3D‐QSAR, molecular docking, and ONIOM studies on the structure–activity relationships and action mechanism of nitrogen‐containing bisphosphonates
Nitrogen‐containing bisphosphonates (N‐BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. Understanding the structure–activity relationships and the action mechanisms of these bisphosphonates is ins...
Saved in:
Published in | Chemical biology & drug design Vol. 91; no. 3; pp. 735 - 746 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogen‐containing bisphosphonates (N‐BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. Understanding the structure–activity relationships and the action mechanisms of these bisphosphonates is instructive for the design and the development of novel potent inhibitors. Here, a series of N‐BPs inhibitors of human FPPS (hFPPS) were investigated using a combination of three‐dimensional quantitative structure–activity relationship (3D‐QSAR), molecular docking, and three‐layer ONIOM studies. The constructed 3D‐QSAR model yielded a good correlation between the predicted and experimental activities. Based on the analysis of comparative molecular field analysis (CoMFA) contour maps, a series of novel N‐BPs inhibitors were designed and ten novel potent N‐BPs inhibitor candidates were screened out. Molecular docking and ONIOM (B3LYP/6‐31 + G*:PM6:Amber) calculations revealed that the inhibitors bound to the active site of hFPPS via hydrogen‐bonding interactions, hydrophobic interactions, and cation‐π interactions. Six novel N‐BPs inhibitors with better biological activities and higher lipophilicity were further screened out from ten candidates based on the calculated interaction energy. This study will facilitate the discovery of novel N‐BPs inhibitors with higher activity and selectivity.
A 3D‐QSAR model was constructed for 53 N‐BPs with the inhibition activities on hFPPS. A series of novel N‐BPs inhibitors were designed and six novel N‐BPs inhibitors with better biological activities and higher lipophilicity were screened out. Molecular docking and ONIOM (B3LYP/6‐31 + G*:PM6:Amber) calculations showed that the inhibitors bound to the active site of hFPPS via hydrogen‐bonding interactions, hydrophobic interactions, and cation‐π interactions. |
---|---|
AbstractList | Nitrogen-containing bisphosphonates (N-BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. Understanding the structure-activity relationships and the action mechanisms of these bisphosphonates is instructive for the design and the development of novel potent inhibitors. Here, a series of N-BPs inhibitors of human FPPS (hFPPS) were investigated using a combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, and three-layer ONIOM studies. The constructed 3D-QSAR model yielded a good correlation between the predicted and experimental activities. Based on the analysis of comparative molecular field analysis (CoMFA) contour maps, a series of novel N-BPs inhibitors were designed and ten novel potent N-BPs inhibitor candidates were screened out. Molecular docking and ONIOM (B3LYP/6-31 + G*:PM6:Amber) calculations revealed that the inhibitors bound to the active site of hFPPS via hydrogen-bonding interactions, hydrophobic interactions, and cation-π interactions. Six novel N-BPs inhibitors with better biological activities and higher lipophilicity were further screened out from ten candidates based on the calculated interaction energy. This study will facilitate the discovery of novel N-BPs inhibitors with higher activity and selectivity.Nitrogen-containing bisphosphonates (N-BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. Understanding the structure-activity relationships and the action mechanisms of these bisphosphonates is instructive for the design and the development of novel potent inhibitors. Here, a series of N-BPs inhibitors of human FPPS (hFPPS) were investigated using a combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, and three-layer ONIOM studies. The constructed 3D-QSAR model yielded a good correlation between the predicted and experimental activities. Based on the analysis of comparative molecular field analysis (CoMFA) contour maps, a series of novel N-BPs inhibitors were designed and ten novel potent N-BPs inhibitor candidates were screened out. Molecular docking and ONIOM (B3LYP/6-31 + G*:PM6:Amber) calculations revealed that the inhibitors bound to the active site of hFPPS via hydrogen-bonding interactions, hydrophobic interactions, and cation-π interactions. Six novel N-BPs inhibitors with better biological activities and higher lipophilicity were further screened out from ten candidates based on the calculated interaction energy. This study will facilitate the discovery of novel N-BPs inhibitors with higher activity and selectivity. Nitrogen‐containing bisphosphonates (N‐BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. Understanding the structure–activity relationships and the action mechanisms of these bisphosphonates is instructive for the design and the development of novel potent inhibitors. Here, a series of N‐BPs inhibitors of human FPPS (hFPPS) were investigated using a combination of three‐dimensional quantitative structure–activity relationship (3D‐QSAR), molecular docking, and three‐layer ONIOM studies. The constructed 3D‐QSAR model yielded a good correlation between the predicted and experimental activities. Based on the analysis of comparative molecular field analysis (CoMFA) contour maps, a series of novel N‐BPs inhibitors were designed and ten novel potent N‐BPs inhibitor candidates were screened out. Molecular docking and ONIOM (B3LYP/6‐31 + G*:PM6:Amber) calculations revealed that the inhibitors bound to the active site of hFPPS via hydrogen‐bonding interactions, hydrophobic interactions, and cation‐π interactions. Six novel N‐BPs inhibitors with better biological activities and higher lipophilicity were further screened out from ten candidates based on the calculated interaction energy. This study will facilitate the discovery of novel N‐BPs inhibitors with higher activity and selectivity. A 3D‐QSAR model was constructed for 53 N‐BPs with the inhibition activities on hFPPS. A series of novel N‐BPs inhibitors were designed and six novel N‐BPs inhibitors with better biological activities and higher lipophilicity were screened out. Molecular docking and ONIOM (B3LYP/6‐31 + G*:PM6:Amber) calculations showed that the inhibitors bound to the active site of hFPPS via hydrogen‐bonding interactions, hydrophobic interactions, and cation‐π interactions. Nitrogen-containing bisphosphonates (N-BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. Understanding the structure-activity relationships and the action mechanisms of these bisphosphonates is instructive for the design and the development of novel potent inhibitors. Here, a series of N-BPs inhibitors of human FPPS (hFPPS) were investigated using a combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, and three-layer ONIOM studies. The constructed 3D-QSAR model yielded a good correlation between the predicted and experimental activities. Based on the analysis of comparative molecular field analysis (CoMFA) contour maps, a series of novel N-BPs inhibitors were designed and ten novel potent N-BPs inhibitor candidates were screened out. Molecular docking and ONIOM (B3LYP/6-31 + G*:PM6:Amber) calculations revealed that the inhibitors bound to the active site of hFPPS via hydrogen-bonding interactions, hydrophobic interactions, and cation-π interactions. Six novel N-BPs inhibitors with better biological activities and higher lipophilicity were further screened out from ten candidates based on the calculated interaction energy. This study will facilitate the discovery of novel N-BPs inhibitors with higher activity and selectivity. |
Author | Qiu, Ling Lin, Jian‐Guo Li, Ke Wang, Shan‐Shan Liu, Qing‐Zhu Lv, Gao‐Chao Zhao, Xue‐Yu Li, Xi |
Author_xml | – sequence: 1 givenname: Qing‐Zhu surname: Liu fullname: Liu, Qing‐Zhu organization: Jiangsu Institute of Nuclear Medicine – sequence: 2 givenname: Shan‐Shan surname: Wang fullname: Wang, Shan‐Shan organization: Jiangnan University – sequence: 3 givenname: Xi surname: Li fullname: Li, Xi organization: Jiangnan University – sequence: 4 givenname: Xue‐Yu surname: Zhao fullname: Zhao, Xue‐Yu organization: Jiangnan University – sequence: 5 givenname: Ke surname: Li fullname: Li, Ke organization: Jiangsu Institute of Nuclear Medicine – sequence: 6 givenname: Gao‐Chao surname: Lv fullname: Lv, Gao‐Chao organization: Jiangsu Institute of Nuclear Medicine – sequence: 7 givenname: Ling orcidid: 0000-0002-9704-8435 surname: Qiu fullname: Qiu, Ling email: qiuling@jsinm.org organization: Jiangsu Institute of Nuclear Medicine – sequence: 8 givenname: Jian‐Guo surname: Lin fullname: Lin, Jian‐Guo email: linjianguo@jsinm.org organization: Jiangsu Institute of Nuclear Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29080272$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9uEzEQxi1U1P-XPgDyEaGm2Lv22jm2CYVKhQjanldee7Yx7NrB9lLl1kdA4sD79UlwktJDhbBkeTzz-2ak-fbQlvMOEDqi5ITm81Y3xpzQkpbsBdqlgokRKSTfeoqF2EF7MX4lhDFeyG20U4yJzPliF_0upw_3Pz9fnX45xr3vQA-dCth4_c2622OsnMGzTxezjzimwViI2Duc5pC_YdBpCPBw_0vpZH_YtMQBOpWsd3FuF3GtXZWyogc9V87GHvsWO5uCvwWX52rvkrIuj8KNjYu5X12nEsQD9LJVXYTDx3cf3Zy_u558GF3O3l9MTi9HuuScjaiUgrXUlC03FR83QhRGNxVrjWkrXildSdmQQnHVCqYbxkBAYaQZl5wJ1ZTlPnq96bsI_vsAMdW9jRq6TjnwQ6zpmAsmKy5IRl89okPTg6kXwfYqLOu_y8zAmw2gg48xQPuEUFKvnKpXTtVrpzJMnsHapvX2UlC2-7eEbiR3toPlf5rXk7PpdKP5A-wUqxo |
CitedBy_id | crossref_primary_10_1016_j_jpba_2023_115371 crossref_primary_10_1016_j_bioorg_2019_103282 crossref_primary_10_1016_j_ejmech_2019_111905 crossref_primary_10_1002_slct_202203319 crossref_primary_10_3390_app8071121 crossref_primary_10_1002_cbin_11546 crossref_primary_10_1186_s12900_018_0095_2 |
Cites_doi | 10.1021/cr5004419 10.1021/jm800325y 10.2174/15701638113106660041 10.1002/jcc.20035 10.1529/biophysj.106.097782 10.1016/S1359-6446(97)01079-9 10.1007/s10822-013-9674-2 10.1016/j.bmc.2012.07.019 10.1021/jp980230o 10.1111/j.1747-0285.2011.01168.x 10.1111/j.1747-0285.2011.01164.x 10.1021/jm058220g 10.1021/acs.jpcb.5b05897 10.1074/jbc.C300511200 10.2174/138161207782794284 10.1021/jm0303709 10.1007/s10522-011-9344-5 10.2174/092986711794088335 10.1021/jm0702884 10.1021/ja00226a005 10.1111/cbdd.12545 10.1021/acs.jmedchem.6b01578 10.1007/s00198-007-0540-8 10.1007/s00894-007-0233-4 10.1038/nrd1364 10.1021/jm7015733 10.1021/jm400946f 10.1111/cbdd.12121 10.1134/S0022476615070124 10.1021/jm010279 10.1021/jm040132t 10.1021/jm030054u 10.4065/84.7.632 10.1016/j.bone.2011.03.774 10.1002/cmdc.200500059 10.1021/ar300265y 10.1126/science.271.5246.163 10.1016/j.bmcl.2008.03.088 10.1021/jm801003y 10.1021/jm201657x 10.1021/ja312656v 10.1016/j.bone.2010.09.035 10.1073/pnas.0601643103 10.1126/science.289.5484.1508 10.1021/jm0302344 10.1002/prot.21123 10.14310/horm.2002.1226 |
ContentType | Journal Article |
Copyright | 2017 John Wiley & Sons A/S 2017 John Wiley & Sons A/S. |
Copyright_xml | – notice: 2017 John Wiley & Sons A/S – notice: 2017 John Wiley & Sons A/S. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/cbdd.13134 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1747-0285 |
EndPage | 746 |
ExternalDocumentID | 29080272 10_1111_cbdd_13134 CBDD13134 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: 333 Project of Jiangsu Province funderid: BRA2016518 – fundername: National Natural Science Foundation of China funderid: 21371082; 21501074 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20141102; BK20151118 – fundername: Key Medical Talent Project of Jiangsu Province funderid: QNRC2016626; QNRC2016629 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN EPT EST ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA HF~ HGLYW HVGLF HZI IHE IX1 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK0 MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N9A NDZJH O66 OIG OVD P2W P4B P4D Q.N Q11 QB0 Q~Q R.K RJQFR ROL RX1 SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ XG1 ~IA ~KM ~WT AAYXX AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3554-18874f1d3f5d659b772dcb64fddf656ac688b02a5af74cb44e7e2d8d93547ab33 |
IEDL.DBID | DR2 |
ISSN | 1747-0277 1747-0285 |
IngestDate | Sun Aug 24 03:59:44 EDT 2025 Thu Apr 03 07:00:35 EDT 2025 Tue Jul 01 04:25:20 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Wed Jan 22 16:45:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | nitrogen-containing bisphosphonates farnesyl pyrophosphate synthase three-dimensional quantitative structure-activity relationship molecular docking ONIOM |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 John Wiley & Sons A/S. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3554-18874f1d3f5d659b772dcb64fddf656ac688b02a5af74cb44e7e2d8d93547ab33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9704-8435 |
PMID | 29080272 |
PQID | 1957486570 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1957486570 pubmed_primary_29080272 crossref_primary_10_1111_cbdd_13134 crossref_citationtrail_10_1111_cbdd_13134 wiley_primary_10_1111_cbdd_13134_CBDD13134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemical biology & drug design |
PublicationTitleAlternate | Chem Biol Drug Des |
PublicationYear | 2018 |
References | 2015; 56 2009; 84 2017; 60 2013; 27 2010 2004; 47 2008; 18 2008; 19 2004; 9 2004; 3 2007; 92 2007; 50 2011; 12 2011; 78 1997; 2 2006; 1 2005; 48 2008; 51 2012; 79 2011; 18 2012; 55 2007; 13 2004; 279 2013; 16 2000; 289 2015; 115 2006; 65 2013; 56 2015; 86 2002; 45 2003; 46 1996; 271 2013; 81 2009; 8 2013; 135 1988; 110 2015; 119 2011; 48 2011; 49 1998; 102 2014; 11 2012; 20 2006; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 K‐M Chen C. (e_1_2_7_22_1) 2008; 51 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 Dougherty D. A. (e_1_2_7_46_1) 2013; 16 Kirkpatrick P. (e_1_2_7_43_1) 2004; 3 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 Prokopenko V. (e_1_2_7_19_1) 2014; 11 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 Accelrys Software Inc. (e_1_2_7_32_1) 2010 e_1_2_7_29_1 Wang J. (e_1_2_7_38_1) 2004; 9 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 19 start-page: 733 year: 2008 publication-title: Osteoporos. Int. – volume: 51 start-page: 2187 year: 2008 publication-title: J. Med. Chem. – volume: 11 start-page: 133 year: 2014 publication-title: Curr. Drug Discov. Technol. – volume: 84 start-page: 632 year: 2009 publication-title: Mayo Clin. Proc. – volume: 20 start-page: 5583 year: 2012 publication-title: Bioorgan. Med. Chem. – volume: 119 start-page: 12771 year: 2015 publication-title: J. Phys. Chem. B – volume: 12 start-page: 397 year: 2011 publication-title: Biogerontology – volume: 48 start-page: 259 year: 2011 publication-title: Bone – volume: 110 start-page: 5959 year: 1988 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 20 year: 2011 publication-title: Bone – volume: 27 start-page: 739 year: 2013 publication-title: Comput. Aid. Mol. Des. – volume: 18 start-page: 2878 year: 2008 publication-title: Bioorg. Med. Chem. Lett. – volume: 9 start-page: 1157 year: 2004 publication-title: J. Comput. Chem. – volume: 135 start-page: 5740 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 457 year: 1997 publication-title: Drug Discov. Today – volume: 115 start-page: 5678 year: 2015 publication-title: Chem. Rev. – volume: 289 start-page: 1508 year: 2000 publication-title: Science – volume: 56 start-page: 1313 year: 2015 publication-title: J. Struct. Chem. – volume: 103 start-page: 7829 year: 2006 publication-title: Proc. Natl Acad. Sci. USA – volume: 13 start-page: 3476 year: 2007 publication-title: Curr. Pharm. Des. – volume: 8 start-page: 96 year: 2009 publication-title: Hormones – volume: 271 start-page: 163 year: 1996 publication-title: Science – volume: 1 start-page: 267 year: 2006 publication-title: Chem. Med. Chem. – year: 2010 – volume: 65 start-page: 712 year: 2006 publication-title: Proteins – volume: 60 start-page: 2287 year: 2017 publication-title: J. Med. Chem. – volume: 48 start-page: 3130 year: 2005 publication-title: J. Med. Chem. – volume: 3 start-page: 299 year: 2004 publication-title: Nat. Rev. Drug Discov. – volume: 50 start-page: 5967 year: 2007 publication-title: J. Med. Chem. – volume: 86 start-page: 731 year: 2015 publication-title: Chem. Biol. Drug Des. – volume: 18 start-page: 220 year: 2011 publication-title: Curr. Med. Chem. – volume: 56 start-page: 7939 year: 2013 publication-title: J. Med. Chem. – volume: 51 start-page: 6800 year: 2008 publication-title: J. Med. Chem. – volume: 55 start-page: 3201 year: 2012 publication-title: J. Med. Chem. – volume: 78 start-page: 323 year: 2011 publication-title: Chem. Biol. Drug Des. – volume: 47 start-page: 375 year: 2004 publication-title: J. Med. Chem. – volume: 102 start-page: 3762 year: 1998 publication-title: J. Phys. Chem. A – volume: 79 start-page: 53 year: 2012 publication-title: Chem. Biol. Drug Des. – volume: 46 start-page: 2932 year: 2003 publication-title: J. Med. Chem. – volume: 279 start-page: 8526 year: 2004 publication-title: J. Biol. Chem. – volume: 51 start-page: 5594 year: 2008 publication-title: J. Med. Chem. – volume: 46 start-page: 5171 year: 2003 publication-title: J. Med. Chem. – volume: 45 start-page: 2894 year: 2002 publication-title: J. Med. Chem. – volume: 13 start-page: 1173 year: 2007 publication-title: J. Mol. Model. – volume: 92 start-page: 3817 year: 2007 publication-title: Biophys. J . – volume: 16 start-page: 885 year: 2013 publication-title: Acc. Chem. Res. – volume: 48 start-page: 6128 year: 2005 publication-title: J. Med. Chem. – volume: 81 start-page: 742 year: 2013 publication-title: Chem. Biol. Drug Des. – ident: e_1_2_7_34_1 doi: 10.1021/cr5004419 – volume: 51 start-page: 5594 year: 2008 ident: e_1_2_7_22_1 publication-title: J. Med. Chem. doi: 10.1021/jm800325y – volume: 11 start-page: 133 year: 2014 ident: e_1_2_7_19_1 publication-title: Curr. Drug Discov. Technol. doi: 10.2174/15701638113106660041 – volume: 9 start-page: 1157 year: 2004 ident: e_1_2_7_38_1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – ident: e_1_2_7_39_1 doi: 10.1529/biophysj.106.097782 – ident: e_1_2_7_40_1 doi: 10.1016/S1359-6446(97)01079-9 – ident: e_1_2_7_24_1 doi: 10.1007/s10822-013-9674-2 – ident: e_1_2_7_30_1 doi: 10.1016/j.bmc.2012.07.019 – ident: e_1_2_7_42_1 doi: 10.1021/jp980230o – ident: e_1_2_7_41_1 doi: 10.1111/j.1747-0285.2011.01168.x – ident: e_1_2_7_10_1 doi: 10.1111/j.1747-0285.2011.01164.x – ident: e_1_2_7_16_1 doi: 10.1021/jm058220g – ident: e_1_2_7_49_1 doi: 10.1021/acs.jpcb.5b05897 – ident: e_1_2_7_50_1 doi: 10.1074/jbc.C300511200 – ident: e_1_2_7_48_1 doi: 10.1021/cr5004419 – ident: e_1_2_7_44_1 doi: 10.2174/138161207782794284 – ident: e_1_2_7_23_1 doi: 10.1021/jm0303709 – ident: e_1_2_7_7_1 doi: 10.1007/s10522-011-9344-5 – ident: e_1_2_7_13_1 doi: 10.2174/092986711794088335 – ident: e_1_2_7_4_1 doi: 10.1021/jm0702884 – ident: e_1_2_7_33_1 doi: 10.1021/ja00226a005 – ident: e_1_2_7_15_1 doi: 10.1111/cbdd.12545 – ident: e_1_2_7_14_1 doi: 10.1021/acs.jmedchem.6b01578 – ident: e_1_2_7_2_1 doi: 10.1007/s00198-007-0540-8 – ident: e_1_2_7_36_1 doi: 10.1007/s00894-007-0233-4 – volume: 3 start-page: 299 year: 2004 ident: e_1_2_7_43_1 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1364 – ident: e_1_2_7_9_1 doi: 10.1021/jm7015733 – ident: e_1_2_7_5_1 doi: 10.1021/jm400946f – ident: e_1_2_7_11_1 doi: 10.1111/cbdd.12121 – ident: e_1_2_7_35_1 doi: 10.1134/S0022476615070124 – ident: e_1_2_7_17_1 doi: 10.1021/jm010279 – ident: e_1_2_7_20_1 doi: 10.1021/jm040132t – ident: e_1_2_7_21_1 doi: 10.1021/jm030054u – ident: e_1_2_7_25_1 doi: 10.4065/84.7.632 – ident: e_1_2_7_31_1 doi: 10.1016/j.bone.2011.03.774 – ident: e_1_2_7_6_1 doi: 10.1002/cmdc.200500059 – volume: 16 start-page: 885 year: 2013 ident: e_1_2_7_46_1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300265y – ident: e_1_2_7_47_1 doi: 10.1126/science.271.5246.163 – ident: e_1_2_7_28_1 doi: 10.1016/j.bmcl.2008.03.088 – ident: e_1_2_7_27_1 doi: 10.1021/jm801003y – ident: e_1_2_7_29_1 doi: 10.1021/jm201657x – ident: e_1_2_7_45_1 doi: 10.1021/ja312656v – ident: e_1_2_7_8_1 doi: 10.1016/j.bone.2010.09.035 – ident: e_1_2_7_12_1 doi: 10.1073/pnas.0601643103 – ident: e_1_2_7_3_1 doi: 10.1126/science.289.5484.1508 – ident: e_1_2_7_18_1 doi: 10.1021/jm0302344 – ident: e_1_2_7_37_1 doi: 10.1002/prot.21123 – ident: e_1_2_7_26_1 doi: 10.14310/horm.2002.1226 – volume-title: Accelrys Discovery Studio, version 3.0 year: 2010 ident: e_1_2_7_32_1 |
SSID | ssj0044528 |
Score | 2.217464 |
Snippet | Nitrogen‐containing bisphosphonates (N‐BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase... Nitrogen-containing bisphosphonates (N-BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 735 |
SubjectTerms | Diphosphonates - chemistry Enzyme Inhibitors - chemistry farnesyl pyrophosphate synthase Geranyltranstransferase - antagonists & inhibitors Geranyltranstransferase - chemistry Humans Hydrogen Bonding molecular docking Molecular Docking Simulation nitrogen‐containing bisphosphonates ONIOM Structure-Activity Relationship three‐dimensional quantitative structure–activity relationship |
Title | 3D‐QSAR, molecular docking, and ONIOM studies on the structure–activity relationships and action mechanism of nitrogen‐containing bisphosphonates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcbdd.13134 https://www.ncbi.nlm.nih.gov/pubmed/29080272 https://www.proquest.com/docview/1957486570 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QAXKJ9dWiojuICa1Sax40TqZT9YFaS2olCpFxTZcayuYJPVpnvh1J9QiQP_r7-kM_ZmoYCQ4BApSpw4sWfsl_jNG4CXQsjSCi0CGWYqIPW7QIueDTLdk4iutY6dzuzBYbJ_wt-ditM12GtjYbw-xOqHG3mGG6_JwZVufnLyQhvTDeMwJjFQImsRIjpeaUdxLlxiVUTc0i1ULrVJicbz49Kbs9FvEPMmYnVTzvgefGof1jNNPncX57pbfP1Fx_F_32YD7i6xKOt747kPa2X1AG4P2xRwD-F7PLq6uHz_oX-8y6ZtHl1mcAjFCW-Xqcqwo8O3Rwes8WxEVlcMASXzorSLeXl18Y0CJyg_BZu3tLuzyaxx1_qYCjYtKfp40kxZbRmOMPMajRrrJRa9z1_B9KSZndW0VYSNH8HJ-M3H4X6wzOQQFIRnghCHMm5DE1thEpFphPSm0Am3xlgElKpI0lT3IiWUlbzQnJeyjExqslhwqXQcP4b1qq7KTWA9lYkoMdbiKR6FOiW9IolHEPrYVKYdeNX2aF4sZc4p28aXvP3coabOXVN34MWq7MyLe_yx1PPWMHJsf1pQUVVZL5o8zITkKZGHOvDEW8zqPlFGUcwy6sBr1-9_qSAfDkYjt_f0XwpvwR1Eb6knxG3DOnZt-QwR0rnegVv9wWgw3nEecQ3NCxEb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqcigX_n-WXyPgAGpWm8SOkwOHsqHapd2tKK3UW4hjW13BJqtNVwhOfQQkDjwFr8JD9EmYsZOFAkLi0AOHSFHixNF4xvPZmfmGkEecC2245J7wk9xD9jtP8p7xEtkTgK6lDC3P7GgcDfbZywN-sEK-trkwjh9iueGGlmHnazRw3JD-ycoLqVTXD_2QNTGVW_rDe1ix1c-GKQzv4yDYfLHXH3hNUQGvQNfq-WBVzPgqNFxFPJGALlUhI2aUMoBt8iKKY9kLcp4bwQrJmBY6ULFKQs5ELnH_E2b8c1hCHKn6090lWxVj3JZyBYwv7K_Rhg0VA4d-fOtp__cbqD2Nka2T27xIvrXicbEtb7uLI9ktPv7CHPnfyO8SudDAbbrh7OMyWdHlFbLWb6vcXSVfwvTk-NOr1xu763TalgqmCrwE-PR1mpeK7oyHOyNau4BLWpUUMDN1vLuLuT45_oy5IViCg87byMLDyay2z7q0ETrVmGA9qae0MhQm0XkFdgv9YqKAK9FB5aSeHVZ4lAj_r5H9M5HLdbJaVqW-SWgvT3gQKWPgFgt8GSMlk4ArgO5MLOIOedKqUFY0TO5YUORd1q7ocGgzO7Qd8nDZdub4S_7Y6kGriRnIH_8Z5aWuFnXmJ1ywGOOjOuSGU9Hle4IEE7VF0CFPraL9pYOs_zxN7dmtf2l8n6wN9kbb2fZwvHWbnAewGrv4vztkFYZZ3wVAeCTvWTOk5M1Z6-131_9uVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqIgGX8k-XXyPgAGpW-bHj5MChbFh1Kd1CaaXeQhzb6go2WW26QnDqIyBx4CV4FV6iT8KMvVkoICQOPXCIFCVOHI1nPJ-dmW8IecC50IZL7okgLTxkv_Mk942XSl8AupYysjyzW8N4Y4893-f7S-Rrmwvj-CEWG25oGXa-RgOfKPOTkZdSqW4QBRGbh1Ru6g_vYcHWPBlkMLoPw7D_bLe34c1rCnglelYvAKNiJlCR4SrmqQRwqUoZM6OUAWhTlHGSSD8seGEEKyVjWuhQJSqNOBOFxO1PmPDPsNhPsVBEtrMgq2KM20quAPGF_TM6J0PFuKEf33rS_f2GaU9CZOvj-hfIt1Y6LrTlbXd2KLvlx1-II_8X8V0kK3OwTdeddVwiS7q6TM712hp3V8iXKDs--vTq9frOGh23hYKpAh8BHn2NFpWi28PB9hZtXLglrSsKiJk61t3ZVB8ffcbMECzAQadtXOHBaNLYZ13SCB1rTK8eNWNaGwpT6LQGq4V-MU3AFeigctRMDmo8KgT_V8neqcjlGlmu6kqvEuoXKQ9jZQzcYmEgEyRkEnAFsJ1JRNIhj1oNyss5jzuWE3mXt-s5HNrcDm2H3F-0nTj2kj-2utcqYg7yxz9GRaXrWZMHKRcsweioDrnuNHTxnjDFNG0Rdshjq2d_6SDvPc0ye3bjXxrfJWdfZv38xWC4eZOcB6SauOC_W2QZRlnfBjR4KO9YI6TkzWmr7XcYDm0G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D%E2%80%90QSAR%2C+molecular+docking%2C+and+ONIOM+studies+on+the+structure%E2%80%93activity+relationships+and+action+mechanism+of+nitrogen%E2%80%90containing+bisphosphonates&rft.jtitle=Chemical+biology+%26+drug+design&rft.au=Liu%2C+Qing%E2%80%90Zhu&rft.au=Wang%2C+Shan%E2%80%90Shan&rft.au=Li%2C+Xi&rft.au=Zhao%2C+Xue%E2%80%90Yu&rft.date=2018-03-01&rft.issn=1747-0277&rft.eissn=1747-0285&rft.volume=91&rft.issue=3&rft.spage=735&rft.epage=746&rft_id=info:doi/10.1111%2Fcbdd.13134&rft.externalDBID=10.1111%252Fcbdd.13134&rft.externalDocID=CBDD13134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1747-0277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1747-0277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1747-0277&client=summon |