 559
  ident: bib8
  article-title: Über die Lage der Integralkurven gewönlicher Differentialgleichungen
  publication-title: Proc. Phys. Math. Soc. Jpn.
  contributor:
    fullname: Nagumo
– volume: 2
  start-page: 381
  year: 1968
  ident: 10.1016/j.na.2005.07.037_bib13
  article-title: Invariance for ordinary differential equations: correction
  publication-title: Math. Syst. Theory
  doi: 10.1007/BF01703268
  contributor:
    fullname: Yorke
– ident: 10.1016/j.na.2005.07.037_bib3
  doi: 10.1016/S1874-5725(05)80005-7
– volume: 32
  start-page: 511
  year: 1972
  ident: 10.1016/j.na.2005.07.037_bib7
  article-title: On invariant sets and on a theorem of Ważewski
  publication-title: Proc. Am. Math. Soc.
  contributor:
    fullname: Hartman
– ident: 10.1016/j.na.2005.07.037_bib9
– volume: 2
  start-page: 41
  year: 1994
  ident: 10.1016/j.na.2005.07.037_bib6
  article-title: Existence results for initial value problems in Banach spaces
  publication-title: Differential Equations Dynamical Syst.
  contributor:
    fullname: Frigon
– volume: 36
  start-page: 151
  year: 1972
  ident: 10.1016/j.na.2005.07.037_bib4
  article-title: A generalization of Peano's existence theorem and flow-invariance
  publication-title: Proc. Am. Math. Soc.
  contributor:
    fullname: Crandall
– volume: 24
  start-page: 551
  year: 1942
  ident: 10.1016/j.na.2005.07.037_bib8
  article-title: Über die Lage der Integralkurven gewönlicher Differentialgleichungen
  publication-title: Proc. Phys. Math. Soc. Jpn.
  contributor:
    fullname: Nagumo
– volume: 1
  start-page: 353
  year: 1967
  ident: 10.1016/j.na.2005.07.037_bib12
  article-title: Invariance for ordinary differential equations
  publication-title: Math. Syst. Theory
  doi: 10.1007/BF01695169
  contributor:
    fullname: Yorke
– year: 2004
  ident: 10.1016/j.na.2005.07.037_bib11
  contributor:
    fullname: Vrabie
– ident: 10.1016/j.na.2005.07.037_bib10
– ident: 10.1016/j.na.2005.07.037_bib1
  doi: 10.1007/978-1-4612-0091-8
– volume: 273
  start-page: 1
  year: 2002
  ident: 10.1016/j.na.2005.07.037_bib5
  article-title: Spatial and continuous dependence estimates in linear viscoelasticity
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00200-7
  contributor:
    fullname: Díaz
– volume: 23
  start-page: 261
  year: 1970
  ident: 10.1016/j.na.2005.07.037_bib2
  article-title: On a characterization of flow-invariant sets
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160230211
  contributor:
    fullname: Brezis
SSID ssj0001736
Score 1.8286299
Snippet We consider the nonlinear ordinary differential equation u ′ ( t ) = f ( t , u ( t ) ) + h ( t , u ( t ) ) , where X is a real Banach space, I is a nonempty...
We consider the nonlinear ordinary differential equation u'(t)=f(t,u(t))+h(t,u(t)), where X is a real Banach space, I is a nonempty and open interval, K a...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 2043
SubjectTerms b-compact function
Exact sciences and technology
Lipschitz function
Mathematical analysis
Mathematics
Operator theory
Ordinary differential equations
Partial differential equations
Physics
Pseudoparabolic equation
Sciences and techniques of general use
Slow fluids
Statistical physics, thermodynamics, and nonlinear dynamical systems
Tangency condition
Thermodynamics
Viable set
Title Nagumo viability theorem. Revisited
URI https://dx.doi.org/10.1016/j.na.2005.07.037
https://search.proquest.com/docview/29402158
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MeVHE3-L8MQt68dAtbZM2PcpwTGU7qIPdQpK2MmHdcJvgxb_dlzWdiuLBYwsh5SX53te8974HcIFeKyaZjt04IYlLpU9djjzA1ZIqFnKt-aIZTLcXdvr0dsAGFWiVtTAmrdJif4HpC7S2b5rWms3JcNh8MNjLaDggzISbKP63r6I78nkVVq9u7jq9JSB7URCWKlJmgI1WFmleubQXK1GDmGbov3unjYmcos2yotnFD9xeOKP2NmxaFulcFR-6A5U034Utyygde16nu7D-RW4Qn7pLjdbpHpz35NN8NHZeh4VU95tTFDWOGs79ouQcueg-9NvXj62Oa1smuBqJw8xFBx5nnNGEpV6YGSn3LA68EDkAR27myZAoKj2VRCqRyNU05SwNAu1TlcSKIzs5gGo-ztNDcGhCNEm4yhATqNZpHASUEa2VH2gklVkNLktTiUmhjCHKlLFnkUvT4JIJEgk0aw2C0pbi2-oKBO4_RtW_mf1zmshUzBJSg7NyHQSeChPqkHk6nk-FH1NDZvjRvyY-hrXipsXkNZ5AdfYyT0-Re8xUHVYa717d7rAPU23VAw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGH4RPaiI3-L8WkEvHrqlbdKmRxHH1G0HP2C3kKStTFg33CZ48bf7pk3VoXjw2NKS8iR53qd5vwDO0GrFJNOxGyckcan0qctRB7haUsVCrjUvmsF0e2H7kd70WX8BLqtcGBNWabm_5PSCre2dpkWzOR4MmveGexkN-4QZdxPF__YlavQxLurG-1echxcFYVVDyjxufZVlkFcu7bFK1CCmFfrvtmltLCeIWFa2uvjB2oUpam3CutWQzkX5mVuwkObbsGH1pGN362QbVr8VG8Sr7meF1skOnPbk02w4cl4HZaHuN6dMaRw2nLsi4RyV6C48tq4eLtuubZjgapQNUxfNd5xxRhOWemFmCrlnceCFqAA4KjNPhkRR6akkUolEpaYpZ2kQaJ-qJFYctckeLOajPN0HhyZEk4SrDBmBap3GQUAZ0Vr5gUZJmdXgvIJKjMu6GKIKGHsWuTTtLZkgkUBYaxBUWIq5uRVI23-8dTIH-9cwkcmXJaQG9WoeBO4J4-iQeTqaTYQfUyNl-MG_Bq7Dcvuh2xGd697tIayUZy4mwvEIFqcvs_QYVchUnRSr7AM469Xc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nagumo+viability+theorem.+Revisited&rft.jtitle=Nonlinear+analysis&rft.au=Vrabie%2C+Ioan+I.&rft.date=2006-05-01&rft.pub=Elsevier+Ltd&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=64&rft.issue=9&rft.spage=2043&rft.epage=2052&rft_id=info:doi/10.1016%2Fj.na.2005.07.037&rft.externalDocID=S0362546X05007340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon