Photogenerated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS

Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti3C2, one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO...

Full description

Saved in:
Bibliographic Details
Published inSmall methods Vol. 4; no. 9
Main Authors Zhang, Peng, Li, Yukun, Zhang, Yongshang, Hou, Ruohan, Zhang, Xilai, Xue, Chao, Wang, Shaobin, Zhu, Bicheng, Li, Neng, Shao, Guosheng
Format Journal Article
LanguageEnglish
Published 01.09.2020
Subjects
Online AccessGet full text
ISSN2366-9608
2366-9608
DOI10.1002/smtd.202000214

Cover

Loading…
Abstract Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti3C2, one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO2 and Ti3C2 by an in situ growth method and the photogenerated electrons transfer between the two components for photocatalytic water splitting to hydrogen is investigated. Theoretical simulation and experimental tests proclaim that electrons transfer from Ti3C2 to TiO2 forms an internal electric field, which implies that there exists the driving force of electronic movement from TiO2 to Ti3C2. In situ irradiation X‐ray photoelectron spectroscopy shows the binding energies of TiC (in Ti3C2) and TiO (in TiO2) move toward negative and positive positions, respectively, verifying the photogenerated electrons produced from TiO2 and transferring to Ti3C2 driven by the internal electric field. In addition, the amount of TiO2 nanoparticles also affects the hydrogen evolution rate. Several parallel experiments are designed to uncover the fact that less or excess amount of TiO2 nanoparticles leads to a tinier shift of binding energy, which hints the quantity of heterojunction is a considerable factor in photocatalytic performance. This work develops a new method to directly monitor the photoelectron transfer process between heterojuctions. An in situ irradiation X‐ray photoelectron spectroscopy coupled with UV light optical fiber measurement setup is developed to monitor the photoelectron transfer process between heterojuctions.
AbstractList Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti3C2, one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO2 and Ti3C2 by an in situ growth method and the photogenerated electrons transfer between the two components for photocatalytic water splitting to hydrogen is investigated. Theoretical simulation and experimental tests proclaim that electrons transfer from Ti3C2 to TiO2 forms an internal electric field, which implies that there exists the driving force of electronic movement from TiO2 to Ti3C2. In situ irradiation X‐ray photoelectron spectroscopy shows the binding energies of TiC (in Ti3C2) and TiO (in TiO2) move toward negative and positive positions, respectively, verifying the photogenerated electrons produced from TiO2 and transferring to Ti3C2 driven by the internal electric field. In addition, the amount of TiO2 nanoparticles also affects the hydrogen evolution rate. Several parallel experiments are designed to uncover the fact that less or excess amount of TiO2 nanoparticles leads to a tinier shift of binding energy, which hints the quantity of heterojunction is a considerable factor in photocatalytic performance. This work develops a new method to directly monitor the photoelectron transfer process between heterojuctions. An in situ irradiation X‐ray photoelectron spectroscopy coupled with UV light optical fiber measurement setup is developed to monitor the photoelectron transfer process between heterojuctions.
Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti 3 C 2 , one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO 2 and Ti 3 C 2 by an in situ growth method and the photogenerated electrons transfer between the two components for photocatalytic water splitting to hydrogen is investigated. Theoretical simulation and experimental tests proclaim that electrons transfer from Ti 3 C 2 to TiO 2 forms an internal electric field, which implies that there exists the driving force of electronic movement from TiO 2 to Ti 3 C 2 . In situ irradiation X‐ray photoelectron spectroscopy shows the binding energies of TiC (in Ti 3 C 2 ) and TiO (in TiO 2 ) move toward negative and positive positions, respectively, verifying the photogenerated electrons produced from TiO 2 and transferring to Ti 3 C 2 driven by the internal electric field. In addition, the amount of TiO 2 nanoparticles also affects the hydrogen evolution rate. Several parallel experiments are designed to uncover the fact that less or excess amount of TiO 2 nanoparticles leads to a tinier shift of binding energy, which hints the quantity of heterojunction is a considerable factor in photocatalytic performance. This work develops a new method to directly monitor the photoelectron transfer process between heterojuctions.
Author Li, Yukun
Zhang, Peng
Xue, Chao
Hou, Ruohan
Wang, Shaobin
Zhu, Bicheng
Li, Neng
Shao, Guosheng
Zhang, Xilai
Zhang, Yongshang
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-9505-3858
  surname: Zhang
  fullname: Zhang, Peng
  email: zhangp@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute
– sequence: 2
  givenname: Yukun
  surname: Li
  fullname: Li, Yukun
  organization: Zhengzhou University
– sequence: 3
  givenname: Yongshang
  surname: Zhang
  fullname: Zhang, Yongshang
  organization: Zhengzhou Materials Genome Institute
– sequence: 4
  givenname: Ruohan
  surname: Hou
  fullname: Hou, Ruohan
  organization: Zhengzhou University
– sequence: 5
  givenname: Xilai
  surname: Zhang
  fullname: Zhang, Xilai
  organization: Zhengzhou University
– sequence: 6
  givenname: Chao
  surname: Xue
  fullname: Xue, Chao
  organization: Zhengzhou University
– sequence: 7
  givenname: Shaobin
  surname: Wang
  fullname: Wang, Shaobin
  email: shaobin.wang@adelaide.edu.au
  organization: The University of Adelaide
– sequence: 8
  givenname: Bicheng
  surname: Zhu
  fullname: Zhu, Bicheng
  organization: Wuhan University of Technology
– sequence: 9
  givenname: Neng
  surname: Li
  fullname: Li, Neng
  organization: Wuhan University of Technology
– sequence: 10
  givenname: Guosheng
  surname: Shao
  fullname: Shao, Guosheng
  email: gsshao@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute
BookMark eNqFkEtLAzEQgIMoWGuvnvMHtk4e-4g3qdUWKha6grclm81qyjaRJEX67-1aURHE0zyYb2b4ztCxdVYjdEFgTADoZdjEZkyBwr4g_AgNKMuyRGRQHP_IT9EohHU_A4SllAxQuXxx0T1rq72MusHTTqvoncWllza02uOld0qHgI3FMx21d-utVdE4G67w3OKViVs89142RvZd_LRcnaOTVnZBjz7jED3eTsvJLFk83M0n14tEsTTlCUkJZzytaw40rylJaVuASptGADS5FoTmhcgYYaKtAVheSNUoWjAFouZCczZE48Ne5V0IXrfVqzcb6XcVgarXUvVaqi8te4D_ApSJH29HL033NyYO2Jvp9O6fI9Xqvrz5Zt8Bprt5RA
CitedBy_id crossref_primary_10_1039_D1TC03217H
crossref_primary_10_1016_j_chemosphere_2020_128847
crossref_primary_10_1007_s12274_024_6694_2
crossref_primary_10_1039_D4QI02694B
crossref_primary_10_1016_j_apsusc_2021_151020
crossref_primary_10_1002_smll_202405514
crossref_primary_10_1039_D3DT01170D
crossref_primary_10_1016_j_jece_2023_110795
crossref_primary_10_1021_acssuschemeng_2c05022
crossref_primary_10_1016_j_jmrt_2022_01_047
crossref_primary_10_1021_acssuschemeng_2c04294
crossref_primary_10_1021_acs_jctc_4c01051
crossref_primary_10_1002_inf2_12214
crossref_primary_10_1016_j_apsusc_2021_149622
crossref_primary_10_1039_D2CP02055F
crossref_primary_10_1002_smll_202301711
crossref_primary_10_1039_D3CP04018F
crossref_primary_10_1016_j_cej_2022_139425
crossref_primary_10_1007_s11783_024_1841_2
crossref_primary_10_1002_inf2_12294
crossref_primary_10_1016_j_cej_2021_129333
crossref_primary_10_1021_acsami_4c06921
crossref_primary_10_1007_s12274_021_3319_x
crossref_primary_10_1016_j_cej_2021_129213
crossref_primary_10_1088_1674_4926_43_4_041104
crossref_primary_10_1002_smll_202207758
crossref_primary_10_1016_j_cej_2022_138182
crossref_primary_10_1002_adfm_202108959
crossref_primary_10_1039_D1TA06899G
crossref_primary_10_1021_acsanm_1c03419
crossref_primary_10_1002_smll_202311504
crossref_primary_10_1039_D4SC07901A
crossref_primary_10_3390_molecules27010127
crossref_primary_10_1002_anie_202409484
crossref_primary_10_1021_acscatal_2c01075
crossref_primary_10_1016_j_inoche_2023_111511
crossref_primary_10_1093_rb_rbac045
crossref_primary_10_1002_solr_202300188
crossref_primary_10_1016_j_cej_2021_132587
crossref_primary_10_3389_fchem_2021_652762
crossref_primary_10_1016_j_cej_2022_135758
crossref_primary_10_1039_D4CY00868E
crossref_primary_10_1016_j_cej_2022_134824
crossref_primary_10_1016_j_jelechem_2021_115749
crossref_primary_10_1002_advs_202103879
crossref_primary_10_1021_acs_iecr_1c03182
crossref_primary_10_1002_smll_202205767
crossref_primary_10_1002_smll_202303393
crossref_primary_10_1007_s11696_022_02422_7
crossref_primary_10_1002_smll_202300717
crossref_primary_10_1016_j_cej_2021_132091
crossref_primary_10_1016_j_enconman_2022_116456
crossref_primary_10_1038_s41560_023_01242_7
crossref_primary_10_1002_smll_202500616
crossref_primary_10_1002_solr_202000722
crossref_primary_10_1021_acsmaterialslett_4c01273
crossref_primary_10_1021_acsanm_3c00759
crossref_primary_10_1016_j_cej_2022_134551
crossref_primary_10_1016_j_ces_2023_119645
crossref_primary_10_1039_D2NJ02850F
crossref_primary_10_3390_app112110223
crossref_primary_10_1016_j_isci_2024_110422
crossref_primary_10_1016_j_cej_2021_128834
crossref_primary_10_1016_j_jechem_2023_04_013
crossref_primary_10_1016_j_jcis_2022_06_136
crossref_primary_10_1021_acs_inorgchem_3c04627
crossref_primary_10_1007_s00339_022_05920_3
crossref_primary_10_1002_advs_202206786
crossref_primary_10_1007_s10853_022_07530_z
crossref_primary_10_1039_D3CS00205E
crossref_primary_10_1002_adfm_202306466
crossref_primary_10_1002_aenm_202405708
crossref_primary_10_1021_acsanm_1c01466
crossref_primary_10_1021_acsami_0c21662
crossref_primary_10_1039_D3TA02272B
crossref_primary_10_1016_j_jhazmat_2022_130036
crossref_primary_10_1002_adfm_202110258
crossref_primary_10_1002_adma_202307741
crossref_primary_10_1002_adma_202105135
crossref_primary_10_1080_1536383X_2023_2259517
crossref_primary_10_1021_acsanm_4c05747
crossref_primary_10_3390_polym16162317
crossref_primary_10_1021_acs_energyfuels_3c01006
crossref_primary_10_1016_j_apsusc_2022_155782
crossref_primary_10_1002_ange_202409484
crossref_primary_10_1016_j_jcis_2024_11_070
crossref_primary_10_1002_smll_202404622
crossref_primary_10_1016_j_cej_2022_138894
crossref_primary_10_1021_acssuschemeng_3c06096
crossref_primary_10_1021_acssuschemeng_4c00637
crossref_primary_10_1039_D3TA00505D
crossref_primary_10_1038_s41467_023_35981_8
crossref_primary_10_1016_j_seppur_2023_123170
crossref_primary_10_1016_j_seppur_2024_128741
crossref_primary_10_1002_ente_202100669
crossref_primary_10_1016_j_apsusc_2020_148578
crossref_primary_10_1021_acsanm_1c01215
crossref_primary_10_1038_s41467_022_28987_1
crossref_primary_10_1016_j_apt_2022_103513
crossref_primary_10_1021_acs_chemmater_1c03952
crossref_primary_10_1007_s10854_024_13104_3
crossref_primary_10_1021_acs_jpcc_2c08427
crossref_primary_10_1002_ente_202100265
crossref_primary_10_1039_D4NR01837K
crossref_primary_10_1002_eem2_12416
crossref_primary_10_1039_D4TA04581E
crossref_primary_10_3390_catal14060335
crossref_primary_10_1016_j_mseb_2022_116065
crossref_primary_10_1039_D4CP00641K
crossref_primary_10_1002_advs_202200346
crossref_primary_10_1007_s40242_025_4249_z
crossref_primary_10_1016_j_jcis_2022_12_147
crossref_primary_10_1021_acsaelm_3c00527
crossref_primary_10_1002_smll_202401485
crossref_primary_10_1016_j_colsurfa_2025_136316
crossref_primary_10_1016_j_cej_2023_146262
crossref_primary_10_1021_acssuschemeng_3c02178
crossref_primary_10_1016_j_jhazmat_2023_131249
crossref_primary_10_1016_j_cej_2023_144240
crossref_primary_10_1016_j_seppur_2022_120976
crossref_primary_10_1002_advs_202205020
crossref_primary_10_1016_j_cej_2020_127812
crossref_primary_10_1016_j_jechem_2021_04_028
crossref_primary_10_1039_D4NJ03277B
crossref_primary_10_1002_smll_202100065
crossref_primary_10_1002_celc_202101099
crossref_primary_10_1039_D4SC07077A
crossref_primary_10_1016_j_apsusc_2024_160679
crossref_primary_10_3390_molecules29071518
crossref_primary_10_3390_nano10091730
crossref_primary_10_1007_s11426_024_2400_8
crossref_primary_10_1021_acsomega_1c05891
crossref_primary_10_1002_admi_202202139
crossref_primary_10_1016_j_ijhydene_2023_08_156
crossref_primary_10_1002_smll_202305410
crossref_primary_10_1016_j_cej_2023_148036
crossref_primary_10_1002_smtd_202301804
crossref_primary_10_1016_j_seppur_2023_124966
crossref_primary_10_1021_acsaenm_4c00298
crossref_primary_10_1002_advs_202204041
crossref_primary_10_1016_j_cej_2023_143770
crossref_primary_10_1016_j_cej_2021_131406
crossref_primary_10_1002_asia_202200377
crossref_primary_10_1002_adom_202402625
crossref_primary_10_1002_cctc_202300816
crossref_primary_10_1002_smll_202103447
crossref_primary_10_1002_batt_202400274
crossref_primary_10_1039_D2TC03866H
crossref_primary_10_3390_photochem1030021
crossref_primary_10_1002_asia_202401772
crossref_primary_10_1016_j_apsusc_2024_160206
crossref_primary_10_3390_nano12234123
crossref_primary_10_1016_j_apsusc_2024_160205
crossref_primary_10_1016_j_cej_2023_143817
crossref_primary_10_1002_smll_202303867
crossref_primary_10_1007_s12274_022_4972_4
crossref_primary_10_3390_polym15183728
crossref_primary_10_1021_acs_analchem_2c04101
crossref_primary_10_3389_fchem_2021_661127
crossref_primary_10_1002_advs_202004530
crossref_primary_10_1021_acssuschemeng_3c03364
crossref_primary_10_1007_s10853_022_07225_5
crossref_primary_10_1007_s11664_022_09749_7
crossref_primary_10_1016_j_jece_2023_109355
crossref_primary_10_1016_j_cej_2024_156738
crossref_primary_10_1016_j_seppur_2023_123365
crossref_primary_10_4028_p_9o88dn
crossref_primary_10_1016_j_apsusc_2022_155109
crossref_primary_10_1021_jacs_2c06920
Cites_doi 10.1002/adma.201802981
10.1002/anie.201811632
10.1016/j.apcatb.2017.03.050
10.1002/adfm.201904256
10.1016/j.jcat.2018.03.009
10.1039/C9NR00168A
10.1016/j.apsusc.2019.144361
10.1016/j.apcatb.2016.03.035
10.1039/C8TA06869K
10.1103/PhysRev.126.405
10.1016/j.jhazmat.2020.122639
10.1016/j.cossms.2019.01.002
10.1016/j.apcatb.2018.05.070
10.1039/B800489G
10.1038/238037a0
10.1002/anie.201602543
10.1002/adma.201901997
10.1016/j.apcatb.2018.08.083
10.1016/j.cej.2018.04.155
10.1039/C6CP06147H
10.1016/j.ijhydene.2017.02.172
10.1016/j.apcatb.2018.03.014
10.1103/PhysRevB.49.2313
10.1016/j.apsusc.2017.06.308
10.1016/j.apsusc.2016.06.170
10.1016/j.apcatb.2019.01.051
10.1021/acsaem.8b02268
10.1021/acssuschemeng.7b00242
10.1016/j.nanoen.2018.08.040
10.1016/j.ceramint.2017.05.151
10.1016/j.ensm.2020.01.029
10.1002/adma.201102306
10.1038/ncomms13907
10.1021/acssuschemeng.8b03406
10.1016/j.jcat.2019.05.019
10.1038/s41598-017-12203-y
10.1002/adma.201304138
10.1016/j.apcatb.2018.08.053
10.1021/acsami.8b06272
10.1016/j.jechem.2020.01.033
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/smtd.202000214
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2366-9608
EndPage n/a
ExternalDocumentID 10_1002_smtd_202000214
SMTD202000214
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Henan Province
  funderid: 182300410187
– fundername: Outstanding Young Talent Research
– fundername: National Natural Science Foundation of China
  funderid: 51972287; 51502269
– fundername: Zhengzhou University
  funderid: 1521320023
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAZKR
ACCFJ
ACCZN
ACGFS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
ID FETCH-LOGICAL-c3554-1514345bb4027b2152f80c5dd900d7e91278963139fb00378acdc283c09b49e43
ISSN 2366-9608
IngestDate Thu Apr 24 23:01:11 EDT 2025
Tue Jul 01 00:47:43 EDT 2025
Wed Jan 22 16:32:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3554-1514345bb4027b2152f80c5dd900d7e91278963139fb00378acdc283c09b49e43
ORCID 0000-0001-9505-3858
PageCount 7
ParticipantIDs crossref_primary_10_1002_smtd_202000214
crossref_citationtrail_10_1002_smtd_202000214
wiley_primary_10_1002_smtd_202000214_SMTD202000214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Small methods
PublicationYear 2020
References 2017; 5
2018; 361
1962; 126
2017; 7
2017; 42
2017; 8
2018; 28
2019; 31
2018; 347
2019; 11
2019; 2
2017; 43
2014; 26
2017; 391
2019; 246
1994; 49
2017; 210
2016; 18
1972; 238
2020; 504
2019; 241
2016; 55
2018; 6
2018; 430
2018; 231
2018; 237
2018; 239
2020; 395
2019; 23
2020; 27
2020; 47
2019; 29
2011; 23
2016; 192
2018; 10
2018; 53
2019; 375
2009; 38
2018; 57
e_1_2_4_40_1
e_1_2_4_41_1
Cao S. (e_1_2_4_9_1) 2018; 28
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. & Eng.
– volume: 43
  year: 2017
  publication-title: Ceram. Int.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 192
  start-page: 17
  year: 2016
  publication-title: Appl. Catal., B
– volume: 430
  start-page: 466
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 231
  start-page: 101
  year: 2018
  publication-title: Appl. Catal., B
– volume: 53
  start-page: 97
  year: 2018
  publication-title: Nano Energy
– volume: 11
  start-page: 8138
  year: 2019
  publication-title: Nanoscale
– volume: 27
  start-page: 159
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 49
  start-page: 2313
  year: 1994
  publication-title: Phys. Rev. B
– volume: 38
  start-page: 253
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 4249
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 347
  start-page: 731
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 23
  start-page: 164
  year: 2019
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 375
  start-page: 8
  year: 2019
  publication-title: J. Catal.
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Mater.
– volume: 42
  start-page: 9903
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 391
  start-page: 211
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 210
  start-page: 297
  year: 2017
  publication-title: Appl. Catal., B
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 55
  start-page: 6716
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 992
  year: 2014
  publication-title: Adv. Mater.
– volume: 246
  start-page: 12
  year: 2019
  publication-title: Appl. Catal., B
– volume: 47
  start-page: 281
  year: 2020
  publication-title: J. Energy Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 239
  start-page: 545
  year: 2018
  publication-title: Appl. Catal., B
– volume: 237
  start-page: 43
  year: 2018
  publication-title: Appl. Catal., B
– volume: 241
  start-page: 89
  year: 2019
  publication-title: Appl. Catal., B
– volume: 361
  start-page: 255
  year: 2018
  publication-title: J. Catal.
– volume: 504
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 395
  year: 2020
  publication-title: J. Hazard. Mater.
– volume: 2
  start-page: 4640
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 126
  start-page: 405
  year: 1962
  publication-title: Phys. Rev.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.201802981
– ident: e_1_2_4_37_1
  doi: 10.1002/anie.201811632
– ident: e_1_2_4_28_1
  doi: 10.1016/j.apcatb.2017.03.050
– ident: e_1_2_4_36_1
  doi: 10.1002/adfm.201904256
– ident: e_1_2_4_19_1
  doi: 10.1016/j.jcat.2018.03.009
– ident: e_1_2_4_7_1
  doi: 10.1039/C9NR00168A
– ident: e_1_2_4_30_1
  doi: 10.1016/j.apsusc.2019.144361
– ident: e_1_2_4_29_1
  doi: 10.1016/j.apcatb.2016.03.035
– ident: e_1_2_4_25_1
  doi: 10.1039/C8TA06869K
– ident: e_1_2_4_31_1
  doi: 10.1103/PhysRev.126.405
– ident: e_1_2_4_39_1
  doi: 10.1016/j.jhazmat.2020.122639
– ident: e_1_2_4_3_1
  doi: 10.1016/j.cossms.2019.01.002
– ident: e_1_2_4_8_1
  doi: 10.1016/j.apcatb.2018.05.070
– ident: e_1_2_4_16_1
  doi: 10.1039/B800489G
– volume: 28
  start-page: 1800136
  year: 2018
  ident: e_1_2_4_9_1
  publication-title: Adv. Mater.
– ident: e_1_2_4_15_1
  doi: 10.1038/238037a0
– ident: e_1_2_4_34_1
  doi: 10.1002/anie.201602543
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201901997
– ident: e_1_2_4_13_1
  doi: 10.1016/j.apcatb.2018.08.083
– ident: e_1_2_4_6_1
  doi: 10.1016/j.cej.2018.04.155
– ident: e_1_2_4_40_1
  doi: 10.1039/C6CP06147H
– ident: e_1_2_4_41_1
  doi: 10.1016/j.ijhydene.2017.02.172
– ident: e_1_2_4_23_1
  doi: 10.1016/j.apcatb.2018.03.014
– ident: e_1_2_4_32_1
  doi: 10.1103/PhysRevB.49.2313
– ident: e_1_2_4_17_1
  doi: 10.1016/j.apsusc.2017.06.308
– ident: e_1_2_4_18_1
  doi: 10.1016/j.apsusc.2016.06.170
– ident: e_1_2_4_10_1
  doi: 10.1016/j.apcatb.2019.01.051
– ident: e_1_2_4_21_1
  doi: 10.1021/acsaem.8b02268
– ident: e_1_2_4_24_1
  doi: 10.1021/acssuschemeng.7b00242
– ident: e_1_2_4_33_1
  doi: 10.1016/j.nanoen.2018.08.040
– ident: e_1_2_4_38_1
  doi: 10.1016/j.ceramint.2017.05.151
– ident: e_1_2_4_11_1
  doi: 10.1016/j.ensm.2020.01.029
– ident: e_1_2_4_2_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_4_4_1
  doi: 10.1038/ncomms13907
– ident: e_1_2_4_22_1
  doi: 10.1021/acssuschemeng.8b03406
– ident: e_1_2_4_12_1
  doi: 10.1016/j.jcat.2019.05.019
– ident: e_1_2_4_27_1
  doi: 10.1038/s41598-017-12203-y
– ident: e_1_2_4_1_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_4_5_1
  doi: 10.1016/j.apcatb.2018.08.053
– ident: e_1_2_4_20_1
  doi: 10.1021/acsami.8b06272
– ident: e_1_2_4_26_1
  doi: 10.1016/j.jechem.2020.01.033
SSID ssj0002013521
Score 2.5743663
Snippet Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms density function theory
electron transfer
in situ irradiation X‐ray photoelectron spectroscopy
MXenes
ultraviolet photoelectron spectroscopy
Title Photogenerated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202000214
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4ilaKPIBiUMVcBwnu-ZWtUVdxKJKu5W2p2jtOG2hTdA2ufDrmbEdk9Dy6iXa9c6-PJ_tbxzPN4S8jmHIpAmbRCYuV5GQXEcyK2SkTCKYlrF2ijezz9nhsfi4TJe9O6aYXdKot_r7jXklt_EqtIFfMUv2PzwbPhQa4DH4F67gYbj-k4-PzuqmPrXC0UgcD3xJG6dYXpp1lwawYwWtoAfrL7CM2d-DOwFTGNrnTbszXa9RocAiYelLTnu-Or_EW9euzHRg32GT-cj4dQ9P9NhjASft17a6ZndSV6dX-CSAqG6tb9v6zKPTbzxAlNmdrPLzE0-yDBzL3PRpbmjzE6zo4Uj2VtqwDl2bxp0s7NVlg1qumEzEXabpUC87WKZ_trWr9Xy22A-v3yUbHMIKNiIbu_uzT_OwKwd0CBhpbCsS-n_SKX0y_m74JQMm049sLDVZPCQPfExBdx1AHpE7pnpM7veUJp-QxRAqtIMK7aBCPVToeUV_gcp7Oq0oAoX2gEIBKE_J8YeDxd5h5AtqRBppZRQjOxapUoLxscKKxuWE6bQoJGPF2MgY06KzBIKCEmf78WSlCw38UzOphDQieUZGVV2Z54Sq2PACwnWmYThzo1ZSFkyUq1KmXOs02yRR1zm59mrzWPTkInc62TzHzsxDZ26SN8H-m9NZ-a0lt339F7N84PCt27zpBbn3E_cvyahZt2YbKGijXnnc_AABd38m
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photogenerated+Electron+Transfer+Process+in+Heterojunctions%3A+In+Situ+Irradiation+XPS&rft.jtitle=Small+methods&rft.au=Zhang%2C+Peng&rft.au=Li%2C+Yukun&rft.au=Zhang%2C+Yongshang&rft.au=Hou%2C+Ruohan&rft.date=2020-09-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=4&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.202000214&rft.externalDBID=10.1002%252Fsmtd.202000214&rft.externalDocID=SMTD202000214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon