Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa

The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 2; no. 1-2
Main Authors Kirton, Peter, Roses, Mor M., Keeling, Jonathan, Dalla Torre, Emanuele G.
Format Journal Article
LanguageEnglish
Published 01.02.2019
Subjects
Online AccessGet full text
ISSN2511-9044
2511-9044
DOI10.1002/qute.201800043

Cover

Loading…
Abstract The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition was first predicted for atoms in thermal equilibrium and was recently realized with a quantum simulator made of atoms in an optical cavity, subject to both dissipation and driving. This progress report offers an introduction to some theoretical concepts relevant to the Dicke model, reviewing the critical properties of the superradiant phase transition and the distinction between equilibrium and nonequilibrium conditions. In addition, it explains the fundamental difference between the superradiant phase transition and the more common lasing transition. This report mostly focuses on the steady states of atoms in single‐mode optical cavities, but it also mentions some aspects of real‐time dynamics, as well as other quantum simulators, including superconducting qubits, trapped ions, and using spin–orbit coupling for cold atoms. These realizations differ in regard to whether they describe equilibrium or nonequilibrium systems. This progress report offers an introduction to the theory of the superradiant transition of the Dicke model, which was recently realized with atomic quantum simulators. The critical properties of this transition and the distinction between equilibrium and nonequilibrium conditions are reviewed. In addition, the difference between the superradiant phase transition and the textbook lasing transition is explained.
AbstractList The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition was first predicted for atoms in thermal equilibrium and was recently realized with a quantum simulator made of atoms in an optical cavity, subject to both dissipation and driving. This progress report offers an introduction to some theoretical concepts relevant to the Dicke model, reviewing the critical properties of the superradiant phase transition and the distinction between equilibrium and nonequilibrium conditions. In addition, it explains the fundamental difference between the superradiant phase transition and the more common lasing transition. This report mostly focuses on the steady states of atoms in single‐mode optical cavities, but it also mentions some aspects of real‐time dynamics, as well as other quantum simulators, including superconducting qubits, trapped ions, and using spin–orbit coupling for cold atoms. These realizations differ in regard to whether they describe equilibrium or nonequilibrium systems. This progress report offers an introduction to the theory of the superradiant transition of the Dicke model, which was recently realized with atomic quantum simulators. The critical properties of this transition and the distinction between equilibrium and nonequilibrium conditions are reviewed. In addition, the difference between the superradiant phase transition and the textbook lasing transition is explained.
The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity, this model can undergo a transition to a superradiant phase, belonging to the mean‐field Ising universality class. The superradiant transition was first predicted for atoms in thermal equilibrium and was recently realized with a quantum simulator made of atoms in an optical cavity, subject to both dissipation and driving. This progress report offers an introduction to some theoretical concepts relevant to the Dicke model, reviewing the critical properties of the superradiant phase transition and the distinction between equilibrium and nonequilibrium conditions. In addition, it explains the fundamental difference between the superradiant phase transition and the more common lasing transition. This report mostly focuses on the steady states of atoms in single‐mode optical cavities, but it also mentions some aspects of real‐time dynamics, as well as other quantum simulators, including superconducting qubits, trapped ions, and using spin–orbit coupling for cold atoms. These realizations differ in regard to whether they describe equilibrium or nonequilibrium systems.
Author Kirton, Peter
Roses, Mor M.
Dalla Torre, Emanuele G.
Keeling, Jonathan
Author_xml – sequence: 1
  givenname: Peter
  surname: Kirton
  fullname: Kirton, Peter
  organization: Vienna Center for Quantum Science and Technology
– sequence: 2
  givenname: Mor M.
  surname: Roses
  fullname: Roses, Mor M.
  organization: Bar‐Ilan University
– sequence: 3
  givenname: Jonathan
  orcidid: 0000-0002-4283-552X
  surname: Keeling
  fullname: Keeling, Jonathan
  organization: University of St Andrews
– sequence: 4
  givenname: Emanuele G.
  orcidid: 0000-0002-7219-3804
  surname: Dalla Torre
  fullname: Dalla Torre, Emanuele G.
  email: emanuele.dalla-torre@biu.ac.il
  organization: Bar‐Ilan University
BookMark eNqFkEtLw0AUhQepYK3dup4fYOqdR5rEndRWC1UR227DvIKjacZOJkj_vQkVK4K4uofL-e7jnKJe5SqD0DmBEQGgl9smmBEFkgIAZ0eoT2NCogw47_3QJ2hY16-thTLCeML66HleBe90o4J1FQ4OhxeDb6x6M_jeaVNe4Zl3GzzdNra00ttm05ke2uWHzgUWlcZrqwxeG1-LM3RciLI2w686QKvZdDm5ixaPt_PJ9SJSLI5ZlBSsvSvhmZTAxkxqSjnPTMpUpqUWiSjkmEGRaoglkLGmCcsEk8B1mkAnB2i0n6u8q2tvivzd243wu5xA3qWSd6nk36m0AP8FKBtE93nwwpZ_Y9ke-7Cl2f2zJH9aLacH9hPQ8Hki
CitedBy_id crossref_primary_10_1088_1572_9494_ac256d
crossref_primary_10_1103_PhysRevA_99_033845
crossref_primary_10_1103_PhysRevLett_131_253603
crossref_primary_10_3390_e24091198
crossref_primary_10_1103_PhysRevLett_123_207402
crossref_primary_10_1063_5_0173898
crossref_primary_10_1103_PhysRevLett_130_060403
crossref_primary_10_1103_PhysRevResearch_7_013227
crossref_primary_10_1103_PhysRevA_104_063705
crossref_primary_10_1103_PhysRevA_99_063821
crossref_primary_10_1103_PhysRevA_104_023702
crossref_primary_10_1103_PhysRevA_104_063706
crossref_primary_10_1103_PhysRevLett_132_073602
crossref_primary_10_1103_PhysRevLett_124_120504
crossref_primary_10_1103_PhysRevB_110_064317
crossref_primary_10_3379_msjmag_2403R002
crossref_primary_10_1103_RevModPhys_95_035002
crossref_primary_10_1088_1367_2630_ad77ee
crossref_primary_10_1103_PhysRevLett_132_193602
crossref_primary_10_1103_PhysRevE_109_014206
crossref_primary_10_1103_PhysRevX_14_011026
crossref_primary_10_1103_PhysRevA_110_063314
crossref_primary_10_21468_SciPostPhysCodeb_6
crossref_primary_10_1103_PhysRevB_105_155421
crossref_primary_10_1103_PhysRevA_109_013715
crossref_primary_10_3390_e26070574
crossref_primary_10_1103_PhysRevLett_131_190402
crossref_primary_10_1142_S0219749924500242
crossref_primary_10_1038_s42005_021_00622_3
crossref_primary_10_1103_PhysRevLett_126_173601
crossref_primary_10_1103_PhysRevLett_126_230601
crossref_primary_10_1103_PhysRevA_99_023822
crossref_primary_10_1103_PhysRevLett_127_060401
crossref_primary_10_1103_PhysRevA_110_063301
crossref_primary_10_1103_PRXQuantum_4_020326
crossref_primary_10_1103_PRXQuantum_5_040338
crossref_primary_10_1515_nanoph_2018_0188
crossref_primary_10_1038_s41467_021_26573_5
crossref_primary_10_1103_PhysRevA_108_023725
crossref_primary_10_1103_PhysRevA_102_023703
crossref_primary_10_1515_nanoph_2023_0677
crossref_primary_10_21468_SciPostPhys_14_6_156
crossref_primary_10_1103_PhysRevA_105_L050201
crossref_primary_10_1103_PhysRevLett_133_240404
crossref_primary_10_1103_PhysRevResearch_2_013198
crossref_primary_10_1103_PhysRevResearch_3_L022020
crossref_primary_10_1038_s42005_022_00880_9
crossref_primary_10_1103_PhysRevA_107_043706
crossref_primary_10_1103_PhysRevLett_122_190403
crossref_primary_10_1103_PhysRevA_104_053308
crossref_primary_10_1103_PRXQuantum_5_010349
crossref_primary_10_1088_1367_2630_ac3a17
crossref_primary_10_1103_PhysRevA_102_033702
crossref_primary_10_1103_PhysRevX_12_011054
crossref_primary_10_1103_PhysRevResearch_2_013141
crossref_primary_10_1103_PhysRevA_105_063508
crossref_primary_10_1103_PhysRevLett_130_163603
crossref_primary_10_21468_SciPostPhys_15_5_186
crossref_primary_10_1103_PhysRevA_103_023506
crossref_primary_10_1364_OE_480191
crossref_primary_10_21468_SciPostPhys_14_5_133
crossref_primary_10_1103_PhysRevResearch_3_023100
crossref_primary_10_1103_PhysRevA_99_032303
crossref_primary_10_1103_PhysRevB_109_045303
crossref_primary_10_1103_PhysRevLett_129_173001
crossref_primary_10_1364_JOSAB_522786
crossref_primary_10_1080_00018732_2021_1969727
crossref_primary_10_1103_PhysRevLett_125_240602
crossref_primary_10_1103_PhysRevA_101_013817
crossref_primary_10_1088_1367_2630_ad6bb6
crossref_primary_10_1103_PhysRevA_105_053717
crossref_primary_10_3390_e25010008
crossref_primary_10_1103_PhysRevA_103_013703
crossref_primary_10_1103_PhysRevA_99_053818
crossref_primary_10_1103_PhysRevLett_125_233602
crossref_primary_10_3390_pr10091885
crossref_primary_10_21468_SciPostPhys_15_1_030
crossref_primary_10_1103_PhysRevLett_123_233601
crossref_primary_10_1103_PhysRevA_108_023516
crossref_primary_10_1103_PhysRevLett_129_050603
crossref_primary_10_21468_SciPostPhysProc_3_024
crossref_primary_10_1103_PhysRevResearch_2_023178
crossref_primary_10_1103_PhysRevResearch_7_013170
crossref_primary_10_1063_5_0075894
crossref_primary_10_1088_1361_6528_acb5a8
crossref_primary_10_1088_1612_202X_ad8746
crossref_primary_10_1103_PhysRevA_104_033719
crossref_primary_10_1103_PhysRevLett_127_167201
crossref_primary_10_1103_PhysRevLett_133_100401
crossref_primary_10_1103_PhysRevLett_131_090401
crossref_primary_10_1021_acs_jpclett_3c02870
crossref_primary_10_1103_PhysRevLett_124_230602
crossref_primary_10_1103_PhysRevE_109_024225
crossref_primary_10_1038_s41467_021_21123_5
crossref_primary_10_1103_PhysRevX_15_011010
crossref_primary_10_1103_PRXQuantum_4_030304
crossref_primary_10_1103_PhysRevResearch_5_L042016
crossref_primary_10_1038_s41467_024_46474_7
crossref_primary_10_1103_PhysRevResearch_6_023223
crossref_primary_10_1140_epjb_e2020_10262_7
crossref_primary_10_1103_PhysRevA_107_033711
crossref_primary_10_1103_PhysRevResearch_3_L032016
crossref_primary_10_1103_PhysRevX_10_011008
crossref_primary_10_1103_PhysRevX_11_041046
crossref_primary_10_1364_OE_517716
crossref_primary_10_1103_PhysRevLett_130_263602
crossref_primary_10_1038_s42005_023_01439_y
crossref_primary_10_1103_PhysRevLett_123_160404
crossref_primary_10_1088_2058_9565_ad2186
crossref_primary_10_3390_atoms9030035
crossref_primary_10_1038_s41598_020_69704_6
crossref_primary_10_1088_1367_2630_abdf9c
crossref_primary_10_1103_PhysRevB_105_214106
crossref_primary_10_1103_PhysRevLett_133_243401
crossref_primary_10_1103_PhysRevB_103_085407
crossref_primary_10_1063_5_0076485
crossref_primary_10_1103_PhysRevA_98_063815
crossref_primary_10_1515_nanoph_2023_0706
crossref_primary_10_1088_1361_648X_abe26b
crossref_primary_10_1088_1367_2630_abd2e6
crossref_primary_10_1098_rspa_2023_0431
crossref_primary_10_1063_1_5121426
crossref_primary_10_1103_PhysRevA_104_052423
crossref_primary_10_1103_PhysRevA_110_063722
crossref_primary_10_1088_1361_6455_acdc6e
crossref_primary_10_1103_PhysRevA_106_043716
crossref_primary_10_1103_PhysRevLett_125_010404
crossref_primary_10_21468_SciPostPhysLectNotes_50
crossref_primary_10_1103_PhysRevA_101_023823
crossref_primary_10_1103_PhysRevResearch_6_043313
crossref_primary_10_1103_PhysRevA_108_062216
crossref_primary_10_1088_2058_9565_abdca5
crossref_primary_10_1103_PhysRevB_100_075433
crossref_primary_10_1038_s42005_021_00785_z
crossref_primary_10_1103_PhysRevE_103_052214
crossref_primary_10_3390_e26010087
crossref_primary_10_3390_e26110926
crossref_primary_10_1103_PhysRevResearch_6_043314
crossref_primary_10_1103_PhysRevResearch_6_033090
crossref_primary_10_1103_PhysRevB_102_064301
crossref_primary_10_1103_PhysRevE_109_034202
crossref_primary_10_1103_PhysRevA_110_L010202
crossref_primary_10_1103_PhysRevLett_125_240405
crossref_primary_10_1103_PhysRevA_102_062205
crossref_primary_10_1103_PRXQuantum_3_020354
crossref_primary_10_1103_PhysRevB_102_144202
crossref_primary_10_1063_5_0037453
crossref_primary_10_1103_PhysRevA_111_022222
crossref_primary_10_1103_PhysRevApplied_16_034029
crossref_primary_10_1103_PhysRevA_110_063712
crossref_primary_10_1103_PhysRevB_108_104302
crossref_primary_10_1002_pssb_202300576
crossref_primary_10_1063_5_0009869
crossref_primary_10_1103_PhysRevLett_131_113602
crossref_primary_10_1103_PhysRevResearch_6_023012
crossref_primary_10_1088_1751_8121_ac0f16
crossref_primary_10_1103_PhysRevLett_131_113601
crossref_primary_10_1038_s41586_021_03945_x
crossref_primary_10_21468_SciPostPhys_10_2_045
crossref_primary_10_1103_PhysRevA_108_013711
crossref_primary_10_1140_epjd_e2020_10332_0
crossref_primary_10_1063_5_0255344
crossref_primary_10_1088_1751_8121_ab1cf6
crossref_primary_10_1103_PhysRevA_105_L011702
crossref_primary_10_1103_PhysRevLett_128_163601
crossref_primary_10_1103_PhysRevLett_127_253601
crossref_primary_10_1103_PhysRevResearch_3_033136
crossref_primary_10_1103_PhysRevA_101_053818
crossref_primary_10_1103_PhysRevLett_122_193601
crossref_primary_10_1088_1361_6455_aaf6d7
crossref_primary_10_1515_nanoph_2023_0831
crossref_primary_10_1103_PhysRevB_106_024502
crossref_primary_10_1515_nanoph_2020_0433
crossref_primary_10_1088_1612_202X_ad6e6c
crossref_primary_10_1103_PhysRevB_108_024302
crossref_primary_10_1103_PhysRevA_109_053702
crossref_primary_10_1103_PhysRevResearch_6_033193
crossref_primary_10_1103_PhysRevA_102_053716
crossref_primary_10_21468_SciPostPhysCore_7_3_038
crossref_primary_10_1103_PhysRevA_105_033716
crossref_primary_10_1103_PhysRevResearch_6_033188
crossref_primary_10_1038_s41598_021_87536_w
crossref_primary_10_1088_1367_2630_ab2afe
crossref_primary_10_1103_PhysRevA_107_023714
crossref_primary_10_1140_epjd_s10053_024_00881_z
crossref_primary_10_1002_qute_201900140
crossref_primary_10_1103_PhysRevB_104_054428
crossref_primary_10_1103_PhysRevA_109_052621
crossref_primary_10_1103_PhysRevB_106_214429
crossref_primary_10_1103_PhysRevLett_130_150401
crossref_primary_10_1103_PhysRevA_108_033706
crossref_primary_10_1103_PhysRevResearch_5_023112
crossref_primary_10_1103_PhysRevA_111_013310
crossref_primary_10_1103_PhysRevE_101_010202
crossref_primary_10_1103_PhysRevLett_134_083603
crossref_primary_10_1364_OE_449811
crossref_primary_10_1103_PhysRevA_104_053708
crossref_primary_10_1073_pnas_2424663122
crossref_primary_10_1088_2058_9565_ac6ca5
crossref_primary_10_1103_PhysRevResearch_6_043250
crossref_primary_10_1021_acs_jctc_0c00469
crossref_primary_10_1103_PhysRevB_101_214302
crossref_primary_10_1103_PhysRevA_100_022513
crossref_primary_10_1103_PhysRevLett_124_040404
crossref_primary_10_1103_PhysRevLett_131_227102
crossref_primary_10_1103_PhysRevResearch_6_023092
crossref_primary_10_1103_PhysRevResearch_5_033148
crossref_primary_10_1364_OE_412914
crossref_primary_10_1038_s42005_023_01457_w
crossref_primary_10_1103_PhysRevResearch_4_013012
crossref_primary_10_1103_PhysRevA_102_023718
crossref_primary_10_1088_1367_2630_ac8897
crossref_primary_10_22331_q_2022_02_08_644
crossref_primary_10_1103_PhysRevB_111_045430
crossref_primary_10_1002_qute_201900008
crossref_primary_10_1038_s41467_020_16906_1
crossref_primary_10_1103_PhysRevA_107_013715
crossref_primary_10_1103_PhysRevLett_127_173606
crossref_primary_10_3390_e25121601
crossref_primary_10_1103_PhysRevA_105_033519
crossref_primary_10_1103_PhysRevResearch_4_033177
crossref_primary_10_1103_PhysRevB_99_064303
crossref_primary_10_1103_PhysRevA_107_023520
crossref_primary_10_1038_s41535_024_00693_9
crossref_primary_10_1103_PhysRevX_11_021048
crossref_primary_10_1103_PhysRevA_106_012212
crossref_primary_10_7566_JPSJ_88_024401
crossref_primary_10_1515_nanoph_2020_0513
crossref_primary_10_1103_PhysRevA_105_063701
crossref_primary_10_1088_1367_2630_ac8d27
crossref_primary_10_1103_PhysRevA_105_043311
crossref_primary_10_1103_PhysRevLett_127_133601
crossref_primary_10_3390_magnetochemistry7010004
crossref_primary_10_3390_e25111492
crossref_primary_10_1103_PhysRevResearch_5_033002
crossref_primary_10_1103_PhysRevA_110_032220
crossref_primary_10_21468_SciPostPhys_14_2_018
crossref_primary_10_1088_1402_4896_ad2efd
crossref_primary_10_1103_PhysRevB_105_165129
crossref_primary_10_1103_PhysRevResearch_4_L042032
crossref_primary_10_1088_1361_648X_ab5bd3
crossref_primary_10_1103_PhysRevA_105_023714
crossref_primary_10_1103_PhysRevLett_125_143603
Cites_doi 10.1103/PhysRevA.47.1431
10.1038/nature05131
10.1088/0305-4470/37/25/L03
10.1103/PhysRevLett.119.220601
10.1016/j.aop.2013.08.015
10.1103/PhysRev.134.A1429
10.1103/RevModPhys.75.281
10.1103/PhysRevLett.71.995
10.1103/PhysRevA.8.1440
10.1103/PhysRevA.78.052101
10.1103/PhysRevLett.99.173601
10.1038/srep43768
10.1038/s41467-018-04407-1
10.1103/PhysRevA.75.013804
10.1103/PhysRevLett.93.050403
10.1201/9780429492563
10.1103/PhysRevLett.115.180404
10.1103/PhysRevLett.108.073601
10.1103/PhysRevA.43.2046
10.1088/1367-2630/14/8/085011
10.1017/CBO9780511789984
10.1103/PhysRevB.77.220404
10.1103/PhysRevLett.107.277201
10.1103/PhysRevA.94.061802
10.1103/PhysRevLett.110.195301
10.1103/PhysRevA.80.023803
10.1038/ncomms8046
10.1088/1367-2630/aa9b4a
10.1103/PhysRevLett.112.173601
10.1016/0167-2789(89)90121-8
10.1103/PhysRevA.9.418
10.1103/PhysRevLett.118.123602
10.1103/PhysRevA.82.043612
10.1038/s41598-017-16178-8
10.1103/PhysRevA.87.023831
10.1103/PhysRevA.97.013825
10.1073/pnas.1615509114
10.1103/PhysRevLett.92.207901
10.1103/PhysRevLett.112.140402
10.1103/PhysRevLett.107.277202
10.1103/PhysRevLett.92.073602
10.1103/PhysRevLett.91.203001
10.1088/1367-2630/17/4/043012
10.1103/PhysRevA.98.023804
10.1103/PhysRevA.96.053857
10.1103/PhysRevA.84.053804
10.1103/PhysRevLett.121.133601
10.1103/PhysRevLett.105.043001
10.1103/PhysRevLett.120.183603
10.1103/PhysRev.93.99
10.1103/RevModPhys.65.851
10.1103/PhysRevA.84.063810
10.1103/PhysRevA.95.063824
10.1103/PhysRevA.96.023863
10.1103/PhysRevB.94.224510
10.1103/PhysRevA.97.042317
10.1038/ncomms1069
10.21468/SciPostPhys.5.3.023
10.1103/PhysRevA.85.013817
10.1103/RevModPhys.82.1489
10.1103/PhysRevE.50.888
10.1103/PhysRevLett.89.253003
10.1103/PhysRevA.80.023810
10.1103/PhysRevB.76.115326
10.1103/PhysRevA.89.023812
10.1038/srep07482
10.1103/RevModPhys.47.67
10.1103/PhysRevA.84.043637
10.1038/nphys2251
10.1103/PhysRevB.81.125430
10.1103/PhysRevLett.115.163601
10.1103/PhysRevA.19.2392
10.1103/PhysRevA.94.033838
10.1088/1751-8113/47/40/405204
10.1103/PhysRevA.96.063828
10.1103/PhysRevLett.91.207204
10.1016/0375-9601(73)90679-8
10.1038/nature09009
10.1103/PhysRevLett.97.236808
10.1088/1751-8121/aa65dc
10.1103/PhysRevLett.112.023603
10.1103/PhysRevA.88.043835
10.1103/PhysRevA.97.043858
10.1103/PhysRevB.80.165308
10.1103/PhysRevA.81.063827
10.1103/PhysRevA.87.063622
10.1080/14786435.2011.637980
10.1103/PhysRevA.71.053804
10.1103/PhysRevA.7.831
10.1073/pnas.1417132112
10.1038/srep15472
10.1103/RevModPhys.85.299
10.1038/ncomms5023
10.1088/1367-2630/aa9cdd
10.1088/1367-2630/aaa11d
10.1103/PhysRevLett.109.179301
10.1038/nature06838
10.1103/PhysRevE.86.031137
10.1103/PhysRevB.91.035306
10.1016/j.aop.2018.01.017
10.1103/PhysRevLett.108.043003
10.1103/PhysRevA.92.043835
10.1103/PhysRevA.78.051801
10.1103/PhysRevA.94.033850
10.1021/acsphotonics.7b00916
10.1103/PhysRevLett.109.253602
10.1103/PhysRevB.89.134310
10.1103/PhysRevA.86.053807
10.1103/PhysRevLett.102.163601
10.1103/PhysRevB.64.235101
10.1088/1361-6455/aa9c99
10.1103/PhysRevLett.90.044101
10.1103/PhysRevLett.118.016602
10.1103/PhysRevA.42.1737
10.1017/CBO9780511813993
10.1103/PhysRevLett.104.130401
10.1038/nature21067
10.1103/RevModPhys.85.553
10.1364/OPTICA.4.000424
10.1103/PhysRevLett.95.243602
10.1103/PhysRevA.19.301
10.1016/0370-1573(82)90102-8
10.1103/PhysRevA.8.2517
10.1016/S0038-1098(00)00350-1
10.1038/nature10920
10.1126/science.aan2608
10.1103/PhysRevA.94.033815
10.1088/1367-2630/16/6/063039
10.1103/PhysRevA.87.013422
10.1038/ncomms14386
10.1103/PhysRevA.95.032310
10.1098/rsta.2010.0333
10.1103/PhysRevLett.117.173601
10.1088/0034-4885/79/9/096001
10.1103/PhysRevLett.35.432
10.1016/j.aop.2015.07.006
10.1103/PhysRevE.67.066203
10.1038/nphys1754
10.1103/PhysRevLett.107.113602
10.1017/CBO9781139003667
10.1103/PhysRevA.97.043820
10.1209/epl/i2006-10041-9
10.1088/1367-2630/14/7/073011
10.1103/PhysRevA.94.033628
10.1103/PhysRevA.90.043852
10.1103/PhysRevA.87.062101
10.1073/pnas.1306993110
10.1103/PhysRevB.91.014415
10.1002/lpor.201600189
10.1364/JOSAB.10.000524
10.1103/PhysRevB.85.184302
10.1103/PhysRevLett.112.073601
10.1103/PhysRev.58.1098
10.1038/nphys1403
10.1103/PhysRevLett.121.040503
10.1103/PhysRevLett.96.066405
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/qute.201800043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_201800043
QUTE201800043
Genre article
GrantInformation_xml – fundername: Austrian Academy of Sciences
– fundername: Israel Science Foundation
  funderid: 1542/14
– fundername: EPSRC
  funderid: EP/M010910/1; ``Hybrid Polaritonics'' (EP/M025330/1)
GroupedDBID 0R~
1OC
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3553-7f3511749bb0363bd22449e83c9dbda7afb630f8d05b016d2739a3b04d87039a3
ISSN 2511-9044
IngestDate Tue Jul 01 02:03:48 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
Wed Jan 22 17:04:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3553-7f3511749bb0363bd22449e83c9dbda7afb630f8d05b016d2739a3b04d87039a3
ORCID 0000-0002-7219-3804
0000-0002-4283-552X
PageCount 18
ParticipantIDs crossref_primary_10_1002_qute_201800043
crossref_citationtrail_10_1002_qute_201800043
wiley_primary_10_1002_qute_201800043_QUTE201800043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2019
References 2012; 484
2009; 80
2010; 105
2010; 104
2010; 464
1964; 134
1970
2007; 75
2012; 14
2007; 76
1974; 9
2011; 369
1990; 42
2018; 9
2018; 8
2010; 1
2018; 5
2002; 89
2004; 37
2014; 16
2005; 71
2013; 110
2015; 91
1989; 37
2010; 6
2006; 443
2015; 361
1993; 47
1979; 19
2007; 19
2013; 88
2013; 87
2000; 116
2011; 84
2013; 85
1975; 35
2016; 10
1997
2014; 47
2016; 94
2007; 99
2018; 20
2012; 108
2012; 109
2017; 50
2015; 115
2013; 339
2015; 112
2005; 95
2009; 102
1973; 7
2018; 98
1973; 8
2018; 97
2017; 543
2017; 119
2018; 120
2017; 7
2018; 121
2017; 8
2006; 74
2017; 4
1982; 93
1993; 65
2008; 78
1940; 58
2008; 77
2017; 114
2016; 79
2017; 358
2017; 118
1954; 93
2014; 5
2014; 4
2003; 90
2003; 91
1973; 46
1991; 43
1993; 71
1975; 47
2016; 117
2006; 96
2015; 6
2015; 17
2015; 5
2006; 97
2014; 90
2015; 92
2011
2010
2007
2010; 81
2003; 75
2014; 89
2014; 112
2001; 64
2010; 82
2017; 95
2012; 92
2017; 96
2011; 107
2004; 92
2004; 93
2018; 392
1993; 10
2018
2017
2016
2017; 19
2018; 51
2009; 5
2008; 452
1994; 50
2012; 86
2012; 85
2012; 8
2003; 67
e_1_2_12_6_1
Keeling J. (e_1_2_12_35_1) 2007; 19
e_1_2_12_130_1
e_1_2_12_172_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_171_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_141_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_145_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
Carmichael H. J. (e_1_2_12_127_1) 2015; 5
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_151_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_132_1
e_1_2_12_113_1
e_1_2_12_155_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_5_1
Tsvelik A. M. (e_1_2_12_94_1) 2007
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
Vaidya V. D. (e_1_2_12_15_1) 2018; 8
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
Haken H. (e_1_2_12_71_1) 1970
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_162_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_124_1
e_1_2_12_166_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – year: 2011
– volume: 94
  start-page: 224510
  year: 2016
  publication-title: Phys. Rev. B
– volume: 91
  start-page: 014415
  year: 2015
  publication-title: Phys. Rev. B
– volume: 81
  start-page: 125430
  year: 2010
  publication-title: Phys. Rev. B
– volume: 93
  start-page: 050403
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 299
  year: 2013
  publication-title: Rev. Mod. Phys.
– volume: 115
  start-page: 163601
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 89
  start-page: 134310
  year: 2014
  publication-title: Phys. Rev. B
– volume: 118
  start-page: 123602
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 243602
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 043001
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 84
  start-page: 053804
  year: 2011
  publication-title: Phys. Rev. A
– volume: 93
  start-page: 99
  year: 1954
  publication-title: Phys. Rev.
– volume: 47
  start-page: 1431
  year: 1993
  publication-title: Phys. Rev. A
– volume: 80
  start-page: 023810
  year: 2009
  publication-title: Phys. Rev. A
– volume: 91
  start-page: 203001
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 15472
  year: 2015
  publication-title: Sci. Rep.
– volume: 108
  start-page: 073601
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 97
  start-page: 013825
  year: 2018
  publication-title: Phys. Rev. A
– volume: 96
  start-page: 066405
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 013817
  year: 2012
  publication-title: Phys. Rev. A
– volume: 87
  start-page: 023831
  year: 2013
  publication-title: Phys. Rev. A
– volume: 86
  start-page: 053807
  year: 2012
  publication-title: Phys. Rev. A
– volume: 94
  start-page: 033815
  year: 2016
  publication-title: Phys. Rev. A
– volume: 50
  start-page: 174002
  year: 2017
  publication-title: J. Phys. A
– volume: 58
  start-page: 1098
  year: 1940
  publication-title: Phys. Rev.
– volume: 46
  start-page: 47
  year: 1973
  publication-title: Phys. Lett. A
– volume: 10
  start-page: 524
  year: 1993
  publication-title: J. Opt. Soc. Am. B
– volume: 78
  start-page: 051801
  year: 2008
  publication-title: Phys. Rev. A
– volume: 117
  start-page: 173601
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 031137
  year: 2012
  publication-title: Phys. Rev. E
– volume: 20
  start-page: 015009
  year: 2018
  publication-title: New J. Phys.
– volume: 47
  start-page: 405204
  year: 2014
  publication-title: J. Phys. A
– volume: 71
  start-page: 995
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 369
  start-page: 1137
  year: 2011
  publication-title: Philos. Trans. R. Soc. A
– volume: 67
  start-page: 066203
  year: 2003
  publication-title: Phys. Rev. E
– volume: 109
  start-page: 253602
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 361
  start-page: 401
  year: 2015
  publication-title: Ann. Phys.
– volume: 8
  start-page: 14386
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 292
  year: 2012
  publication-title: Nat. Phys.
– volume: 92
  start-page: 207901
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 4023
  year: 2014
  publication-title: Nat. Commun.
– volume: 79
  start-page: 096001
  year: 2016
  publication-title: Rep. Prog. Phys.
– volume: 20
  start-page: 013006
  year: 2018
  publication-title: New J. Phys.
– year: 2007
– volume: 452
  start-page: 854
  year: 2008
  publication-title: Nature
– volume: 115
  start-page: 180404
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 043003
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 165308
  year: 2009
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 031028
  year: 2015
  publication-title: Phys. Rev. X
– year: 2016
– volume: 112
  start-page: 173601
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 112
  start-page: 140402
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 831
  year: 1973
  publication-title: Phys. Rev. A
– year: 2010
– volume: 5
  start-page: 845
  year: 2009
  publication-title: Nat. Phys.
– volume: 89
  start-page: 023812
  year: 2014
  publication-title: Phys. Rev. A
– volume: 94
  start-page: 033838
  year: 2016
  publication-title: Phys. Rev. A
– volume: 84
  start-page: 063810
  year: 2011
  publication-title: Phys. Rev. A
– volume: 98
  start-page: 023804
  year: 2018
  publication-title: Phys. Rev. A
– volume: 87
  start-page: 063622
  year: 2013
  publication-title: Phys. Rev. A
– volume: 464
  start-page: 1301
  year: 2010
  publication-title: Nature
– volume: 94
  start-page: 033850
  year: 2016
  publication-title: Phys. Rev. A
– volume: 89
  start-page: 253003
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 94
  start-page: 061802
  year: 2016
  publication-title: Phys. Rev. A
– volume: 78
  start-page: 052101
  year: 2008
  publication-title: Phys. Rev. A
– volume: 107
  start-page: 277202
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 75
  start-page: 013804
  year: 2007
  publication-title: Phys. Rev. A
– volume: 96
  start-page: 023863
  year: 2017
  publication-title: Phys. Rev. A
– volume: 107
  start-page: 113602
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 207204
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 301
  year: 1979
  publication-title: Phys. Rev. A
– volume: 443
  start-page: 409
  year: 2006
  publication-title: Nature
– volume: 51
  start-page: 034005
  year: 2018
  publication-title: J. Phys. B
– volume: 5
  start-page: 249
  year: 2018
  publication-title: ACS Photonics
– volume: 92
  start-page: 353
  year: 2012
  publication-title: Philos. Mag.
– volume: 543
  start-page: 87
  year: 2017
  publication-title: Nature
– volume: 74
  start-page: 817
  year: 2006
  publication-title: Europhys. Lett.
– volume: 121
  start-page: 133601
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 90
  start-page: 043852
  year: 2014
  publication-title: Phys. Rev. A
– volume: 134
  start-page: A1429
  year: 1964
  publication-title: Phys. Rev.
– volume: 112
  start-page: 073601
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 851
  year: 1993
  publication-title: Rev. Mod. Phys.
– volume: 4
  start-page: 7482
  year: 2014
  publication-title: Sci. Rep.
– volume: 19
  start-page: 2392
  year: 1979
  publication-title: Phys. Rev. A
– volume: 71
  start-page: 053804
  year: 2005
  publication-title: Phys. Rev. A
– volume: 37
  start-page: L281
  year: 2004
  publication-title: J. Phys. A
– volume: 107
  start-page: 277201
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 053857
  year: 2017
  publication-title: Phys. Rev. A
– volume: 97
  start-page: 043858
  year: 2018
  publication-title: Phys. Rev. A
– volume: 392
  start-page: 323
  year: 2018
  publication-title: Ann. Phys. (N.Y.)
– volume: 4
  start-page: 424
  year: 2017
  publication-title: Optica
– volume: 96
  start-page: 063828
  year: 2017
  publication-title: Phys. Rev. A
– volume: 35
  start-page: 432
  year: 1975
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 1489
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 8
  start-page: 2517
  year: 1973
  publication-title: Phys. Rev. A
– year: 2018
– volume: 80
  start-page: 023803
  year: 2009
  publication-title: Phys. Rev. A
– volume: 94
  start-page: 033628
  year: 2016
  publication-title: Phys. Rev. A
– volume: 17
  start-page: 043012
  year: 2015
  publication-title: New J. Phys.
– volume: 43
  start-page: 2046
  year: 1991
  publication-title: Phys. Rev. A
– volume: 484
  start-page: 78
  year: 2012
  publication-title: Nature
– volume: 6
  start-page: 7046
  year: 2015
  publication-title: Nat. Commun.
– volume: 19
  start-page: 123027
  year: 2017
  publication-title: New J. Phys.
– volume: 42
  start-page: 1737
  year: 1990
  publication-title: Phys. Rev. A
– volume: 64
  start-page: 235101
  year: 2001
  publication-title: Phys. Rev. B
– volume: 76
  start-page: 115326
  year: 2007
  publication-title: Phys. Rev. B
– volume: 110
  start-page: 195301
  year: 2013
  publication-title: Phys. Rev. Lett.
– year: 1997
– volume: 92
  start-page: 073602
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 110
  start-page: 11763
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 75
  start-page: 281
  year: 2003
  publication-title: Rev. Mod. Phys.
– volume: 358
  start-page: 1415
  year: 2017
  publication-title: Science
– volume: 97
  start-page: 042317
  year: 2018
  publication-title: Phys. Rev. A
– volume: 85
  start-page: 553
  year: 2013
  publication-title: Rev. Mod. Phys.
– volume: 92
  start-page: 043835
  year: 2015
  publication-title: Phys. Rev. A
– volume: 112
  start-page: 3290
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 88
  start-page: 043835
  year: 2013
  publication-title: Phys. Rev. A
– volume: 1
  start-page: 72
  year: 2010
  publication-title: Nat. Commun.
– volume: 339
  start-page: 135
  year: 2013
  publication-title: Ann. Phys.
– volume: 16
  start-page: 063039
  year: 2014
  publication-title: New J. Phys.
– volume: 8
  start-page: 011002
  year: 2018
  publication-title: Phys. Rev. X
– volume: 114
  start-page: 3026
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 95
  start-page: 032310
  year: 2017
  publication-title: Phys. Rev. A
– volume: 112
  start-page: 023603
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 220404
  year: 2008
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 163601
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 87
  start-page: 062101
  year: 2013
  publication-title: Phys. Rev. A
– volume: 9
  start-page: 2006
  year: 2018
  publication-title: Nat. Commun.
– volume: 119
  start-page: 220601
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 184302
  year: 2012
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 1023
  year: 2016
  publication-title: Laser Photonics Rev.
– volume: 6
  start-page: 806
  year: 2010
  publication-title: Nat. Phys.
– volume: 5
  start-page: 023
  year: 2018
  publication-title: SciPost Phys.
– volume: 19
  start-page: 295213
  year: 2007
  publication-title: J. Phys.
– volume: 50
  start-page: 888
  year: 1994
  publication-title: Phys. Rev. E
– volume: 90
  start-page: 044101
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 118
  start-page: 016602
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 073011
  year: 2012
  publication-title: New J. Phys.
– volume: 97
  start-page: 043820
  year: 2018
  publication-title: Phys. Rev. A
– volume: 104
  start-page: 130401
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 87
  start-page: 013422
  year: 2013
  publication-title: Phys. Rev. A
– start-page: 201
  year: 1970
– volume: 91
  start-page: 035306
  year: 2015
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 1440
  year: 1973
  publication-title: Phys. Rev. A
– volume: 14
  start-page: 085011
  year: 2012
  publication-title: New J. Phys.
– volume: 121
  start-page: 040503
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 179301
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 063824
  year: 2017
  publication-title: Phys. Rev. A
– volume: 47
  start-page: 67
  year: 1975
  publication-title: Rev. Mod. Phys.
– volume: 116
  start-page: 357
  year: 2000
  publication-title: Solid State Commun.
– volume: 97
  start-page: 236808
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 43768
  year: 2017
  publication-title: Sci. Rep.
– volume: 9
  start-page: 418
  year: 1974
  publication-title: Phys. Rev. A
– volume: 84
  start-page: 043637
  year: 2011
  publication-title: Phys. Rev. A
– volume: 120
  start-page: 183603
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 301
  year: 1982
  publication-title: Phys. Rep.
– year: 2017
– volume: 81
  start-page: 063827
  year: 2010
  publication-title: Phys. Rev. A
– volume: 37
  start-page: 109
  year: 1989
  publication-title: Physica D
– volume: 7
  start-page: 16304
  year: 2017
  publication-title: Sci. Rep.
– volume: 82
  start-page: 043612
  year: 2010
  publication-title: Phys. Rev. A
– volume: 99
  start-page: 173601
  year: 2007
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_12_120_1
  doi: 10.1103/PhysRevA.47.1431
– ident: e_1_2_12_49_1
  doi: 10.1038/nature05131
– ident: e_1_2_12_137_1
  doi: 10.1088/0305-4470/37/25/L03
– ident: e_1_2_12_162_1
– ident: e_1_2_12_79_1
  doi: 10.1103/PhysRevLett.119.220601
– ident: e_1_2_12_27_1
  doi: 10.1016/j.aop.2013.08.015
– ident: e_1_2_12_97_1
  doi: 10.1103/PhysRev.134.A1429
– ident: e_1_2_12_62_1
  doi: 10.1103/RevModPhys.75.281
– ident: e_1_2_12_121_1
  doi: 10.1103/PhysRevLett.71.995
– ident: e_1_2_12_5_1
  doi: 10.1103/PhysRevA.8.1440
– ident: e_1_2_12_101_1
  doi: 10.1103/PhysRevA.78.052101
– volume-title: Quantum Field Theory in Condensed Matter Physics
  year: 2007
  ident: e_1_2_12_94_1
– ident: e_1_2_12_173_1
  doi: 10.1103/PhysRevLett.99.173601
– ident: e_1_2_12_20_1
  doi: 10.1038/srep43768
– ident: e_1_2_12_172_1
  doi: 10.1038/s41467-018-04407-1
– ident: e_1_2_12_8_1
  doi: 10.1103/PhysRevA.75.013804
– ident: e_1_2_12_136_1
  doi: 10.1103/PhysRevLett.93.050403
– ident: e_1_2_12_117_1
  doi: 10.1201/9780429492563
– ident: e_1_2_12_142_1
  doi: 10.1103/PhysRevLett.115.180404
– volume: 8
  start-page: 011002
  year: 2018
  ident: e_1_2_12_15_1
  publication-title: Phys. Rev. X
– ident: e_1_2_12_166_1
  doi: 10.1103/PhysRevLett.108.073601
– ident: e_1_2_12_89_1
  doi: 10.1103/PhysRevA.43.2046
– ident: e_1_2_12_17_1
  doi: 10.1088/1367-2630/14/8/085011
– ident: e_1_2_12_68_1
  doi: 10.1017/CBO9780511789984
– ident: e_1_2_12_83_1
  doi: 10.1103/PhysRevB.77.220404
– ident: e_1_2_12_156_1
  doi: 10.1103/PhysRevLett.107.277201
– ident: e_1_2_12_30_1
  doi: 10.1103/PhysRevA.94.061802
– ident: e_1_2_12_87_1
  doi: 10.1103/PhysRevLett.110.195301
– ident: e_1_2_12_132_1
  doi: 10.1103/PhysRevA.80.023803
– ident: e_1_2_12_144_1
  doi: 10.1038/ncomms8046
– ident: e_1_2_12_151_1
  doi: 10.1088/1367-2630/aa9b4a
– ident: e_1_2_12_147_1
  doi: 10.1103/PhysRevLett.112.173601
– ident: e_1_2_12_80_1
  doi: 10.1016/0167-2789(89)90121-8
– ident: e_1_2_12_7_1
  doi: 10.1103/PhysRevA.9.418
– ident: e_1_2_12_113_1
– ident: e_1_2_12_31_1
  doi: 10.1103/PhysRevLett.118.123602
– ident: e_1_2_12_155_1
  doi: 10.1103/PhysRevA.82.043612
– ident: e_1_2_12_112_1
  doi: 10.1038/s41598-017-16178-8
– ident: e_1_2_12_18_1
  doi: 10.1103/PhysRevA.87.023831
– ident: e_1_2_12_143_1
  doi: 10.1103/PhysRevA.97.013825
– ident: e_1_2_12_43_1
  doi: 10.1073/pnas.1615509114
– ident: e_1_2_12_63_1
  doi: 10.1103/PhysRevLett.92.207901
– ident: e_1_2_12_75_1
  doi: 10.1103/PhysRevLett.112.140402
– ident: e_1_2_12_157_1
  doi: 10.1103/PhysRevLett.107.277202
– ident: e_1_2_12_72_1
  doi: 10.1103/PhysRevLett.92.073602
– ident: e_1_2_12_11_1
  doi: 10.1103/PhysRevLett.91.203001
– ident: e_1_2_12_152_1
  doi: 10.1088/1367-2630/17/4/043012
– ident: e_1_2_12_116_1
  doi: 10.1103/PhysRevA.98.023804
– ident: e_1_2_12_58_1
  doi: 10.1103/PhysRevA.96.053857
– ident: e_1_2_12_99_1
  doi: 10.1103/PhysRevA.84.053804
– ident: e_1_2_12_135_1
  doi: 10.1103/PhysRevLett.121.133601
– ident: e_1_2_12_22_1
  doi: 10.1103/PhysRevLett.105.043001
– ident: e_1_2_12_115_1
  doi: 10.1103/PhysRevLett.120.183603
– ident: e_1_2_12_2_1
  doi: 10.1103/PhysRev.93.99
– ident: e_1_2_12_81_1
  doi: 10.1103/RevModPhys.65.851
– ident: e_1_2_12_131_1
  doi: 10.1103/PhysRevA.84.063810
– ident: e_1_2_12_76_1
– ident: e_1_2_12_141_1
– ident: e_1_2_12_67_1
  doi: 10.1103/PhysRevA.95.063824
– ident: e_1_2_12_108_1
  doi: 10.1103/PhysRevA.96.023863
– ident: e_1_2_12_55_1
  doi: 10.1103/PhysRevB.94.224510
– ident: e_1_2_12_21_1
  doi: 10.1103/PhysRevA.97.042317
– ident: e_1_2_12_52_1
  doi: 10.1038/ncomms1069
– volume: 5
  start-page: 031028
  year: 2015
  ident: e_1_2_12_127_1
  publication-title: Phys. Rev. X
– ident: e_1_2_12_169_1
  doi: 10.21468/SciPostPhys.5.3.023
– ident: e_1_2_12_28_1
  doi: 10.1103/PhysRevA.85.013817
– ident: e_1_2_12_47_1
  doi: 10.1103/RevModPhys.82.1489
– ident: e_1_2_12_41_1
– ident: e_1_2_12_90_1
  doi: 10.1103/PhysRevE.50.888
– ident: e_1_2_12_10_1
  doi: 10.1103/PhysRevLett.89.253003
– ident: e_1_2_12_78_1
  doi: 10.1103/PhysRevA.80.023810
– ident: e_1_2_12_130_1
  doi: 10.1103/PhysRevB.76.115326
– ident: e_1_2_12_146_1
  doi: 10.1103/PhysRevA.89.023812
– ident: e_1_2_12_19_1
  doi: 10.1038/srep07482
– start-page: 201
  volume-title: Quantum Optics
  year: 1970
  ident: e_1_2_12_71_1
– ident: e_1_2_12_100_1
  doi: 10.1103/RevModPhys.47.67
– ident: e_1_2_12_16_1
  doi: 10.1103/PhysRevA.84.043637
– ident: e_1_2_12_51_1
  doi: 10.1038/nphys2251
– ident: e_1_2_12_84_1
  doi: 10.1103/PhysRevB.81.125430
– ident: e_1_2_12_118_1
  doi: 10.1103/PhysRevLett.115.163601
– ident: e_1_2_12_126_1
  doi: 10.1103/PhysRevA.19.2392
– ident: e_1_2_12_104_1
  doi: 10.1103/PhysRevA.94.033838
– ident: e_1_2_12_138_1
  doi: 10.1088/1751-8113/47/40/405204
– volume: 19
  start-page: 295213
  year: 2007
  ident: e_1_2_12_35_1
  publication-title: J. Phys.
– ident: e_1_2_12_150_1
  doi: 10.1103/PhysRevA.96.063828
– ident: e_1_2_12_95_1
  doi: 10.1103/PhysRevLett.91.207204
– ident: e_1_2_12_6_1
  doi: 10.1016/0375-9601(73)90679-8
– ident: e_1_2_12_13_1
  doi: 10.1038/nature09009
– ident: e_1_2_12_82_1
  doi: 10.1103/PhysRevLett.97.236808
– ident: e_1_2_12_114_1
  doi: 10.1088/1751-8121/aa65dc
– ident: e_1_2_12_59_1
  doi: 10.1103/PhysRevLett.112.023603
– ident: e_1_2_12_168_1
  doi: 10.1103/PhysRevA.88.043835
– ident: e_1_2_12_105_1
– ident: e_1_2_12_32_1
  doi: 10.1103/PhysRevA.97.043858
– ident: e_1_2_12_165_1
  doi: 10.1103/PhysRevB.80.165308
– ident: e_1_2_12_123_1
  doi: 10.1103/PhysRevA.81.063827
– ident: e_1_2_12_158_1
  doi: 10.1103/PhysRevA.87.063622
– ident: e_1_2_12_42_1
– ident: e_1_2_12_160_1
  doi: 10.1080/14786435.2011.637980
– ident: e_1_2_12_73_1
  doi: 10.1103/PhysRevA.71.053804
– ident: e_1_2_12_119_1
– ident: e_1_2_12_4_1
  doi: 10.1103/PhysRevA.7.831
– ident: e_1_2_12_14_1
  doi: 10.1073/pnas.1417132112
– ident: e_1_2_12_60_1
  doi: 10.1038/srep15472
– ident: e_1_2_12_48_1
  doi: 10.1103/RevModPhys.85.299
– ident: e_1_2_12_65_1
  doi: 10.1038/ncomms5023
– ident: e_1_2_12_107_1
  doi: 10.1088/1367-2630/aa9cdd
– ident: e_1_2_12_109_1
  doi: 10.1088/1367-2630/aaa11d
– ident: e_1_2_12_54_1
  doi: 10.1103/PhysRevLett.109.179301
– ident: e_1_2_12_91_1
  doi: 10.1038/nature06838
– ident: e_1_2_12_170_1
  doi: 10.1103/PhysRevE.86.031137
– ident: e_1_2_12_103_1
  doi: 10.1103/PhysRevB.91.035306
– ident: e_1_2_12_139_1
  doi: 10.1016/j.aop.2018.01.017
– ident: e_1_2_12_140_1
  doi: 10.1103/PhysRevLett.108.043003
– ident: e_1_2_12_38_1
  doi: 10.1103/PhysRevA.92.043835
– ident: e_1_2_12_26_1
  doi: 10.1103/PhysRevA.78.051801
– ident: e_1_2_12_110_1
– ident: e_1_2_12_57_1
  doi: 10.1103/PhysRevA.94.033850
– ident: e_1_2_12_106_1
  doi: 10.1021/acsphotonics.7b00916
– ident: e_1_2_12_125_1
  doi: 10.1103/PhysRevLett.109.253602
– ident: e_1_2_12_88_1
  doi: 10.1103/PhysRevB.89.134310
– ident: e_1_2_12_36_1
  doi: 10.1103/PhysRevA.86.053807
– ident: e_1_2_12_122_1
  doi: 10.1103/PhysRevLett.102.163601
– ident: e_1_2_12_46_1
  doi: 10.1103/PhysRevB.64.235101
– ident: e_1_2_12_44_1
  doi: 10.1088/1361-6455/aa9c99
– ident: e_1_2_12_163_1
  doi: 10.1103/PhysRevLett.90.044101
– ident: e_1_2_12_50_1
  doi: 10.1103/PhysRevLett.118.016602
– ident: e_1_2_12_98_1
  doi: 10.1103/PhysRevA.42.1737
– ident: e_1_2_12_29_1
  doi: 10.1017/CBO9780511813993
– ident: e_1_2_12_12_1
  doi: 10.1103/PhysRevLett.104.130401
– ident: e_1_2_12_148_1
  doi: 10.1038/nature21067
– ident: e_1_2_12_25_1
  doi: 10.1103/RevModPhys.85.553
– ident: e_1_2_12_9_1
  doi: 10.1364/OPTICA.4.000424
– ident: e_1_2_12_128_1
  doi: 10.1103/PhysRevLett.95.243602
– ident: e_1_2_12_34_1
  doi: 10.1103/PhysRevA.19.301
– ident: e_1_2_12_23_1
  doi: 10.1016/0370-1573(82)90102-8
– ident: e_1_2_12_3_1
  doi: 10.1103/PhysRevA.8.2517
– ident: e_1_2_12_45_1
  doi: 10.1016/S0038-1098(00)00350-1
– ident: e_1_2_12_124_1
  doi: 10.1038/nature10920
– ident: e_1_2_12_149_1
  doi: 10.1126/science.aan2608
– ident: e_1_2_12_39_1
  doi: 10.1103/PhysRevA.94.033815
– ident: e_1_2_12_74_1
  doi: 10.1088/1367-2630/16/6/063039
– ident: e_1_2_12_64_1
  doi: 10.1103/PhysRevA.87.013422
– ident: e_1_2_12_153_1
  doi: 10.1038/ncomms14386
– ident: e_1_2_12_161_1
  doi: 10.1103/PhysRevA.95.032310
– ident: e_1_2_12_24_1
  doi: 10.1098/rsta.2010.0333
– ident: e_1_2_12_56_1
  doi: 10.1103/PhysRevLett.117.173601
– ident: e_1_2_12_70_1
  doi: 10.1088/0034-4885/79/9/096001
– ident: e_1_2_12_33_1
  doi: 10.1103/PhysRevLett.35.432
– ident: e_1_2_12_96_1
  doi: 10.1016/j.aop.2015.07.006
– ident: e_1_2_12_164_1
  doi: 10.1103/PhysRevE.67.066203
– ident: e_1_2_12_85_1
  doi: 10.1038/nphys1754
– ident: e_1_2_12_53_1
  doi: 10.1103/PhysRevLett.107.113602
– ident: e_1_2_12_69_1
  doi: 10.1017/CBO9781139003667
– ident: e_1_2_12_40_1
  doi: 10.1103/PhysRevA.97.043820
– ident: e_1_2_12_77_1
  doi: 10.1209/epl/i2006-10041-9
– ident: e_1_2_12_167_1
  doi: 10.1088/1367-2630/14/7/073011
– ident: e_1_2_12_92_1
  doi: 10.1103/PhysRevA.94.033628
– ident: e_1_2_12_111_1
– ident: e_1_2_12_133_1
  doi: 10.1103/PhysRevA.90.043852
– ident: e_1_2_12_102_1
  doi: 10.1103/PhysRevA.87.062101
– ident: e_1_2_12_145_1
  doi: 10.1073/pnas.1306993110
– ident: e_1_2_12_159_1
  doi: 10.1103/PhysRevB.91.014415
– ident: e_1_2_12_134_1
  doi: 10.1002/lpor.201600189
– ident: e_1_2_12_93_1
  doi: 10.1364/JOSAB.10.000524
– ident: e_1_2_12_86_1
  doi: 10.1103/PhysRevB.85.184302
– ident: e_1_2_12_37_1
  doi: 10.1103/PhysRevLett.112.073601
– ident: e_1_2_12_66_1
  doi: 10.1103/PhysRev.58.1098
– ident: e_1_2_12_154_1
  doi: 10.1038/nphys1403
– ident: e_1_2_12_171_1
– ident: e_1_2_12_61_1
  doi: 10.1103/PhysRevLett.121.040503
– ident: e_1_2_12_129_1
  doi: 10.1103/PhysRevLett.96.066405
SSID ssj0002313473
Score 2.57675
Snippet The Dicke model describes the coupling between a quantized cavity field and a large ensemble of two‐level atoms. When the number of atoms tends to infinity,...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Dicke model
nonequilibrium
phase transitions
quantum optics
superradiance
Title Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.201800043
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc6ENJe0GBM42PID0h7KO4Sx22SvVWjDKaBhGgn3qLYTqRK0NLSvPAH8HdzZ-fD3TrB9hKllp1Gvl_Od-ffnQk58rIuj1JfMNkLciZ8zZnMY81EBIt5lEe4KCDb4rJ3NhI_bro3rdaTw1oqFrKjHlfmlfyPVKEN5IpZsv8g2fqh0AD3IF-4goTh-ioZnyPNXNv6r5UReTKG79IccXaL3v4ppo8MZsXYcPuLO-x2OZ1kTUvF3_wFKqON4bPUNVj7FUdgVoAMcHwVix_bgK1bq7TczZ-XlPwl7i8e4Wgj29N5-6LTKHqTEO8G8pvgOUC0PcTjQ4zGvksnBSyS7e8dN1SB2VE17cNoNHRnWOzZgo-dbEVbqZK5izybHvmHqrelY2eFKXbqR2ZPs1nUqo3839a6moFoqzXzBMcn9fg3ZJ2DuwEKfr1_cvHzuo7WgRUcCENXqN-3qgDq8S_LL7Fk4bgejzFZhu_IZulr0L4FzhZpZZNtsmE4v-rhPbl24UMXUwrwoQY-1MDnK0XwUAc82GkZPMcUoEMROtRAZ4eMTgfDb2esPGODKbA0AxbmuJMcilhK3NKXGkw6EWdRoGItdRqmOXzEXh5pryvBO9Bg7cZpID2hQdHj7QeyNoE__khoqHPVU3FXcV8LP1Qy1AqmR_JMYxnBaJewal4SVRagx3NQbpPVwtgln-v-97b0yl97cjPNL3RLrkbDQf1r79WP3ydvGzQfkLXFvMg-gSm6kIclTp4BS8aEMA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introduction+to+the+Dicke+Model%3A+From+Equilibrium+to+Nonequilibrium%2C+and+Vice+Versa&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Kirton%2C+Peter&rft.au=Roses%2C+Mor+M.&rft.au=Keeling%2C+Jonathan&rft.au=Dalla+Torre%2C+Emanuele+G.&rft.date=2019-02-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=2&rft.issue=1-2&rft_id=info:doi/10.1002%2Fqute.201800043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_201800043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon