An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High‐Temperature Polylactic Acid in Fused Deposition Modeling

Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final parts are constructed through layer‐by‐layer adhesion of thermoplastic polymers. Amorphous thermoplastic polymers have better printability com...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 60; no. 5; pp. 979 - 987
Main Authors Akhoundi, Behnam, Nabipour, Mojtaba, Hajami, Faramarz, Shakoori, Diana
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2020
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0032-3888
1548-2634
DOI10.1002/pen.25353

Cover

Loading…
Abstract Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final parts are constructed through layer‐by‐layer adhesion of thermoplastic polymers. Amorphous thermoplastic polymers have better printability compared to semicrystalline ones; so, they are most popular with FDM users. Generally, the overall mechanical properties of FDM 3D printed parts are weaker in comparison to the traditional methods (such as injection molding) due to the weak bonds between the deposited rasters and layers. Therefore, the introduction of new materials with higher mechanical properties and easy printing process of the semicrystalline polymers has always been challenging to progress the mechanical properties of the products. In this study by the FDM process, the effect of nozzle temperature and heat treatment (annealing) on the mechanical properties of high‐temperature polylactic acids is investigated. The increase in the nozzle temperature develops the rasters and layers bonding, and the heat treatment of the parts after printing rises the crystallinity percentage, which is crucial for the improvement of mechanical properties. Experimental results show that an increase in the nozzle temperature raises the tensile strength and modulus to 65.7 MPa and 4.97 GPa, respectively. Furthermore, the heat treatment process increases the tensile strength and modulus up to 67.4 MPa and 5.65 GPa. The final tensile modulus values are the highest ones reported for pure materials printed by the FDM process. POLYM. ENG. SCI., 60:979–987, 2020. © 2020 Society of Plastics Engineers
AbstractList Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final parts are constructed through layer‐by‐layer adhesion of thermoplastic polymers. Amorphous thermoplastic polymers have better printability compared to semicrystalline ones; so, they are most popular with FDM users. Generally, the overall mechanical properties of FDM 3D printed parts are weaker in comparison to the traditional methods (such as injection molding) due to the weak bonds between the deposited rasters and layers. Therefore, the introduction of new materials with higher mechanical properties and easy printing process of the semicrystalline polymers has always been challenging to progress the mechanical properties of the products. In this study by the FDM process, the effect of nozzle temperature and heat treatment (annealing) on the mechanical properties of high‐temperature polylactic acids is investigated. The increase in the nozzle temperature develops the rasters and layers bonding, and the heat treatment of the parts after printing rises the crystallinity percentage, which is crucial for the improvement of mechanical properties. Experimental results show that an increase in the nozzle temperature raises the tensile strength and modulus to 65.7 MPa and 4.97 GPa, respectively. Furthermore, the heat treatment process increases the tensile strength and modulus up to 67.4 MPa and 5.65 GPa. The final tensile modulus values are the highest ones reported for pure materials printed by the FDM process. POLYM. ENG. SCI., 60:979–987, 2020. © 2020 Society of Plastics Engineers
Author Akhoundi, Behnam
Shakoori, Diana
Nabipour, Mojtaba
Hajami, Faramarz
Author_xml – sequence: 1
  givenname: Behnam
  orcidid: 0000-0002-4283-1684
  surname: Akhoundi
  fullname: Akhoundi, Behnam
  email: behnam.akhoundi@modares.ac.ir
  organization: Tarbiat Modares University
– sequence: 2
  givenname: Mojtaba
  surname: Nabipour
  fullname: Nabipour, Mojtaba
  organization: Tarbiat Modares University
– sequence: 3
  givenname: Faramarz
  surname: Hajami
  fullname: Hajami, Faramarz
  organization: Karaj Branch, Islamic Azad University
– sequence: 4
  givenname: Diana
  surname: Shakoori
  fullname: Shakoori, Diana
  organization: Qazvin Branch, Islamic Azad University
BookMark eNp1kU1O3DAYhq2KSgy0i97AEhtYBPybSZYjOnSQKB2p03XkOJ_BKNip7agdVj0CJ-FQnKROhwWq2o298PM-n-33AO057wChD5ScUkLY2QDulEku-Rs0o1JUBSu52EMzQjgreFVV--ggxjuSWS7rGXpaOLz8OUCw9-CS6vHXNHZb7A2-9g8PPeAN3OdTlcYAWLkOr0AlvAl5nQL4eOEcqN66mxO8NAZ0itg7_Bn0rXJWZ-E6-CxIFuJkXdmb2-dfj6-ta99ve6WT1XihbYetwxdjhA5_hMFHm-zk8x1MQ96ht0b1Ed6_7Ifo28Vyc74qrr58ujxfXBWaS8mLORNzVSnFDSjadsAEJW3FaiPK_G4ilK5KWRtZl0KSdg6GSkMEp7ptaUlbxQ_R0c47BP99hJiaOz8Gl0c2TBAhpGCkztTZjtLBxxjANNomNV04BWX7hpJmKqXJpTR_SsmJk78SQ_55Fbb_ZF_sP2wP2_-DzXp5vUv8BlBboPY
CitedBy_id crossref_primary_10_1007_s00170_022_10094_6
crossref_primary_10_1002_pen_25737
crossref_primary_10_1108_RPJ_07_2024_0283
crossref_primary_10_1002_pen_25891
crossref_primary_10_1088_2631_8695_ad14af
crossref_primary_10_1177_08927057221089832
crossref_primary_10_1007_s44174_024_00183_3
crossref_primary_10_3390_app11094057
crossref_primary_10_1007_s11665_021_06535_0
crossref_primary_10_1007_s40964_024_00796_6
crossref_primary_10_3390_polym15163471
crossref_primary_10_1002_pen_26227
crossref_primary_10_59761_RCR5127
crossref_primary_10_1016_j_polymdegradstab_2022_109850
crossref_primary_10_1002_pat_6624
crossref_primary_10_1007_s11665_022_07049_z
crossref_primary_10_1177_15280837211064937
crossref_primary_10_1002_pen_26274
crossref_primary_10_4028_p_tajbmc
crossref_primary_10_3390_polym14245521
crossref_primary_10_1016_j_addma_2022_102773
crossref_primary_10_3390_polym12071529
crossref_primary_10_3390_polym13244305
crossref_primary_10_1016_j_addma_2022_103188
crossref_primary_10_3390_ma13204480
crossref_primary_10_1051_e3sconf_202457606007
crossref_primary_10_1142_S0218625X24501075
crossref_primary_10_1177_0095244320916838
crossref_primary_10_1021_acsabm_4c00465
crossref_primary_10_1177_00952443221147028
crossref_primary_10_1177_08927057241239001
crossref_primary_10_3390_polym15010069
crossref_primary_10_1007_s40684_022_00420_4
crossref_primary_10_3390_polym14061222
crossref_primary_10_1002_pen_25960
crossref_primary_10_3390_polym16131867
crossref_primary_10_1007_s12008_022_01082_x
crossref_primary_10_1002_adfm_202003062
crossref_primary_10_1016_j_conbuildmat_2024_135838
crossref_primary_10_1016_j_jer_2023_100102
crossref_primary_10_1016_j_ijbiomac_2024_137763
crossref_primary_10_1038_s41598_024_64136_y
crossref_primary_10_1007_s11665_023_08619_5
crossref_primary_10_1016_j_matpr_2022_02_142
crossref_primary_10_1088_1757_899X_1096_1_012045
crossref_primary_10_1007_s40684_022_00418_y
crossref_primary_10_1177_08927057231185710
crossref_primary_10_3390_ma15176162
crossref_primary_10_1007_s10704_022_00672_w
crossref_primary_10_1016_j_compositesa_2023_107434
crossref_primary_10_1002_pen_26526
crossref_primary_10_1016_j_compositesa_2021_106460
crossref_primary_10_1016_j_engfracmech_2021_108185
crossref_primary_10_1016_j_heliyon_2024_e32282
crossref_primary_10_3390_ma16134654
crossref_primary_10_3390_polym14235098
crossref_primary_10_1007_s00170_024_13140_7
crossref_primary_10_1515_ipp_2022_4267
crossref_primary_10_1111_ffe_14329
crossref_primary_10_1080_10426914_2022_2157428
crossref_primary_10_1108_RPJ_06_2024_0255
crossref_primary_10_1002_pen_26174
crossref_primary_10_1007_s12008_022_01026_5
crossref_primary_10_1007_s40964_023_00492_x
crossref_primary_10_1016_j_tafmec_2023_104032
crossref_primary_10_1177_0954405420981333
crossref_primary_10_37648_ijrst_v14i04_006
crossref_primary_10_1021_acsami_1c20491
crossref_primary_10_1177_1045389X211028286
crossref_primary_10_1016_j_addma_2021_102112
crossref_primary_10_1007_s40964_025_01023_6
crossref_primary_10_3390_polym16111576
crossref_primary_10_1002_marc_202400249
crossref_primary_10_1007_s12008_021_00827_4
crossref_primary_10_1016_j_matdes_2023_111687
crossref_primary_10_1002_pen_25507
crossref_primary_10_3390_polym13172910
crossref_primary_10_1007_s00170_021_08127_7
crossref_primary_10_1007_s11665_023_08620_y
crossref_primary_10_46519_ij3dptdi_1451666
crossref_primary_10_1177_0892705721997534
crossref_primary_10_3390_polym15143110
crossref_primary_10_1088_2631_8695_adb010
crossref_primary_10_1002_pen_26435
crossref_primary_10_1177_08927057241306101
crossref_primary_10_1016_j_jer_2023_07_006
crossref_primary_10_17350_HJSE19030000287
crossref_primary_10_1002_pen_25590
crossref_primary_10_1002_pc_28034
crossref_primary_10_1080_2374068X_2021_1946753
crossref_primary_10_3390_polym13162677
crossref_primary_10_52547_mme_22_9_567
crossref_primary_10_1002_app_51818
crossref_primary_10_1016_j_polymertesting_2025_108735
crossref_primary_10_1002_app_53039
crossref_primary_10_1177_23977914231205639
Cites_doi 10.1016/j.matdes.2017.03.065
10.1016/S1526-6125(04)70071-7
10.3390/ma12152495
10.1002/pen.24515
10.1002/mame.201800507
10.1002/pen.24875
10.1016/j.polymertesting.2020.106347
10.1177/0954405419843780
10.1002/pc.24494
10.1177/0731684418807300
10.1016/j.compscitech.2019.107688
10.1016/j.compositesb.2018.03.029
10.3390/ma12101664
10.1007/s00170-019-03332-x
10.3390/ma8095271
10.1016/j.matdes.2014.02.038
10.1088/1361-665X/ab3246
10.1002/pen.25043
10.1016/j.matdes.2015.06.053
10.3390/polym9100528
10.1007/s11340-018-00467-y
10.1016/j.matdes.2018.03.015
10.1108/13552541011034825
10.3144/expresspolymlett.2010.80
10.1002/pen.24955
10.1108/13552540210441166
10.1016/j.addma.2017.03.005
10.1016/j.jaerosci.2019.05.001
10.1051/matecconf/201926402001
10.1016/j.matdes.2017.11.032
10.1002/app.48717
10.1016/j.bushor.2011.11.003
10.1002/app.45332
10.1080/17452759.2015.1097053
10.1007/s00170-018-1789-0
ContentType Journal Article
Copyright 2020 Society of Plastics Engineers
Copyright_xml – notice: 2020 Society of Plastics Engineers
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pen.25353
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 987
ExternalDocumentID 10_1002_pen_25353
PEN25353
Genre article
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AIXEN
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
ICW
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWL
RWM
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XI7
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3553-7247a8aa3fea1bde2410b829f4602304ac8659f596450b7ef15f0431cbb161ba3
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Fri Jul 25 19:34:32 EDT 2025
Tue Jul 01 02:33:50 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Wed Jan 22 16:34:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3553-7247a8aa3fea1bde2410b829f4602304ac8659f596450b7ef15f0431cbb161ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4283-1684
PQID 2404454209
PQPubID 41843
PageCount 9
ParticipantIDs proquest_journals_2404454209
crossref_citationtrail_10_1002_pen_25353
crossref_primary_10_1002_pen_25353
wiley_primary_10_1002_pen_25353_PEN25353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2015; 1
2010; 16
2018; 140
2018; 303
2010
2020; 83
2018; 146
2019; 12
2018; 145
2019; 59
2002; 8
2015; 10
2019; 38
2019; 102
2004; 6
2017; 134
2015; 8
2012; 55
2017; 9
2019; 264
2018; 39
2019; 181
2017; 15
2017; 17
2018; 1
2015; 83
2017; 57
2019; 28
2019
2019; 135
2014; 58
2014
2020; 234
2013
2017; 124
2010; 4
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
Aly A.A. (e_1_2_5_36_1) 2015; 1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Nabipour M. (e_1_2_5_14_1) 2017; 17
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 134
  start-page: 45332
  year: 2017
  publication-title: J. Appl. Polym. Sci.
– volume: 1
  start-page: 132
  year: 2015
  publication-title: Int. J. Mater. Chem. Phys.
– volume: 12
  start-page: 1664
  year: 2019
  publication-title: Materials
– volume: 57
  start-page: 1322
  year: 2017
  publication-title: Polym. Eng. Sci.
– volume: 8
  start-page: 5834
  year: 2015
  publication-title: Materials
– volume: 59
  start-page: E59
  year: 2019
  publication-title: Polym. Eng. Sci.
– volume: 234
  start-page: 243
  year: 2020
  publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf.
– start-page: 48717
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– volume: 10
  start-page: 123
  year: 2015
  publication-title: Virtual Phys. Prototyping
– volume: 83
  start-page: 106347
  year: 2020
  publication-title: Polym. Test.
– volume: 181
  year: 2019
  publication-title: Compos. Sci. Technol.
– volume: 8
  start-page: 248
  year: 2002
  publication-title: Rapid Prototyp. J.
– volume: 83
  start-page: 768
  year: 2015
  publication-title: Mater. Des.
– volume: 15
  start-page: 40
  year: 2017
  publication-title: Addit. Manuf.
– volume: 59
  start-page: 120
  year: 2019
  publication-title: Polym. Eng. Sci.
– volume: 58
  start-page: 242
  year: 2014
  publication-title: Mater. Des.
– volume: 4
  start-page: 42010
  issue: 10
  year: 2010
  publication-title: Express Polym. Lett.
– volume: 146
  start-page: 249
  year: 2018
  publication-title: Mater. Des.
– volume: 264
  start-page: 02001
  year: 2019
  publication-title: MATEC Web Conf.
– year: 2014
– volume: 39
  start-page: E1060
  year: 2018
  publication-title: Polym. Compos.
– volume: 9
  start-page: 528
  year: 2017
  publication-title: Polymers
– volume: 12
  start-page: 2495
  year: 2019
  publication-title: Materials
– volume: 28
  start-page: 095017
  year: 2019
  publication-title: Smart Mater. Struct.
– year: 2010
– volume: 38
  start-page: 99
  year: 2019
  publication-title: J. Reinf. Plast. Compos.
– volume: 59
  start-page: 883
  year: 2019
  publication-title: Exp. Mech.
– volume: 124
  start-page: 143
  year: 2017
  publication-title: Mater. Des.
– volume: 17
  start-page: 145
  year: 2017
  publication-title: Modares Mech. Eng.
– volume: 59
  start-page: E247
  year: 2019
  publication-title: Polym. Eng. Sci.
– volume: 6
  start-page: 170
  year: 2004
  publication-title: J. Manuf. Process.
– volume: 55
  start-page: 155
  year: 2012
  publication-title: Bus. Horiz.
– volume: 16
  start-page: 164
  year: 2010
  publication-title: Rapid Prototyp. J.
– volume: 303
  start-page: 1800507
  year: 2018
  publication-title: Macromol. Mater. Eng.
– volume: 102
  start-page: 2877
  year: 2019
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 1
  start-page: 2747
  year: 2018
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 145
  start-page: 162
  year: 2018
  publication-title: Compos. Part B
– volume: 135
  start-page: 72
  year: 2019
  publication-title: J. Aerosol Sci.
– volume: 140
  start-page: 209
  year: 2018
  publication-title: Mater. Des.
– year: 2013
– ident: e_1_2_5_31_1
  doi: 10.1016/j.matdes.2017.03.065
– ident: e_1_2_5_16_1
  doi: 10.1016/S1526-6125(04)70071-7
– ident: e_1_2_5_4_1
  doi: 10.3390/ma12152495
– ident: e_1_2_5_10_1
  doi: 10.1002/pen.24515
– ident: e_1_2_5_40_1
– ident: e_1_2_5_12_1
  doi: 10.1002/mame.201800507
– ident: e_1_2_5_5_1
  doi: 10.1002/pen.24875
– ident: e_1_2_5_19_1
  doi: 10.1016/j.polymertesting.2020.106347
– ident: e_1_2_5_9_1
  doi: 10.1177/0954405419843780
– ident: e_1_2_5_41_1
  doi: 10.1002/pc.24494
– ident: e_1_2_5_2_1
  doi: 10.1177/0731684418807300
– ident: e_1_2_5_18_1
  doi: 10.1016/j.compscitech.2019.107688
– ident: e_1_2_5_32_1
  doi: 10.1016/j.compositesb.2018.03.029
– ident: e_1_2_5_22_1
– ident: e_1_2_5_3_1
  doi: 10.3390/ma12101664
– ident: e_1_2_5_11_1
  doi: 10.1007/s00170-019-03332-x
– ident: e_1_2_5_26_1
  doi: 10.3390/ma8095271
– ident: e_1_2_5_25_1
  doi: 10.1016/j.matdes.2014.02.038
– ident: e_1_2_5_13_1
  doi: 10.1088/1361-665X/ab3246
– ident: e_1_2_5_6_1
  doi: 10.1002/pen.25043
– ident: e_1_2_5_27_1
  doi: 10.1016/j.matdes.2015.06.053
– volume: 17
  start-page: 145
  year: 2017
  ident: e_1_2_5_14_1
  publication-title: Modares Mech. Eng.
– ident: e_1_2_5_39_1
  doi: 10.3390/polym9100528
– ident: e_1_2_5_15_1
  doi: 10.1007/s11340-018-00467-y
– ident: e_1_2_5_33_1
  doi: 10.1016/j.matdes.2018.03.015
– ident: e_1_2_5_23_1
  doi: 10.1108/13552541011034825
– ident: e_1_2_5_20_1
  doi: 10.3144/expresspolymlett.2010.80
– ident: e_1_2_5_35_1
  doi: 10.1002/pen.24955
– ident: e_1_2_5_21_1
  doi: 10.1108/13552540210441166
– ident: e_1_2_5_30_1
  doi: 10.1016/j.addma.2017.03.005
– volume: 1
  start-page: 132
  year: 2015
  ident: e_1_2_5_36_1
  publication-title: Int. J. Mater. Chem. Phys.
– ident: e_1_2_5_7_1
  doi: 10.1016/j.jaerosci.2019.05.001
– ident: e_1_2_5_38_1
  doi: 10.1051/matecconf/201926402001
– ident: e_1_2_5_24_1
– ident: e_1_2_5_34_1
  doi: 10.1016/j.matdes.2017.11.032
– ident: e_1_2_5_17_1
  doi: 10.1002/app.48717
– ident: e_1_2_5_8_1
  doi: 10.1016/j.bushor.2011.11.003
– ident: e_1_2_5_29_1
  doi: 10.1002/app.45332
– ident: e_1_2_5_28_1
  doi: 10.1080/17452759.2015.1097053
– ident: e_1_2_5_37_1
  doi: 10.1007/s00170-018-1789-0
SSID ssj0002359
Score 2.5867157
Snippet Fused deposition modeling (FDM) is the trendiest three‐dimensional (3D) printing method among additive manufacturing technologies. In this process, the final...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 979
SubjectTerms Annealing
Bonding strength
Deposition
Fused deposition modeling
Heat
Heat treatment
Injection molding
Mechanical properties
Modulus of elasticity
Nozzles
Polylactic acid
Polymers
Rapid prototyping
Tensile strength
Three dimensional printing
Title An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High‐Temperature Polylactic Acid in Fused Deposition Modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.25353
https://www.proquest.com/docview/2404454209
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEF5MLm0PSZum5J8h9JAcZMurXf2Qk0lsTMDGFAd8CIjd1QpMjVRi-xCf8gh5kjxUniQzkmW7IYHSmw6r3RUzO_ONduYbxn56qY1CNwkcHRrloIeyjvZ94SgbccRy6EMM3ej2-n73VtyM5KjGLqtamJIfYvXDjU5GYa_pgCs9baxJQzHar3PpSWL6pFwtAkS_1tRR3JMl9PW442GYV7EKubyxevNvX7QGmJswtfAznR12V-2wTC_5XZ_PdN0s3pA3_ucnfGXbS_wJrVJhvrGazXbZp6uq7dsu-7LBUPidPbcyaG80AQDKO3yAPIV-vlhMLAwt4u6SlxlUlkAXbTsMq-x1OG-hHVdU8n4BJVHyFPIMepYKjkk_YEC3AfdE60qzUtrJy-PT5qyDfPIwKUq5oGXGCYwz6MynNoFrW2WcAXV0o0X22G2nPbzqOssWD45BoOM5AReBCpVClVFNnVjEE64OeZQKn4IjoUzoyyiVkS-kqwObNmVKdEBGa4SqWnk_2FaWZ3afAVdco_n1ZKATkWqpTeSmSluFMZmNfHvAzithx2bJf05tOCZxydzMYxRHXIjjgJ2thv4pST_eG3RcaUy8PPfTGHVbCCm4G-Fyheg_niAetPvFw-G_Dz1inzkF_EXG5THbmt3P7Qmiopk-LdT_FWBJC8A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcigcWihUtBQYIQ7l4NRd7_pH6iVqEwVoogilUi_I2l2vpYrIRk1yaE48Ak_CQ_VJOmPHSUAgIW4-rHdtzc9-szvzDcC7IHdJ7GeRZ2KrPdqhnGfCUHraJYKwHO0hlm90-4Owdyk_XqmrDThtamFqfojlgRtbRuWv2cD5QPp4xRpK4X5LqEAFD-Ahd_Tm_gXnn1fkUSJQNfgNhBdQoNfwCvniePnqr7vRCmKuA9Vqp-nuwJfmG-sEk6-t2dS07Pw3-sb__YknsL2AoNiudeYpbLhiF7bOms5vu_B4jaTwGfxsF9hZ6wOAnHp4i2WOg3I-HzscOYLeNTUz6iLDHrl3HDUJ7HjUJleuuer9PdZcyRMsC-w7rjlmFcEhXwjcMLMrz8qZJ3fff6zPOizHt-Oqmgvb9jrD6wK7s4nL8Nw1SWfITd14kedw2e2MznreosuDZwnrBF4kZKRjrUlr9InJHEEK38QiyWXI8ZHUNg5VkqsklMo3kctPVM6MQNYYQqtGB3uwWZSFewEotDDkgQMVmUzmRhmb-Lk2TlNY5pLQ7cNRI-3ULijQuRPHOK3Jm0VK4kgrcezD2-XQbzXvx58GHTYqky5Mf5KSekuppPATWq6S_d8nSIedQfVw8O9D38BWb9S_SC8-DD69hEeC4_8qAfMQNqc3M_eKQNLUvK5s4R79uw_a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIvE48ChFFAqMEIdycOruww9xitpE4dEoQqnUA5K1u15LFZFdNcmhOfET-CX8KH4JM3acBAQS4ubDetfWvL7dnfkG4LUsfJqEeRzYxJmAIpQPbBSpwPhUEJajGOL4Rvd0GA3O1Ptzfb4Fb9tamIYfYnXgxpZR-2s28Mu8OFyThtJuvyO01PIG3FQRGQsjok9r7ighdYN9pQgk7fNaWqFQHK5e_TUYrRHmJk6tA03_PnxuP7HJL_nSmc9sxy1-Y2_8z394APeWABS7jcY8hC1f7sDt47bv2w7c3aAofATfuyX2NroAICceXmNV4LBaLCYex56Ad0PMjKbMcUDOHcdt-joedMmRG655f4MNU_IUqxJPPVccs4LgiK8DrpjXlWflvJMfX79tzjqqJteTupYLu-4ix4sS-_Opz_HEtylnyC3deJFdOOv3xseDYNnjIXCEdGQQCxWbxBjSGXNkc0-AIrSJSAsSKZ9XG5dEOi10Gikd2tgXR7pgPiBnLWFVa-Rj2C6r0j8BFEZY8r9SxzZXhdXWpWFhrDe0KfNp5PfgoBV25pYE6NyHY5I11M0iI3FktTj24NVq6GXD-vGnQfutxmRLw59mpNxKaSXClJarRf_3CbJRb1g_PP33oS_h1uikn318N_zwDO4I3vzX2Zf7sD27mvvnhJBm9kVtCT8B6pYOkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Study+of+Nozzle+Temperature+and+Heat+Treatment+%28Annealing%29+Effects+on+Mechanical+Properties+of+High%E2%80%90Temperature+Polylactic+Acid+in+Fused+Deposition+Modeling&rft.jtitle=Polymer+engineering+and+science&rft.au=Akhoundi%2C+Behnam&rft.au=Nabipour%2C+Mojtaba&rft.au=Hajami%2C+Faramarz&rft.au=Shakoori%2C+Diana&rft.date=2020-05-01&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=60&rft.issue=5&rft.spage=979&rft.epage=987&rft_id=info:doi/10.1002%2Fpen.25353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pen_25353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon