An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High‐Temperature Polylactic Acid in Fused Deposition Modeling
Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final parts are constructed through layer‐by‐layer adhesion of thermoplastic polymers. Amorphous thermoplastic polymers have better printability com...
Saved in:
Published in | Polymer engineering and science Vol. 60; no. 5; pp. 979 - 987 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2020
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0032-3888 1548-2634 |
DOI | 10.1002/pen.25353 |
Cover
Loading…
Abstract | Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final parts are constructed through layer‐by‐layer adhesion of thermoplastic polymers. Amorphous thermoplastic polymers have better printability compared to semicrystalline ones; so, they are most popular with FDM users. Generally, the overall mechanical properties of FDM 3D printed parts are weaker in comparison to the traditional methods (such as injection molding) due to the weak bonds between the deposited rasters and layers. Therefore, the introduction of new materials with higher mechanical properties and easy printing process of the semicrystalline polymers has always been challenging to progress the mechanical properties of the products. In this study by the FDM process, the effect of nozzle temperature and heat treatment (annealing) on the mechanical properties of high‐temperature polylactic acids is investigated. The increase in the nozzle temperature develops the rasters and layers bonding, and the heat treatment of the parts after printing rises the crystallinity percentage, which is crucial for the improvement of mechanical properties. Experimental results show that an increase in the nozzle temperature raises the tensile strength and modulus to 65.7 MPa and 4.97 GPa, respectively. Furthermore, the heat treatment process increases the tensile strength and modulus up to 67.4 MPa and 5.65 GPa. The final tensile modulus values are the highest ones reported for pure materials printed by the FDM process. POLYM. ENG. SCI., 60:979–987, 2020. © 2020 Society of Plastics Engineers |
---|---|
AbstractList | Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final parts are constructed through layer‐by‐layer adhesion of thermoplastic polymers. Amorphous thermoplastic polymers have better printability compared to semicrystalline ones; so, they are most popular with FDM users. Generally, the overall mechanical properties of FDM 3D printed parts are weaker in comparison to the traditional methods (such as injection molding) due to the weak bonds between the deposited rasters and layers. Therefore, the introduction of new materials with higher mechanical properties and easy printing process of the semicrystalline polymers has always been challenging to progress the mechanical properties of the products. In this study by the FDM process, the effect of nozzle temperature and heat treatment (annealing) on the mechanical properties of high‐temperature polylactic acids is investigated. The increase in the nozzle temperature develops the rasters and layers bonding, and the heat treatment of the parts after printing rises the crystallinity percentage, which is crucial for the improvement of mechanical properties. Experimental results show that an increase in the nozzle temperature raises the tensile strength and modulus to 65.7 MPa and 4.97 GPa, respectively. Furthermore, the heat treatment process increases the tensile strength and modulus up to 67.4 MPa and 5.65 GPa. The final tensile modulus values are the highest ones reported for pure materials printed by the FDM process. POLYM. ENG. SCI., 60:979–987, 2020. © 2020 Society of Plastics Engineers |
Author | Akhoundi, Behnam Shakoori, Diana Nabipour, Mojtaba Hajami, Faramarz |
Author_xml | – sequence: 1 givenname: Behnam orcidid: 0000-0002-4283-1684 surname: Akhoundi fullname: Akhoundi, Behnam email: behnam.akhoundi@modares.ac.ir organization: Tarbiat Modares University – sequence: 2 givenname: Mojtaba surname: Nabipour fullname: Nabipour, Mojtaba organization: Tarbiat Modares University – sequence: 3 givenname: Faramarz surname: Hajami fullname: Hajami, Faramarz organization: Karaj Branch, Islamic Azad University – sequence: 4 givenname: Diana surname: Shakoori fullname: Shakoori, Diana organization: Qazvin Branch, Islamic Azad University |
BookMark | eNp1kU1O3DAYhq2KSgy0i97AEhtYBPybSZYjOnSQKB2p03XkOJ_BKNip7agdVj0CJ-FQnKROhwWq2o298PM-n-33AO057wChD5ScUkLY2QDulEku-Rs0o1JUBSu52EMzQjgreFVV--ggxjuSWS7rGXpaOLz8OUCw9-CS6vHXNHZb7A2-9g8PPeAN3OdTlcYAWLkOr0AlvAl5nQL4eOEcqN66mxO8NAZ0itg7_Bn0rXJWZ-E6-CxIFuJkXdmb2-dfj6-ta99ve6WT1XihbYetwxdjhA5_hMFHm-zk8x1MQ96ht0b1Ed6_7Ifo28Vyc74qrr58ujxfXBWaS8mLORNzVSnFDSjadsAEJW3FaiPK_G4ilK5KWRtZl0KSdg6GSkMEp7ptaUlbxQ_R0c47BP99hJiaOz8Gl0c2TBAhpGCkztTZjtLBxxjANNomNV04BWX7hpJmKqXJpTR_SsmJk78SQ_55Fbb_ZF_sP2wP2_-DzXp5vUv8BlBboPY |
CitedBy_id | crossref_primary_10_1007_s00170_022_10094_6 crossref_primary_10_1002_pen_25737 crossref_primary_10_1108_RPJ_07_2024_0283 crossref_primary_10_1002_pen_25891 crossref_primary_10_1088_2631_8695_ad14af crossref_primary_10_1177_08927057221089832 crossref_primary_10_1007_s44174_024_00183_3 crossref_primary_10_3390_app11094057 crossref_primary_10_1007_s11665_021_06535_0 crossref_primary_10_1007_s40964_024_00796_6 crossref_primary_10_3390_polym15163471 crossref_primary_10_1002_pen_26227 crossref_primary_10_59761_RCR5127 crossref_primary_10_1016_j_polymdegradstab_2022_109850 crossref_primary_10_1002_pat_6624 crossref_primary_10_1007_s11665_022_07049_z crossref_primary_10_1177_15280837211064937 crossref_primary_10_1002_pen_26274 crossref_primary_10_4028_p_tajbmc crossref_primary_10_3390_polym14245521 crossref_primary_10_1016_j_addma_2022_102773 crossref_primary_10_3390_polym12071529 crossref_primary_10_3390_polym13244305 crossref_primary_10_1016_j_addma_2022_103188 crossref_primary_10_3390_ma13204480 crossref_primary_10_1051_e3sconf_202457606007 crossref_primary_10_1142_S0218625X24501075 crossref_primary_10_1177_0095244320916838 crossref_primary_10_1021_acsabm_4c00465 crossref_primary_10_1177_00952443221147028 crossref_primary_10_1177_08927057241239001 crossref_primary_10_3390_polym15010069 crossref_primary_10_1007_s40684_022_00420_4 crossref_primary_10_3390_polym14061222 crossref_primary_10_1002_pen_25960 crossref_primary_10_3390_polym16131867 crossref_primary_10_1007_s12008_022_01082_x crossref_primary_10_1002_adfm_202003062 crossref_primary_10_1016_j_conbuildmat_2024_135838 crossref_primary_10_1016_j_jer_2023_100102 crossref_primary_10_1016_j_ijbiomac_2024_137763 crossref_primary_10_1038_s41598_024_64136_y crossref_primary_10_1007_s11665_023_08619_5 crossref_primary_10_1016_j_matpr_2022_02_142 crossref_primary_10_1088_1757_899X_1096_1_012045 crossref_primary_10_1007_s40684_022_00418_y crossref_primary_10_1177_08927057231185710 crossref_primary_10_3390_ma15176162 crossref_primary_10_1007_s10704_022_00672_w crossref_primary_10_1016_j_compositesa_2023_107434 crossref_primary_10_1002_pen_26526 crossref_primary_10_1016_j_compositesa_2021_106460 crossref_primary_10_1016_j_engfracmech_2021_108185 crossref_primary_10_1016_j_heliyon_2024_e32282 crossref_primary_10_3390_ma16134654 crossref_primary_10_3390_polym14235098 crossref_primary_10_1007_s00170_024_13140_7 crossref_primary_10_1515_ipp_2022_4267 crossref_primary_10_1111_ffe_14329 crossref_primary_10_1080_10426914_2022_2157428 crossref_primary_10_1108_RPJ_06_2024_0255 crossref_primary_10_1002_pen_26174 crossref_primary_10_1007_s12008_022_01026_5 crossref_primary_10_1007_s40964_023_00492_x crossref_primary_10_1016_j_tafmec_2023_104032 crossref_primary_10_1177_0954405420981333 crossref_primary_10_37648_ijrst_v14i04_006 crossref_primary_10_1021_acsami_1c20491 crossref_primary_10_1177_1045389X211028286 crossref_primary_10_1016_j_addma_2021_102112 crossref_primary_10_1007_s40964_025_01023_6 crossref_primary_10_3390_polym16111576 crossref_primary_10_1002_marc_202400249 crossref_primary_10_1007_s12008_021_00827_4 crossref_primary_10_1016_j_matdes_2023_111687 crossref_primary_10_1002_pen_25507 crossref_primary_10_3390_polym13172910 crossref_primary_10_1007_s00170_021_08127_7 crossref_primary_10_1007_s11665_023_08620_y crossref_primary_10_46519_ij3dptdi_1451666 crossref_primary_10_1177_0892705721997534 crossref_primary_10_3390_polym15143110 crossref_primary_10_1088_2631_8695_adb010 crossref_primary_10_1002_pen_26435 crossref_primary_10_1177_08927057241306101 crossref_primary_10_1016_j_jer_2023_07_006 crossref_primary_10_17350_HJSE19030000287 crossref_primary_10_1002_pen_25590 crossref_primary_10_1002_pc_28034 crossref_primary_10_1080_2374068X_2021_1946753 crossref_primary_10_3390_polym13162677 crossref_primary_10_52547_mme_22_9_567 crossref_primary_10_1002_app_51818 crossref_primary_10_1016_j_polymertesting_2025_108735 crossref_primary_10_1002_app_53039 crossref_primary_10_1177_23977914231205639 |
Cites_doi | 10.1016/j.matdes.2017.03.065 10.1016/S1526-6125(04)70071-7 10.3390/ma12152495 10.1002/pen.24515 10.1002/mame.201800507 10.1002/pen.24875 10.1016/j.polymertesting.2020.106347 10.1177/0954405419843780 10.1002/pc.24494 10.1177/0731684418807300 10.1016/j.compscitech.2019.107688 10.1016/j.compositesb.2018.03.029 10.3390/ma12101664 10.1007/s00170-019-03332-x 10.3390/ma8095271 10.1016/j.matdes.2014.02.038 10.1088/1361-665X/ab3246 10.1002/pen.25043 10.1016/j.matdes.2015.06.053 10.3390/polym9100528 10.1007/s11340-018-00467-y 10.1016/j.matdes.2018.03.015 10.1108/13552541011034825 10.3144/expresspolymlett.2010.80 10.1002/pen.24955 10.1108/13552540210441166 10.1016/j.addma.2017.03.005 10.1016/j.jaerosci.2019.05.001 10.1051/matecconf/201926402001 10.1016/j.matdes.2017.11.032 10.1002/app.48717 10.1016/j.bushor.2011.11.003 10.1002/app.45332 10.1080/17452759.2015.1097053 10.1007/s00170-018-1789-0 |
ContentType | Journal Article |
Copyright | 2020 Society of Plastics Engineers |
Copyright_xml | – notice: 2020 Society of Plastics Engineers |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/pen.25353 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 987 |
ExternalDocumentID | 10_1002_pen_25353 PEN25353 |
Genre | article |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AIXEN AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO ICW IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWL RWM RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XI7 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3553-7247a8aa3fea1bde2410b829f4602304ac8659f596450b7ef15f0431cbb161ba3 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Fri Jul 25 19:34:32 EDT 2025 Tue Jul 01 02:33:50 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Wed Jan 22 16:34:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3553-7247a8aa3fea1bde2410b829f4602304ac8659f596450b7ef15f0431cbb161ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4283-1684 |
PQID | 2404454209 |
PQPubID | 41843 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2404454209 crossref_citationtrail_10_1002_pen_25353 crossref_primary_10_1002_pen_25353 wiley_primary_10_1002_pen_25353_PEN25353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd |
References | 2015; 1 2010; 16 2018; 140 2018; 303 2010 2020; 83 2018; 146 2019; 12 2018; 145 2019; 59 2002; 8 2015; 10 2019; 38 2019; 102 2004; 6 2017; 134 2015; 8 2012; 55 2017; 9 2019; 264 2018; 39 2019; 181 2017; 15 2017; 17 2018; 1 2015; 83 2017; 57 2019; 28 2019 2019; 135 2014; 58 2014 2020; 234 2013 2017; 124 2010; 4 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 Aly A.A. (e_1_2_5_36_1) 2015; 1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Nabipour M. (e_1_2_5_14_1) 2017; 17 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 134 start-page: 45332 year: 2017 publication-title: J. Appl. Polym. Sci. – volume: 1 start-page: 132 year: 2015 publication-title: Int. J. Mater. Chem. Phys. – volume: 12 start-page: 1664 year: 2019 publication-title: Materials – volume: 57 start-page: 1322 year: 2017 publication-title: Polym. Eng. Sci. – volume: 8 start-page: 5834 year: 2015 publication-title: Materials – volume: 59 start-page: E59 year: 2019 publication-title: Polym. Eng. Sci. – volume: 234 start-page: 243 year: 2020 publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf. – start-page: 48717 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 10 start-page: 123 year: 2015 publication-title: Virtual Phys. Prototyping – volume: 83 start-page: 106347 year: 2020 publication-title: Polym. Test. – volume: 181 year: 2019 publication-title: Compos. Sci. Technol. – volume: 8 start-page: 248 year: 2002 publication-title: Rapid Prototyp. J. – volume: 83 start-page: 768 year: 2015 publication-title: Mater. Des. – volume: 15 start-page: 40 year: 2017 publication-title: Addit. Manuf. – volume: 59 start-page: 120 year: 2019 publication-title: Polym. Eng. Sci. – volume: 58 start-page: 242 year: 2014 publication-title: Mater. Des. – volume: 4 start-page: 42010 issue: 10 year: 2010 publication-title: Express Polym. Lett. – volume: 146 start-page: 249 year: 2018 publication-title: Mater. Des. – volume: 264 start-page: 02001 year: 2019 publication-title: MATEC Web Conf. – year: 2014 – volume: 39 start-page: E1060 year: 2018 publication-title: Polym. Compos. – volume: 9 start-page: 528 year: 2017 publication-title: Polymers – volume: 12 start-page: 2495 year: 2019 publication-title: Materials – volume: 28 start-page: 095017 year: 2019 publication-title: Smart Mater. Struct. – year: 2010 – volume: 38 start-page: 99 year: 2019 publication-title: J. Reinf. Plast. Compos. – volume: 59 start-page: 883 year: 2019 publication-title: Exp. Mech. – volume: 124 start-page: 143 year: 2017 publication-title: Mater. Des. – volume: 17 start-page: 145 year: 2017 publication-title: Modares Mech. Eng. – volume: 59 start-page: E247 year: 2019 publication-title: Polym. Eng. Sci. – volume: 6 start-page: 170 year: 2004 publication-title: J. Manuf. Process. – volume: 55 start-page: 155 year: 2012 publication-title: Bus. Horiz. – volume: 16 start-page: 164 year: 2010 publication-title: Rapid Prototyp. J. – volume: 303 start-page: 1800507 year: 2018 publication-title: Macromol. Mater. Eng. – volume: 102 start-page: 2877 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 1 start-page: 2747 year: 2018 publication-title: Int. J. Adv. Manuf. Technol. – volume: 145 start-page: 162 year: 2018 publication-title: Compos. Part B – volume: 135 start-page: 72 year: 2019 publication-title: J. Aerosol Sci. – volume: 140 start-page: 209 year: 2018 publication-title: Mater. Des. – year: 2013 – ident: e_1_2_5_31_1 doi: 10.1016/j.matdes.2017.03.065 – ident: e_1_2_5_16_1 doi: 10.1016/S1526-6125(04)70071-7 – ident: e_1_2_5_4_1 doi: 10.3390/ma12152495 – ident: e_1_2_5_10_1 doi: 10.1002/pen.24515 – ident: e_1_2_5_40_1 – ident: e_1_2_5_12_1 doi: 10.1002/mame.201800507 – ident: e_1_2_5_5_1 doi: 10.1002/pen.24875 – ident: e_1_2_5_19_1 doi: 10.1016/j.polymertesting.2020.106347 – ident: e_1_2_5_9_1 doi: 10.1177/0954405419843780 – ident: e_1_2_5_41_1 doi: 10.1002/pc.24494 – ident: e_1_2_5_2_1 doi: 10.1177/0731684418807300 – ident: e_1_2_5_18_1 doi: 10.1016/j.compscitech.2019.107688 – ident: e_1_2_5_32_1 doi: 10.1016/j.compositesb.2018.03.029 – ident: e_1_2_5_22_1 – ident: e_1_2_5_3_1 doi: 10.3390/ma12101664 – ident: e_1_2_5_11_1 doi: 10.1007/s00170-019-03332-x – ident: e_1_2_5_26_1 doi: 10.3390/ma8095271 – ident: e_1_2_5_25_1 doi: 10.1016/j.matdes.2014.02.038 – ident: e_1_2_5_13_1 doi: 10.1088/1361-665X/ab3246 – ident: e_1_2_5_6_1 doi: 10.1002/pen.25043 – ident: e_1_2_5_27_1 doi: 10.1016/j.matdes.2015.06.053 – volume: 17 start-page: 145 year: 2017 ident: e_1_2_5_14_1 publication-title: Modares Mech. Eng. – ident: e_1_2_5_39_1 doi: 10.3390/polym9100528 – ident: e_1_2_5_15_1 doi: 10.1007/s11340-018-00467-y – ident: e_1_2_5_33_1 doi: 10.1016/j.matdes.2018.03.015 – ident: e_1_2_5_23_1 doi: 10.1108/13552541011034825 – ident: e_1_2_5_20_1 doi: 10.3144/expresspolymlett.2010.80 – ident: e_1_2_5_35_1 doi: 10.1002/pen.24955 – ident: e_1_2_5_21_1 doi: 10.1108/13552540210441166 – ident: e_1_2_5_30_1 doi: 10.1016/j.addma.2017.03.005 – volume: 1 start-page: 132 year: 2015 ident: e_1_2_5_36_1 publication-title: Int. J. Mater. Chem. Phys. – ident: e_1_2_5_7_1 doi: 10.1016/j.jaerosci.2019.05.001 – ident: e_1_2_5_38_1 doi: 10.1051/matecconf/201926402001 – ident: e_1_2_5_24_1 – ident: e_1_2_5_34_1 doi: 10.1016/j.matdes.2017.11.032 – ident: e_1_2_5_17_1 doi: 10.1002/app.48717 – ident: e_1_2_5_8_1 doi: 10.1016/j.bushor.2011.11.003 – ident: e_1_2_5_29_1 doi: 10.1002/app.45332 – ident: e_1_2_5_28_1 doi: 10.1080/17452759.2015.1097053 – ident: e_1_2_5_37_1 doi: 10.1007/s00170-018-1789-0 |
SSID | ssj0002359 |
Score | 2.5867157 |
Snippet | Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 979 |
SubjectTerms | Annealing Bonding strength Deposition Fused deposition modeling Heat Heat treatment Injection molding Mechanical properties Modulus of elasticity Nozzles Polylactic acid Polymers Rapid prototyping Tensile strength Three dimensional printing |
Title | An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High‐Temperature Polylactic Acid in Fused Deposition Modeling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.25353 https://www.proquest.com/docview/2404454209 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEF5MLm0PSZum5J8h9JAcZMurXf2Qk0lsTMDGFAd8CIjd1QpMjVRi-xCf8gh5kjxUniQzkmW7IYHSmw6r3RUzO_ONduYbxn56qY1CNwkcHRrloIeyjvZ94SgbccRy6EMM3ej2-n73VtyM5KjGLqtamJIfYvXDjU5GYa_pgCs9baxJQzHar3PpSWL6pFwtAkS_1tRR3JMl9PW442GYV7EKubyxevNvX7QGmJswtfAznR12V-2wTC_5XZ_PdN0s3pA3_ucnfGXbS_wJrVJhvrGazXbZp6uq7dsu-7LBUPidPbcyaG80AQDKO3yAPIV-vlhMLAwt4u6SlxlUlkAXbTsMq-x1OG-hHVdU8n4BJVHyFPIMepYKjkk_YEC3AfdE60qzUtrJy-PT5qyDfPIwKUq5oGXGCYwz6MynNoFrW2WcAXV0o0X22G2nPbzqOssWD45BoOM5AReBCpVClVFNnVjEE64OeZQKn4IjoUzoyyiVkS-kqwObNmVKdEBGa4SqWnk_2FaWZ3afAVdco_n1ZKATkWqpTeSmSluFMZmNfHvAzithx2bJf05tOCZxydzMYxRHXIjjgJ2thv4pST_eG3RcaUy8PPfTGHVbCCm4G-Fyheg_niAetPvFw-G_Dz1inzkF_EXG5THbmt3P7Qmiopk-LdT_FWBJC8A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcigcWihUtBQYIQ7l4NRd7_pH6iVqEwVoogilUi_I2l2vpYrIRk1yaE48Ak_CQ_VJOmPHSUAgIW4-rHdtzc9-szvzDcC7IHdJ7GeRZ2KrPdqhnGfCUHraJYKwHO0hlm90-4Owdyk_XqmrDThtamFqfojlgRtbRuWv2cD5QPp4xRpK4X5LqEAFD-Ahd_Tm_gXnn1fkUSJQNfgNhBdQoNfwCvniePnqr7vRCmKuA9Vqp-nuwJfmG-sEk6-t2dS07Pw3-sb__YknsL2AoNiudeYpbLhiF7bOms5vu_B4jaTwGfxsF9hZ6wOAnHp4i2WOg3I-HzscOYLeNTUz6iLDHrl3HDUJ7HjUJleuuer9PdZcyRMsC-w7rjlmFcEhXwjcMLMrz8qZJ3fff6zPOizHt-Oqmgvb9jrD6wK7s4nL8Nw1SWfITd14kedw2e2MznreosuDZwnrBF4kZKRjrUlr9InJHEEK38QiyWXI8ZHUNg5VkqsklMo3kctPVM6MQNYYQqtGB3uwWZSFewEotDDkgQMVmUzmRhmb-Lk2TlNY5pLQ7cNRI-3ULijQuRPHOK3Jm0VK4kgrcezD2-XQbzXvx58GHTYqky5Mf5KSekuppPATWq6S_d8nSIedQfVw8O9D38BWb9S_SC8-DD69hEeC4_8qAfMQNqc3M_eKQNLUvK5s4R79uw_a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIvE48ChFFAqMEIdycOruww9xitpE4dEoQqnUA5K1u15LFZFdNcmhOfET-CX8KH4JM3acBAQS4ubDetfWvL7dnfkG4LUsfJqEeRzYxJmAIpQPbBSpwPhUEJajGOL4Rvd0GA3O1Ptzfb4Fb9tamIYfYnXgxpZR-2s28Mu8OFyThtJuvyO01PIG3FQRGQsjok9r7ighdYN9pQgk7fNaWqFQHK5e_TUYrRHmJk6tA03_PnxuP7HJL_nSmc9sxy1-Y2_8z394APeWABS7jcY8hC1f7sDt47bv2w7c3aAofATfuyX2NroAICceXmNV4LBaLCYex56Ad0PMjKbMcUDOHcdt-joedMmRG655f4MNU_IUqxJPPVccs4LgiK8DrpjXlWflvJMfX79tzjqqJteTupYLu-4ix4sS-_Opz_HEtylnyC3deJFdOOv3xseDYNnjIXCEdGQQCxWbxBjSGXNkc0-AIrSJSAsSKZ9XG5dEOi10Gikd2tgXR7pgPiBnLWFVa-Rj2C6r0j8BFEZY8r9SxzZXhdXWpWFhrDe0KfNp5PfgoBV25pYE6NyHY5I11M0iI3FktTj24NVq6GXD-vGnQfutxmRLw59mpNxKaSXClJarRf_3CbJRb1g_PP33oS_h1uikn318N_zwDO4I3vzX2Zf7sD27mvvnhJBm9kVtCT8B6pYOkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Study+of+Nozzle+Temperature+and+Heat+Treatment+%28Annealing%29+Effects+on+Mechanical+Properties+of+High%E2%80%90Temperature+Polylactic+Acid+in+Fused+Deposition+Modeling&rft.jtitle=Polymer+engineering+and+science&rft.au=Akhoundi%2C+Behnam&rft.au=Nabipour%2C+Mojtaba&rft.au=Hajami%2C+Faramarz&rft.au=Shakoori%2C+Diana&rft.date=2020-05-01&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=60&rft.issue=5&rft.spage=979&rft.epage=987&rft_id=info:doi/10.1002%2Fpen.25353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pen_25353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |