Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity

ABSTRACT Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensi...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 57; no. 20; pp. 1367 - 1377
Main Authors Mistry, Devesh, Gleeson, Helen F.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.10.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensile tests that simultaneously track liquid crystal (LC) director rotation. We then use an empirical approach to gain a deeper insight into the LCE's mechanical responses at values of strain, up to 1.5, for initial director orientations between 0° and 90°. Using a method analogous to time–temperature superposition, we create master curves for the LCE's mechanical response and use these to deduce a model that accurately predicts the load curve of the LCE for stresses applied at angles between 15° and 70° relative to the initial LC director. This LCE has been shown to exhibit auxetic behavior for deformations perpendicular to the director. Interestingly, our empirical model predicts that the LCE will further demonstrate auxetic behavior when stressed at angles between 54° and 90° to the director. Our approach could be extended to any LCE; so it represents a significant step forward toward models that would aid the further development of LCE theory and the design and modeling of LCE‐based technologies. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1367–1377 A comprehensive study of the mechanical anisotropy and nonlinearity of a liquid crystal elastomer was performed, and an empirical model which describes a wide range of the material's tensile mechanical behaviour was developed. The methods and model developed will aid the future design and development of LCE‐based mechanical devices.
AbstractList Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensile tests that simultaneously track liquid crystal (LC) director rotation. We then use an empirical approach to gain a deeper insight into the LCE's mechanical responses at values of strain, up to 1.5, for initial director orientations between 0° and 90°. Using a method analogous to time–temperature superposition, we create master curves for the LCE's mechanical response and use these to deduce a model that accurately predicts the load curve of the LCE for stresses applied at angles between 15° and 70° relative to the initial LC director. This LCE has been shown to exhibit auxetic behavior for deformations perpendicular to the director. Interestingly, our empirical model predicts that the LCE will further demonstrate auxetic behavior when stressed at angles between 54° and 90° to the director. Our approach could be extended to any LCE; so it represents a significant step forward toward models that would aid the further development of LCE theory and the design and modeling of LCE‐based technologies. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1367–1377
ABSTRACT Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensile tests that simultaneously track liquid crystal (LC) director rotation. We then use an empirical approach to gain a deeper insight into the LCE's mechanical responses at values of strain, up to 1.5, for initial director orientations between 0° and 90°. Using a method analogous to time–temperature superposition, we create master curves for the LCE's mechanical response and use these to deduce a model that accurately predicts the load curve of the LCE for stresses applied at angles between 15° and 70° relative to the initial LC director. This LCE has been shown to exhibit auxetic behavior for deformations perpendicular to the director. Interestingly, our empirical model predicts that the LCE will further demonstrate auxetic behavior when stressed at angles between 54° and 90° to the director. Our approach could be extended to any LCE; so it represents a significant step forward toward models that would aid the further development of LCE theory and the design and modeling of LCE‐based technologies. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1367–1377 A comprehensive study of the mechanical anisotropy and nonlinearity of a liquid crystal elastomer was performed, and an empirical model which describes a wide range of the material's tensile mechanical behaviour was developed. The methods and model developed will aid the future design and development of LCE‐based mechanical devices.
Author Mistry, Devesh
Gleeson, Helen F.
Author_xml – sequence: 1
  givenname: Devesh
  orcidid: 0000-0003-0012-6781
  surname: Mistry
  fullname: Mistry, Devesh
  email: deveshmistry@outlook.com
  organization: University of Leeds
– sequence: 2
  givenname: Helen F.
  orcidid: 0000-0002-7494-2100
  surname: Gleeson
  fullname: Gleeson, Helen F.
  organization: University of Leeds
BookMark eNp9kU1u3DAMhYViAnTys-kJBHRXwAllW7bVXTtpkgJTJIvsDVmipgpsyZE0COY2PULPkJNFGXfdFQm-j3wg3ilZOe-QkE8MLhlAeTX7cbgs664VH8iagRAF1F23ImvourZoyqb5SE5jfALIGhdr8ucXqt_SWSVHqtH4MMlkvYvUGyrpaJ_3VlMVDjFlAEcZk58wUJmotgFV8rl3uxEjHTC9IDoKr3_zSFORm6_0GvVeWbfLI4rTbMPRafIa8zmn_DTLGBfdRp-Cn62i-anROpTBpsM5OTFyjHjxr56Rx5sfj5u7Ynt_-3PzbVuoinNRDJUYYKg7JrVEw1lppJBGcdMoqHmlq2FoUYMouYGWt6oSmgHrmqyXTY3VGfm8nJ2Df95jTP2T3weXHfuyAt5WjHPI1JeFUsHHGND0c7CTDIeeQf8eQP8eQH8MIMNsgV_siIf_kP3D_fb7svMGqJ2PZw
CitedBy_id crossref_primary_10_1126_sciadv_adn0235
crossref_primary_10_3390_polym16141957
crossref_primary_10_1021_acs_macromol_4c00245
crossref_primary_10_1038_s41467_022_32865_1
crossref_primary_10_1039_D0SM02244F
crossref_primary_10_1080_02678292_2022_2161655
crossref_primary_10_1007_s42558_023_00051_y
crossref_primary_10_1021_acs_macromol_9b02456
crossref_primary_10_1002_aisy_202000216
crossref_primary_10_1080_02678292_2020_1790680
crossref_primary_10_3390_cryst12111654
crossref_primary_10_1016_j_apmt_2022_101643
crossref_primary_10_1002_chem_202102224
crossref_primary_10_1016_j_jmps_2024_105718
crossref_primary_10_1021_acs_macromol_2c00587
crossref_primary_10_1038_s41428_022_00641_z
crossref_primary_10_1557_s43577_021_00115_2
crossref_primary_10_3390_molecules26237313
crossref_primary_10_1002_aisy_202100065
crossref_primary_10_1103_PhysRevResearch_3_023191
crossref_primary_10_1038_s43246_022_00253_3
crossref_primary_10_3390_cryst10040315
crossref_primary_10_1002_marc_202200599
Cites_doi 10.1002/(SICI)1521-3935(19980401)199:4<677::AID-MACP677>3.0.CO;2-E
10.1038/ncomms10781
10.1016/0032-3861(91)90412-C
10.1002/adma.201501446
10.1038/s41586-018-0474-7
10.1039/C7SM02107K
10.1021/acs.chemrev.7b00168
10.1021/ma062781f
10.1103/PhysRevE.47.R3838
10.1515/epoly.2001.1.1.111
10.1002/anie.201205964
10.1038/s41467-018-04911-4
10.1038/nature21003
10.1021/acsmacrolett.5b00729
10.1103/PhysRevLett.71.2947
10.1039/C7SM01380A
10.1016/j.eml.2018.05.003
10.1016/j.snb.2016.09.004
10.1038/nmat4433
10.1016/S1381-5148(99)00032-2
10.3390/mi9080416
10.1038/s41467-018-07587-y
10.1038/ncomms8418
10.1002/anie.201006464
10.1186/s12951-017-0306-1
10.1051/jp2:1994257
10.1016/S0032-3861(01)00135-5
10.1201/b11597
10.1002/adma.201402878
10.1039/C8TB02767F
10.1002/marc.1995.030160908
10.1103/PhysRevLett.87.015501
10.1021/ma400771z
10.1051/jp2:1994100
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID 24P
WIN
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/polb.24879
DatabaseName Wiley Online Library Open Access
Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1099-0488
EndPage 1377
ExternalDocumentID 10_1002_polb_24879
POLB24879
Genre article
GrantInformation_xml – fundername: Royal Commission for the Exhibition of 1851
– fundername: Engineering and Physical Sciences Research Council
  funderid: 1611009
– fundername: English‐Speaking Union
  funderid: n/a
GroupedDBID -~X
.GA
05W
10A
1L6
1OC
1ZS
24P
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-1
8UM
930
A03
AAEVG
AAHBH
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
BDRZF
BRXPI
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
G-S
GNP
GODZA
GYXMG
HBH
HGLYW
HHY
HHZ
IX1
KQQ
LATKE
LAW
LEEKS
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2W
P4D
QB0
QRW
RNS
ROL
RWB
RWI
RYL
SUPJJ
TN5
UB1
UPT
V2E
W99
WH7
WIH
WIN
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAMNL
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c3559-b39b0b481adaef512fa9afc5f6c0453d3bb7ed0925f0757c39d10186f6c264e3
IEDL.DBID 24P
ISSN 0887-6266
IngestDate Thu Oct 10 16:08:58 EDT 2024
Fri Dec 06 05:21:03 EST 2024
Sat Aug 24 01:10:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3559-b39b0b481adaef512fa9afc5f6c0453d3bb7ed0925f0757c39d10186f6c264e3
ORCID 0000-0003-0012-6781
0000-0002-7494-2100
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.24879
PQID 2305731550
PQPubID 1016371
PageCount 11
ParticipantIDs proquest_journals_2305731550
crossref_primary_10_1002_polb_24879
wiley_primary_10_1002_polb_24879_POLB24879
PublicationCentury 2000
PublicationDate October 15, 2019
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: October 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 7
1993; 47
2015; 14
2018; 561
2015; 6
1995; 16
2011
2013; 46
1991; 32
2014; 26
2016; 540
1999; 41
1998; 199
2018; 22
2017; 117
2001; 42
2001; 87
2012; 51
2016; 5
2018; 9
2016; 7
2015; 27
2017; 15
1993; 71
2017; 13
2011; 50
2016
2017; 240
2007; 40
2001; 1
2013
1994; 4
2018; 14
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
Warner M. (e_1_2_6_33_1) 2013
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Gerdeen J. C. (e_1_2_6_34_1) 2011
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – year: 2011
– volume: 46
  start-page: 5223
  year: 2013
  publication-title: Macromolecules
– volume: 51
  start-page: 12469
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 1890
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 7537
  year: 2017
  publication-title: Soft Matter
– volume: 540
  start-page: 371
  year: 2016
  publication-title: Nature
– volume: 40
  start-page: 3655
  year: 2007
  publication-title: Macromolecules
– volume: 6
  start-page: 7418
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 75
  year: 1994
  publication-title: J. Phys. II Fr.
– volume: 32
  start-page: 1347
  year: 1991
  publication-title: Polymer (Guildf)
– volume: 41
  start-page: 1
  year: 1999
  publication-title: React. Funct. Polym.
– volume: 15
  start-page: 64
  year: 2017
  publication-title: J. Nanobiotechnology
– volume: 14
  start-page: 1301
  year: 2018
  publication-title: Soft Matter
– volume: 9
  start-page: 1
  year: 2018
  publication-title: Nat. Commun.
– volume: 22
  start-page: 51
  year: 2018
  publication-title: Extrem. Mech. Lett.
– volume: 5
  start-page: 4
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 71
  start-page: 2947
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 2215
  year: 1994
  publication-title: J. Phys. II
– volume: 42
  start-page: 7063
  year: 2001
  publication-title: Polymer (Guildf).
– volume: 26
  start-page: 7247
  year: 2014
  publication-title: Adv. Mater.
– year: 2016
– volume: 47
  start-page: R3838
  year: 1993
  publication-title: Phys. Rev. E
– volume: 117
  start-page: 12851
  year: 2017
  publication-title: Chem. Rev.
– volume: 7
  start-page: 10781
  year: 2016
  publication-title: Nat. Commun.
– volume: 87
  start-page: 015501
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 1087
  year: 2015
  publication-title: Nat. Mater.
– volume: 9
  start-page: 5095
  year: 2018
  publication-title: Nat. Commun.
– volume: 240
  start-page: 511
  year: 2017
  publication-title: Sens. Actuators B
– volume: 16
  start-page: 679
  year: 1995
  publication-title: Macromol. Rapid Commun.
– volume: 9
  start-page: 416
  year: 2018
  publication-title: Micromachines
– volume: 561
  start-page: 226
  year: 2018
  publication-title: Nature
– volume: 27
  start-page: 3883
  year: 2015
  publication-title: Adv. Mater.
– volume: 1
  start-page: 111
  year: 2001
  publication-title: e‐Polymers
– volume: 199
  start-page: 677
  year: 1998
  publication-title: Macromol. Chem. Phys.
– volume: 7
  start-page: 1581
  year: 2019
  publication-title: J. Mater. Chem. B
– year: 2013
– ident: e_1_2_6_29_1
  doi: 10.1002/(SICI)1521-3935(19980401)199:4<677::AID-MACP677>3.0.CO;2-E
– ident: e_1_2_6_23_1
  doi: 10.1038/ncomms10781
– ident: e_1_2_6_36_1
  doi: 10.1016/0032-3861(91)90412-C
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.201501446
– ident: e_1_2_6_35_1
  doi: 10.1038/s41586-018-0474-7
– ident: e_1_2_6_20_1
  doi: 10.1039/C7SM02107K
– ident: e_1_2_6_7_1
  doi: 10.1021/acs.chemrev.7b00168
– ident: e_1_2_6_8_1
  doi: 10.1021/ma062781f
– ident: e_1_2_6_15_1
  doi: 10.1103/PhysRevE.47.R3838
– ident: e_1_2_6_18_1
  doi: 10.1515/epoly.2001.1.1.111
– ident: e_1_2_6_22_1
  doi: 10.1002/anie.201205964
– ident: e_1_2_6_14_1
  doi: 10.1038/s41467-018-04911-4
– ident: e_1_2_6_10_1
  doi: 10.1038/nature21003
– ident: e_1_2_6_26_1
  doi: 10.1021/acsmacrolett.5b00729
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevLett.71.2947
– ident: e_1_2_6_25_1
  doi: 10.1039/C7SM01380A
– ident: e_1_2_6_6_1
  doi: 10.1016/j.eml.2018.05.003
– ident: e_1_2_6_13_1
  doi: 10.1016/j.snb.2016.09.004
– ident: e_1_2_6_21_1
  doi: 10.1038/nmat4433
– ident: e_1_2_6_31_1
  doi: 10.1016/S1381-5148(99)00032-2
– ident: e_1_2_6_24_1
  doi: 10.3390/mi9080416
– ident: e_1_2_6_17_1
  doi: 10.1038/s41467-018-07587-y
– ident: e_1_2_6_4_1
  doi: 10.1038/ncomms8418
– ident: e_1_2_6_9_1
  doi: 10.1002/anie.201006464
– ident: e_1_2_6_2_1
  doi: 10.1186/s12951-017-0306-1
– ident: e_1_2_6_11_1
  doi: 10.1051/jp2:1994257
– ident: e_1_2_6_32_1
– ident: e_1_2_6_28_1
  doi: 10.1016/S0032-3861(01)00135-5
– volume-title: Engineering Design with Polymers and Composites
  year: 2011
  ident: e_1_2_6_34_1
  doi: 10.1201/b11597
  contributor:
    fullname: Gerdeen J. C.
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201402878
– ident: e_1_2_6_3_1
  doi: 10.1039/C8TB02767F
– ident: e_1_2_6_27_1
  doi: 10.1002/marc.1995.030160908
– ident: e_1_2_6_19_1
  doi: 10.1103/PhysRevLett.87.015501
– ident: e_1_2_6_16_1
  doi: 10.1021/ma400771z
– volume-title: Liquid Crystal Elastomers
  year: 2013
  ident: e_1_2_6_33_1
  contributor:
    fullname: Warner M.
– ident: e_1_2_6_37_1
  doi: 10.1051/jp2:1994100
SSID ssj0009959
Score 2.4758728
Snippet ABSTRACT Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete...
Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1367
SubjectTerms anisotropic elasticity
Anisotropy
Deformation
Elastomers
empirical model
liquid crystal elastomer
Liquid crystals
Mechanical analysis
Mechanical properties
nonlinear elasticity
Nonlinearity
Polymer physics
Rotating liquids
Strain
Tensile tests
Title Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.24879
https://www.proquest.com/docview/2305731550
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3datRAFMcPa4vYG7Gr4uoqB-qVEDfJZLIZ8abdWkrpapEKvQvzFQlkN9skvfBtfASfwSfzzGQ_9EboTRgy-YA5OXN-J8z8D8DbLDO8YKEJdGxYQBMeDzLNRcCyMEmUiCPpN4nNP6fn35KLG34zgI-bvTC9PsT2h5vzDD9fOweXqp3sRENXdaXex8Tb4gHsE9ekrn5BnFztJHeFL5Xm3YiwPd2Kk8aT3b3_hqMdY_5Nqj7UnD2Bx2tGxOPeqIcwsMshPJptSrMN4aFft6nbp_Bzbt3WXTfSaOx2J2KLdYESq_L2rjSomx_EgBVaIuWuXtgGZYd9LKupvfxe2RbXC7Yw_P2LThkU1PiAp07ZlaIbnUK7WJVeUAR9-Rx0Epg0mbRt31-2ddfUq1Ljsh9e6eriPYPrs0_Xs_NgXXQh0IQeIlBMqFAlWSSNtAXhQCGFLDQvUk30xwxTampNKGJeEG1MNRPGiX6l1E9sZdlz2KO32BeAjDLFTOhERlYmaSjklLKj1KgsKjRTXI_gaDP0-aqX1sh7EeU4dwbKvYFGMN5YJV-7V5tT3sSnzGVXI3jnLfWfJ-RXXy5PfOvlfS5-BQcER8LFqYiPYa9r7uxrApBOvfHfGR1Pv8Z_AMYo2zc
link.rule.ids 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB7BIrRcdmFhRWEXRoITUrpJHKcxN_ZPBdoFoSLtLfJfUES3KU16WJ6GR-AZeDLGTtoCByS4WXZ-ZI_H84018w3A8ywzvGChCXRsWEAHHg8yzUXAsjBJlIgj6ZPExhfp8GPy5pJfdrE5Lhem5YdYX7g5zfDntVNwdyF9tGENnVdT1Y8JcIubcIv0PXIRXacfNuxRjkprRfRJuD1ds5PGR5t3f7dHG5D5K1T1tuZ8ty2oWnuKQhdi8rm_bFRff_2DwPG_p3EXdjoUiq_abXMPbtjZHmyfrIq_7cFtHxmq6_vwbWxdcrCTJRq7znWssSpQ4rT8siwN6sU1ocwpWsLiTXVlFygbbK1lRe3Zp6mtsQsJw_DHd-oyKKjxEk8ddyzZT-pCezUvPWUJ-gI96Eg26biq63a8rKtmUc1LjbN25tJV3nsAk_Ozyckw6Mo6BJrAjQgUEypUSRZJI21BgKOQQhaaF6kmfMkMU2pgTShiXhCeGWgmjKMVS2mc0Jtl-7BFf7EPARn5opnQiYysTNJQyAH5X6lRWVRoprjuwbOVbPN5S96RtzTNce6WPffL3oODldjzToHrnDwzPmDOf-vBCy-_v3whf_9udOxbj_7l4aewPZyMR_no9cXbx3CHoJhwVjHiB7DVLJb2kOBOo574Tf0TT_L-8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgXUhQIjwQkp2yROsjHiAl1WBdpSoSL1UkV-oqjbTdhkD_Br-An8Bn4ZY2ezCxyQ4GbZedljz3wTzXwD8DTPdWpZqAMVaxaQwkuDXKU8YHmYJJLHkfBJYodH2f7H5O1peroBL_pcmI4fYvXDzZ0Mr6_dAa-13V2ThtbVVA5jwtv8ElxOspg75vzxhzV5lGPS6nk-CbZnK3LSeHd97-_maI0xf0Wq3tRMbsJZ_5FdhMn5cNHKofr6B3_j_87iFtxYYlB82W2a27BhZltwba8v_bYFV3xcqGruwLdD41KDnSRRm1WmY4OVRYHT8vOi1KjmXwhjTtEQEm-rCzNH0WJnKytqzz5NTYPLgDAMf3ynLo2cGs9x7JhjyXpSF5qLuvSEJejL86Cj2CRl1TTdeNlU7byqS4WzbuLC1d27CyeT1yd7-8GyqEOgCNrwQDIuQ5nkkdDCWIIbVnBhVWozReiSaSblyOiQx6klNDNSjGtHKpbROGE3w-7BJr3FbAMy8kRzrhIRGZFkIRcj8r4yLfPIKiZTNYAnvWiLuqPuKDqS5rhwy174ZR_ATi_1Ynl8m4L8snTEnPc2gGdefH95QnH8_uCVb93_l4sfw9Xj8aQ4eHP07gFcJxzGnUmM0h3YbOcL85CwTisf-S39E2bM_aE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+deformations+of+a+liquid+crystal+elastomer+at+director+angles+between+0%C2%B0+and+90%C2%B0%3A+Deducing+an+empirical+model+encompassing+anisotropic+nonlinearity&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Mistry%2C+Devesh&rft.au=Gleeson%2C+Helen+F.&rft.date=2019-10-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=57&rft.issue=20&rft.spage=1367&rft.epage=1377&rft_id=info:doi/10.1002%2Fpolb.24879&rft.externalDBID=10.1002%252Fpolb.24879&rft.externalDocID=POLB24879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon