Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa
The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition...
Saved in:
Published in | Advanced quantum technologies (Online) Vol. 2; no. 1-2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2511-9044 2511-9044 |
DOI | 10.1002/qute.201800043 |
Cover
Loading…
Abstract | The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition was first predicted for atoms in thermal equilibrium and was recently realized with a quantum simulator made of atoms in an optical cavity, subject to both dissipation and driving. This progress report offers an introduction to some theoretical concepts relevant to the Dicke model, reviewing the critical properties of the superradiant phase transition and the distinction between equilibrium and nonequilibrium conditions. In addition, it explains the fundamental difference between the superradiant phase transition and the more common lasing transition. This report mostly focuses on the steady states of atoms in single‐mode optical cavities, but it also mentions some aspects of real‐time dynamics, as well as other quantum simulators, including superconducting qubits, trapped ions, and using spin–orbit coupling for cold atoms. These realizations differ in regard to whether they describe equilibrium or nonequilibrium systems.
This progress report offers an introduction to the theory of the superradiant transition of the Dicke model, which was recently realized with atomic quantum simulators. The critical properties of this transition and the distinction between equilibrium and nonequilibrium conditions are reviewed. In addition, the difference between the superradiant phase transition and the textbook lasing transition is explained. |
---|---|
AbstractList | The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition was first predicted for atoms in thermal equilibrium and was recently realized with a quantum simulator made of atoms in an optical cavity, subject to both dissipation and driving. This progress report offers an introduction to some theoretical concepts relevant to the Dicke model, reviewing the critical properties of the superradiant phase transition and the distinction between equilibrium and nonequilibrium conditions. In addition, it explains the fundamental difference between the superradiant phase transition and the more common lasing transition. This report mostly focuses on the steady states of atoms in single‐mode optical cavities, but it also mentions some aspects of real‐time dynamics, as well as other quantum simulators, including superconducting qubits, trapped ions, and using spin–orbit coupling for cold atoms. These realizations differ in regard to whether they describe equilibrium or nonequilibrium systems.
This progress report offers an introduction to the theory of the superradiant transition of the Dicke model, which was recently realized with atomic quantum simulators. The critical properties of this transition and the distinction between equilibrium and nonequilibrium conditions are reviewed. In addition, the difference between the superradiant phase transition and the textbook lasing transition is explained. The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition was first predicted for atoms in thermal equilibrium and was recently realized with a quantum simulator made of atoms in an optical cavity, subject to both dissipation and driving. This progress report offers an introduction to some theoretical concepts relevant to the Dicke model, reviewing the critical properties of the superradiant phase transition and the distinction between equilibrium and nonequilibrium conditions. In addition, it explains the fundamental difference between the superradiant phase transition and the more common lasing transition. This report mostly focuses on the steady states of atoms in single‐mode optical cavities, but it also mentions some aspects of real‐time dynamics, as well as other quantum simulators, including superconducting qubits, trapped ions, and using spin–orbit coupling for cold atoms. These realizations differ in regard to whether they describe equilibrium or nonequilibrium systems. |
Author | Kirton, Peter Roses, Mor M. Dalla Torre, Emanuele G. Keeling, Jonathan |
Author_xml | – sequence: 1 givenname: Peter surname: Kirton fullname: Kirton, Peter organization: Vienna Center for Quantum Science and Technology – sequence: 2 givenname: Mor M. surname: Roses fullname: Roses, Mor M. organization: Bar‐Ilan University – sequence: 3 givenname: Jonathan orcidid: 0000-0002-4283-552X surname: Keeling fullname: Keeling, Jonathan organization: University of St Andrews – sequence: 4 givenname: Emanuele G. orcidid: 0000-0002-7219-3804 surname: Dalla Torre fullname: Dalla Torre, Emanuele G. email: emanuele.dalla-torre@biu.ac.il organization: Bar‐Ilan University |
BookMark | eNqFkEtLw0AUhQepYK3dup4fYOqdR5rEndRWC1UR227DvIKjacZOJkj_vQkVK4K4uofL-e7jnKJe5SqD0DmBEQGgl9smmBEFkgIAZ0eoT2NCogw47_3QJ2hY16-thTLCeML66HleBe90o4J1FQ4OhxeDb6x6M_jeaVNe4Zl3GzzdNra00ttm05ke2uWHzgUWlcZrqwxeG1-LM3RciLI2w686QKvZdDm5ixaPt_PJ9SJSLI5ZlBSsvSvhmZTAxkxqSjnPTMpUpqUWiSjkmEGRaoglkLGmCcsEk8B1mkAnB2i0n6u8q2tvivzd243wu5xA3qWSd6nk36m0AP8FKBtE93nwwpZ_Y9ke-7Cl2f2zJH9aLacH9hPQ8Hki |
CitedBy_id | crossref_primary_10_1088_1572_9494_ac256d crossref_primary_10_1103_PhysRevA_99_033845 crossref_primary_10_1103_PhysRevLett_131_253603 crossref_primary_10_3390_e24091198 crossref_primary_10_1103_PhysRevLett_123_207402 crossref_primary_10_1063_5_0173898 crossref_primary_10_1103_PhysRevLett_130_060403 crossref_primary_10_1103_PhysRevResearch_7_013227 crossref_primary_10_1103_PhysRevA_104_063705 crossref_primary_10_1103_PhysRevA_99_063821 crossref_primary_10_1103_PhysRevA_104_023702 crossref_primary_10_1103_PhysRevA_104_063706 crossref_primary_10_1103_PhysRevLett_132_073602 crossref_primary_10_1103_PhysRevLett_124_120504 crossref_primary_10_1103_PhysRevB_110_064317 crossref_primary_10_3379_msjmag_2403R002 crossref_primary_10_1103_RevModPhys_95_035002 crossref_primary_10_1088_1367_2630_ad77ee crossref_primary_10_1103_PhysRevLett_132_193602 crossref_primary_10_1103_PhysRevE_109_014206 crossref_primary_10_1103_PhysRevX_14_011026 crossref_primary_10_1103_PhysRevA_110_063314 crossref_primary_10_21468_SciPostPhysCodeb_6 crossref_primary_10_1103_PhysRevB_105_155421 crossref_primary_10_1103_PhysRevA_109_013715 crossref_primary_10_3390_e26070574 crossref_primary_10_1103_PhysRevLett_131_190402 crossref_primary_10_1142_S0219749924500242 crossref_primary_10_1038_s42005_021_00622_3 crossref_primary_10_1103_PhysRevLett_126_173601 crossref_primary_10_1103_PhysRevLett_126_230601 crossref_primary_10_1103_PhysRevA_99_023822 crossref_primary_10_1103_PhysRevLett_127_060401 crossref_primary_10_1103_PhysRevA_110_063301 crossref_primary_10_1103_PRXQuantum_4_020326 crossref_primary_10_1103_PRXQuantum_5_040338 crossref_primary_10_1515_nanoph_2018_0188 crossref_primary_10_1038_s41467_021_26573_5 crossref_primary_10_1103_PhysRevA_108_023725 crossref_primary_10_1103_PhysRevA_102_023703 crossref_primary_10_1515_nanoph_2023_0677 crossref_primary_10_21468_SciPostPhys_14_6_156 crossref_primary_10_1103_PhysRevA_105_L050201 crossref_primary_10_1103_PhysRevLett_133_240404 crossref_primary_10_1103_PhysRevResearch_2_013198 crossref_primary_10_1103_PhysRevResearch_3_L022020 crossref_primary_10_1038_s42005_022_00880_9 crossref_primary_10_1103_PhysRevA_107_043706 crossref_primary_10_1103_PhysRevLett_122_190403 crossref_primary_10_1103_PhysRevA_104_053308 crossref_primary_10_1103_PRXQuantum_5_010349 crossref_primary_10_1088_1367_2630_ac3a17 crossref_primary_10_1103_PhysRevA_102_033702 crossref_primary_10_1103_PhysRevX_12_011054 crossref_primary_10_1103_PhysRevResearch_2_013141 crossref_primary_10_1103_PhysRevA_105_063508 crossref_primary_10_1103_PhysRevLett_130_163603 crossref_primary_10_21468_SciPostPhys_15_5_186 crossref_primary_10_1103_PhysRevA_103_023506 crossref_primary_10_1364_OE_480191 crossref_primary_10_21468_SciPostPhys_14_5_133 crossref_primary_10_1103_PhysRevResearch_3_023100 crossref_primary_10_1103_PhysRevA_99_032303 crossref_primary_10_1103_PhysRevB_109_045303 crossref_primary_10_1103_PhysRevLett_129_173001 crossref_primary_10_1364_JOSAB_522786 crossref_primary_10_1080_00018732_2021_1969727 crossref_primary_10_1103_PhysRevLett_125_240602 crossref_primary_10_1103_PhysRevA_101_013817 crossref_primary_10_1088_1367_2630_ad6bb6 crossref_primary_10_1103_PhysRevA_105_053717 crossref_primary_10_3390_e25010008 crossref_primary_10_1103_PhysRevA_103_013703 crossref_primary_10_1103_PhysRevA_99_053818 crossref_primary_10_1103_PhysRevLett_125_233602 crossref_primary_10_3390_pr10091885 crossref_primary_10_21468_SciPostPhys_15_1_030 crossref_primary_10_1103_PhysRevLett_123_233601 crossref_primary_10_1103_PhysRevA_108_023516 crossref_primary_10_1103_PhysRevLett_129_050603 crossref_primary_10_21468_SciPostPhysProc_3_024 crossref_primary_10_1103_PhysRevResearch_2_023178 crossref_primary_10_1103_PhysRevResearch_7_013170 crossref_primary_10_1063_5_0075894 crossref_primary_10_1088_1361_6528_acb5a8 crossref_primary_10_1088_1612_202X_ad8746 crossref_primary_10_1103_PhysRevA_104_033719 crossref_primary_10_1103_PhysRevLett_127_167201 crossref_primary_10_1103_PhysRevLett_133_100401 crossref_primary_10_1103_PhysRevLett_131_090401 crossref_primary_10_1021_acs_jpclett_3c02870 crossref_primary_10_1103_PhysRevLett_124_230602 crossref_primary_10_1103_PhysRevE_109_024225 crossref_primary_10_1038_s41467_021_21123_5 crossref_primary_10_1103_PhysRevX_15_011010 crossref_primary_10_1103_PRXQuantum_4_030304 crossref_primary_10_1103_PhysRevResearch_5_L042016 crossref_primary_10_1038_s41467_024_46474_7 crossref_primary_10_1103_PhysRevResearch_6_023223 crossref_primary_10_1140_epjb_e2020_10262_7 crossref_primary_10_1103_PhysRevA_107_033711 crossref_primary_10_1103_PhysRevResearch_3_L032016 crossref_primary_10_1103_PhysRevX_10_011008 crossref_primary_10_1103_PhysRevX_11_041046 crossref_primary_10_1364_OE_517716 crossref_primary_10_1103_PhysRevLett_130_263602 crossref_primary_10_1038_s42005_023_01439_y crossref_primary_10_1103_PhysRevLett_123_160404 crossref_primary_10_1088_2058_9565_ad2186 crossref_primary_10_3390_atoms9030035 crossref_primary_10_1038_s41598_020_69704_6 crossref_primary_10_1088_1367_2630_abdf9c crossref_primary_10_1103_PhysRevB_105_214106 crossref_primary_10_1103_PhysRevLett_133_243401 crossref_primary_10_1103_PhysRevB_103_085407 crossref_primary_10_1063_5_0076485 crossref_primary_10_1103_PhysRevA_98_063815 crossref_primary_10_1515_nanoph_2023_0706 crossref_primary_10_1088_1361_648X_abe26b crossref_primary_10_1088_1367_2630_abd2e6 crossref_primary_10_1098_rspa_2023_0431 crossref_primary_10_1063_1_5121426 crossref_primary_10_1103_PhysRevA_104_052423 crossref_primary_10_1103_PhysRevA_110_063722 crossref_primary_10_1088_1361_6455_acdc6e crossref_primary_10_1103_PhysRevA_106_043716 crossref_primary_10_1103_PhysRevLett_125_010404 crossref_primary_10_21468_SciPostPhysLectNotes_50 crossref_primary_10_1103_PhysRevA_101_023823 crossref_primary_10_1103_PhysRevResearch_6_043313 crossref_primary_10_1103_PhysRevA_108_062216 crossref_primary_10_1088_2058_9565_abdca5 crossref_primary_10_1103_PhysRevB_100_075433 crossref_primary_10_1038_s42005_021_00785_z crossref_primary_10_1103_PhysRevE_103_052214 crossref_primary_10_3390_e26010087 crossref_primary_10_3390_e26110926 crossref_primary_10_1103_PhysRevResearch_6_043314 crossref_primary_10_1103_PhysRevResearch_6_033090 crossref_primary_10_1103_PhysRevB_102_064301 crossref_primary_10_1103_PhysRevE_109_034202 crossref_primary_10_1103_PhysRevA_110_L010202 crossref_primary_10_1103_PhysRevLett_125_240405 crossref_primary_10_1103_PhysRevA_102_062205 crossref_primary_10_1103_PRXQuantum_3_020354 crossref_primary_10_1103_PhysRevB_102_144202 crossref_primary_10_1063_5_0037453 crossref_primary_10_1103_PhysRevA_111_022222 crossref_primary_10_1103_PhysRevApplied_16_034029 crossref_primary_10_1103_PhysRevA_110_063712 crossref_primary_10_1103_PhysRevB_108_104302 crossref_primary_10_1002_pssb_202300576 crossref_primary_10_1063_5_0009869 crossref_primary_10_1103_PhysRevLett_131_113602 crossref_primary_10_1103_PhysRevResearch_6_023012 crossref_primary_10_1088_1751_8121_ac0f16 crossref_primary_10_1103_PhysRevLett_131_113601 crossref_primary_10_1038_s41586_021_03945_x crossref_primary_10_21468_SciPostPhys_10_2_045 crossref_primary_10_1103_PhysRevA_108_013711 crossref_primary_10_1140_epjd_e2020_10332_0 crossref_primary_10_1063_5_0255344 crossref_primary_10_1088_1751_8121_ab1cf6 crossref_primary_10_1103_PhysRevA_105_L011702 crossref_primary_10_1103_PhysRevLett_128_163601 crossref_primary_10_1103_PhysRevLett_127_253601 crossref_primary_10_1103_PhysRevResearch_3_033136 crossref_primary_10_1103_PhysRevA_101_053818 crossref_primary_10_1103_PhysRevLett_122_193601 crossref_primary_10_1088_1361_6455_aaf6d7 crossref_primary_10_1515_nanoph_2023_0831 crossref_primary_10_1103_PhysRevB_106_024502 crossref_primary_10_1515_nanoph_2020_0433 crossref_primary_10_1088_1612_202X_ad6e6c crossref_primary_10_1103_PhysRevB_108_024302 crossref_primary_10_1103_PhysRevA_109_053702 crossref_primary_10_1103_PhysRevResearch_6_033193 crossref_primary_10_1103_PhysRevA_102_053716 crossref_primary_10_21468_SciPostPhysCore_7_3_038 crossref_primary_10_1103_PhysRevA_105_033716 crossref_primary_10_1103_PhysRevResearch_6_033188 crossref_primary_10_1038_s41598_021_87536_w crossref_primary_10_1088_1367_2630_ab2afe crossref_primary_10_1103_PhysRevA_107_023714 crossref_primary_10_1140_epjd_s10053_024_00881_z crossref_primary_10_1002_qute_201900140 crossref_primary_10_1103_PhysRevB_104_054428 crossref_primary_10_1103_PhysRevA_109_052621 crossref_primary_10_1103_PhysRevB_106_214429 crossref_primary_10_1103_PhysRevLett_130_150401 crossref_primary_10_1103_PhysRevA_108_033706 crossref_primary_10_1103_PhysRevResearch_5_023112 crossref_primary_10_1103_PhysRevA_111_013310 crossref_primary_10_1103_PhysRevE_101_010202 crossref_primary_10_1103_PhysRevLett_134_083603 crossref_primary_10_1364_OE_449811 crossref_primary_10_1103_PhysRevA_104_053708 crossref_primary_10_1073_pnas_2424663122 crossref_primary_10_1088_2058_9565_ac6ca5 crossref_primary_10_1103_PhysRevResearch_6_043250 crossref_primary_10_1021_acs_jctc_0c00469 crossref_primary_10_1103_PhysRevB_101_214302 crossref_primary_10_1103_PhysRevA_100_022513 crossref_primary_10_1103_PhysRevLett_124_040404 crossref_primary_10_1103_PhysRevLett_131_227102 crossref_primary_10_1103_PhysRevResearch_6_023092 crossref_primary_10_1103_PhysRevResearch_5_033148 crossref_primary_10_1364_OE_412914 crossref_primary_10_1038_s42005_023_01457_w crossref_primary_10_1103_PhysRevResearch_4_013012 crossref_primary_10_1103_PhysRevA_102_023718 crossref_primary_10_1088_1367_2630_ac8897 crossref_primary_10_22331_q_2022_02_08_644 crossref_primary_10_1103_PhysRevB_111_045430 crossref_primary_10_1002_qute_201900008 crossref_primary_10_1038_s41467_020_16906_1 crossref_primary_10_1103_PhysRevA_107_013715 crossref_primary_10_1103_PhysRevLett_127_173606 crossref_primary_10_3390_e25121601 crossref_primary_10_1103_PhysRevA_105_033519 crossref_primary_10_1103_PhysRevResearch_4_033177 crossref_primary_10_1103_PhysRevB_99_064303 crossref_primary_10_1103_PhysRevA_107_023520 crossref_primary_10_1038_s41535_024_00693_9 crossref_primary_10_1103_PhysRevX_11_021048 crossref_primary_10_1103_PhysRevA_106_012212 crossref_primary_10_7566_JPSJ_88_024401 crossref_primary_10_1515_nanoph_2020_0513 crossref_primary_10_1103_PhysRevA_105_063701 crossref_primary_10_1088_1367_2630_ac8d27 crossref_primary_10_1103_PhysRevA_105_043311 crossref_primary_10_1103_PhysRevLett_127_133601 crossref_primary_10_3390_magnetochemistry7010004 crossref_primary_10_3390_e25111492 crossref_primary_10_1103_PhysRevResearch_5_033002 crossref_primary_10_1103_PhysRevA_110_032220 crossref_primary_10_21468_SciPostPhys_14_2_018 crossref_primary_10_1088_1402_4896_ad2efd crossref_primary_10_1103_PhysRevB_105_165129 crossref_primary_10_1103_PhysRevResearch_4_L042032 crossref_primary_10_1088_1361_648X_ab5bd3 crossref_primary_10_1103_PhysRevA_105_023714 crossref_primary_10_1103_PhysRevLett_125_143603 |
Cites_doi | 10.1103/PhysRevA.47.1431 10.1038/nature05131 10.1088/0305-4470/37/25/L03 10.1103/PhysRevLett.119.220601 10.1016/j.aop.2013.08.015 10.1103/PhysRev.134.A1429 10.1103/RevModPhys.75.281 10.1103/PhysRevLett.71.995 10.1103/PhysRevA.8.1440 10.1103/PhysRevA.78.052101 10.1103/PhysRevLett.99.173601 10.1038/srep43768 10.1038/s41467-018-04407-1 10.1103/PhysRevA.75.013804 10.1103/PhysRevLett.93.050403 10.1201/9780429492563 10.1103/PhysRevLett.115.180404 10.1103/PhysRevLett.108.073601 10.1103/PhysRevA.43.2046 10.1088/1367-2630/14/8/085011 10.1017/CBO9780511789984 10.1103/PhysRevB.77.220404 10.1103/PhysRevLett.107.277201 10.1103/PhysRevA.94.061802 10.1103/PhysRevLett.110.195301 10.1103/PhysRevA.80.023803 10.1038/ncomms8046 10.1088/1367-2630/aa9b4a 10.1103/PhysRevLett.112.173601 10.1016/0167-2789(89)90121-8 10.1103/PhysRevA.9.418 10.1103/PhysRevLett.118.123602 10.1103/PhysRevA.82.043612 10.1038/s41598-017-16178-8 10.1103/PhysRevA.87.023831 10.1103/PhysRevA.97.013825 10.1073/pnas.1615509114 10.1103/PhysRevLett.92.207901 10.1103/PhysRevLett.112.140402 10.1103/PhysRevLett.107.277202 10.1103/PhysRevLett.92.073602 10.1103/PhysRevLett.91.203001 10.1088/1367-2630/17/4/043012 10.1103/PhysRevA.98.023804 10.1103/PhysRevA.96.053857 10.1103/PhysRevA.84.053804 10.1103/PhysRevLett.121.133601 10.1103/PhysRevLett.105.043001 10.1103/PhysRevLett.120.183603 10.1103/PhysRev.93.99 10.1103/RevModPhys.65.851 10.1103/PhysRevA.84.063810 10.1103/PhysRevA.95.063824 10.1103/PhysRevA.96.023863 10.1103/PhysRevB.94.224510 10.1103/PhysRevA.97.042317 10.1038/ncomms1069 10.21468/SciPostPhys.5.3.023 10.1103/PhysRevA.85.013817 10.1103/RevModPhys.82.1489 10.1103/PhysRevE.50.888 10.1103/PhysRevLett.89.253003 10.1103/PhysRevA.80.023810 10.1103/PhysRevB.76.115326 10.1103/PhysRevA.89.023812 10.1038/srep07482 10.1103/RevModPhys.47.67 10.1103/PhysRevA.84.043637 10.1038/nphys2251 10.1103/PhysRevB.81.125430 10.1103/PhysRevLett.115.163601 10.1103/PhysRevA.19.2392 10.1103/PhysRevA.94.033838 10.1088/1751-8113/47/40/405204 10.1103/PhysRevA.96.063828 10.1103/PhysRevLett.91.207204 10.1016/0375-9601(73)90679-8 10.1038/nature09009 10.1103/PhysRevLett.97.236808 10.1088/1751-8121/aa65dc 10.1103/PhysRevLett.112.023603 10.1103/PhysRevA.88.043835 10.1103/PhysRevA.97.043858 10.1103/PhysRevB.80.165308 10.1103/PhysRevA.81.063827 10.1103/PhysRevA.87.063622 10.1080/14786435.2011.637980 10.1103/PhysRevA.71.053804 10.1103/PhysRevA.7.831 10.1073/pnas.1417132112 10.1038/srep15472 10.1103/RevModPhys.85.299 10.1038/ncomms5023 10.1088/1367-2630/aa9cdd 10.1088/1367-2630/aaa11d 10.1103/PhysRevLett.109.179301 10.1038/nature06838 10.1103/PhysRevE.86.031137 10.1103/PhysRevB.91.035306 10.1016/j.aop.2018.01.017 10.1103/PhysRevLett.108.043003 10.1103/PhysRevA.92.043835 10.1103/PhysRevA.78.051801 10.1103/PhysRevA.94.033850 10.1021/acsphotonics.7b00916 10.1103/PhysRevLett.109.253602 10.1103/PhysRevB.89.134310 10.1103/PhysRevA.86.053807 10.1103/PhysRevLett.102.163601 10.1103/PhysRevB.64.235101 10.1088/1361-6455/aa9c99 10.1103/PhysRevLett.90.044101 10.1103/PhysRevLett.118.016602 10.1103/PhysRevA.42.1737 10.1017/CBO9780511813993 10.1103/PhysRevLett.104.130401 10.1038/nature21067 10.1103/RevModPhys.85.553 10.1364/OPTICA.4.000424 10.1103/PhysRevLett.95.243602 10.1103/PhysRevA.19.301 10.1016/0370-1573(82)90102-8 10.1103/PhysRevA.8.2517 10.1016/S0038-1098(00)00350-1 10.1038/nature10920 10.1126/science.aan2608 10.1103/PhysRevA.94.033815 10.1088/1367-2630/16/6/063039 10.1103/PhysRevA.87.013422 10.1038/ncomms14386 10.1103/PhysRevA.95.032310 10.1098/rsta.2010.0333 10.1103/PhysRevLett.117.173601 10.1088/0034-4885/79/9/096001 10.1103/PhysRevLett.35.432 10.1016/j.aop.2015.07.006 10.1103/PhysRevE.67.066203 10.1038/nphys1754 10.1103/PhysRevLett.107.113602 10.1017/CBO9781139003667 10.1103/PhysRevA.97.043820 10.1209/epl/i2006-10041-9 10.1088/1367-2630/14/7/073011 10.1103/PhysRevA.94.033628 10.1103/PhysRevA.90.043852 10.1103/PhysRevA.87.062101 10.1073/pnas.1306993110 10.1103/PhysRevB.91.014415 10.1002/lpor.201600189 10.1364/JOSAB.10.000524 10.1103/PhysRevB.85.184302 10.1103/PhysRevLett.112.073601 10.1103/PhysRev.58.1098 10.1038/nphys1403 10.1103/PhysRevLett.121.040503 10.1103/PhysRevLett.96.066405 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/qute.201800043 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2511-9044 |
EndPage | n/a |
ExternalDocumentID | 10_1002_qute_201800043 QUTE201800043 |
Genre | article |
GrantInformation_xml | – fundername: Austrian Academy of Sciences – fundername: Israel Science Foundation funderid: 1542/14 – fundername: EPSRC funderid: EP/M010910/1; ``Hybrid Polaritonics'' (EP/M025330/1) |
GroupedDBID | 0R~ 1OC 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c3553-7f3511749bb0363bd22449e83c9dbda7afb630f8d05b016d2739a3b04d87039a3 |
ISSN | 2511-9044 |
IngestDate | Tue Jul 01 02:03:48 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 Wed Jan 22 17:04:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3553-7f3511749bb0363bd22449e83c9dbda7afb630f8d05b016d2739a3b04d87039a3 |
ORCID | 0000-0002-7219-3804 0000-0002-4283-552X |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1002_qute_201800043 crossref_citationtrail_10_1002_qute_201800043 wiley_primary_10_1002_qute_201800043_QUTE201800043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationTitle | Advanced quantum technologies (Online) |
PublicationYear | 2019 |
References | 2012; 484 2009; 80 2010; 105 2010; 104 2010; 464 1964; 134 1970 2007; 75 2012; 14 2007; 76 1974; 9 2011; 369 1990; 42 2018; 9 2018; 8 2010; 1 2018; 5 2002; 89 2004; 37 2014; 16 2005; 71 2013; 110 2015; 91 1989; 37 2010; 6 2006; 443 2015; 361 1993; 47 1979; 19 2007; 19 2013; 88 2013; 87 2000; 116 2011; 84 2013; 85 1975; 35 2016; 10 1997 2014; 47 2016; 94 2007; 99 2018; 20 2012; 108 2012; 109 2017; 50 2015; 115 2013; 339 2015; 112 2005; 95 2009; 102 1973; 7 2018; 98 1973; 8 2018; 97 2017; 543 2017; 119 2018; 120 2017; 7 2018; 121 2017; 8 2006; 74 2017; 4 1982; 93 1993; 65 2008; 78 1940; 58 2008; 77 2017; 114 2016; 79 2017; 358 2017; 118 1954; 93 2014; 5 2014; 4 2003; 90 2003; 91 1973; 46 1991; 43 1993; 71 1975; 47 2016; 117 2006; 96 2015; 6 2015; 17 2015; 5 2006; 97 2014; 90 2015; 92 2011 2010 2007 2010; 81 2003; 75 2014; 89 2014; 112 2001; 64 2010; 82 2017; 95 2012; 92 2017; 96 2011; 107 2004; 92 2004; 93 2018; 392 1993; 10 2018 2017 2016 2017; 19 2018; 51 2009; 5 2008; 452 1994; 50 2012; 86 2012; 85 2012; 8 2003; 67 e_1_2_12_6_1 Keeling J. (e_1_2_12_35_1) 2007; 19 e_1_2_12_130_1 e_1_2_12_172_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_171_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_137_1 e_1_2_12_114_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_141_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_145_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 Carmichael H. J. (e_1_2_12_127_1) 2015; 5 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_151_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_132_1 e_1_2_12_113_1 e_1_2_12_155_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_5_1 Tsvelik A. M. (e_1_2_12_94_1) 2007 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 Vaidya V. D. (e_1_2_12_15_1) 2018; 8 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 Haken H. (e_1_2_12_71_1) 1970 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_162_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_124_1 e_1_2_12_166_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – year: 2011 – volume: 94 start-page: 224510 year: 2016 publication-title: Phys. Rev. B – volume: 91 start-page: 014415 year: 2015 publication-title: Phys. Rev. B – volume: 81 start-page: 125430 year: 2010 publication-title: Phys. Rev. B – volume: 93 start-page: 050403 year: 2004 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 299 year: 2013 publication-title: Rev. Mod. Phys. – volume: 115 start-page: 163601 year: 2015 publication-title: Phys. Rev. Lett. – volume: 89 start-page: 134310 year: 2014 publication-title: Phys. Rev. B – volume: 118 start-page: 123602 year: 2017 publication-title: Phys. Rev. Lett. – volume: 95 start-page: 243602 year: 2005 publication-title: Phys. Rev. Lett. – volume: 105 start-page: 043001 year: 2010 publication-title: Phys. Rev. Lett. – volume: 84 start-page: 053804 year: 2011 publication-title: Phys. Rev. A – volume: 93 start-page: 99 year: 1954 publication-title: Phys. Rev. – volume: 47 start-page: 1431 year: 1993 publication-title: Phys. Rev. A – volume: 80 start-page: 023810 year: 2009 publication-title: Phys. Rev. A – volume: 91 start-page: 203001 year: 2003 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 15472 year: 2015 publication-title: Sci. Rep. – volume: 108 start-page: 073601 year: 2012 publication-title: Phys. Rev. Lett. – volume: 97 start-page: 013825 year: 2018 publication-title: Phys. Rev. A – volume: 96 start-page: 066405 year: 2006 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 013817 year: 2012 publication-title: Phys. Rev. A – volume: 87 start-page: 023831 year: 2013 publication-title: Phys. Rev. A – volume: 86 start-page: 053807 year: 2012 publication-title: Phys. Rev. A – volume: 94 start-page: 033815 year: 2016 publication-title: Phys. Rev. A – volume: 50 start-page: 174002 year: 2017 publication-title: J. Phys. A – volume: 58 start-page: 1098 year: 1940 publication-title: Phys. Rev. – volume: 46 start-page: 47 year: 1973 publication-title: Phys. Lett. A – volume: 10 start-page: 524 year: 1993 publication-title: J. Opt. Soc. Am. B – volume: 78 start-page: 051801 year: 2008 publication-title: Phys. Rev. A – volume: 117 start-page: 173601 year: 2016 publication-title: Phys. Rev. Lett. – volume: 86 start-page: 031137 year: 2012 publication-title: Phys. Rev. E – volume: 20 start-page: 015009 year: 2018 publication-title: New J. Phys. – volume: 47 start-page: 405204 year: 2014 publication-title: J. Phys. A – volume: 71 start-page: 995 year: 1993 publication-title: Phys. Rev. Lett. – volume: 369 start-page: 1137 year: 2011 publication-title: Philos. Trans. R. Soc. A – volume: 67 start-page: 066203 year: 2003 publication-title: Phys. Rev. E – volume: 109 start-page: 253602 year: 2012 publication-title: Phys. Rev. Lett. – volume: 361 start-page: 401 year: 2015 publication-title: Ann. Phys. – volume: 8 start-page: 14386 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 292 year: 2012 publication-title: Nat. Phys. – volume: 92 start-page: 207901 year: 2004 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 4023 year: 2014 publication-title: Nat. Commun. – volume: 79 start-page: 096001 year: 2016 publication-title: Rep. Prog. Phys. – volume: 20 start-page: 013006 year: 2018 publication-title: New J. Phys. – year: 2007 – volume: 452 start-page: 854 year: 2008 publication-title: Nature – volume: 115 start-page: 180404 year: 2015 publication-title: Phys. Rev. Lett. – volume: 108 start-page: 043003 year: 2012 publication-title: Phys. Rev. Lett. – volume: 80 start-page: 165308 year: 2009 publication-title: Phys. Rev. B – volume: 5 start-page: 031028 year: 2015 publication-title: Phys. Rev. X – year: 2016 – volume: 112 start-page: 173601 year: 2014 publication-title: Phys. Rev. Lett. – volume: 112 start-page: 140402 year: 2014 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 831 year: 1973 publication-title: Phys. Rev. A – year: 2010 – volume: 5 start-page: 845 year: 2009 publication-title: Nat. Phys. – volume: 89 start-page: 023812 year: 2014 publication-title: Phys. Rev. A – volume: 94 start-page: 033838 year: 2016 publication-title: Phys. Rev. A – volume: 84 start-page: 063810 year: 2011 publication-title: Phys. Rev. A – volume: 98 start-page: 023804 year: 2018 publication-title: Phys. Rev. A – volume: 87 start-page: 063622 year: 2013 publication-title: Phys. Rev. A – volume: 464 start-page: 1301 year: 2010 publication-title: Nature – volume: 94 start-page: 033850 year: 2016 publication-title: Phys. Rev. A – volume: 89 start-page: 253003 year: 2002 publication-title: Phys. Rev. Lett. – volume: 94 start-page: 061802 year: 2016 publication-title: Phys. Rev. A – volume: 78 start-page: 052101 year: 2008 publication-title: Phys. Rev. A – volume: 107 start-page: 277202 year: 2011 publication-title: Phys. Rev. Lett. – volume: 75 start-page: 013804 year: 2007 publication-title: Phys. Rev. A – volume: 96 start-page: 023863 year: 2017 publication-title: Phys. Rev. A – volume: 107 start-page: 113602 year: 2011 publication-title: Phys. Rev. Lett. – volume: 91 start-page: 207204 year: 2003 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 301 year: 1979 publication-title: Phys. Rev. A – volume: 443 start-page: 409 year: 2006 publication-title: Nature – volume: 51 start-page: 034005 year: 2018 publication-title: J. Phys. B – volume: 5 start-page: 249 year: 2018 publication-title: ACS Photonics – volume: 92 start-page: 353 year: 2012 publication-title: Philos. Mag. – volume: 543 start-page: 87 year: 2017 publication-title: Nature – volume: 74 start-page: 817 year: 2006 publication-title: Europhys. Lett. – volume: 121 start-page: 133601 year: 2018 publication-title: Phys. Rev. Lett. – volume: 90 start-page: 043852 year: 2014 publication-title: Phys. Rev. A – volume: 134 start-page: A1429 year: 1964 publication-title: Phys. Rev. – volume: 112 start-page: 073601 year: 2014 publication-title: Phys. Rev. Lett. – volume: 65 start-page: 851 year: 1993 publication-title: Rev. Mod. Phys. – volume: 4 start-page: 7482 year: 2014 publication-title: Sci. Rep. – volume: 19 start-page: 2392 year: 1979 publication-title: Phys. Rev. A – volume: 71 start-page: 053804 year: 2005 publication-title: Phys. Rev. A – volume: 37 start-page: L281 year: 2004 publication-title: J. Phys. A – volume: 107 start-page: 277201 year: 2011 publication-title: Phys. Rev. Lett. – volume: 96 start-page: 053857 year: 2017 publication-title: Phys. Rev. A – volume: 97 start-page: 043858 year: 2018 publication-title: Phys. Rev. A – volume: 392 start-page: 323 year: 2018 publication-title: Ann. Phys. (N.Y.) – volume: 4 start-page: 424 year: 2017 publication-title: Optica – volume: 96 start-page: 063828 year: 2017 publication-title: Phys. Rev. A – volume: 35 start-page: 432 year: 1975 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 1489 year: 2010 publication-title: Rev. Mod. Phys. – volume: 8 start-page: 2517 year: 1973 publication-title: Phys. Rev. A – year: 2018 – volume: 80 start-page: 023803 year: 2009 publication-title: Phys. Rev. A – volume: 94 start-page: 033628 year: 2016 publication-title: Phys. Rev. A – volume: 17 start-page: 043012 year: 2015 publication-title: New J. Phys. – volume: 43 start-page: 2046 year: 1991 publication-title: Phys. Rev. A – volume: 484 start-page: 78 year: 2012 publication-title: Nature – volume: 6 start-page: 7046 year: 2015 publication-title: Nat. Commun. – volume: 19 start-page: 123027 year: 2017 publication-title: New J. Phys. – volume: 42 start-page: 1737 year: 1990 publication-title: Phys. Rev. A – volume: 64 start-page: 235101 year: 2001 publication-title: Phys. Rev. B – volume: 76 start-page: 115326 year: 2007 publication-title: Phys. Rev. B – volume: 110 start-page: 195301 year: 2013 publication-title: Phys. Rev. Lett. – year: 1997 – volume: 92 start-page: 073602 year: 2004 publication-title: Phys. Rev. Lett. – volume: 110 start-page: 11763 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 75 start-page: 281 year: 2003 publication-title: Rev. Mod. Phys. – volume: 358 start-page: 1415 year: 2017 publication-title: Science – volume: 97 start-page: 042317 year: 2018 publication-title: Phys. Rev. A – volume: 85 start-page: 553 year: 2013 publication-title: Rev. Mod. Phys. – volume: 92 start-page: 043835 year: 2015 publication-title: Phys. Rev. A – volume: 112 start-page: 3290 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 88 start-page: 043835 year: 2013 publication-title: Phys. Rev. A – volume: 1 start-page: 72 year: 2010 publication-title: Nat. Commun. – volume: 339 start-page: 135 year: 2013 publication-title: Ann. Phys. – volume: 16 start-page: 063039 year: 2014 publication-title: New J. Phys. – volume: 8 start-page: 011002 year: 2018 publication-title: Phys. Rev. X – volume: 114 start-page: 3026 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 95 start-page: 032310 year: 2017 publication-title: Phys. Rev. A – volume: 112 start-page: 023603 year: 2014 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 220404 year: 2008 publication-title: Phys. Rev. B – volume: 102 start-page: 163601 year: 2009 publication-title: Phys. Rev. Lett. – volume: 87 start-page: 062101 year: 2013 publication-title: Phys. Rev. A – volume: 9 start-page: 2006 year: 2018 publication-title: Nat. Commun. – volume: 119 start-page: 220601 year: 2017 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 184302 year: 2012 publication-title: Phys. Rev. B – volume: 10 start-page: 1023 year: 2016 publication-title: Laser Photonics Rev. – volume: 6 start-page: 806 year: 2010 publication-title: Nat. Phys. – volume: 5 start-page: 023 year: 2018 publication-title: SciPost Phys. – volume: 19 start-page: 295213 year: 2007 publication-title: J. Phys. – volume: 50 start-page: 888 year: 1994 publication-title: Phys. Rev. E – volume: 90 start-page: 044101 year: 2003 publication-title: Phys. Rev. Lett. – volume: 118 start-page: 016602 year: 2017 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 073011 year: 2012 publication-title: New J. Phys. – volume: 97 start-page: 043820 year: 2018 publication-title: Phys. Rev. A – volume: 104 start-page: 130401 year: 2010 publication-title: Phys. Rev. Lett. – volume: 87 start-page: 013422 year: 2013 publication-title: Phys. Rev. A – start-page: 201 year: 1970 – volume: 91 start-page: 035306 year: 2015 publication-title: Phys. Rev. B – volume: 8 start-page: 1440 year: 1973 publication-title: Phys. Rev. A – volume: 14 start-page: 085011 year: 2012 publication-title: New J. Phys. – volume: 121 start-page: 040503 year: 2018 publication-title: Phys. Rev. Lett. – volume: 109 start-page: 179301 year: 2012 publication-title: Phys. Rev. Lett. – volume: 95 start-page: 063824 year: 2017 publication-title: Phys. Rev. A – volume: 47 start-page: 67 year: 1975 publication-title: Rev. Mod. Phys. – volume: 116 start-page: 357 year: 2000 publication-title: Solid State Commun. – volume: 97 start-page: 236808 year: 2006 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 43768 year: 2017 publication-title: Sci. Rep. – volume: 9 start-page: 418 year: 1974 publication-title: Phys. Rev. A – volume: 84 start-page: 043637 year: 2011 publication-title: Phys. Rev. A – volume: 120 start-page: 183603 year: 2018 publication-title: Phys. Rev. Lett. – volume: 93 start-page: 301 year: 1982 publication-title: Phys. Rep. – year: 2017 – volume: 81 start-page: 063827 year: 2010 publication-title: Phys. Rev. A – volume: 37 start-page: 109 year: 1989 publication-title: Physica D – volume: 7 start-page: 16304 year: 2017 publication-title: Sci. Rep. – volume: 82 start-page: 043612 year: 2010 publication-title: Phys. Rev. A – volume: 99 start-page: 173601 year: 2007 publication-title: Phys. Rev. Lett. – ident: e_1_2_12_120_1 doi: 10.1103/PhysRevA.47.1431 – ident: e_1_2_12_49_1 doi: 10.1038/nature05131 – ident: e_1_2_12_137_1 doi: 10.1088/0305-4470/37/25/L03 – ident: e_1_2_12_162_1 – ident: e_1_2_12_79_1 doi: 10.1103/PhysRevLett.119.220601 – ident: e_1_2_12_27_1 doi: 10.1016/j.aop.2013.08.015 – ident: e_1_2_12_97_1 doi: 10.1103/PhysRev.134.A1429 – ident: e_1_2_12_62_1 doi: 10.1103/RevModPhys.75.281 – ident: e_1_2_12_121_1 doi: 10.1103/PhysRevLett.71.995 – ident: e_1_2_12_5_1 doi: 10.1103/PhysRevA.8.1440 – ident: e_1_2_12_101_1 doi: 10.1103/PhysRevA.78.052101 – volume-title: Quantum Field Theory in Condensed Matter Physics year: 2007 ident: e_1_2_12_94_1 – ident: e_1_2_12_173_1 doi: 10.1103/PhysRevLett.99.173601 – ident: e_1_2_12_20_1 doi: 10.1038/srep43768 – ident: e_1_2_12_172_1 doi: 10.1038/s41467-018-04407-1 – ident: e_1_2_12_8_1 doi: 10.1103/PhysRevA.75.013804 – ident: e_1_2_12_136_1 doi: 10.1103/PhysRevLett.93.050403 – ident: e_1_2_12_117_1 doi: 10.1201/9780429492563 – ident: e_1_2_12_142_1 doi: 10.1103/PhysRevLett.115.180404 – volume: 8 start-page: 011002 year: 2018 ident: e_1_2_12_15_1 publication-title: Phys. Rev. X – ident: e_1_2_12_166_1 doi: 10.1103/PhysRevLett.108.073601 – ident: e_1_2_12_89_1 doi: 10.1103/PhysRevA.43.2046 – ident: e_1_2_12_17_1 doi: 10.1088/1367-2630/14/8/085011 – ident: e_1_2_12_68_1 doi: 10.1017/CBO9780511789984 – ident: e_1_2_12_83_1 doi: 10.1103/PhysRevB.77.220404 – ident: e_1_2_12_156_1 doi: 10.1103/PhysRevLett.107.277201 – ident: e_1_2_12_30_1 doi: 10.1103/PhysRevA.94.061802 – ident: e_1_2_12_87_1 doi: 10.1103/PhysRevLett.110.195301 – ident: e_1_2_12_132_1 doi: 10.1103/PhysRevA.80.023803 – ident: e_1_2_12_144_1 doi: 10.1038/ncomms8046 – ident: e_1_2_12_151_1 doi: 10.1088/1367-2630/aa9b4a – ident: e_1_2_12_147_1 doi: 10.1103/PhysRevLett.112.173601 – ident: e_1_2_12_80_1 doi: 10.1016/0167-2789(89)90121-8 – ident: e_1_2_12_7_1 doi: 10.1103/PhysRevA.9.418 – ident: e_1_2_12_113_1 – ident: e_1_2_12_31_1 doi: 10.1103/PhysRevLett.118.123602 – ident: e_1_2_12_155_1 doi: 10.1103/PhysRevA.82.043612 – ident: e_1_2_12_112_1 doi: 10.1038/s41598-017-16178-8 – ident: e_1_2_12_18_1 doi: 10.1103/PhysRevA.87.023831 – ident: e_1_2_12_143_1 doi: 10.1103/PhysRevA.97.013825 – ident: e_1_2_12_43_1 doi: 10.1073/pnas.1615509114 – ident: e_1_2_12_63_1 doi: 10.1103/PhysRevLett.92.207901 – ident: e_1_2_12_75_1 doi: 10.1103/PhysRevLett.112.140402 – ident: e_1_2_12_157_1 doi: 10.1103/PhysRevLett.107.277202 – ident: e_1_2_12_72_1 doi: 10.1103/PhysRevLett.92.073602 – ident: e_1_2_12_11_1 doi: 10.1103/PhysRevLett.91.203001 – ident: e_1_2_12_152_1 doi: 10.1088/1367-2630/17/4/043012 – ident: e_1_2_12_116_1 doi: 10.1103/PhysRevA.98.023804 – ident: e_1_2_12_58_1 doi: 10.1103/PhysRevA.96.053857 – ident: e_1_2_12_99_1 doi: 10.1103/PhysRevA.84.053804 – ident: e_1_2_12_135_1 doi: 10.1103/PhysRevLett.121.133601 – ident: e_1_2_12_22_1 doi: 10.1103/PhysRevLett.105.043001 – ident: e_1_2_12_115_1 doi: 10.1103/PhysRevLett.120.183603 – ident: e_1_2_12_2_1 doi: 10.1103/PhysRev.93.99 – ident: e_1_2_12_81_1 doi: 10.1103/RevModPhys.65.851 – ident: e_1_2_12_131_1 doi: 10.1103/PhysRevA.84.063810 – ident: e_1_2_12_76_1 – ident: e_1_2_12_141_1 – ident: e_1_2_12_67_1 doi: 10.1103/PhysRevA.95.063824 – ident: e_1_2_12_108_1 doi: 10.1103/PhysRevA.96.023863 – ident: e_1_2_12_55_1 doi: 10.1103/PhysRevB.94.224510 – ident: e_1_2_12_21_1 doi: 10.1103/PhysRevA.97.042317 – ident: e_1_2_12_52_1 doi: 10.1038/ncomms1069 – volume: 5 start-page: 031028 year: 2015 ident: e_1_2_12_127_1 publication-title: Phys. Rev. X – ident: e_1_2_12_169_1 doi: 10.21468/SciPostPhys.5.3.023 – ident: e_1_2_12_28_1 doi: 10.1103/PhysRevA.85.013817 – ident: e_1_2_12_47_1 doi: 10.1103/RevModPhys.82.1489 – ident: e_1_2_12_41_1 – ident: e_1_2_12_90_1 doi: 10.1103/PhysRevE.50.888 – ident: e_1_2_12_10_1 doi: 10.1103/PhysRevLett.89.253003 – ident: e_1_2_12_78_1 doi: 10.1103/PhysRevA.80.023810 – ident: e_1_2_12_130_1 doi: 10.1103/PhysRevB.76.115326 – ident: e_1_2_12_146_1 doi: 10.1103/PhysRevA.89.023812 – ident: e_1_2_12_19_1 doi: 10.1038/srep07482 – start-page: 201 volume-title: Quantum Optics year: 1970 ident: e_1_2_12_71_1 – ident: e_1_2_12_100_1 doi: 10.1103/RevModPhys.47.67 – ident: e_1_2_12_16_1 doi: 10.1103/PhysRevA.84.043637 – ident: e_1_2_12_51_1 doi: 10.1038/nphys2251 – ident: e_1_2_12_84_1 doi: 10.1103/PhysRevB.81.125430 – ident: e_1_2_12_118_1 doi: 10.1103/PhysRevLett.115.163601 – ident: e_1_2_12_126_1 doi: 10.1103/PhysRevA.19.2392 – ident: e_1_2_12_104_1 doi: 10.1103/PhysRevA.94.033838 – ident: e_1_2_12_138_1 doi: 10.1088/1751-8113/47/40/405204 – volume: 19 start-page: 295213 year: 2007 ident: e_1_2_12_35_1 publication-title: J. Phys. – ident: e_1_2_12_150_1 doi: 10.1103/PhysRevA.96.063828 – ident: e_1_2_12_95_1 doi: 10.1103/PhysRevLett.91.207204 – ident: e_1_2_12_6_1 doi: 10.1016/0375-9601(73)90679-8 – ident: e_1_2_12_13_1 doi: 10.1038/nature09009 – ident: e_1_2_12_82_1 doi: 10.1103/PhysRevLett.97.236808 – ident: e_1_2_12_114_1 doi: 10.1088/1751-8121/aa65dc – ident: e_1_2_12_59_1 doi: 10.1103/PhysRevLett.112.023603 – ident: e_1_2_12_168_1 doi: 10.1103/PhysRevA.88.043835 – ident: e_1_2_12_105_1 – ident: e_1_2_12_32_1 doi: 10.1103/PhysRevA.97.043858 – ident: e_1_2_12_165_1 doi: 10.1103/PhysRevB.80.165308 – ident: e_1_2_12_123_1 doi: 10.1103/PhysRevA.81.063827 – ident: e_1_2_12_158_1 doi: 10.1103/PhysRevA.87.063622 – ident: e_1_2_12_42_1 – ident: e_1_2_12_160_1 doi: 10.1080/14786435.2011.637980 – ident: e_1_2_12_73_1 doi: 10.1103/PhysRevA.71.053804 – ident: e_1_2_12_119_1 – ident: e_1_2_12_4_1 doi: 10.1103/PhysRevA.7.831 – ident: e_1_2_12_14_1 doi: 10.1073/pnas.1417132112 – ident: e_1_2_12_60_1 doi: 10.1038/srep15472 – ident: e_1_2_12_48_1 doi: 10.1103/RevModPhys.85.299 – ident: e_1_2_12_65_1 doi: 10.1038/ncomms5023 – ident: e_1_2_12_107_1 doi: 10.1088/1367-2630/aa9cdd – ident: e_1_2_12_109_1 doi: 10.1088/1367-2630/aaa11d – ident: e_1_2_12_54_1 doi: 10.1103/PhysRevLett.109.179301 – ident: e_1_2_12_91_1 doi: 10.1038/nature06838 – ident: e_1_2_12_170_1 doi: 10.1103/PhysRevE.86.031137 – ident: e_1_2_12_103_1 doi: 10.1103/PhysRevB.91.035306 – ident: e_1_2_12_139_1 doi: 10.1016/j.aop.2018.01.017 – ident: e_1_2_12_140_1 doi: 10.1103/PhysRevLett.108.043003 – ident: e_1_2_12_38_1 doi: 10.1103/PhysRevA.92.043835 – ident: e_1_2_12_26_1 doi: 10.1103/PhysRevA.78.051801 – ident: e_1_2_12_110_1 – ident: e_1_2_12_57_1 doi: 10.1103/PhysRevA.94.033850 – ident: e_1_2_12_106_1 doi: 10.1021/acsphotonics.7b00916 – ident: e_1_2_12_125_1 doi: 10.1103/PhysRevLett.109.253602 – ident: e_1_2_12_88_1 doi: 10.1103/PhysRevB.89.134310 – ident: e_1_2_12_36_1 doi: 10.1103/PhysRevA.86.053807 – ident: e_1_2_12_122_1 doi: 10.1103/PhysRevLett.102.163601 – ident: e_1_2_12_46_1 doi: 10.1103/PhysRevB.64.235101 – ident: e_1_2_12_44_1 doi: 10.1088/1361-6455/aa9c99 – ident: e_1_2_12_163_1 doi: 10.1103/PhysRevLett.90.044101 – ident: e_1_2_12_50_1 doi: 10.1103/PhysRevLett.118.016602 – ident: e_1_2_12_98_1 doi: 10.1103/PhysRevA.42.1737 – ident: e_1_2_12_29_1 doi: 10.1017/CBO9780511813993 – ident: e_1_2_12_12_1 doi: 10.1103/PhysRevLett.104.130401 – ident: e_1_2_12_148_1 doi: 10.1038/nature21067 – ident: e_1_2_12_25_1 doi: 10.1103/RevModPhys.85.553 – ident: e_1_2_12_9_1 doi: 10.1364/OPTICA.4.000424 – ident: e_1_2_12_128_1 doi: 10.1103/PhysRevLett.95.243602 – ident: e_1_2_12_34_1 doi: 10.1103/PhysRevA.19.301 – ident: e_1_2_12_23_1 doi: 10.1016/0370-1573(82)90102-8 – ident: e_1_2_12_3_1 doi: 10.1103/PhysRevA.8.2517 – ident: e_1_2_12_45_1 doi: 10.1016/S0038-1098(00)00350-1 – ident: e_1_2_12_124_1 doi: 10.1038/nature10920 – ident: e_1_2_12_149_1 doi: 10.1126/science.aan2608 – ident: e_1_2_12_39_1 doi: 10.1103/PhysRevA.94.033815 – ident: e_1_2_12_74_1 doi: 10.1088/1367-2630/16/6/063039 – ident: e_1_2_12_64_1 doi: 10.1103/PhysRevA.87.013422 – ident: e_1_2_12_153_1 doi: 10.1038/ncomms14386 – ident: e_1_2_12_161_1 doi: 10.1103/PhysRevA.95.032310 – ident: e_1_2_12_24_1 doi: 10.1098/rsta.2010.0333 – ident: e_1_2_12_56_1 doi: 10.1103/PhysRevLett.117.173601 – ident: e_1_2_12_70_1 doi: 10.1088/0034-4885/79/9/096001 – ident: e_1_2_12_33_1 doi: 10.1103/PhysRevLett.35.432 – ident: e_1_2_12_96_1 doi: 10.1016/j.aop.2015.07.006 – ident: e_1_2_12_164_1 doi: 10.1103/PhysRevE.67.066203 – ident: e_1_2_12_85_1 doi: 10.1038/nphys1754 – ident: e_1_2_12_53_1 doi: 10.1103/PhysRevLett.107.113602 – ident: e_1_2_12_69_1 doi: 10.1017/CBO9781139003667 – ident: e_1_2_12_40_1 doi: 10.1103/PhysRevA.97.043820 – ident: e_1_2_12_77_1 doi: 10.1209/epl/i2006-10041-9 – ident: e_1_2_12_167_1 doi: 10.1088/1367-2630/14/7/073011 – ident: e_1_2_12_92_1 doi: 10.1103/PhysRevA.94.033628 – ident: e_1_2_12_111_1 – ident: e_1_2_12_133_1 doi: 10.1103/PhysRevA.90.043852 – ident: e_1_2_12_102_1 doi: 10.1103/PhysRevA.87.062101 – ident: e_1_2_12_145_1 doi: 10.1073/pnas.1306993110 – ident: e_1_2_12_159_1 doi: 10.1103/PhysRevB.91.014415 – ident: e_1_2_12_134_1 doi: 10.1002/lpor.201600189 – ident: e_1_2_12_93_1 doi: 10.1364/JOSAB.10.000524 – ident: e_1_2_12_86_1 doi: 10.1103/PhysRevB.85.184302 – ident: e_1_2_12_37_1 doi: 10.1103/PhysRevLett.112.073601 – ident: e_1_2_12_66_1 doi: 10.1103/PhysRev.58.1098 – ident: e_1_2_12_154_1 doi: 10.1038/nphys1403 – ident: e_1_2_12_171_1 – ident: e_1_2_12_61_1 doi: 10.1103/PhysRevLett.121.040503 – ident: e_1_2_12_129_1 doi: 10.1103/PhysRevLett.96.066405 |
SSID | ssj0002313473 |
Score | 2.57675 |
Snippet | The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity,... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Dicke model nonequilibrium phase transitions quantum optics superradiance |
Title | Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.201800043 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc6ENJe0GBM42PID0h7KO4Sx22SvVWjDKaBhGgn3qLYTqRK0NLSvPAH8HdzZ-fD3TrB9hKllp1Gvl_Od-ffnQk58rIuj1JfMNkLciZ8zZnMY81EBIt5lEe4KCDb4rJ3NhI_bro3rdaTw1oqFrKjHlfmlfyPVKEN5IpZsv8g2fqh0AD3IF-4goTh-ioZnyPNXNv6r5UReTKG79IccXaL3v4ppo8MZsXYcPuLO-x2OZ1kTUvF3_wFKqON4bPUNVj7FUdgVoAMcHwVix_bgK1bq7TczZ-XlPwl7i8e4Wgj29N5-6LTKHqTEO8G8pvgOUC0PcTjQ4zGvksnBSyS7e8dN1SB2VE17cNoNHRnWOzZgo-dbEVbqZK5izybHvmHqrelY2eFKXbqR2ZPs1nUqo3839a6moFoqzXzBMcn9fg3ZJ2DuwEKfr1_cvHzuo7WgRUcCENXqN-3qgDq8S_LL7Fk4bgejzFZhu_IZulr0L4FzhZpZZNtsmE4v-rhPbl24UMXUwrwoQY-1MDnK0XwUAc82GkZPMcUoEMROtRAZ4eMTgfDb2esPGODKbA0AxbmuJMcilhK3NKXGkw6EWdRoGItdRqmOXzEXh5pryvBO9Bg7cZpID2hQdHj7QeyNoE__khoqHPVU3FXcV8LP1Qy1AqmR_JMYxnBaJewal4SVRagx3NQbpPVwtgln-v-97b0yl97cjPNL3RLrkbDQf1r79WP3ydvGzQfkLXFvMg-gSm6kIclTp4BS8aEMA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introduction+to+the+Dicke+Model%3A+From+Equilibrium+to+Nonequilibrium%2C+and+Vice+Versa&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Kirton%2C+Peter&rft.au=Roses%2C+Mor+M.&rft.au=Keeling%2C+Jonathan&rft.au=Dalla+Torre%2C+Emanuele+G.&rft.date=2019-02-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=2&rft.issue=1-2&rft_id=info:doi/10.1002%2Fqute.201800043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_201800043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |