Nagumo viability theorem. Revisited
We consider the nonlinear ordinary differential equation u ′ ( t ) = f ( t , u ( t ) ) + h ( t , u ( t ) ) , where X is a real Banach space, I is a nonempty and open interval, K a nonempty and locally closed subset in X, f : I × K → X a compact function, and h : I × K → X continuous on I × K and loc...
Saved in:
Published in | Nonlinear analysis Vol. 64; no. 9; pp. 2043 - 2052 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.05.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the nonlinear ordinary differential equation
u
′
(
t
)
=
f
(
t
,
u
(
t
)
)
+
h
(
t
,
u
(
t
)
)
,
where
X is a real Banach space,
I is a nonempty and open interval,
K a nonempty and locally closed subset in
X,
f
:
I
×
K
→
X
a compact function, and
h
:
I
×
K
→
X
continuous on
I
×
K
and locally Lipschitz with respect to its last argument. We prove that a necessary and sufficient condition in order that for each
(
τ
,
ξ
)
∈
I
×
K
there exists
T
>
τ
such that the equation above has at least one solution
u
:
[
τ
,
T
]
→
K
is the tangency condition below
lim
inf
s
↓
0
1
s
d
(
ξ
+
s
[
f
(
τ
,
ξ
)
+
h
(
τ
,
ξ
)
]
;
K
)
=
0
for each
(
τ
,
ξ
)
∈
I
×
K
. As an application, we deduce the existence of positive solutions for a class of pseudoparabolic semilinear equations. |
---|---|
AbstractList | We consider the nonlinear ordinary differential equation u'(t)=f(t,u(t))+h(t,u(t)), where X is a real Banach space, I is a nonempty and open interval, K a nonempty and locally closed subset in X, f:IXK- > X a compact function, and h:IXK- > X continuous on IXK and locally Lipschitz with respect to its last argument. We prove that a necessary and sufficient condition in order that for each (tau,&D*x)IXK there exists T > tau such that the equation above has at least one solution u:[tau,T]- > K is the tangency condition below We consider the nonlinear ordinary differential equation u ′ ( t ) = f ( t , u ( t ) ) + h ( t , u ( t ) ) , where X is a real Banach space, I is a nonempty and open interval, K a nonempty and locally closed subset in X, f : I × K → X a compact function, and h : I × K → X continuous on I × K and locally Lipschitz with respect to its last argument. We prove that a necessary and sufficient condition in order that for each ( τ , ξ ) ∈ I × K there exists T > τ such that the equation above has at least one solution u : [ τ , T ] → K is the tangency condition below lim inf s ↓ 0 1 s d ( ξ + s [ f ( τ , ξ ) + h ( τ , ξ ) ] ; K ) = 0 for each ( τ , ξ ) ∈ I × K . As an application, we deduce the existence of positive solutions for a class of pseudoparabolic semilinear equations. |
Author | Vrabie, Ioan I. |
Author_xml | – sequence: 1 givenname: Ioan I. surname: Vrabie fullname: Vrabie, Ioan I. email: ivrabie@uaic.ro organization: Faculty of Mathematics, “Al. I. Cuza” University of Iaşi & “O. Mayer” Mathematics Institute of the Romanian Academy, Iaşi, Romania |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17590100$$DView record in Pascal Francis |
BookMark | eNp1kEtLw0AUhQepYFvduyyI7hLvPJO4k1IfUBREwd0wmdzolGRSZ9JC_70pLbhydTffOYf7TcjIdx4JuaSQUqDqdpV6kzIAmUKWAs9OyJjmGU8ko3JExsAVS6RQn2dkEuMKAGjG1ZhcvZivTdvNts6UrnH9btZ_YxewTWdvuHXR9Vidk9PaNBEvjndKPh4W7_OnZPn6-Dy_XyaWS9knw1BR51JUEqmqWQGqLjhVjPEcpKBGQSkMLausrIwUYEUukXPLRFkVZa4En5KbQ-86dD8bjL1uXbTYNMZjt4maFQKGkXwA4QDa0MUYsNbr4FoTdpqC3tvQK-2N3tvQkOnBxhC5PnabaE1TB-Oti3-5TBZAAQbu7sDh8OjWYdDROvQWKxfQ9rrq3P8jv0uRcwU |
CODEN | NOANDD |
CitedBy_id | crossref_primary_10_1016_j_na_2010_11_009 |
Cites_doi | 10.1007/BF01703268 10.1016/S1874-5725(05)80005-7 10.1007/BF01695169 10.1007/978-1-4612-0091-8 10.1016/S0022-247X(02)00200-7 10.1002/cpa.3160230211 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Ltd 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier Ltd – notice: 2006 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7QF 7SC 7TB 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.na.2005.07.037 |
DatabaseName | Pascal-Francis CrossRef Aluminium Industry Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics Physics |
EISSN | 1873-5215 |
EndPage | 2052 |
ExternalDocumentID | 10_1016_j_na_2005_07_037 17590100 S0362546X05007340 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HMJ HVGLF HZ~ IHE J1W JJJVA KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SME SPC SPCBC SST SSW SSZ T5K TN5 WUQ XPP YQT ZMT ~G- 08R ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ CITATION 7QF 7SC 7TB 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c355t-2159f854d5e16f2906f931622380541a60b4a1bd7bda540c485e33c24bd9b8643 |
IEDL.DBID | AIKHN |
ISSN | 0362-546X |
IngestDate | Fri Oct 25 23:20:13 EDT 2024 Thu Sep 26 17:49:38 EDT 2024 Sun Oct 22 16:08:03 EDT 2023 Fri Feb 23 02:23:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Tangency condition Slow fluids Viable set Pseudoparabolic equation secondary 35K70 b-compact function Lipschitz function 80A20 Primary 34G20 47J35 b compact function Slow fluid Viability 80A20 Viable set |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-2159f854d5e16f2906f931622380541a60b4a1bd7bda540c485e33c24bd9b8643 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29402158 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_29402158 crossref_primary_10_1016_j_na_2005_07_037 pascalfrancis_primary_17590100 elsevier_sciencedirect_doi_10_1016_j_na_2005_07_037 |
PublicationCentury | 2000 |
PublicationDate | 2006-05-01 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: 2006-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Nonlinear analysis |
PublicationYear | 2006 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Yorke (bib13) 1968; 2 Nagumo (bib8) 1942; 24 Brezis (bib2) 1970; 23 Díaz, Quintanilla (bib5) 2002; 273 Yorke (bib12) 1967; 1 I.I. Vrabie Vrabie (bib11) 2004 S.N. Antontsev, J.I. Díaz, S.I. Shmarev, Energy methods for free boundary problems: Applications to nonlinear PDSs and fluid mechanics, Progress in Nonlinear Differential Equations and Their Applications, vol. 48, Birkhäuser, Basel, Boston, Berlin, 2002. O. Cârjă, I.I. Vrabie, Differential equations on closed sets, in: A. Cañada, P. Drabek, A. Fonda (Eds.), Handbook of Differential Equations vol. 2, Ordinary Differential Equations, 2005, pp. 147–238 . Hartman (bib7) 1972; 32 I.I. Vrabie, Compactness methods for nonlinear evolutions, second ed., Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, Longman, 1995. Frigon, O’Reagan (bib6) 1994; 2 semigroups and applications, North-Holland Mathematics Studies, vol. 191, Elsevier, Amsterdam, 2003. Crandall (bib4) 1972; 36 10.1016/j.na.2005.07.037_bib9 Vrabie (10.1016/j.na.2005.07.037_bib11) 2004 Yorke (10.1016/j.na.2005.07.037_bib12) 1967; 1 10.1016/j.na.2005.07.037_bib10 Brezis (10.1016/j.na.2005.07.037_bib2) 1970; 23 Yorke (10.1016/j.na.2005.07.037_bib13) 1968; 2 Crandall (10.1016/j.na.2005.07.037_bib4) 1972; 36 10.1016/j.na.2005.07.037_bib3 10.1016/j.na.2005.07.037_bib1 Hartman (10.1016/j.na.2005.07.037_bib7) 1972; 32 Díaz (10.1016/j.na.2005.07.037_bib5) 2002; 273 Frigon (10.1016/j.na.2005.07.037_bib6) 1994; 2 Nagumo (10.1016/j.na.2005.07.037_bib8) 1942; 24 |
References_xml | – volume: 2 start-page: 41 year: 1994 end-page: 48 ident: bib6 article-title: Existence results for initial value problems in Banach spaces publication-title: Differential Equations Dynamical Syst. contributor: fullname: O’Reagan – volume: 2 start-page: 381 year: 1968 ident: bib13 article-title: Invariance for ordinary differential equations: correction publication-title: Math. Syst. Theory contributor: fullname: Yorke – volume: 23 start-page: 261 year: 1970 end-page: 263 ident: bib2 article-title: On a characterization of flow-invariant sets publication-title: Comm. Pure Appl. Math. contributor: fullname: Brezis – year: 2004 ident: bib11 article-title: Differential Equations. An Introduction to Basic Concepts, Results and Applications contributor: fullname: Vrabie – volume: 1 start-page: 353 year: 1967 end-page: 372 ident: bib12 article-title: Invariance for ordinary differential equations publication-title: Math. Syst. Theory contributor: fullname: Yorke – volume: 32 start-page: 511 year: 1972 end-page: 520 ident: bib7 article-title: On invariant sets and on a theorem of Ważewski publication-title: Proc. Am. Math. Soc. contributor: fullname: Hartman – volume: 273 start-page: 1 year: 2002 end-page: 16 ident: bib5 article-title: Spatial and continuous dependence estimates in linear viscoelasticity publication-title: J. Math. Anal. Appl. contributor: fullname: Quintanilla – volume: 36 start-page: 151 year: 1972 end-page: 155 ident: bib4 article-title: A generalization of Peano's existence theorem and flow-invariance publication-title: Proc. Am. Math. Soc. contributor: fullname: Crandall – volume: 24 start-page: 551 year: 1942 end-page: 559 ident: bib8 article-title: Über die Lage der Integralkurven gewönlicher Differentialgleichungen publication-title: Proc. Phys. Math. Soc. Jpn. contributor: fullname: Nagumo – volume: 2 start-page: 381 year: 1968 ident: 10.1016/j.na.2005.07.037_bib13 article-title: Invariance for ordinary differential equations: correction publication-title: Math. Syst. Theory doi: 10.1007/BF01703268 contributor: fullname: Yorke – ident: 10.1016/j.na.2005.07.037_bib3 doi: 10.1016/S1874-5725(05)80005-7 – volume: 32 start-page: 511 year: 1972 ident: 10.1016/j.na.2005.07.037_bib7 article-title: On invariant sets and on a theorem of Ważewski publication-title: Proc. Am. Math. Soc. contributor: fullname: Hartman – ident: 10.1016/j.na.2005.07.037_bib9 – volume: 2 start-page: 41 year: 1994 ident: 10.1016/j.na.2005.07.037_bib6 article-title: Existence results for initial value problems in Banach spaces publication-title: Differential Equations Dynamical Syst. contributor: fullname: Frigon – volume: 36 start-page: 151 year: 1972 ident: 10.1016/j.na.2005.07.037_bib4 article-title: A generalization of Peano's existence theorem and flow-invariance publication-title: Proc. Am. Math. Soc. contributor: fullname: Crandall – volume: 24 start-page: 551 year: 1942 ident: 10.1016/j.na.2005.07.037_bib8 article-title: Über die Lage der Integralkurven gewönlicher Differentialgleichungen publication-title: Proc. Phys. Math. Soc. Jpn. contributor: fullname: Nagumo – volume: 1 start-page: 353 year: 1967 ident: 10.1016/j.na.2005.07.037_bib12 article-title: Invariance for ordinary differential equations publication-title: Math. Syst. Theory doi: 10.1007/BF01695169 contributor: fullname: Yorke – year: 2004 ident: 10.1016/j.na.2005.07.037_bib11 contributor: fullname: Vrabie – ident: 10.1016/j.na.2005.07.037_bib10 – ident: 10.1016/j.na.2005.07.037_bib1 doi: 10.1007/978-1-4612-0091-8 – volume: 273 start-page: 1 year: 2002 ident: 10.1016/j.na.2005.07.037_bib5 article-title: Spatial and continuous dependence estimates in linear viscoelasticity publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00200-7 contributor: fullname: Díaz – volume: 23 start-page: 261 year: 1970 ident: 10.1016/j.na.2005.07.037_bib2 article-title: On a characterization of flow-invariant sets publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160230211 contributor: fullname: Brezis |
SSID | ssj0001736 |
Score | 1.8286299 |
Snippet | We consider the nonlinear ordinary differential equation
u
′
(
t
)
=
f
(
t
,
u
(
t
)
)
+
h
(
t
,
u
(
t
)
)
,
where
X is a real Banach space,
I is a nonempty... We consider the nonlinear ordinary differential equation u'(t)=f(t,u(t))+h(t,u(t)), where X is a real Banach space, I is a nonempty and open interval, K a... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2043 |
SubjectTerms | b-compact function Exact sciences and technology Lipschitz function Mathematical analysis Mathematics Operator theory Ordinary differential equations Partial differential equations Physics Pseudoparabolic equation Sciences and techniques of general use Slow fluids Statistical physics, thermodynamics, and nonlinear dynamical systems Tangency condition Thermodynamics Viable set |
Title | Nagumo viability theorem. Revisited |
URI | https://dx.doi.org/10.1016/j.na.2005.07.037 https://search.proquest.com/docview/29402158 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MeVHE3-L8MQt68dAtbZM2PcpwTGU7qIPdQpK2MmHdcJvgxb_dlzWdiuLBYwsh5SX53te8974HcIFeKyaZjt04IYlLpU9djjzA1ZIqFnKt-aIZTLcXdvr0dsAGFWiVtTAmrdJif4HpC7S2b5rWms3JcNh8MNjLaDggzISbKP63r6I78nkVVq9u7jq9JSB7URCWKlJmgI1WFmleubQXK1GDmGbov3unjYmcos2yotnFD9xeOKP2NmxaFulcFR-6A5U034Utyygde16nu7D-RW4Qn7pLjdbpHpz35NN8NHZeh4VU95tTFDWOGs79ouQcueg-9NvXj62Oa1smuBqJw8xFBx5nnNGEpV6YGSn3LA68EDkAR27myZAoKj2VRCqRyNU05SwNAu1TlcSKIzs5gGo-ztNDcGhCNEm4yhATqNZpHASUEa2VH2gklVkNLktTiUmhjCHKlLFnkUvT4JIJEgk0aw2C0pbi2-oKBO4_RtW_mf1zmshUzBJSg7NyHQSeChPqkHk6nk-FH1NDZvjRvyY-hrXipsXkNZ5AdfYyT0-Re8xUHVYa717d7rAPU23VAw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGH4RPaiI3-L8WkEvHrqlbdKmRxHH1G0HP2C3kKStTFg33CZ48bf7pk3VoXjw2NKS8iR53qd5vwDO0GrFJNOxGyckcan0qctRB7haUsVCrjUvmsF0e2H7kd70WX8BLqtcGBNWabm_5PSCre2dpkWzOR4MmveGexkN-4QZdxPF__YlavQxLurG-1echxcFYVVDyjxufZVlkFcu7bFK1CCmFfrvtmltLCeIWFa2uvjB2oUpam3CutWQzkX5mVuwkObbsGH1pGN362QbVr8VG8Sr7meF1skOnPbk02w4cl4HZaHuN6dMaRw2nLsi4RyV6C48tq4eLtuubZjgapQNUxfNd5xxRhOWemFmCrlnceCFqAA4KjNPhkRR6akkUolEpaYpZ2kQaJ-qJFYctckeLOajPN0HhyZEk4SrDBmBap3GQUAZ0Vr5gUZJmdXgvIJKjMu6GKIKGHsWuTTtLZkgkUBYaxBUWIq5uRVI23-8dTIH-9cwkcmXJaQG9WoeBO4J4-iQeTqaTYQfUyNl-MG_Bq7Dcvuh2xGd697tIayUZy4mwvEIFqcvs_QYVchUnRSr7AM469Xc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nagumo+viability+theorem.+Revisited&rft.jtitle=Nonlinear+analysis&rft.au=Vrabie%2C+Ioan+I.&rft.date=2006-05-01&rft.pub=Elsevier+Ltd&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=64&rft.issue=9&rft.spage=2043&rft.epage=2052&rft_id=info:doi/10.1016%2Fj.na.2005.07.037&rft.externalDocID=S0362546X05007340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon |