Theoretical Screening of Single Transition Metal Atoms Embedded in MXene Defects as Superior Electrocatalyst of Nitrogen Reduction Reaction

The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density func...

Full description

Saved in:
Bibliographic Details
Published inSmall methods Vol. 3; no. 11
Main Authors Li, Lei, Wang, Xingyong, Guo, Haoran, Yao, Ge, Yu, Haibo, Tian, Ziqi, Li, Baihai, Chen, Liang
Format Journal Article
LanguageEnglish
Published 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density functional theory computations are carried out to screen a series of transition metal atoms confined in a vacancy of MXene nanosheet (Mo2TiC2O2). The results reveal that the Zr, Mo, Hf, Ta, W, Re, and Os supported on defective Mo2TiC2O2 layer can significantly promote the NRR process. Among them, Zr‐doped single atom catalyst (Mo2TiC2O2‐ZrSA) possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over HER competition. To the best of knowledge, 0.15 eV is the lowest barrier of potential‐determining step that has been reported for NRR so far. Besides, the formation energy of Mo2TiC2O2‐ZrSA is much more negative than that of the synthesized Mo2TiC2O2‐PtSA catalyst, suggesting that the experimental preparation of Mo2TiC2O2‐ZrSA is feasible. This work thus predicts an efficient electrocatalyst for the reduction of N2 to NH3 at ambient conditions. A series of MXene‐supported single transition metal systems are theoretically screened to explore the potential electrocatalysts for nitrogen reduction reaction. Among them, Zr‐doped single atom catalyst possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over hydrogen evolution. Furthermore, the simulations indicate that the designed material is stable, thus the experimental synthesis should be feasible.
AbstractList The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density functional theory computations are carried out to screen a series of transition metal atoms confined in a vacancy of MXene nanosheet (Mo 2 TiC 2 O 2 ). The results reveal that the Zr, Mo, Hf, Ta, W, Re, and Os supported on defective Mo 2 TiC 2 O 2 layer can significantly promote the NRR process. Among them, Zr‐doped single atom catalyst (Mo 2 TiC 2 O 2 ‐Zr SA ) possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over HER competition. To the best of knowledge, 0.15 eV is the lowest barrier of potential‐determining step that has been reported for NRR so far. Besides, the formation energy of Mo 2 TiC 2 O 2 ‐Zr SA is much more negative than that of the synthesized Mo 2 TiC 2 O 2 ‐Pt SA catalyst, suggesting that the experimental preparation of Mo 2 TiC 2 O 2 ‐Zr SA is feasible. This work thus predicts an efficient electrocatalyst for the reduction of N 2 to NH 3 at ambient conditions.
The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density functional theory computations are carried out to screen a series of transition metal atoms confined in a vacancy of MXene nanosheet (Mo2TiC2O2). The results reveal that the Zr, Mo, Hf, Ta, W, Re, and Os supported on defective Mo2TiC2O2 layer can significantly promote the NRR process. Among them, Zr‐doped single atom catalyst (Mo2TiC2O2‐ZrSA) possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over HER competition. To the best of knowledge, 0.15 eV is the lowest barrier of potential‐determining step that has been reported for NRR so far. Besides, the formation energy of Mo2TiC2O2‐ZrSA is much more negative than that of the synthesized Mo2TiC2O2‐PtSA catalyst, suggesting that the experimental preparation of Mo2TiC2O2‐ZrSA is feasible. This work thus predicts an efficient electrocatalyst for the reduction of N2 to NH3 at ambient conditions. A series of MXene‐supported single transition metal systems are theoretically screened to explore the potential electrocatalysts for nitrogen reduction reaction. Among them, Zr‐doped single atom catalyst possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over hydrogen evolution. Furthermore, the simulations indicate that the designed material is stable, thus the experimental synthesis should be feasible.
Author Tian, Ziqi
Guo, Haoran
Chen, Liang
Li, Baihai
Yao, Ge
Yu, Haibo
Wang, Xingyong
Li, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xingyong
  surname: Wang
  fullname: Wang, Xingyong
  organization: University of Wollongong
– sequence: 3
  givenname: Haoran
  surname: Guo
  fullname: Guo, Haoran
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Ge
  surname: Yao
  fullname: Yao, Ge
  organization: Nanjing University
– sequence: 5
  givenname: Haibo
  surname: Yu
  fullname: Yu, Haibo
  organization: University of Wollongong
– sequence: 6
  givenname: Ziqi
  surname: Tian
  fullname: Tian, Ziqi
  email: tianziqi@nimte.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Baihai
  surname: Li
  fullname: Li, Baihai
  email: libaihai@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: Liang
  orcidid: 0000-0002-0667-540X
  surname: Chen
  fullname: Chen, Liang
  email: chenliang@nimte.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkF9LwzAUxYMoOOdefc4X2Lxp2nR9HNv8A5vCVsG3kiY3M9K1I8mQfQa_tN0mKoL4dA-H8ztczgU5rZsaCbliMGAA0bVfBz2IgGUAnKcnpBNxIfqZgOHpD31Oet6_QgsA40nEOuQ9f8HGYbBKVnSpHGJt6xVtDF22t0KaO1l7G2xT0zmGNjQKzdrT6bpErVFT2_rPWCOdoEEVPJWeLrcbdLZxdFq1lmuUbMGdD_vaB9saK6zpAvVWHXoXKA_ikpwZWXnsfd4uebqZ5uO7_uzx9n48mvUVT5K0z41IudaJNlohpLEYCpOWRmjIWJwCB22khqjkKoJMlYkaxmyYySxmSQaRELxL4mOvco33Dk2hbJD7D4KTtioYFPtNi_2mxdemLTb4hW2cXUu3-xvIjsCbrXD3T7pYzvPJN_sBzhOOng
CitedBy_id crossref_primary_10_1039_D0NR03632C
crossref_primary_10_1021_acs_jpcc_1c05893
crossref_primary_10_1016_j_fuel_2024_131280
crossref_primary_10_1016_j_cej_2023_145700
crossref_primary_10_1016_j_mcat_2022_112658
crossref_primary_10_1007_s10563_023_09403_0
crossref_primary_10_1016_j_apsusc_2023_156790
crossref_primary_10_34133_energymatadv_0039
crossref_primary_10_1016_j_jcat_2023_115232
crossref_primary_10_1088_1361_6528_ad53d0
crossref_primary_10_1039_D2CC06418A
crossref_primary_10_1002_adfm_202302332
crossref_primary_10_1002_smll_202203281
crossref_primary_10_1039_D1QI00752A
crossref_primary_10_1016_j_mtphys_2020_100310
crossref_primary_10_1021_acs_jpcc_0c10802
crossref_primary_10_1002_advs_202207174
crossref_primary_10_1016_j_mcat_2024_113972
crossref_primary_10_1039_D2CS00698G
crossref_primary_10_1021_acs_jpcc_4c04179
crossref_primary_10_1002_smtd_202200413
crossref_primary_10_1016_j_ccr_2021_213806
crossref_primary_10_1021_acs_jpcc_2c08473
crossref_primary_10_1039_D1TA07349D
crossref_primary_10_1002_cey2_361
crossref_primary_10_1016_j_jcis_2023_07_047
crossref_primary_10_1016_j_ccr_2021_214339
crossref_primary_10_1002_aenm_202304106
crossref_primary_10_1039_D0TA04919K
crossref_primary_10_1039_D3QI01390A
crossref_primary_10_1002_adma_202004129
crossref_primary_10_1021_acscatal_4c01369
crossref_primary_10_1016_j_jcis_2024_05_145
crossref_primary_10_1007_s41918_022_00164_4
crossref_primary_10_1016_j_jechem_2021_12_026
crossref_primary_10_1021_acsami_2c05348
crossref_primary_10_1088_2053_1583_acb784
crossref_primary_10_1002_smll_202105883
crossref_primary_10_1021_acsaem_3c00677
crossref_primary_10_1016_j_jcou_2022_102069
crossref_primary_10_1021_acs_nanolett_0c05080
crossref_primary_10_1039_D1QI00306B
crossref_primary_10_1007_s10008_022_05228_5
crossref_primary_10_1016_j_apcatb_2020_118988
crossref_primary_10_1039_D2TA06354A
crossref_primary_10_1016_j_apsusc_2019_144941
crossref_primary_10_1039_D3NJ02436A
crossref_primary_10_1016_j_elecom_2021_107002
crossref_primary_10_1016_j_jcis_2024_10_045
crossref_primary_10_1002_adma_202204388
crossref_primary_10_1002_cssc_202301535
crossref_primary_10_1016_j_jcis_2022_10_099
crossref_primary_10_1002_celc_202000136
crossref_primary_10_1039_D0TA10823E
crossref_primary_10_1016_j_apsusc_2023_157504
crossref_primary_10_1016_j_cattod_2023_114396
crossref_primary_10_1021_acs_jpcc_1c00742
crossref_primary_10_1002_cssc_202101462
crossref_primary_10_1039_D0TA10494A
crossref_primary_10_1002_aenm_202002967
crossref_primary_10_1002_smll_202201740
crossref_primary_10_1021_acs_jpclett_3c00903
crossref_primary_10_1002_eng2_12327
crossref_primary_10_1039_D2TA09959D
crossref_primary_10_1016_j_cattod_2020_10_003
crossref_primary_10_1016_j_jechem_2020_06_048
crossref_primary_10_1039_D1CY00803J
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1039_D3TA05498E
crossref_primary_10_1039_D3NR01144E
crossref_primary_10_1016_j_apsusc_2021_150921
crossref_primary_10_20964_2020_10_46
crossref_primary_10_1002_adfm_202000869
crossref_primary_10_1016_j_cej_2023_144243
crossref_primary_10_1039_D2TC01542K
crossref_primary_10_3390_pr11051413
crossref_primary_10_1016_j_mattod_2020_03_022
crossref_primary_10_1002_cphc_202200864
crossref_primary_10_1039_C9NA00610A
crossref_primary_10_1016_j_apcata_2022_118886
crossref_primary_10_1016_j_ccr_2023_215196
crossref_primary_10_1021_acs_jpcc_2c02969
crossref_primary_10_1007_s12598_021_01876_0
crossref_primary_10_1016_j_apsusc_2020_146385
crossref_primary_10_1021_acs_jpclett_9b03682
crossref_primary_10_1002_ece2_60
crossref_primary_10_1016_j_jcis_2021_07_083
crossref_primary_10_1016_j_apcatb_2023_122473
crossref_primary_10_1021_acs_jpcc_1c03713
crossref_primary_10_1039_D3NJ01668D
crossref_primary_10_1016_j_apsusc_2022_153624
crossref_primary_10_1016_j_cej_2021_129832
crossref_primary_10_1016_j_surfin_2024_105401
crossref_primary_10_1039_C9NR08969A
crossref_primary_10_1039_D3CP02314A
crossref_primary_10_1002_cphc_202200750
crossref_primary_10_1002_chem_202303148
crossref_primary_10_1021_jacs_0c09527
crossref_primary_10_1002_smll_202002885
crossref_primary_10_1021_acsami_0c18472
crossref_primary_10_1039_D0TA03271A
crossref_primary_10_1002_smtd_202201559
crossref_primary_10_1149_1945_7111_ac030a
crossref_primary_10_1016_j_joei_2024_101535
crossref_primary_10_1021_acs_chemrev_9b00348
crossref_primary_10_1007_s40843_022_2406_5
crossref_primary_10_1002_adfm_202006939
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1002_smll_202410772
crossref_primary_10_1039_D1SE01390D
crossref_primary_10_1002_adhm_202101215
crossref_primary_10_1007_s10562_022_04106_z
crossref_primary_10_1039_D2CP03795E
crossref_primary_10_1039_D3CC02229C
crossref_primary_10_1016_j_ccr_2022_214468
crossref_primary_10_1039_C9NR05402B
crossref_primary_10_1039_C9TA13599E
crossref_primary_10_1016_j_progsolidstchem_2022_100370
crossref_primary_10_1002_chem_202005182
crossref_primary_10_1002_adfm_202003437
crossref_primary_10_1016_j_cej_2024_148687
crossref_primary_10_1002_slct_202002729
crossref_primary_10_1016_j_apsusc_2022_154935
crossref_primary_10_1016_j_jechem_2020_09_002
crossref_primary_10_1021_acs_jpcc_0c10877
crossref_primary_10_1021_acsnano_0c04284
crossref_primary_10_1021_acsami_2c05087
crossref_primary_10_1016_j_apsusc_2021_151020
crossref_primary_10_1039_D3MA00917C
crossref_primary_10_1021_acsanm_3c05754
crossref_primary_10_1007_s41918_024_00236_7
crossref_primary_10_1039_D2TA00470D
crossref_primary_10_1016_j_mtcomm_2024_109423
crossref_primary_10_1016_j_apsusc_2023_156827
crossref_primary_10_1039_D1NR02883A
crossref_primary_10_1002_smll_202007113
crossref_primary_10_1021_acs_jpcc_0c08302
crossref_primary_10_1021_acsnano_0c05482
crossref_primary_10_1039_D0EE03596C
crossref_primary_10_1021_acsami_1c12893
crossref_primary_10_1016_j_apsusc_2020_147706
crossref_primary_10_1016_j_mcat_2023_113519
crossref_primary_10_1016_j_mtsust_2024_100876
crossref_primary_10_1039_D0CC05853J
crossref_primary_10_1002_aenm_202103867
crossref_primary_10_1002_sus2_70
crossref_primary_10_1039_D2CY00428C
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1016_j_est_2024_112043
crossref_primary_10_1002_smll_202306311
crossref_primary_10_1016_j_apsusc_2022_153149
crossref_primary_10_1002_adem_202100405
crossref_primary_10_1039_C9CC09613B
crossref_primary_10_1007_s10563_023_09408_9
crossref_primary_10_1016_j_apsusc_2023_157225
crossref_primary_10_1016_j_jcis_2021_11_093
crossref_primary_10_1002_advs_202200296
crossref_primary_10_1039_C9NR09157B
crossref_primary_10_1016_j_vacuum_2024_113888
crossref_primary_10_1039_D0NR00030B
crossref_primary_10_1021_acs_jpclett_0c01415
crossref_primary_10_1016_j_jcis_2021_05_027
crossref_primary_10_1039_C9CP06112F
crossref_primary_10_1039_D4GC01566E
crossref_primary_10_1021_acsami_2c11674
crossref_primary_10_1016_S1872_2067_21_63987_6
crossref_primary_10_1016_j_apsusc_2021_150867
crossref_primary_10_1016_j_susmat_2022_e00439
crossref_primary_10_1021_acsami_1c01098
crossref_primary_10_1016_j_jcis_2024_03_026
crossref_primary_10_1016_j_apsusc_2022_153130
crossref_primary_10_1016_j_ijhydene_2024_06_128
crossref_primary_10_1002_adfm_202303480
crossref_primary_10_1002_tcr_202400047
crossref_primary_10_1021_acs_jpcc_3c06420
crossref_primary_10_1016_j_nanoen_2022_107517
crossref_primary_10_1016_j_fuel_2025_135055
crossref_primary_10_1039_D1TA08246A
crossref_primary_10_1016_j_apsusc_2022_156077
crossref_primary_10_1016_j_apsusc_2021_152272
crossref_primary_10_1016_j_jcis_2020_12_034
crossref_primary_10_1021_acsomega_3c02984
crossref_primary_10_1021_acs_jpcc_4c04481
crossref_primary_10_1016_j_mtcomm_2024_109509
crossref_primary_10_1039_D2QI02476D
crossref_primary_10_3390_molecules29235768
crossref_primary_10_1039_D4SE00556B
crossref_primary_10_1016_j_cattod_2020_02_002
crossref_primary_10_1016_j_jcis_2021_09_026
crossref_primary_10_1021_acs_jpclett_9b02741
crossref_primary_10_1021_acsanm_0c01922
crossref_primary_10_1016_j_ijhydene_2024_12_311
crossref_primary_10_1016_j_mcat_2023_113036
crossref_primary_10_1063_5_0221872
crossref_primary_10_1002_solr_202100863
crossref_primary_10_1002_smsc_202100017
crossref_primary_10_1039_D2TA00504B
crossref_primary_10_1039_D0TA05821A
crossref_primary_10_1016_j_cclet_2020_01_035
crossref_primary_10_1016_j_electacta_2022_139988
crossref_primary_10_1002_smll_202410105
crossref_primary_10_1016_j_physe_2021_114875
crossref_primary_10_1002_adfm_202008983
crossref_primary_10_1021_acs_jpcc_1c09772
crossref_primary_10_1039_D1TA02998C
crossref_primary_10_1039_D3CP04718K
crossref_primary_10_1021_acsami_1c00871
crossref_primary_10_1039_D1QM00546D
crossref_primary_10_1016_j_checat_2021_12_004
crossref_primary_10_1016_j_mcat_2025_114931
crossref_primary_10_1039_D4CY00171K
crossref_primary_10_1021_acscatal_5c00809
crossref_primary_10_1039_D0TA05943A
crossref_primary_10_1002_cctc_202401325
crossref_primary_10_1002_advs_202004516
crossref_primary_10_1002_smll_202403399
crossref_primary_10_1088_1361_6528_ac2d4a
crossref_primary_10_1039_D1CS00590A
crossref_primary_10_1007_s11467_021_1115_4
crossref_primary_10_1021_acs_chemmater_1c00424
crossref_primary_10_1002_adts_202000190
crossref_primary_10_1021_acsami_2c19911
crossref_primary_10_1016_j_pmatsci_2023_101166
crossref_primary_10_1021_acsami_1c23643
crossref_primary_10_1016_j_pecs_2020_100860
crossref_primary_10_1039_D0TA00794C
crossref_primary_10_1016_j_ijhydene_2024_05_408
crossref_primary_10_1021_acscatal_2c04527
crossref_primary_10_1016_j_jhazmat_2022_130647
crossref_primary_10_1016_j_ijhydene_2024_01_203
crossref_primary_10_1016_j_jcis_2024_01_081
crossref_primary_10_1016_j_cej_2023_143776
crossref_primary_10_1021_acssuschemeng_0c04401
crossref_primary_10_1016_j_cej_2022_138320
crossref_primary_10_1016_j_cjche_2023_06_027
crossref_primary_10_1016_j_jallcom_2024_175837
crossref_primary_10_1016_j_mattod_2020_09_006
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1016_j_cattod_2022_06_019
crossref_primary_10_1021_acssuschemeng_0c04091
crossref_primary_10_1002_advs_202417773
Cites_doi 10.1021/jp052961b
10.1021/jacs.7b05213
10.1021/acs.chemmater.6b03972
10.1002/aenm.201803406
10.1039/C8TA04064H
10.1103/PhysRevB.46.6671
10.1002/adma.201102306
10.1126/science.1085326
10.1126/science.1214025
10.1021/acs.jpcc.9b02657
10.1002/adma.201604799
10.1021/cr950055x
10.1021/acscatal.6b02899
10.1039/C8TA06567E
10.1002/smtd.201800376
10.1039/C6EE01800A
10.1021/acscatal.7b00547
10.1038/s41586-019-1134-2
10.1038/nature16459
10.1038/s41929-018-0195-1
10.1002/cssc.201500322
10.1021/acs.jpcc.8b05257
10.1002/anie.201703864
10.1126/science.1136674
10.1002/smtd.201800368
10.1103/PhysRevB.49.14251
10.1088/0953-8984/21/8/084204
10.1038/nature12435
10.1021/acscatal.8b05134
10.1002/cssc.201701306
10.1021/jacs.8b13165
10.1002/anie.201502104
10.1002/adts.201800018
10.1103/PhysRevLett.99.016105
10.1016/j.joule.2018.09.011
10.1016/0927-0256(96)00008-0
10.1039/c0ee00071j
10.1016/j.jpowsour.2008.02.097
10.1103/PhysRevB.50.17953
10.1002/aenm.201701343
10.1021/jacs.8b07472
10.1038/natrevmats.2016.98
10.1002/advs.201600180
10.1021/acs.inorgchem.5b00881
10.1038/nature14180
10.1021/acs.inorgchem.8b02293
10.1039/C8TA10497B
10.1021/acsnano.7b03738
10.1103/PhysRevB.54.11169
10.1039/C8TA11025E
10.1016/S0360-0564(02)45013-4
10.1039/C6SC03911A
10.1038/s41467-018-05758-5
10.1002/adma.201304138
10.1063/1.3382344
10.1039/C9TA02926E
10.1021/acscatal.8b00905
10.1002/anie.201806386
10.1039/C1CP22271F
10.1021/jacs.8b13579
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/smtd.201900337
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2366-9608
EndPage n/a
ExternalDocumentID 10_1002_smtd_201900337
SMTD201900337
Genre article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 21803074
– fundername: Australian Research Council
  funderid: FT110100034
– fundername: Ningbo municipal science and technology innovative research team
  funderid: 2015B11002
– fundername: National Basic Research Program of China (973 Program)
  funderid: 2018YFB0704300
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAZKR
ACCFJ
ACCZN
ACGFS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
ID FETCH-LOGICAL-c3557-3f673dd5dfdce074686f7bf6d09147030dfad02b3c209cb5c84189a9415902663
ISSN 2366-9608
IngestDate Tue Jul 01 00:47:42 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Wed Jan 22 16:37:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3557-3f673dd5dfdce074686f7bf6d09147030dfad02b3c209cb5c84189a9415902663
ORCID 0000-0002-0667-540X
PageCount 7
ParticipantIDs crossref_citationtrail_10_1002_smtd_201900337
crossref_primary_10_1002_smtd_201900337
wiley_primary_10_1002_smtd_201900337_SMTD201900337
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Small methods
PublicationYear 2019
References 2018; 122
2017; 7
2017; 8
2017; 2
2000; 45
2014; 26
2019; 568
2012; 14
2008; 185
2019; 123
2018; 6
2018; 9
2018; 8
2018; 3
2018; 1
2005; 109
1992; 46
2011; 23
2010; 3
1996; 6
2019; 7
2011; 334
2019; 9
2019; 3
2018; 140
2009; 21
2015; 520
2013; 501
2015; 54
1996; 96
2015; 528
1994; 49
2017; 29
2008; 320
2019; 141
2007; 99
2015; 8
1996; 54
2017; 139
2016; 3
2017; 11
2017; 56
2010; 132
2018
2018; 11
2016; 28
2003; 301
1994; 50
2016; 9
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
Gao Y. (e_1_2_7_29_1) 2018
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 54
  start-page: 8255
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 4609
  year: 2019
  publication-title: ACS Catal.
– volume: 141
  start-page: 4086
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7517
  year: 2018
  publication-title: ACS Catal.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1235
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 3485
  year: 2018
  publication-title: Nat. Commun.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 1090
  year: 2017
  publication-title: Chem. Sci.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 992
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 568
  start-page: 536
  year: 2019
  publication-title: Nature
– volume: 334
  start-page: 940
  year: 2011
  publication-title: Science
– volume: 7
  start-page: 3869
  year: 2017
  publication-title: ACS Catal.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 2392
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 185
  start-page: 459
  year: 2008
  publication-title: J. Power Sources
– volume: 301
  start-page: 76
  year: 2003
  publication-title: Science
– volume: 96
  start-page: 2983
  year: 1996
  publication-title: Chem. Rev.
– volume: 1
  start-page: 985
  year: 2018
  publication-title: Nat. Catal.
– year: 2018
  publication-title: Catal. Today
– volume: 320
  start-page: 889
  year: 2008
  publication-title: Science
– volume: 3
  start-page: 1311
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 104
  year: 2018
  publication-title: ChemSusChem
– volume: 501
  start-page: 84
  year: 2013
  publication-title: Nature
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 109
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 45
  start-page: 71
  year: 2000
  publication-title: Adv. Catal.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 4865
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 21
  year: 2009
  publication-title: J. Phys.: Condens. Matter
– volume: 3
  start-page: 279
  year: 2019
  publication-title: Joule
– volume: 141
  start-page: 2884
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 1
  year: 2018
  publication-title: Adv. Theory Simul.
– volume: 28
  start-page: 9026
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 2180
  year: 2015
  publication-title: ChemSusChem
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 6671
  year: 1992
  publication-title: Phys. Rev. B
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 49
  year: 1994
  publication-title: Phys. Rev. B
– volume: 528
  start-page: 555
  year: 2015
  publication-title: Nature
– volume: 54
  start-page: 9234
  year: 2015
  publication-title: Inorg. Chem.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2018
  publication-title: Small Methods
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 7
  start-page: 1301
  year: 2017
  publication-title: ACS Catal.
– volume: 520
  start-page: 666
  year: 2015
  publication-title: Nature
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– year: 2018
  publication-title: Small Methods
– volume: 9
  start-page: 2545
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_7_60_1
  doi: 10.1021/jp052961b
– ident: e_1_2_7_12_1
  doi: 10.1021/jacs.7b05213
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.chemmater.6b03972
– ident: e_1_2_7_57_1
  doi: 10.1002/aenm.201803406
– ident: e_1_2_7_21_1
  doi: 10.1039/C8TA04064H
– ident: e_1_2_7_41_1
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1085326
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1214025
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.jpcc.9b02657
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201604799
– ident: e_1_2_7_34_1
  doi: 10.1021/cr950055x
– ident: e_1_2_7_17_1
  doi: 10.1021/acscatal.6b02899
– ident: e_1_2_7_27_1
  doi: 10.1039/C8TA06567E
– ident: e_1_2_7_9_1
  doi: 10.1002/smtd.201800376
– ident: e_1_2_7_30_1
  doi: 10.1039/C6EE01800A
– ident: e_1_2_7_58_1
  doi: 10.1021/acscatal.7b00547
– ident: e_1_2_7_37_1
  doi: 10.1038/s41586-019-1134-2
– ident: e_1_2_7_1_1
  doi: 10.1038/nature16459
– ident: e_1_2_7_32_1
  doi: 10.1038/s41929-018-0195-1
– ident: e_1_2_7_51_1
  doi: 10.1002/cssc.201500322
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.jpcc.8b05257
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201703864
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1136674
– ident: e_1_2_7_47_1
  doi: 10.1002/smtd.201800368
– ident: e_1_2_7_40_1
  doi: 10.1103/PhysRevB.49.14251
– ident: e_1_2_7_45_1
  doi: 10.1088/0953-8984/21/8/084204
– ident: e_1_2_7_7_1
  doi: 10.1038/nature12435
– ident: e_1_2_7_56_1
  doi: 10.1021/acscatal.8b05134
– ident: e_1_2_7_14_1
  doi: 10.1002/cssc.201701306
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.8b13165
– ident: e_1_2_7_59_1
  doi: 10.1002/anie.201502104
– ident: e_1_2_7_15_1
  doi: 10.1002/adts.201800018
– year: 2018
  ident: e_1_2_7_29_1
  publication-title: Catal. Today
– ident: e_1_2_7_50_1
  doi: 10.1103/PhysRevLett.99.016105
– ident: e_1_2_7_31_1
  doi: 10.1016/j.joule.2018.09.011
– ident: e_1_2_7_39_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_7_46_1
  doi: 10.1039/c0ee00071j
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jpowsour.2008.02.097
– ident: e_1_2_7_42_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201701343
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.8b07472
– ident: e_1_2_7_23_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_7_26_1
  doi: 10.1002/advs.201600180
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.inorgchem.5b00881
– ident: e_1_2_7_36_1
  doi: 10.1038/nature14180
– ident: e_1_2_7_52_1
  doi: 10.1021/acs.inorgchem.8b02293
– ident: e_1_2_7_53_1
  doi: 10.1039/C8TA10497B
– ident: e_1_2_7_28_1
  doi: 10.1021/acsnano.7b03738
– ident: e_1_2_7_38_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_7_11_1
  doi: 10.1039/C8TA11025E
– ident: e_1_2_7_49_1
  doi: 10.1016/S0360-0564(02)45013-4
– ident: e_1_2_7_18_1
  doi: 10.1039/C6SC03911A
– ident: e_1_2_7_55_1
  doi: 10.1038/s41467-018-05758-5
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_7_44_1
  doi: 10.1063/1.3382344
– ident: e_1_2_7_54_1
  doi: 10.1039/C9TA02926E
– ident: e_1_2_7_61_1
  doi: 10.1021/acscatal.8b00905
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201806386
– ident: e_1_2_7_48_1
  doi: 10.1039/C1CP22271F
– ident: e_1_2_7_33_1
  doi: 10.1021/jacs.8b13579
SSID ssj0002013521
Score 2.556701
Snippet The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms defective MXene
density functional theory
electrochemical nitrogen reduction
single‐atom catalysts
Title Theoretical Screening of Single Transition Metal Atoms Embedded in MXene Defects as Superior Electrocatalyst of Nitrogen Reduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.201900337
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtpAFB1RsmkXVZ9q-tIsKnWB3NrjB3iJGipUxdmYSHRljT1jCSngKoZF-gv5hXxszzw8mDZ9ZWPQMNiGe7hz7uXOuYS8E4iqwgn3vZQHiReJmHsgsQmwzFmEeCQJdbOJ7CyZn0dflvFyMLjpVS3ttuWH6vut-0ruYlWMwa5ql-x_WNadFAN4DvviCAvj-K82drsQ80pV0Nga5hyPF9Iol-uarFEm1a7H6bZZt6PZupTwN0p1aZQt4ezgdUxVB2_hSZT2cXM5mpkGOTq_c9XqgoGzFQZwNzCKMKqzqgi_cra1JDdfq_-7TW9qR9lPzTZsudqn8I2bWeJerxq7gKpKoJ3O3s45wOmQ-5U3JoPfz1IEqd2u55wZCwEAREvG18pbxqw3DvugC3rrslu1fnH6RkS2XW-V8mugUrNGR-ZQXdvNjP88V6_tebY4ca_fI0cMQQgbkqPpSXaauxweZoC_Brp_of0onS6ozz4eXuSA9_TjIE1kFo_IQxuB0KmB02MykJsn5EFPl_Ipue4Bizpg0aamBlh0DyyqgUU1sGgHLLrCuAIWtcCivKUdsOhPwFKn7YBFHbBoB6xn5PzzbPFp7tmuHV4F7ooVq07GoRCxqEUlVTebSVKPyzoRYKaRWl9EzYXPyrBiflqVcTWJgknKUzDJ1IebCJ-T4abZyBeEgjpWgeAguZGMSj-esHosy5JHDAwDsfQx8brvtKispL3qrHJRGDFuVigbFM4Gx-S9m__NiLn8dibTJvrLtOIAJy_v8qZX5P7-9_KaDLeXO_kGPHdbvrVw-wEOS6Qa
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Screening+of+Single+Transition+Metal+Atoms+Embedded+in+MXene+Defects+as+Superior+Electrocatalyst+of+Nitrogen+Reduction+Reaction&rft.jtitle=Small+methods&rft.au=Li%2C+Lei&rft.au=Wang%2C+Xingyong&rft.au=Guo%2C+Haoran&rft.au=Yao%2C+Ge&rft.date=2019-11-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=3&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.201900337&rft.externalDBID=10.1002%252Fsmtd.201900337&rft.externalDocID=SMTD201900337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon