Photogenerated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS
Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti3C2, one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO...
Saved in:
Published in | Small methods Vol. 4; no. 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2366-9608 2366-9608 |
DOI | 10.1002/smtd.202000214 |
Cover
Loading…
Abstract | Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti3C2, one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO2 and Ti3C2 by an in situ growth method and the photogenerated electrons transfer between the two components for photocatalytic water splitting to hydrogen is investigated. Theoretical simulation and experimental tests proclaim that electrons transfer from Ti3C2 to TiO2 forms an internal electric field, which implies that there exists the driving force of electronic movement from TiO2 to Ti3C2. In situ irradiation X‐ray photoelectron spectroscopy shows the binding energies of TiC (in Ti3C2) and TiO (in TiO2) move toward negative and positive positions, respectively, verifying the photogenerated electrons produced from TiO2 and transferring to Ti3C2 driven by the internal electric field. In addition, the amount of TiO2 nanoparticles also affects the hydrogen evolution rate. Several parallel experiments are designed to uncover the fact that less or excess amount of TiO2 nanoparticles leads to a tinier shift of binding energy, which hints the quantity of heterojunction is a considerable factor in photocatalytic performance. This work develops a new method to directly monitor the photoelectron transfer process between heterojuctions.
An in situ irradiation X‐ray photoelectron spectroscopy coupled with UV light optical fiber measurement setup is developed to monitor the photoelectron transfer process between heterojuctions. |
---|---|
AbstractList | Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti3C2, one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO2 and Ti3C2 by an in situ growth method and the photogenerated electrons transfer between the two components for photocatalytic water splitting to hydrogen is investigated. Theoretical simulation and experimental tests proclaim that electrons transfer from Ti3C2 to TiO2 forms an internal electric field, which implies that there exists the driving force of electronic movement from TiO2 to Ti3C2. In situ irradiation X‐ray photoelectron spectroscopy shows the binding energies of TiC (in Ti3C2) and TiO (in TiO2) move toward negative and positive positions, respectively, verifying the photogenerated electrons produced from TiO2 and transferring to Ti3C2 driven by the internal electric field. In addition, the amount of TiO2 nanoparticles also affects the hydrogen evolution rate. Several parallel experiments are designed to uncover the fact that less or excess amount of TiO2 nanoparticles leads to a tinier shift of binding energy, which hints the quantity of heterojunction is a considerable factor in photocatalytic performance. This work develops a new method to directly monitor the photoelectron transfer process between heterojuctions.
An in situ irradiation X‐ray photoelectron spectroscopy coupled with UV light optical fiber measurement setup is developed to monitor the photoelectron transfer process between heterojuctions. Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti 3 C 2 , one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO 2 and Ti 3 C 2 by an in situ growth method and the photogenerated electrons transfer between the two components for photocatalytic water splitting to hydrogen is investigated. Theoretical simulation and experimental tests proclaim that electrons transfer from Ti 3 C 2 to TiO 2 forms an internal electric field, which implies that there exists the driving force of electronic movement from TiO 2 to Ti 3 C 2 . In situ irradiation X‐ray photoelectron spectroscopy shows the binding energies of TiC (in Ti 3 C 2 ) and TiO (in TiO 2 ) move toward negative and positive positions, respectively, verifying the photogenerated electrons produced from TiO 2 and transferring to Ti 3 C 2 driven by the internal electric field. In addition, the amount of TiO 2 nanoparticles also affects the hydrogen evolution rate. Several parallel experiments are designed to uncover the fact that less or excess amount of TiO 2 nanoparticles leads to a tinier shift of binding energy, which hints the quantity of heterojunction is a considerable factor in photocatalytic performance. This work develops a new method to directly monitor the photoelectron transfer process between heterojuctions. |
Author | Li, Yukun Zhang, Peng Xue, Chao Hou, Ruohan Wang, Shaobin Zhu, Bicheng Li, Neng Shao, Guosheng Zhang, Xilai Zhang, Yongshang |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0001-9505-3858 surname: Zhang fullname: Zhang, Peng email: zhangp@zzu.edu.cn organization: Zhengzhou Materials Genome Institute – sequence: 2 givenname: Yukun surname: Li fullname: Li, Yukun organization: Zhengzhou University – sequence: 3 givenname: Yongshang surname: Zhang fullname: Zhang, Yongshang organization: Zhengzhou Materials Genome Institute – sequence: 4 givenname: Ruohan surname: Hou fullname: Hou, Ruohan organization: Zhengzhou University – sequence: 5 givenname: Xilai surname: Zhang fullname: Zhang, Xilai organization: Zhengzhou University – sequence: 6 givenname: Chao surname: Xue fullname: Xue, Chao organization: Zhengzhou University – sequence: 7 givenname: Shaobin surname: Wang fullname: Wang, Shaobin email: shaobin.wang@adelaide.edu.au organization: The University of Adelaide – sequence: 8 givenname: Bicheng surname: Zhu fullname: Zhu, Bicheng organization: Wuhan University of Technology – sequence: 9 givenname: Neng surname: Li fullname: Li, Neng organization: Wuhan University of Technology – sequence: 10 givenname: Guosheng surname: Shao fullname: Shao, Guosheng email: gsshao@zzu.edu.cn organization: Zhengzhou Materials Genome Institute |
BookMark | eNqFkEtLAzEQgIMoWGuvnvMHtk4e-4g3qdUWKha6grclm81qyjaRJEX67-1aURHE0zyYb2b4ztCxdVYjdEFgTADoZdjEZkyBwr4g_AgNKMuyRGRQHP_IT9EohHU_A4SllAxQuXxx0T1rq72MusHTTqvoncWllza02uOld0qHgI3FMx21d-utVdE4G67w3OKViVs89142RvZd_LRcnaOTVnZBjz7jED3eTsvJLFk83M0n14tEsTTlCUkJZzytaw40rylJaVuASptGADS5FoTmhcgYYaKtAVheSNUoWjAFouZCczZE48Ne5V0IXrfVqzcb6XcVgarXUvVaqi8te4D_ApSJH29HL033NyYO2Jvp9O6fI9Xqvrz5Zt8Bprt5RA |
CitedBy_id | crossref_primary_10_1039_D1TC03217H crossref_primary_10_1016_j_chemosphere_2020_128847 crossref_primary_10_1007_s12274_024_6694_2 crossref_primary_10_1039_D4QI02694B crossref_primary_10_1016_j_apsusc_2021_151020 crossref_primary_10_1002_smll_202405514 crossref_primary_10_1039_D3DT01170D crossref_primary_10_1016_j_jece_2023_110795 crossref_primary_10_1021_acssuschemeng_2c05022 crossref_primary_10_1016_j_jmrt_2022_01_047 crossref_primary_10_1021_acssuschemeng_2c04294 crossref_primary_10_1021_acs_jctc_4c01051 crossref_primary_10_1002_inf2_12214 crossref_primary_10_1016_j_apsusc_2021_149622 crossref_primary_10_1039_D2CP02055F crossref_primary_10_1002_smll_202301711 crossref_primary_10_1039_D3CP04018F crossref_primary_10_1016_j_cej_2022_139425 crossref_primary_10_1007_s11783_024_1841_2 crossref_primary_10_1002_inf2_12294 crossref_primary_10_1016_j_cej_2021_129333 crossref_primary_10_1021_acsami_4c06921 crossref_primary_10_1007_s12274_021_3319_x crossref_primary_10_1016_j_cej_2021_129213 crossref_primary_10_1088_1674_4926_43_4_041104 crossref_primary_10_1002_smll_202207758 crossref_primary_10_1016_j_cej_2022_138182 crossref_primary_10_1002_adfm_202108959 crossref_primary_10_1039_D1TA06899G crossref_primary_10_1021_acsanm_1c03419 crossref_primary_10_1002_smll_202311504 crossref_primary_10_1039_D4SC07901A crossref_primary_10_3390_molecules27010127 crossref_primary_10_1002_anie_202409484 crossref_primary_10_1021_acscatal_2c01075 crossref_primary_10_1016_j_inoche_2023_111511 crossref_primary_10_1093_rb_rbac045 crossref_primary_10_1002_solr_202300188 crossref_primary_10_1016_j_cej_2021_132587 crossref_primary_10_3389_fchem_2021_652762 crossref_primary_10_1016_j_cej_2022_135758 crossref_primary_10_1039_D4CY00868E crossref_primary_10_1016_j_cej_2022_134824 crossref_primary_10_1016_j_jelechem_2021_115749 crossref_primary_10_1002_advs_202103879 crossref_primary_10_1021_acs_iecr_1c03182 crossref_primary_10_1002_smll_202205767 crossref_primary_10_1002_smll_202303393 crossref_primary_10_1007_s11696_022_02422_7 crossref_primary_10_1002_smll_202300717 crossref_primary_10_1016_j_cej_2021_132091 crossref_primary_10_1016_j_enconman_2022_116456 crossref_primary_10_1038_s41560_023_01242_7 crossref_primary_10_1002_smll_202500616 crossref_primary_10_1002_solr_202000722 crossref_primary_10_1021_acsmaterialslett_4c01273 crossref_primary_10_1021_acsanm_3c00759 crossref_primary_10_1016_j_cej_2022_134551 crossref_primary_10_1016_j_ces_2023_119645 crossref_primary_10_1039_D2NJ02850F crossref_primary_10_3390_app112110223 crossref_primary_10_1016_j_isci_2024_110422 crossref_primary_10_1016_j_cej_2021_128834 crossref_primary_10_1016_j_jechem_2023_04_013 crossref_primary_10_1016_j_jcis_2022_06_136 crossref_primary_10_1021_acs_inorgchem_3c04627 crossref_primary_10_1007_s00339_022_05920_3 crossref_primary_10_1002_advs_202206786 crossref_primary_10_1007_s10853_022_07530_z crossref_primary_10_1039_D3CS00205E crossref_primary_10_1002_adfm_202306466 crossref_primary_10_1002_aenm_202405708 crossref_primary_10_1021_acsanm_1c01466 crossref_primary_10_1021_acsami_0c21662 crossref_primary_10_1039_D3TA02272B crossref_primary_10_1016_j_jhazmat_2022_130036 crossref_primary_10_1002_adfm_202110258 crossref_primary_10_1002_adma_202307741 crossref_primary_10_1002_adma_202105135 crossref_primary_10_1080_1536383X_2023_2259517 crossref_primary_10_1021_acsanm_4c05747 crossref_primary_10_3390_polym16162317 crossref_primary_10_1021_acs_energyfuels_3c01006 crossref_primary_10_1016_j_apsusc_2022_155782 crossref_primary_10_1002_ange_202409484 crossref_primary_10_1016_j_jcis_2024_11_070 crossref_primary_10_1002_smll_202404622 crossref_primary_10_1016_j_cej_2022_138894 crossref_primary_10_1021_acssuschemeng_3c06096 crossref_primary_10_1021_acssuschemeng_4c00637 crossref_primary_10_1039_D3TA00505D crossref_primary_10_1038_s41467_023_35981_8 crossref_primary_10_1016_j_seppur_2023_123170 crossref_primary_10_1016_j_seppur_2024_128741 crossref_primary_10_1002_ente_202100669 crossref_primary_10_1016_j_apsusc_2020_148578 crossref_primary_10_1021_acsanm_1c01215 crossref_primary_10_1038_s41467_022_28987_1 crossref_primary_10_1016_j_apt_2022_103513 crossref_primary_10_1021_acs_chemmater_1c03952 crossref_primary_10_1007_s10854_024_13104_3 crossref_primary_10_1021_acs_jpcc_2c08427 crossref_primary_10_1002_ente_202100265 crossref_primary_10_1039_D4NR01837K crossref_primary_10_1002_eem2_12416 crossref_primary_10_1039_D4TA04581E crossref_primary_10_3390_catal14060335 crossref_primary_10_1016_j_mseb_2022_116065 crossref_primary_10_1039_D4CP00641K crossref_primary_10_1002_advs_202200346 crossref_primary_10_1007_s40242_025_4249_z crossref_primary_10_1016_j_jcis_2022_12_147 crossref_primary_10_1021_acsaelm_3c00527 crossref_primary_10_1002_smll_202401485 crossref_primary_10_1016_j_colsurfa_2025_136316 crossref_primary_10_1016_j_cej_2023_146262 crossref_primary_10_1021_acssuschemeng_3c02178 crossref_primary_10_1016_j_jhazmat_2023_131249 crossref_primary_10_1016_j_cej_2023_144240 crossref_primary_10_1016_j_seppur_2022_120976 crossref_primary_10_1002_advs_202205020 crossref_primary_10_1016_j_cej_2020_127812 crossref_primary_10_1016_j_jechem_2021_04_028 crossref_primary_10_1039_D4NJ03277B crossref_primary_10_1002_smll_202100065 crossref_primary_10_1002_celc_202101099 crossref_primary_10_1039_D4SC07077A crossref_primary_10_1016_j_apsusc_2024_160679 crossref_primary_10_3390_molecules29071518 crossref_primary_10_3390_nano10091730 crossref_primary_10_1007_s11426_024_2400_8 crossref_primary_10_1021_acsomega_1c05891 crossref_primary_10_1002_admi_202202139 crossref_primary_10_1016_j_ijhydene_2023_08_156 crossref_primary_10_1002_smll_202305410 crossref_primary_10_1016_j_cej_2023_148036 crossref_primary_10_1002_smtd_202301804 crossref_primary_10_1016_j_seppur_2023_124966 crossref_primary_10_1021_acsaenm_4c00298 crossref_primary_10_1002_advs_202204041 crossref_primary_10_1016_j_cej_2023_143770 crossref_primary_10_1016_j_cej_2021_131406 crossref_primary_10_1002_asia_202200377 crossref_primary_10_1002_adom_202402625 crossref_primary_10_1002_cctc_202300816 crossref_primary_10_1002_smll_202103447 crossref_primary_10_1002_batt_202400274 crossref_primary_10_1039_D2TC03866H crossref_primary_10_3390_photochem1030021 crossref_primary_10_1002_asia_202401772 crossref_primary_10_1016_j_apsusc_2024_160206 crossref_primary_10_3390_nano12234123 crossref_primary_10_1016_j_apsusc_2024_160205 crossref_primary_10_1016_j_cej_2023_143817 crossref_primary_10_1002_smll_202303867 crossref_primary_10_1007_s12274_022_4972_4 crossref_primary_10_3390_polym15183728 crossref_primary_10_1021_acs_analchem_2c04101 crossref_primary_10_3389_fchem_2021_661127 crossref_primary_10_1002_advs_202004530 crossref_primary_10_1021_acssuschemeng_3c03364 crossref_primary_10_1007_s10853_022_07225_5 crossref_primary_10_1007_s11664_022_09749_7 crossref_primary_10_1016_j_jece_2023_109355 crossref_primary_10_1016_j_cej_2024_156738 crossref_primary_10_1016_j_seppur_2023_123365 crossref_primary_10_4028_p_9o88dn crossref_primary_10_1016_j_apsusc_2022_155109 crossref_primary_10_1021_jacs_2c06920 |
Cites_doi | 10.1002/adma.201802981 10.1002/anie.201811632 10.1016/j.apcatb.2017.03.050 10.1002/adfm.201904256 10.1016/j.jcat.2018.03.009 10.1039/C9NR00168A 10.1016/j.apsusc.2019.144361 10.1016/j.apcatb.2016.03.035 10.1039/C8TA06869K 10.1103/PhysRev.126.405 10.1016/j.jhazmat.2020.122639 10.1016/j.cossms.2019.01.002 10.1016/j.apcatb.2018.05.070 10.1039/B800489G 10.1038/238037a0 10.1002/anie.201602543 10.1002/adma.201901997 10.1016/j.apcatb.2018.08.083 10.1016/j.cej.2018.04.155 10.1039/C6CP06147H 10.1016/j.ijhydene.2017.02.172 10.1016/j.apcatb.2018.03.014 10.1103/PhysRevB.49.2313 10.1016/j.apsusc.2017.06.308 10.1016/j.apsusc.2016.06.170 10.1016/j.apcatb.2019.01.051 10.1021/acsaem.8b02268 10.1021/acssuschemeng.7b00242 10.1016/j.nanoen.2018.08.040 10.1016/j.ceramint.2017.05.151 10.1016/j.ensm.2020.01.029 10.1002/adma.201102306 10.1038/ncomms13907 10.1021/acssuschemeng.8b03406 10.1016/j.jcat.2019.05.019 10.1038/s41598-017-12203-y 10.1002/adma.201304138 10.1016/j.apcatb.2018.08.053 10.1021/acsami.8b06272 10.1016/j.jechem.2020.01.033 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/smtd.202000214 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2366-9608 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smtd_202000214 SMTD202000214 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Henan Province funderid: 182300410187 – fundername: Outstanding Young Talent Research – fundername: National Natural Science Foundation of China funderid: 51972287; 51502269 – fundername: Zhengzhou University funderid: 1521320023 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAIHA AAMNL AANLZ AAZKR ACCFJ ACCZN ACGFS ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION EJD |
ID | FETCH-LOGICAL-c3554-1514345bb4027b2152f80c5dd900d7e91278963139fb00378acdc283c09b49e43 |
ISSN | 2366-9608 |
IngestDate | Thu Apr 24 23:01:11 EDT 2025 Tue Jul 01 00:47:43 EDT 2025 Wed Jan 22 16:32:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3554-1514345bb4027b2152f80c5dd900d7e91278963139fb00378acdc283c09b49e43 |
ORCID | 0000-0001-9505-3858 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1002_smtd_202000214 crossref_citationtrail_10_1002_smtd_202000214 wiley_primary_10_1002_smtd_202000214_SMTD202000214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Small methods |
PublicationYear | 2020 |
References | 2017; 5 2018; 361 1962; 126 2017; 7 2017; 42 2017; 8 2018; 28 2019; 31 2018; 347 2019; 11 2019; 2 2017; 43 2014; 26 2017; 391 2019; 246 1994; 49 2017; 210 2016; 18 1972; 238 2020; 504 2019; 241 2016; 55 2018; 6 2018; 430 2018; 231 2018; 237 2018; 239 2020; 395 2019; 23 2020; 27 2020; 47 2019; 29 2011; 23 2016; 192 2018; 10 2018; 53 2019; 375 2009; 38 2018; 57 e_1_2_4_40_1 e_1_2_4_41_1 Cao S. (e_1_2_4_9_1) 2018; 28 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. & Eng. – volume: 43 year: 2017 publication-title: Ceram. Int. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 192 start-page: 17 year: 2016 publication-title: Appl. Catal., B – volume: 430 start-page: 466 year: 2018 publication-title: Appl. Surf. Sci. – volume: 231 start-page: 101 year: 2018 publication-title: Appl. Catal., B – volume: 53 start-page: 97 year: 2018 publication-title: Nano Energy – volume: 11 start-page: 8138 year: 2019 publication-title: Nanoscale – volume: 27 start-page: 159 year: 2020 publication-title: Energy Storage Mater. – volume: 49 start-page: 2313 year: 1994 publication-title: Phys. Rev. B – volume: 38 start-page: 253 year: 2009 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 4249 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 347 start-page: 731 year: 2018 publication-title: Chem. Eng. J. – volume: 23 start-page: 164 year: 2019 publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 375 start-page: 8 year: 2019 publication-title: J. Catal. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Mater. – volume: 42 start-page: 9903 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 391 start-page: 211 year: 2017 publication-title: Appl. Surf. Sci. – volume: 210 start-page: 297 year: 2017 publication-title: Appl. Catal., B – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 55 start-page: 6716 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 992 year: 2014 publication-title: Adv. Mater. – volume: 246 start-page: 12 year: 2019 publication-title: Appl. Catal., B – volume: 47 start-page: 281 year: 2020 publication-title: J. Energy Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 239 start-page: 545 year: 2018 publication-title: Appl. Catal., B – volume: 237 start-page: 43 year: 2018 publication-title: Appl. Catal., B – volume: 241 start-page: 89 year: 2019 publication-title: Appl. Catal., B – volume: 361 start-page: 255 year: 2018 publication-title: J. Catal. – volume: 504 year: 2020 publication-title: Appl. Surf. Sci. – volume: 395 year: 2020 publication-title: J. Hazard. Mater. – volume: 2 start-page: 4640 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 126 start-page: 405 year: 1962 publication-title: Phys. Rev. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_4_35_1 doi: 10.1002/adma.201802981 – ident: e_1_2_4_37_1 doi: 10.1002/anie.201811632 – ident: e_1_2_4_28_1 doi: 10.1016/j.apcatb.2017.03.050 – ident: e_1_2_4_36_1 doi: 10.1002/adfm.201904256 – ident: e_1_2_4_19_1 doi: 10.1016/j.jcat.2018.03.009 – ident: e_1_2_4_7_1 doi: 10.1039/C9NR00168A – ident: e_1_2_4_30_1 doi: 10.1016/j.apsusc.2019.144361 – ident: e_1_2_4_29_1 doi: 10.1016/j.apcatb.2016.03.035 – ident: e_1_2_4_25_1 doi: 10.1039/C8TA06869K – ident: e_1_2_4_31_1 doi: 10.1103/PhysRev.126.405 – ident: e_1_2_4_39_1 doi: 10.1016/j.jhazmat.2020.122639 – ident: e_1_2_4_3_1 doi: 10.1016/j.cossms.2019.01.002 – ident: e_1_2_4_8_1 doi: 10.1016/j.apcatb.2018.05.070 – ident: e_1_2_4_16_1 doi: 10.1039/B800489G – volume: 28 start-page: 1800136 year: 2018 ident: e_1_2_4_9_1 publication-title: Adv. Mater. – ident: e_1_2_4_15_1 doi: 10.1038/238037a0 – ident: e_1_2_4_34_1 doi: 10.1002/anie.201602543 – ident: e_1_2_4_14_1 doi: 10.1002/adma.201901997 – ident: e_1_2_4_13_1 doi: 10.1016/j.apcatb.2018.08.083 – ident: e_1_2_4_6_1 doi: 10.1016/j.cej.2018.04.155 – ident: e_1_2_4_40_1 doi: 10.1039/C6CP06147H – ident: e_1_2_4_41_1 doi: 10.1016/j.ijhydene.2017.02.172 – ident: e_1_2_4_23_1 doi: 10.1016/j.apcatb.2018.03.014 – ident: e_1_2_4_32_1 doi: 10.1103/PhysRevB.49.2313 – ident: e_1_2_4_17_1 doi: 10.1016/j.apsusc.2017.06.308 – ident: e_1_2_4_18_1 doi: 10.1016/j.apsusc.2016.06.170 – ident: e_1_2_4_10_1 doi: 10.1016/j.apcatb.2019.01.051 – ident: e_1_2_4_21_1 doi: 10.1021/acsaem.8b02268 – ident: e_1_2_4_24_1 doi: 10.1021/acssuschemeng.7b00242 – ident: e_1_2_4_33_1 doi: 10.1016/j.nanoen.2018.08.040 – ident: e_1_2_4_38_1 doi: 10.1016/j.ceramint.2017.05.151 – ident: e_1_2_4_11_1 doi: 10.1016/j.ensm.2020.01.029 – ident: e_1_2_4_2_1 doi: 10.1002/adma.201102306 – ident: e_1_2_4_4_1 doi: 10.1038/ncomms13907 – ident: e_1_2_4_22_1 doi: 10.1021/acssuschemeng.8b03406 – ident: e_1_2_4_12_1 doi: 10.1016/j.jcat.2019.05.019 – ident: e_1_2_4_27_1 doi: 10.1038/s41598-017-12203-y – ident: e_1_2_4_1_1 doi: 10.1002/adma.201304138 – ident: e_1_2_4_5_1 doi: 10.1016/j.apcatb.2018.08.053 – ident: e_1_2_4_20_1 doi: 10.1021/acsami.8b06272 – ident: e_1_2_4_26_1 doi: 10.1016/j.jechem.2020.01.033 |
SSID | ssj0002013521 |
Score | 2.5743663 |
Snippet | Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | density function theory electron transfer in situ irradiation X‐ray photoelectron spectroscopy MXenes ultraviolet photoelectron spectroscopy |
Title | Photogenerated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202000214 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4ilaKPIBiUMVcBwnu-ZWtUVdxKJKu5W2p2jtOG2hTdA2ufDrmbEdk9Dy6iXa9c6-PJ_tbxzPN4S8jmHIpAmbRCYuV5GQXEcyK2SkTCKYlrF2ijezz9nhsfi4TJe9O6aYXdKot_r7jXklt_EqtIFfMUv2PzwbPhQa4DH4F67gYbj-k4-PzuqmPrXC0UgcD3xJG6dYXpp1lwawYwWtoAfrL7CM2d-DOwFTGNrnTbszXa9RocAiYelLTnu-Or_EW9euzHRg32GT-cj4dQ9P9NhjASft17a6ZndSV6dX-CSAqG6tb9v6zKPTbzxAlNmdrPLzE0-yDBzL3PRpbmjzE6zo4Uj2VtqwDl2bxp0s7NVlg1qumEzEXabpUC87WKZ_trWr9Xy22A-v3yUbHMIKNiIbu_uzT_OwKwd0CBhpbCsS-n_SKX0y_m74JQMm049sLDVZPCQPfExBdx1AHpE7pnpM7veUJp-QxRAqtIMK7aBCPVToeUV_gcp7Oq0oAoX2gEIBKE_J8YeDxd5h5AtqRBppZRQjOxapUoLxscKKxuWE6bQoJGPF2MgY06KzBIKCEmf78WSlCw38UzOphDQieUZGVV2Z54Sq2PACwnWmYThzo1ZSFkyUq1KmXOs02yRR1zm59mrzWPTkInc62TzHzsxDZ26SN8H-m9NZ-a0lt339F7N84PCt27zpBbn3E_cvyahZt2YbKGijXnnc_AABd38m |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photogenerated+Electron+Transfer+Process+in+Heterojunctions%3A+In+Situ+Irradiation+XPS&rft.jtitle=Small+methods&rft.au=Zhang%2C+Peng&rft.au=Li%2C+Yukun&rft.au=Zhang%2C+Yongshang&rft.au=Hou%2C+Ruohan&rft.date=2020-09-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=4&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.202000214&rft.externalDBID=10.1002%252Fsmtd.202000214&rft.externalDocID=SMTD202000214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon |