Theoretical Screening of Single Transition Metal Atoms Embedded in MXene Defects as Superior Electrocatalyst of Nitrogen Reduction Reaction
The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density func...
Saved in:
Published in | Small methods Vol. 3; no. 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density functional theory computations are carried out to screen a series of transition metal atoms confined in a vacancy of MXene nanosheet (Mo2TiC2O2). The results reveal that the Zr, Mo, Hf, Ta, W, Re, and Os supported on defective Mo2TiC2O2 layer can significantly promote the NRR process. Among them, Zr‐doped single atom catalyst (Mo2TiC2O2‐ZrSA) possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over HER competition. To the best of knowledge, 0.15 eV is the lowest barrier of potential‐determining step that has been reported for NRR so far. Besides, the formation energy of Mo2TiC2O2‐ZrSA is much more negative than that of the synthesized Mo2TiC2O2‐PtSA catalyst, suggesting that the experimental preparation of Mo2TiC2O2‐ZrSA is feasible. This work thus predicts an efficient electrocatalyst for the reduction of N2 to NH3 at ambient conditions.
A series of MXene‐supported single transition metal systems are theoretically screened to explore the potential electrocatalysts for nitrogen reduction reaction. Among them, Zr‐doped single atom catalyst possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over hydrogen evolution. Furthermore, the simulations indicate that the designed material is stable, thus the experimental synthesis should be feasible. |
---|---|
AbstractList | The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density functional theory computations are carried out to screen a series of transition metal atoms confined in a vacancy of MXene nanosheet (Mo
2
TiC
2
O
2
). The results reveal that the Zr, Mo, Hf, Ta, W, Re, and Os supported on defective Mo
2
TiC
2
O
2
layer can significantly promote the NRR process. Among them, Zr‐doped single atom catalyst (Mo
2
TiC
2
O
2
‐Zr
SA
) possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over HER competition. To the best of knowledge, 0.15 eV is the lowest barrier of potential‐determining step that has been reported for NRR so far. Besides, the formation energy of Mo
2
TiC
2
O
2
‐Zr
SA
is much more negative than that of the synthesized Mo
2
TiC
2
O
2
‐Pt
SA
catalyst, suggesting that the experimental preparation of Mo
2
TiC
2
O
2
‐Zr
SA
is feasible. This work thus predicts an efficient electrocatalyst for the reduction of N
2
to NH
3
at ambient conditions. The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density functional theory computations are carried out to screen a series of transition metal atoms confined in a vacancy of MXene nanosheet (Mo2TiC2O2). The results reveal that the Zr, Mo, Hf, Ta, W, Re, and Os supported on defective Mo2TiC2O2 layer can significantly promote the NRR process. Among them, Zr‐doped single atom catalyst (Mo2TiC2O2‐ZrSA) possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over HER competition. To the best of knowledge, 0.15 eV is the lowest barrier of potential‐determining step that has been reported for NRR so far. Besides, the formation energy of Mo2TiC2O2‐ZrSA is much more negative than that of the synthesized Mo2TiC2O2‐PtSA catalyst, suggesting that the experimental preparation of Mo2TiC2O2‐ZrSA is feasible. This work thus predicts an efficient electrocatalyst for the reduction of N2 to NH3 at ambient conditions. A series of MXene‐supported single transition metal systems are theoretically screened to explore the potential electrocatalysts for nitrogen reduction reaction. Among them, Zr‐doped single atom catalyst possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over hydrogen evolution. Furthermore, the simulations indicate that the designed material is stable, thus the experimental synthesis should be feasible. |
Author | Tian, Ziqi Guo, Haoran Chen, Liang Li, Baihai Yao, Ge Yu, Haibo Wang, Xingyong Li, Lei |
Author_xml | – sequence: 1 givenname: Lei surname: Li fullname: Li, Lei organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xingyong surname: Wang fullname: Wang, Xingyong organization: University of Wollongong – sequence: 3 givenname: Haoran surname: Guo fullname: Guo, Haoran organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Ge surname: Yao fullname: Yao, Ge organization: Nanjing University – sequence: 5 givenname: Haibo surname: Yu fullname: Yu, Haibo organization: University of Wollongong – sequence: 6 givenname: Ziqi surname: Tian fullname: Tian, Ziqi email: tianziqi@nimte.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Baihai surname: Li fullname: Li, Baihai email: libaihai@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 8 givenname: Liang orcidid: 0000-0002-0667-540X surname: Chen fullname: Chen, Liang email: chenliang@nimte.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNqFkF9LwzAUxYMoOOdefc4X2Lxp2nR9HNv8A5vCVsG3kiY3M9K1I8mQfQa_tN0mKoL4dA-H8ztczgU5rZsaCbliMGAA0bVfBz2IgGUAnKcnpBNxIfqZgOHpD31Oet6_QgsA40nEOuQ9f8HGYbBKVnSpHGJt6xVtDF22t0KaO1l7G2xT0zmGNjQKzdrT6bpErVFT2_rPWCOdoEEVPJWeLrcbdLZxdFq1lmuUbMGdD_vaB9saK6zpAvVWHXoXKA_ikpwZWXnsfd4uebqZ5uO7_uzx9n48mvUVT5K0z41IudaJNlohpLEYCpOWRmjIWJwCB22khqjkKoJMlYkaxmyYySxmSQaRELxL4mOvco33Dk2hbJD7D4KTtioYFPtNi_2mxdemLTb4hW2cXUu3-xvIjsCbrXD3T7pYzvPJN_sBzhOOng |
CitedBy_id | crossref_primary_10_1039_D0NR03632C crossref_primary_10_1021_acs_jpcc_1c05893 crossref_primary_10_1016_j_fuel_2024_131280 crossref_primary_10_1016_j_cej_2023_145700 crossref_primary_10_1016_j_mcat_2022_112658 crossref_primary_10_1007_s10563_023_09403_0 crossref_primary_10_1016_j_apsusc_2023_156790 crossref_primary_10_34133_energymatadv_0039 crossref_primary_10_1016_j_jcat_2023_115232 crossref_primary_10_1088_1361_6528_ad53d0 crossref_primary_10_1039_D2CC06418A crossref_primary_10_1002_adfm_202302332 crossref_primary_10_1002_smll_202203281 crossref_primary_10_1039_D1QI00752A crossref_primary_10_1016_j_mtphys_2020_100310 crossref_primary_10_1021_acs_jpcc_0c10802 crossref_primary_10_1002_advs_202207174 crossref_primary_10_1016_j_mcat_2024_113972 crossref_primary_10_1039_D2CS00698G crossref_primary_10_1021_acs_jpcc_4c04179 crossref_primary_10_1002_smtd_202200413 crossref_primary_10_1016_j_ccr_2021_213806 crossref_primary_10_1021_acs_jpcc_2c08473 crossref_primary_10_1039_D1TA07349D crossref_primary_10_1002_cey2_361 crossref_primary_10_1016_j_jcis_2023_07_047 crossref_primary_10_1016_j_ccr_2021_214339 crossref_primary_10_1002_aenm_202304106 crossref_primary_10_1039_D0TA04919K crossref_primary_10_1039_D3QI01390A crossref_primary_10_1002_adma_202004129 crossref_primary_10_1021_acscatal_4c01369 crossref_primary_10_1016_j_jcis_2024_05_145 crossref_primary_10_1007_s41918_022_00164_4 crossref_primary_10_1016_j_jechem_2021_12_026 crossref_primary_10_1021_acsami_2c05348 crossref_primary_10_1088_2053_1583_acb784 crossref_primary_10_1002_smll_202105883 crossref_primary_10_1021_acsaem_3c00677 crossref_primary_10_1016_j_jcou_2022_102069 crossref_primary_10_1021_acs_nanolett_0c05080 crossref_primary_10_1039_D1QI00306B crossref_primary_10_1007_s10008_022_05228_5 crossref_primary_10_1016_j_apcatb_2020_118988 crossref_primary_10_1039_D2TA06354A crossref_primary_10_1016_j_apsusc_2019_144941 crossref_primary_10_1039_D3NJ02436A crossref_primary_10_1016_j_elecom_2021_107002 crossref_primary_10_1016_j_jcis_2024_10_045 crossref_primary_10_1002_adma_202204388 crossref_primary_10_1002_cssc_202301535 crossref_primary_10_1016_j_jcis_2022_10_099 crossref_primary_10_1002_celc_202000136 crossref_primary_10_1039_D0TA10823E crossref_primary_10_1016_j_apsusc_2023_157504 crossref_primary_10_1016_j_cattod_2023_114396 crossref_primary_10_1021_acs_jpcc_1c00742 crossref_primary_10_1002_cssc_202101462 crossref_primary_10_1039_D0TA10494A crossref_primary_10_1002_aenm_202002967 crossref_primary_10_1002_smll_202201740 crossref_primary_10_1021_acs_jpclett_3c00903 crossref_primary_10_1002_eng2_12327 crossref_primary_10_1039_D2TA09959D crossref_primary_10_1016_j_cattod_2020_10_003 crossref_primary_10_1016_j_jechem_2020_06_048 crossref_primary_10_1039_D1CY00803J crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1039_D3TA05498E crossref_primary_10_1039_D3NR01144E crossref_primary_10_1016_j_apsusc_2021_150921 crossref_primary_10_20964_2020_10_46 crossref_primary_10_1002_adfm_202000869 crossref_primary_10_1016_j_cej_2023_144243 crossref_primary_10_1039_D2TC01542K crossref_primary_10_3390_pr11051413 crossref_primary_10_1016_j_mattod_2020_03_022 crossref_primary_10_1002_cphc_202200864 crossref_primary_10_1039_C9NA00610A crossref_primary_10_1016_j_apcata_2022_118886 crossref_primary_10_1016_j_ccr_2023_215196 crossref_primary_10_1021_acs_jpcc_2c02969 crossref_primary_10_1007_s12598_021_01876_0 crossref_primary_10_1016_j_apsusc_2020_146385 crossref_primary_10_1021_acs_jpclett_9b03682 crossref_primary_10_1002_ece2_60 crossref_primary_10_1016_j_jcis_2021_07_083 crossref_primary_10_1016_j_apcatb_2023_122473 crossref_primary_10_1021_acs_jpcc_1c03713 crossref_primary_10_1039_D3NJ01668D crossref_primary_10_1016_j_apsusc_2022_153624 crossref_primary_10_1016_j_cej_2021_129832 crossref_primary_10_1016_j_surfin_2024_105401 crossref_primary_10_1039_C9NR08969A crossref_primary_10_1039_D3CP02314A crossref_primary_10_1002_cphc_202200750 crossref_primary_10_1002_chem_202303148 crossref_primary_10_1021_jacs_0c09527 crossref_primary_10_1002_smll_202002885 crossref_primary_10_1021_acsami_0c18472 crossref_primary_10_1039_D0TA03271A crossref_primary_10_1002_smtd_202201559 crossref_primary_10_1149_1945_7111_ac030a crossref_primary_10_1016_j_joei_2024_101535 crossref_primary_10_1021_acs_chemrev_9b00348 crossref_primary_10_1007_s40843_022_2406_5 crossref_primary_10_1002_adfm_202006939 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1002_smll_202410772 crossref_primary_10_1039_D1SE01390D crossref_primary_10_1002_adhm_202101215 crossref_primary_10_1007_s10562_022_04106_z crossref_primary_10_1039_D2CP03795E crossref_primary_10_1039_D3CC02229C crossref_primary_10_1016_j_ccr_2022_214468 crossref_primary_10_1039_C9NR05402B crossref_primary_10_1039_C9TA13599E crossref_primary_10_1016_j_progsolidstchem_2022_100370 crossref_primary_10_1002_chem_202005182 crossref_primary_10_1002_adfm_202003437 crossref_primary_10_1016_j_cej_2024_148687 crossref_primary_10_1002_slct_202002729 crossref_primary_10_1016_j_apsusc_2022_154935 crossref_primary_10_1016_j_jechem_2020_09_002 crossref_primary_10_1021_acs_jpcc_0c10877 crossref_primary_10_1021_acsnano_0c04284 crossref_primary_10_1021_acsami_2c05087 crossref_primary_10_1016_j_apsusc_2021_151020 crossref_primary_10_1039_D3MA00917C crossref_primary_10_1021_acsanm_3c05754 crossref_primary_10_1007_s41918_024_00236_7 crossref_primary_10_1039_D2TA00470D crossref_primary_10_1016_j_mtcomm_2024_109423 crossref_primary_10_1016_j_apsusc_2023_156827 crossref_primary_10_1039_D1NR02883A crossref_primary_10_1002_smll_202007113 crossref_primary_10_1021_acs_jpcc_0c08302 crossref_primary_10_1021_acsnano_0c05482 crossref_primary_10_1039_D0EE03596C crossref_primary_10_1021_acsami_1c12893 crossref_primary_10_1016_j_apsusc_2020_147706 crossref_primary_10_1016_j_mcat_2023_113519 crossref_primary_10_1016_j_mtsust_2024_100876 crossref_primary_10_1039_D0CC05853J crossref_primary_10_1002_aenm_202103867 crossref_primary_10_1002_sus2_70 crossref_primary_10_1039_D2CY00428C crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1016_j_est_2024_112043 crossref_primary_10_1002_smll_202306311 crossref_primary_10_1016_j_apsusc_2022_153149 crossref_primary_10_1002_adem_202100405 crossref_primary_10_1039_C9CC09613B crossref_primary_10_1007_s10563_023_09408_9 crossref_primary_10_1016_j_apsusc_2023_157225 crossref_primary_10_1016_j_jcis_2021_11_093 crossref_primary_10_1002_advs_202200296 crossref_primary_10_1039_C9NR09157B crossref_primary_10_1016_j_vacuum_2024_113888 crossref_primary_10_1039_D0NR00030B crossref_primary_10_1021_acs_jpclett_0c01415 crossref_primary_10_1016_j_jcis_2021_05_027 crossref_primary_10_1039_C9CP06112F crossref_primary_10_1039_D4GC01566E crossref_primary_10_1021_acsami_2c11674 crossref_primary_10_1016_S1872_2067_21_63987_6 crossref_primary_10_1016_j_apsusc_2021_150867 crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_1021_acsami_1c01098 crossref_primary_10_1016_j_jcis_2024_03_026 crossref_primary_10_1016_j_apsusc_2022_153130 crossref_primary_10_1016_j_ijhydene_2024_06_128 crossref_primary_10_1002_adfm_202303480 crossref_primary_10_1002_tcr_202400047 crossref_primary_10_1021_acs_jpcc_3c06420 crossref_primary_10_1016_j_nanoen_2022_107517 crossref_primary_10_1016_j_fuel_2025_135055 crossref_primary_10_1039_D1TA08246A crossref_primary_10_1016_j_apsusc_2022_156077 crossref_primary_10_1016_j_apsusc_2021_152272 crossref_primary_10_1016_j_jcis_2020_12_034 crossref_primary_10_1021_acsomega_3c02984 crossref_primary_10_1021_acs_jpcc_4c04481 crossref_primary_10_1016_j_mtcomm_2024_109509 crossref_primary_10_1039_D2QI02476D crossref_primary_10_3390_molecules29235768 crossref_primary_10_1039_D4SE00556B crossref_primary_10_1016_j_cattod_2020_02_002 crossref_primary_10_1016_j_jcis_2021_09_026 crossref_primary_10_1021_acs_jpclett_9b02741 crossref_primary_10_1021_acsanm_0c01922 crossref_primary_10_1016_j_ijhydene_2024_12_311 crossref_primary_10_1016_j_mcat_2023_113036 crossref_primary_10_1063_5_0221872 crossref_primary_10_1002_solr_202100863 crossref_primary_10_1002_smsc_202100017 crossref_primary_10_1039_D2TA00504B crossref_primary_10_1039_D0TA05821A crossref_primary_10_1016_j_cclet_2020_01_035 crossref_primary_10_1016_j_electacta_2022_139988 crossref_primary_10_1002_smll_202410105 crossref_primary_10_1016_j_physe_2021_114875 crossref_primary_10_1002_adfm_202008983 crossref_primary_10_1021_acs_jpcc_1c09772 crossref_primary_10_1039_D1TA02998C crossref_primary_10_1039_D3CP04718K crossref_primary_10_1021_acsami_1c00871 crossref_primary_10_1039_D1QM00546D crossref_primary_10_1016_j_checat_2021_12_004 crossref_primary_10_1016_j_mcat_2025_114931 crossref_primary_10_1039_D4CY00171K crossref_primary_10_1021_acscatal_5c00809 crossref_primary_10_1039_D0TA05943A crossref_primary_10_1002_cctc_202401325 crossref_primary_10_1002_advs_202004516 crossref_primary_10_1002_smll_202403399 crossref_primary_10_1088_1361_6528_ac2d4a crossref_primary_10_1039_D1CS00590A crossref_primary_10_1007_s11467_021_1115_4 crossref_primary_10_1021_acs_chemmater_1c00424 crossref_primary_10_1002_adts_202000190 crossref_primary_10_1021_acsami_2c19911 crossref_primary_10_1016_j_pmatsci_2023_101166 crossref_primary_10_1021_acsami_1c23643 crossref_primary_10_1016_j_pecs_2020_100860 crossref_primary_10_1039_D0TA00794C crossref_primary_10_1016_j_ijhydene_2024_05_408 crossref_primary_10_1021_acscatal_2c04527 crossref_primary_10_1016_j_jhazmat_2022_130647 crossref_primary_10_1016_j_ijhydene_2024_01_203 crossref_primary_10_1016_j_jcis_2024_01_081 crossref_primary_10_1016_j_cej_2023_143776 crossref_primary_10_1021_acssuschemeng_0c04401 crossref_primary_10_1016_j_cej_2022_138320 crossref_primary_10_1016_j_cjche_2023_06_027 crossref_primary_10_1016_j_jallcom_2024_175837 crossref_primary_10_1016_j_mattod_2020_09_006 crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1016_j_cattod_2022_06_019 crossref_primary_10_1021_acssuschemeng_0c04091 crossref_primary_10_1002_advs_202417773 |
Cites_doi | 10.1021/jp052961b 10.1021/jacs.7b05213 10.1021/acs.chemmater.6b03972 10.1002/aenm.201803406 10.1039/C8TA04064H 10.1103/PhysRevB.46.6671 10.1002/adma.201102306 10.1126/science.1085326 10.1126/science.1214025 10.1021/acs.jpcc.9b02657 10.1002/adma.201604799 10.1021/cr950055x 10.1021/acscatal.6b02899 10.1039/C8TA06567E 10.1002/smtd.201800376 10.1039/C6EE01800A 10.1021/acscatal.7b00547 10.1038/s41586-019-1134-2 10.1038/nature16459 10.1038/s41929-018-0195-1 10.1002/cssc.201500322 10.1021/acs.jpcc.8b05257 10.1002/anie.201703864 10.1126/science.1136674 10.1002/smtd.201800368 10.1103/PhysRevB.49.14251 10.1088/0953-8984/21/8/084204 10.1038/nature12435 10.1021/acscatal.8b05134 10.1002/cssc.201701306 10.1021/jacs.8b13165 10.1002/anie.201502104 10.1002/adts.201800018 10.1103/PhysRevLett.99.016105 10.1016/j.joule.2018.09.011 10.1016/0927-0256(96)00008-0 10.1039/c0ee00071j 10.1016/j.jpowsour.2008.02.097 10.1103/PhysRevB.50.17953 10.1002/aenm.201701343 10.1021/jacs.8b07472 10.1038/natrevmats.2016.98 10.1002/advs.201600180 10.1021/acs.inorgchem.5b00881 10.1038/nature14180 10.1021/acs.inorgchem.8b02293 10.1039/C8TA10497B 10.1021/acsnano.7b03738 10.1103/PhysRevB.54.11169 10.1039/C8TA11025E 10.1016/S0360-0564(02)45013-4 10.1039/C6SC03911A 10.1038/s41467-018-05758-5 10.1002/adma.201304138 10.1063/1.3382344 10.1039/C9TA02926E 10.1021/acscatal.8b00905 10.1002/anie.201806386 10.1039/C1CP22271F 10.1021/jacs.8b13579 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/smtd.201900337 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2366-9608 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smtd_201900337 SMTD201900337 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 21803074 – fundername: Australian Research Council funderid: FT110100034 – fundername: Ningbo municipal science and technology innovative research team funderid: 2015B11002 – fundername: National Basic Research Program of China (973 Program) funderid: 2018YFB0704300 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAIHA AAMNL AANLZ AAZKR ACCFJ ACCZN ACGFS ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION EJD |
ID | FETCH-LOGICAL-c3557-3f673dd5dfdce074686f7bf6d09147030dfad02b3c209cb5c84189a9415902663 |
ISSN | 2366-9608 |
IngestDate | Tue Jul 01 00:47:42 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Wed Jan 22 16:37:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3557-3f673dd5dfdce074686f7bf6d09147030dfad02b3c209cb5c84189a9415902663 |
ORCID | 0000-0002-0667-540X |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1002_smtd_201900337 crossref_primary_10_1002_smtd_201900337 wiley_primary_10_1002_smtd_201900337_SMTD201900337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Small methods |
PublicationYear | 2019 |
References | 2018; 122 2017; 7 2017; 8 2017; 2 2000; 45 2014; 26 2019; 568 2012; 14 2008; 185 2019; 123 2018; 6 2018; 9 2018; 8 2018; 3 2018; 1 2005; 109 1992; 46 2011; 23 2010; 3 1996; 6 2019; 7 2011; 334 2019; 9 2019; 3 2018; 140 2009; 21 2015; 520 2013; 501 2015; 54 1996; 96 2015; 528 1994; 49 2017; 29 2008; 320 2019; 141 2007; 99 2015; 8 1996; 54 2017; 139 2016; 3 2017; 11 2017; 56 2010; 132 2018 2018; 11 2016; 28 2003; 301 1994; 50 2016; 9 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 Gao Y. (e_1_2_7_29_1) 2018 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 54 start-page: 8255 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 4609 year: 2019 publication-title: ACS Catal. – volume: 141 start-page: 4086 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7517 year: 2018 publication-title: ACS Catal. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 14 start-page: 1235 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 3485 year: 2018 publication-title: Nat. Commun. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 8 start-page: 1090 year: 2017 publication-title: Chem. Sci. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 992 year: 2014 publication-title: Adv. Mater. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 568 start-page: 536 year: 2019 publication-title: Nature – volume: 334 start-page: 940 year: 2011 publication-title: Science – volume: 7 start-page: 3869 year: 2017 publication-title: ACS Catal. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 7 start-page: 2392 year: 2019 publication-title: J. Mater. Chem. A – volume: 185 start-page: 459 year: 2008 publication-title: J. Power Sources – volume: 301 start-page: 76 year: 2003 publication-title: Science – volume: 96 start-page: 2983 year: 1996 publication-title: Chem. Rev. – volume: 1 start-page: 985 year: 2018 publication-title: Nat. Catal. – year: 2018 publication-title: Catal. Today – volume: 320 start-page: 889 year: 2008 publication-title: Science – volume: 3 start-page: 1311 year: 2010 publication-title: Energy Environ. Sci. – volume: 11 start-page: 104 year: 2018 publication-title: ChemSusChem – volume: 501 start-page: 84 year: 2013 publication-title: Nature – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 109 year: 2005 publication-title: J. Phys. Chem. B – volume: 45 start-page: 71 year: 2000 publication-title: Adv. Catal. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 4865 year: 2019 publication-title: J. Mater. Chem. A – volume: 21 year: 2009 publication-title: J. Phys.: Condens. Matter – volume: 3 start-page: 279 year: 2019 publication-title: Joule – volume: 141 start-page: 2884 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 1 year: 2018 publication-title: Adv. Theory Simul. – volume: 28 start-page: 9026 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 2180 year: 2015 publication-title: ChemSusChem – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 46 start-page: 6671 year: 1992 publication-title: Phys. Rev. B – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 49 year: 1994 publication-title: Phys. Rev. B – volume: 528 start-page: 555 year: 2015 publication-title: Nature – volume: 54 start-page: 9234 year: 2015 publication-title: Inorg. Chem. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2018 publication-title: Small Methods – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 7 start-page: 1301 year: 2017 publication-title: ACS Catal. – volume: 520 start-page: 666 year: 2015 publication-title: Nature – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – year: 2018 publication-title: Small Methods – volume: 9 start-page: 2545 year: 2016 publication-title: Energy Environ. Sci. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_7_60_1 doi: 10.1021/jp052961b – ident: e_1_2_7_12_1 doi: 10.1021/jacs.7b05213 – ident: e_1_2_7_25_1 doi: 10.1021/acs.chemmater.6b03972 – ident: e_1_2_7_57_1 doi: 10.1002/aenm.201803406 – ident: e_1_2_7_21_1 doi: 10.1039/C8TA04064H – ident: e_1_2_7_41_1 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201102306 – ident: e_1_2_7_35_1 doi: 10.1126/science.1085326 – ident: e_1_2_7_8_1 doi: 10.1126/science.1214025 – ident: e_1_2_7_20_1 doi: 10.1021/acs.jpcc.9b02657 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201604799 – ident: e_1_2_7_34_1 doi: 10.1021/cr950055x – ident: e_1_2_7_17_1 doi: 10.1021/acscatal.6b02899 – ident: e_1_2_7_27_1 doi: 10.1039/C8TA06567E – ident: e_1_2_7_9_1 doi: 10.1002/smtd.201800376 – ident: e_1_2_7_30_1 doi: 10.1039/C6EE01800A – ident: e_1_2_7_58_1 doi: 10.1021/acscatal.7b00547 – ident: e_1_2_7_37_1 doi: 10.1038/s41586-019-1134-2 – ident: e_1_2_7_1_1 doi: 10.1038/nature16459 – ident: e_1_2_7_32_1 doi: 10.1038/s41929-018-0195-1 – ident: e_1_2_7_51_1 doi: 10.1002/cssc.201500322 – ident: e_1_2_7_10_1 doi: 10.1021/acs.jpcc.8b05257 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201703864 – ident: e_1_2_7_3_1 doi: 10.1126/science.1136674 – ident: e_1_2_7_47_1 doi: 10.1002/smtd.201800368 – ident: e_1_2_7_40_1 doi: 10.1103/PhysRevB.49.14251 – ident: e_1_2_7_45_1 doi: 10.1088/0953-8984/21/8/084204 – ident: e_1_2_7_7_1 doi: 10.1038/nature12435 – ident: e_1_2_7_56_1 doi: 10.1021/acscatal.8b05134 – ident: e_1_2_7_14_1 doi: 10.1002/cssc.201701306 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.8b13165 – ident: e_1_2_7_59_1 doi: 10.1002/anie.201502104 – ident: e_1_2_7_15_1 doi: 10.1002/adts.201800018 – year: 2018 ident: e_1_2_7_29_1 publication-title: Catal. Today – ident: e_1_2_7_50_1 doi: 10.1103/PhysRevLett.99.016105 – ident: e_1_2_7_31_1 doi: 10.1016/j.joule.2018.09.011 – ident: e_1_2_7_39_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_7_46_1 doi: 10.1039/c0ee00071j – ident: e_1_2_7_2_1 doi: 10.1016/j.jpowsour.2008.02.097 – ident: e_1_2_7_42_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201701343 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.8b07472 – ident: e_1_2_7_23_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_7_26_1 doi: 10.1002/advs.201600180 – ident: e_1_2_7_6_1 doi: 10.1021/acs.inorgchem.5b00881 – ident: e_1_2_7_36_1 doi: 10.1038/nature14180 – ident: e_1_2_7_52_1 doi: 10.1021/acs.inorgchem.8b02293 – ident: e_1_2_7_53_1 doi: 10.1039/C8TA10497B – ident: e_1_2_7_28_1 doi: 10.1021/acsnano.7b03738 – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_7_11_1 doi: 10.1039/C8TA11025E – ident: e_1_2_7_49_1 doi: 10.1016/S0360-0564(02)45013-4 – ident: e_1_2_7_18_1 doi: 10.1039/C6SC03911A – ident: e_1_2_7_55_1 doi: 10.1038/s41467-018-05758-5 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201304138 – ident: e_1_2_7_44_1 doi: 10.1063/1.3382344 – ident: e_1_2_7_54_1 doi: 10.1039/C9TA02926E – ident: e_1_2_7_61_1 doi: 10.1021/acscatal.8b00905 – ident: e_1_2_7_4_1 doi: 10.1002/anie.201806386 – ident: e_1_2_7_48_1 doi: 10.1039/C1CP22271F – ident: e_1_2_7_33_1 doi: 10.1021/jacs.8b13579 |
SSID | ssj0002013521 |
Score | 2.556701 |
Snippet | The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | defective MXene density functional theory electrochemical nitrogen reduction single‐atom catalysts |
Title | Theoretical Screening of Single Transition Metal Atoms Embedded in MXene Defects as Superior Electrocatalyst of Nitrogen Reduction Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.201900337 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtpAFB1RsmkXVZ9q-tIsKnWB3NrjB3iJGipUxdmYSHRljT1jCSngKoZF-gv5hXxszzw8mDZ9ZWPQMNiGe7hz7uXOuYS8E4iqwgn3vZQHiReJmHsgsQmwzFmEeCQJdbOJ7CyZn0dflvFyMLjpVS3ttuWH6vut-0ruYlWMwa5ql-x_WNadFAN4DvviCAvj-K82drsQ80pV0Nga5hyPF9Iol-uarFEm1a7H6bZZt6PZupTwN0p1aZQt4ezgdUxVB2_hSZT2cXM5mpkGOTq_c9XqgoGzFQZwNzCKMKqzqgi_cra1JDdfq_-7TW9qR9lPzTZsudqn8I2bWeJerxq7gKpKoJ3O3s45wOmQ-5U3JoPfz1IEqd2u55wZCwEAREvG18pbxqw3DvugC3rrslu1fnH6RkS2XW-V8mugUrNGR-ZQXdvNjP88V6_tebY4ca_fI0cMQQgbkqPpSXaauxweZoC_Brp_of0onS6ozz4eXuSA9_TjIE1kFo_IQxuB0KmB02MykJsn5EFPl_Ipue4Bizpg0aamBlh0DyyqgUU1sGgHLLrCuAIWtcCivKUdsOhPwFKn7YBFHbBoB6xn5PzzbPFp7tmuHV4F7ooVq07GoRCxqEUlVTebSVKPyzoRYKaRWl9EzYXPyrBiflqVcTWJgknKUzDJ1IebCJ-T4abZyBeEgjpWgeAguZGMSj-esHosy5JHDAwDsfQx8brvtKispL3qrHJRGDFuVigbFM4Gx-S9m__NiLn8dibTJvrLtOIAJy_v8qZX5P7-9_KaDLeXO_kGPHdbvrVw-wEOS6Qa |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Screening+of+Single+Transition+Metal+Atoms+Embedded+in+MXene+Defects+as+Superior+Electrocatalyst+of+Nitrogen+Reduction+Reaction&rft.jtitle=Small+methods&rft.au=Li%2C+Lei&rft.au=Wang%2C+Xingyong&rft.au=Guo%2C+Haoran&rft.au=Yao%2C+Ge&rft.date=2019-11-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=3&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.201900337&rft.externalDBID=10.1002%252Fsmtd.201900337&rft.externalDocID=SMTD201900337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon |