Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity
ABSTRACT Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensi...
Saved in:
Published in | Journal of polymer science. Part B, Polymer physics Vol. 57; no. 20; pp. 1367 - 1377 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.10.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensile tests that simultaneously track liquid crystal (LC) director rotation. We then use an empirical approach to gain a deeper insight into the LCE's mechanical responses at values of strain, up to 1.5, for initial director orientations between 0° and 90°. Using a method analogous to time–temperature superposition, we create master curves for the LCE's mechanical response and use these to deduce a model that accurately predicts the load curve of the LCE for stresses applied at angles between 15° and 70° relative to the initial LC director. This LCE has been shown to exhibit auxetic behavior for deformations perpendicular to the director. Interestingly, our empirical model predicts that the LCE will further demonstrate auxetic behavior when stressed at angles between 54° and 90° to the director. Our approach could be extended to any LCE; so it represents a significant step forward toward models that would aid the further development of LCE theory and the design and modeling of LCE‐based technologies. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1367–1377
A comprehensive study of the mechanical anisotropy and nonlinearity of a liquid crystal elastomer was performed, and an empirical model which describes a wide range of the material's tensile mechanical behaviour was developed. The methods and model developed will aid the future design and development of LCE‐based mechanical devices. |
---|---|
AbstractList | Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensile tests that simultaneously track liquid crystal (LC) director rotation. We then use an empirical approach to gain a deeper insight into the LCE's mechanical responses at values of strain, up to 1.5, for initial director orientations between 0° and 90°. Using a method analogous to time–temperature superposition, we create master curves for the LCE's mechanical response and use these to deduce a model that accurately predicts the load curve of the LCE for stresses applied at angles between 15° and 70° relative to the initial LC director. This LCE has been shown to exhibit auxetic behavior for deformations perpendicular to the director. Interestingly, our empirical model predicts that the LCE will further demonstrate auxetic behavior when stressed at angles between 54° and 90° to the director. Our approach could be extended to any LCE; so it represents a significant step forward toward models that would aid the further development of LCE theory and the design and modeling of LCE‐based technologies. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1367–1377 ABSTRACT Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensile tests that simultaneously track liquid crystal (LC) director rotation. We then use an empirical approach to gain a deeper insight into the LCE's mechanical responses at values of strain, up to 1.5, for initial director orientations between 0° and 90°. Using a method analogous to time–temperature superposition, we create master curves for the LCE's mechanical response and use these to deduce a model that accurately predicts the load curve of the LCE for stresses applied at angles between 15° and 70° relative to the initial LC director. This LCE has been shown to exhibit auxetic behavior for deformations perpendicular to the director. Interestingly, our empirical model predicts that the LCE will further demonstrate auxetic behavior when stressed at angles between 54° and 90° to the director. Our approach could be extended to any LCE; so it represents a significant step forward toward models that would aid the further development of LCE theory and the design and modeling of LCE‐based technologies. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1367–1377 A comprehensive study of the mechanical anisotropy and nonlinearity of a liquid crystal elastomer was performed, and an empirical model which describes a wide range of the material's tensile mechanical behaviour was developed. The methods and model developed will aid the future design and development of LCE‐based mechanical devices. |
Author | Mistry, Devesh Gleeson, Helen F. |
Author_xml | – sequence: 1 givenname: Devesh orcidid: 0000-0003-0012-6781 surname: Mistry fullname: Mistry, Devesh email: deveshmistry@outlook.com organization: University of Leeds – sequence: 2 givenname: Helen F. orcidid: 0000-0002-7494-2100 surname: Gleeson fullname: Gleeson, Helen F. organization: University of Leeds |
BookMark | eNp9kU1u3DAMhYViAnTys-kJBHRXwAllW7bVXTtpkgJTJIvsDVmipgpsyZE0COY2PULPkJNFGXfdFQm-j3wg3ilZOe-QkE8MLhlAeTX7cbgs664VH8iagRAF1F23ImvourZoyqb5SE5jfALIGhdr8ucXqt_SWSVHqtH4MMlkvYvUGyrpaJ_3VlMVDjFlAEcZk58wUJmotgFV8rl3uxEjHTC9IDoKr3_zSFORm6_0GvVeWbfLI4rTbMPRafIa8zmn_DTLGBfdRp-Cn62i-anROpTBpsM5OTFyjHjxr56Rx5sfj5u7Ynt_-3PzbVuoinNRDJUYYKg7JrVEw1lppJBGcdMoqHmlq2FoUYMouYGWt6oSmgHrmqyXTY3VGfm8nJ2Df95jTP2T3weXHfuyAt5WjHPI1JeFUsHHGND0c7CTDIeeQf8eQP8eQH8MIMNsgV_siIf_kP3D_fb7svMGqJ2PZw |
CitedBy_id | crossref_primary_10_1126_sciadv_adn0235 crossref_primary_10_3390_polym16141957 crossref_primary_10_1021_acs_macromol_4c00245 crossref_primary_10_1038_s41467_022_32865_1 crossref_primary_10_1039_D0SM02244F crossref_primary_10_1080_02678292_2022_2161655 crossref_primary_10_1007_s42558_023_00051_y crossref_primary_10_1021_acs_macromol_9b02456 crossref_primary_10_1002_aisy_202000216 crossref_primary_10_1080_02678292_2020_1790680 crossref_primary_10_3390_cryst12111654 crossref_primary_10_1016_j_apmt_2022_101643 crossref_primary_10_1002_chem_202102224 crossref_primary_10_1016_j_jmps_2024_105718 crossref_primary_10_1021_acs_macromol_2c00587 crossref_primary_10_1038_s41428_022_00641_z crossref_primary_10_1557_s43577_021_00115_2 crossref_primary_10_3390_molecules26237313 crossref_primary_10_1002_aisy_202100065 crossref_primary_10_1103_PhysRevResearch_3_023191 crossref_primary_10_1038_s43246_022_00253_3 crossref_primary_10_3390_cryst10040315 crossref_primary_10_1002_marc_202200599 |
Cites_doi | 10.1002/(SICI)1521-3935(19980401)199:4<677::AID-MACP677>3.0.CO;2-E 10.1038/ncomms10781 10.1016/0032-3861(91)90412-C 10.1002/adma.201501446 10.1038/s41586-018-0474-7 10.1039/C7SM02107K 10.1021/acs.chemrev.7b00168 10.1021/ma062781f 10.1103/PhysRevE.47.R3838 10.1515/epoly.2001.1.1.111 10.1002/anie.201205964 10.1038/s41467-018-04911-4 10.1038/nature21003 10.1021/acsmacrolett.5b00729 10.1103/PhysRevLett.71.2947 10.1039/C7SM01380A 10.1016/j.eml.2018.05.003 10.1016/j.snb.2016.09.004 10.1038/nmat4433 10.1016/S1381-5148(99)00032-2 10.3390/mi9080416 10.1038/s41467-018-07587-y 10.1038/ncomms8418 10.1002/anie.201006464 10.1186/s12951-017-0306-1 10.1051/jp2:1994257 10.1016/S0032-3861(01)00135-5 10.1201/b11597 10.1002/adma.201402878 10.1039/C8TB02767F 10.1002/marc.1995.030160908 10.1103/PhysRevLett.87.015501 10.1021/ma400771z 10.1051/jp2:1994100 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | 24P WIN AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/polb.24879 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1099-0488 |
EndPage | 1377 |
ExternalDocumentID | 10_1002_polb_24879 POLB24879 |
Genre | article |
GrantInformation_xml | – fundername: Royal Commission for the Exhibition of 1851 – fundername: Engineering and Physical Sciences Research Council funderid: 1611009 – fundername: English‐Speaking Union funderid: n/a |
GroupedDBID | -~X .GA 05W 10A 1L6 1OC 1ZS 24P 4.4 4ZD 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 7PT 8-1 8UM 930 A03 AAEVG AAHBH AAHHS AANLZ AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADEOM ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU BDRZF BRXPI BY8 CS3 DCZOG DR2 DRFUL DRSTM EBS EJD F00 F5P G-S GNP GODZA GYXMG HBH HGLYW HHY HHZ IX1 KQQ LATKE LAW LEEKS LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MSFUL MSSTM MXFUL MXSTM OIG P2P P2W P4D QB0 QRW RNS ROL RWB RWI RYL SUPJJ TN5 UB1 UPT V2E W99 WH7 WIH WIN WJL WOHZO WQJ WXSBR XG1 XPP XV2 YQT ZZTAW AAMNL AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3559-b39b0b481adaef512fa9afc5f6c0453d3bb7ed0925f0757c39d10186f6c264e3 |
IEDL.DBID | 24P |
ISSN | 0887-6266 |
IngestDate | Thu Oct 10 16:08:58 EDT 2024 Fri Dec 06 05:21:03 EST 2024 Sat Aug 24 01:10:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3559-b39b0b481adaef512fa9afc5f6c0453d3bb7ed0925f0757c39d10186f6c264e3 |
ORCID | 0000-0003-0012-6781 0000-0002-7494-2100 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.24879 |
PQID | 2305731550 |
PQPubID | 1016371 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2305731550 crossref_primary_10_1002_polb_24879 wiley_primary_10_1002_polb_24879_POLB24879 |
PublicationCentury | 2000 |
PublicationDate | October 15, 2019 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: October 15, 2019 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of polymer science. Part B, Polymer physics |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2019; 7 1993; 47 2015; 14 2018; 561 2015; 6 1995; 16 2011 2013; 46 1991; 32 2014; 26 2016; 540 1999; 41 1998; 199 2018; 22 2017; 117 2001; 42 2001; 87 2012; 51 2016; 5 2018; 9 2016; 7 2015; 27 2017; 15 1993; 71 2017; 13 2011; 50 2016 2017; 240 2007; 40 2001; 1 2013 1994; 4 2018; 14 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 Warner M. (e_1_2_6_33_1) 2013 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Gerdeen J. C. (e_1_2_6_34_1) 2011 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – year: 2011 – volume: 46 start-page: 5223 year: 2013 publication-title: Macromolecules – volume: 51 start-page: 12469 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 1890 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 7537 year: 2017 publication-title: Soft Matter – volume: 540 start-page: 371 year: 2016 publication-title: Nature – volume: 40 start-page: 3655 year: 2007 publication-title: Macromolecules – volume: 6 start-page: 7418 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 75 year: 1994 publication-title: J. Phys. II Fr. – volume: 32 start-page: 1347 year: 1991 publication-title: Polymer (Guildf) – volume: 41 start-page: 1 year: 1999 publication-title: React. Funct. Polym. – volume: 15 start-page: 64 year: 2017 publication-title: J. Nanobiotechnology – volume: 14 start-page: 1301 year: 2018 publication-title: Soft Matter – volume: 9 start-page: 1 year: 2018 publication-title: Nat. Commun. – volume: 22 start-page: 51 year: 2018 publication-title: Extrem. Mech. Lett. – volume: 5 start-page: 4 year: 2016 publication-title: ACS Macro Lett. – volume: 71 start-page: 2947 year: 1993 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 2215 year: 1994 publication-title: J. Phys. II – volume: 42 start-page: 7063 year: 2001 publication-title: Polymer (Guildf). – volume: 26 start-page: 7247 year: 2014 publication-title: Adv. Mater. – year: 2016 – volume: 47 start-page: R3838 year: 1993 publication-title: Phys. Rev. E – volume: 117 start-page: 12851 year: 2017 publication-title: Chem. Rev. – volume: 7 start-page: 10781 year: 2016 publication-title: Nat. Commun. – volume: 87 start-page: 015501 year: 2001 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 1087 year: 2015 publication-title: Nat. Mater. – volume: 9 start-page: 5095 year: 2018 publication-title: Nat. Commun. – volume: 240 start-page: 511 year: 2017 publication-title: Sens. Actuators B – volume: 16 start-page: 679 year: 1995 publication-title: Macromol. Rapid Commun. – volume: 9 start-page: 416 year: 2018 publication-title: Micromachines – volume: 561 start-page: 226 year: 2018 publication-title: Nature – volume: 27 start-page: 3883 year: 2015 publication-title: Adv. Mater. – volume: 1 start-page: 111 year: 2001 publication-title: e‐Polymers – volume: 199 start-page: 677 year: 1998 publication-title: Macromol. Chem. Phys. – volume: 7 start-page: 1581 year: 2019 publication-title: J. Mater. Chem. B – year: 2013 – ident: e_1_2_6_29_1 doi: 10.1002/(SICI)1521-3935(19980401)199:4<677::AID-MACP677>3.0.CO;2-E – ident: e_1_2_6_23_1 doi: 10.1038/ncomms10781 – ident: e_1_2_6_36_1 doi: 10.1016/0032-3861(91)90412-C – ident: e_1_2_6_12_1 doi: 10.1002/adma.201501446 – ident: e_1_2_6_35_1 doi: 10.1038/s41586-018-0474-7 – ident: e_1_2_6_20_1 doi: 10.1039/C7SM02107K – ident: e_1_2_6_7_1 doi: 10.1021/acs.chemrev.7b00168 – ident: e_1_2_6_8_1 doi: 10.1021/ma062781f – ident: e_1_2_6_15_1 doi: 10.1103/PhysRevE.47.R3838 – ident: e_1_2_6_18_1 doi: 10.1515/epoly.2001.1.1.111 – ident: e_1_2_6_22_1 doi: 10.1002/anie.201205964 – ident: e_1_2_6_14_1 doi: 10.1038/s41467-018-04911-4 – ident: e_1_2_6_10_1 doi: 10.1038/nature21003 – ident: e_1_2_6_26_1 doi: 10.1021/acsmacrolett.5b00729 – ident: e_1_2_6_30_1 doi: 10.1103/PhysRevLett.71.2947 – ident: e_1_2_6_25_1 doi: 10.1039/C7SM01380A – ident: e_1_2_6_6_1 doi: 10.1016/j.eml.2018.05.003 – ident: e_1_2_6_13_1 doi: 10.1016/j.snb.2016.09.004 – ident: e_1_2_6_21_1 doi: 10.1038/nmat4433 – ident: e_1_2_6_31_1 doi: 10.1016/S1381-5148(99)00032-2 – ident: e_1_2_6_24_1 doi: 10.3390/mi9080416 – ident: e_1_2_6_17_1 doi: 10.1038/s41467-018-07587-y – ident: e_1_2_6_4_1 doi: 10.1038/ncomms8418 – ident: e_1_2_6_9_1 doi: 10.1002/anie.201006464 – ident: e_1_2_6_2_1 doi: 10.1186/s12951-017-0306-1 – ident: e_1_2_6_11_1 doi: 10.1051/jp2:1994257 – ident: e_1_2_6_32_1 – ident: e_1_2_6_28_1 doi: 10.1016/S0032-3861(01)00135-5 – volume-title: Engineering Design with Polymers and Composites year: 2011 ident: e_1_2_6_34_1 doi: 10.1201/b11597 contributor: fullname: Gerdeen J. C. – ident: e_1_2_6_5_1 doi: 10.1002/adma.201402878 – ident: e_1_2_6_3_1 doi: 10.1039/C8TB02767F – ident: e_1_2_6_27_1 doi: 10.1002/marc.1995.030160908 – ident: e_1_2_6_19_1 doi: 10.1103/PhysRevLett.87.015501 – ident: e_1_2_6_16_1 doi: 10.1021/ma400771z – volume-title: Liquid Crystal Elastomers year: 2013 ident: e_1_2_6_33_1 contributor: fullname: Warner M. – ident: e_1_2_6_37_1 doi: 10.1051/jp2:1994100 |
SSID | ssj0009959 |
Score | 2.4758728 |
Snippet | ABSTRACT
Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete... Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1367 |
SubjectTerms | anisotropic elasticity Anisotropy Deformation Elastomers empirical model liquid crystal elastomer Liquid crystals Mechanical analysis Mechanical properties nonlinear elasticity Nonlinearity Polymer physics Rotating liquids Strain Tensile tests |
Title | Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.24879 https://www.proquest.com/docview/2305731550 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3datRAFMcPa4vYG7Gr4uoqB-qVEDfJZLIZ8abdWkrpapEKvQvzFQlkN9skvfBtfASfwSfzzGQ_9EboTRgy-YA5OXN-J8z8D8DbLDO8YKEJdGxYQBMeDzLNRcCyMEmUiCPpN4nNP6fn35KLG34zgI-bvTC9PsT2h5vzDD9fOweXqp3sRENXdaXex8Tb4gHsE9ekrn5BnFztJHeFL5Xm3YiwPd2Kk8aT3b3_hqMdY_5Nqj7UnD2Bx2tGxOPeqIcwsMshPJptSrMN4aFft6nbp_Bzbt3WXTfSaOx2J2KLdYESq_L2rjSomx_EgBVaIuWuXtgGZYd9LKupvfxe2RbXC7Yw_P2LThkU1PiAp07ZlaIbnUK7WJVeUAR9-Rx0Epg0mbRt31-2ddfUq1Ljsh9e6eriPYPrs0_Xs_NgXXQh0IQeIlBMqFAlWSSNtAXhQCGFLDQvUk30xwxTampNKGJeEG1MNRPGiX6l1E9sZdlz2KO32BeAjDLFTOhERlYmaSjklLKj1KgsKjRTXI_gaDP0-aqX1sh7EeU4dwbKvYFGMN5YJV-7V5tT3sSnzGVXI3jnLfWfJ-RXXy5PfOvlfS5-BQcER8LFqYiPYa9r7uxrApBOvfHfGR1Pv8Z_AMYo2zc |
link.rule.ids | 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB7BIrRcdmFhRWEXRoITUrpJHKcxN_ZPBdoFoSLtLfJfUES3KU16WJ6GR-AZeDLGTtoCByS4WXZ-ZI_H84018w3A8ywzvGChCXRsWEAHHg8yzUXAsjBJlIgj6ZPExhfp8GPy5pJfdrE5Lhem5YdYX7g5zfDntVNwdyF9tGENnVdT1Y8JcIubcIv0PXIRXacfNuxRjkprRfRJuD1ds5PGR5t3f7dHG5D5K1T1tuZ8ty2oWnuKQhdi8rm_bFRff_2DwPG_p3EXdjoUiq_abXMPbtjZHmyfrIq_7cFtHxmq6_vwbWxdcrCTJRq7znWssSpQ4rT8siwN6sU1ocwpWsLiTXVlFygbbK1lRe3Zp6mtsQsJw_DHd-oyKKjxEk8ddyzZT-pCezUvPWUJ-gI96Eg26biq63a8rKtmUc1LjbN25tJV3nsAk_Ozyckw6Mo6BJrAjQgUEypUSRZJI21BgKOQQhaaF6kmfMkMU2pgTShiXhCeGWgmjKMVS2mc0Jtl-7BFf7EPARn5opnQiYysTNJQyAH5X6lRWVRoprjuwbOVbPN5S96RtzTNce6WPffL3oODldjzToHrnDwzPmDOf-vBCy-_v3whf_9udOxbj_7l4aewPZyMR_no9cXbx3CHoJhwVjHiB7DVLJb2kOBOo574Tf0TT_L-8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgXUhQIjwQkp2yROsjHiAl1WBdpSoSL1UkV-oqjbTdhkD_Br-An8Bn4ZY2ezCxyQ4GbZedljz3wTzXwD8DTPdWpZqAMVaxaQwkuDXKU8YHmYJJLHkfBJYodH2f7H5O1peroBL_pcmI4fYvXDzZ0Mr6_dAa-13V2ThtbVVA5jwtv8ElxOspg75vzxhzV5lGPS6nk-CbZnK3LSeHd97-_maI0xf0Wq3tRMbsJZ_5FdhMn5cNHKofr6B3_j_87iFtxYYlB82W2a27BhZltwba8v_bYFV3xcqGruwLdD41KDnSRRm1WmY4OVRYHT8vOi1KjmXwhjTtEQEm-rCzNH0WJnKytqzz5NTYPLgDAMf3ynLo2cGs9x7JhjyXpSF5qLuvSEJejL86Cj2CRl1TTdeNlU7byqS4WzbuLC1d27CyeT1yd7-8GyqEOgCNrwQDIuQ5nkkdDCWIIbVnBhVWozReiSaSblyOiQx6klNDNSjGtHKpbROGE3w-7BJr3FbAMy8kRzrhIRGZFkIRcj8r4yLfPIKiZTNYAnvWiLuqPuKDqS5rhwy174ZR_ATi_1Ynl8m4L8snTEnPc2gGdefH95QnH8_uCVb93_l4sfw9Xj8aQ4eHP07gFcJxzGnUmM0h3YbOcL85CwTisf-S39E2bM_aE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+deformations+of+a+liquid+crystal+elastomer+at+director+angles+between+0%C2%B0+and+90%C2%B0%3A+Deducing+an+empirical+model+encompassing+anisotropic+nonlinearity&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Mistry%2C+Devesh&rft.au=Gleeson%2C+Helen+F.&rft.date=2019-10-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=57&rft.issue=20&rft.spage=1367&rft.epage=1377&rft_id=info:doi/10.1002%2Fpolb.24879&rft.externalDBID=10.1002%252Fpolb.24879&rft.externalDocID=POLB24879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon |