Deficiency indices and spectrum of fourth order difference equations with unbounded coefficients
Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{a...
Saved in:
Published in | Mathematische Nachrichten Vol. 286; no. 4; pp. 323 - 339 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English French German |
Published |
Germany
WILEY-VCH Verlag
01.03.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document} with a spectral multiplicity one. |
---|---|
AbstractList | Abstract
Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be
\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document}
with a spectral multiplicity one. Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document} with a spectral multiplicity one. [PUBLICATION ABSTRACT] Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document} with a spectral multiplicity one. |
Author | Agure, John Ogonji Nyamwala, Fredrick Oluoch Ambogo, David Otieno |
Author_xml | – sequence: 1 givenname: John Ogonji surname: Agure fullname: Agure, John Ogonji email: johnagure@yahoo.com organization: School of Mathematics, Applied Statistics & Actuarial Science, Maseno University, Box 333 Maseno, Kenya – sequence: 2 givenname: David Otieno surname: Ambogo fullname: Ambogo, David Otieno email: otivoe@yahoo.com organization: School of Mathematics, Applied Statistics & Actuarial Science, Maseno University, Box 333 Maseno, Kenya – sequence: 3 givenname: Fredrick Oluoch surname: Nyamwala fullname: Nyamwala, Fredrick Oluoch email: foluoch2000@yahoo.com organization: School of Mathematics, Applied Statistics & Actuarial Science, Maseno University, Box 333 Maseno, Kenya |
BookMark | eNqFkE1PGzEQhq0KJJLAlbOlnjf12PGu9xilLS2CcABEb67jHaumxA72rkL-fY0Wod44zWGeZz7eKTkKMSAh58DmwBj_sjXBzDkDzhjU8IlMQHJe8RrqIzIpgKykWvw6IdOcHxljbdvUE_L7KzpvPQZ7oD503mKmJnQ079D2adjS6KiLQ-r_0Jg6TLTzzmEqPFJ8HkzvY8h070t_CJs4hA47aiO6cWqfT8mxM08Zz97qjNx__3a3-lFd3Vz8XC2vKiukhArQ8s4obmpcKEBQG2dQiQYWdSOUZEa4xoJ1nTKGy3ojy5OSCcYaha5mGzEjn8e5uxSfB8y9fixnh7JSg4Bm0YJUUKj5SNkUc07o9C75rUkHDUy_pqhfU9TvKRahHYW9f8LDB7S-Xq6X_7vV6Prc48u7a9JfXZ5qpH5YX-gVexDt5W2rhfgH8OWH5w |
CitedBy_id | crossref_primary_10_1002_mana_201600183 crossref_primary_10_1016_j_aml_2013_08_011 crossref_primary_10_1186_s13662_020_03084_z crossref_primary_10_1007_s11785_022_01313_9 crossref_primary_10_1016_j_laa_2021_11_001 crossref_primary_10_1080_10236198_2013_824432 crossref_primary_10_1155_2020_1940481 crossref_primary_10_1002_mana_201500030 crossref_primary_10_1002_mana_201400057 |
Cites_doi | 10.1016/j.cam.2004.01.011 10.1016/0022-0396(81)90002-4 10.1006/jdeq.2000.3963 10.1137/0520048 10.1090/S0002-9939-09-10146-6 10.1002/mana.19931630127 10.1112/S0024610798006474 10.1080/10236190903160681 10.1002/mana.200910178 10.1137/0520047 10.1112/S0024610799007012 10.1016/j.amc.2011.08.086 10.1017/S0024611505015480 10.1090/S0002-9939-10-10253-6 10.1002/sapm1987773195 10.1006/jmaa.1996.0020 10.1080/10236190903413577 10.1007/BFb0069370 10.1002/mana.200710227 10.1002/mana.201000031 10.1016/j.laa.2010.10.003 10.1090/S0002-9947-08-04711-9 10.1016/j.laa.2005.11.025 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/mana.201200161 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1522-2616 |
EndPage | 339 |
ExternalDocumentID | 2920197121 10_1002_mana_201200161 MANA201200161 ark_67375_WNG_C0W39JS9_3 |
Genre | article |
GroupedDBID | --Z -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E V8K W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YNT YQT ZY4 ZZTAW ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c3551-1ec2da82a6e481e18bfae83714673850a3f7c1cfd8aa256b50015030078ef60b3 |
IEDL.DBID | DR2 |
ISSN | 0025-584X |
IngestDate | Thu Oct 10 22:08:21 EDT 2024 Fri Aug 23 01:09:40 EDT 2024 Sat Aug 24 00:58:16 EDT 2024 Wed Oct 30 10:01:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English French German |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3551-1ec2da82a6e481e18bfae83714673850a3f7c1cfd8aa256b50015030078ef60b3 |
Notes | ArticleID:MANA201200161 istex:9582756AD5C78BC85988F7422AFCAB5A0005F761 ark:/67375/WNG-C0W39JS9-3 Phone: +254 721 271 122, Fax: +254 57 351221 Phone: +254 723 843 943, Fax: +254 57 351221 |
PQID | 1317491581 |
PQPubID | 1016385 |
PageCount | 17 |
ParticipantIDs | proquest_journals_1317491581 crossref_primary_10_1002_mana_201200161 wiley_primary_10_1002_mana_201200161_MANA201200161 istex_primary_ark_67375_WNG_C0W39JS9_3 |
PublicationCentury | 2000 |
PublicationDate | 2013-03 March 2013 2013-03-00 20130301 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Mathematische Nachrichten |
PublicationTitleAlternate | Math. Nachr |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | H. Behncke and F. O. Nyamwala, Spectral theory of differential operators with unbounded coefficients, Math. Nachr. 285(1), 56-73 (2012). M. S. P. Eastham, The Asymptotic Solution of Linear Differential Sytems, London Math. Soc. Monographs New Series (Oxford University Press, Oxford, 1989). H. Behncke, D. B. Hinton, and C. Remling, The Spectrum of differential operators of order 2n with almost constant coefficients, J. Difference Equ. Appl. 175, 130-162 (2001). Z. Benzaid and D. A. Lutz, Asymptotic representation of solutions of perturbed systems of linear difference equations, Stud. Appl. Math. 77, 195-221 (1987). D. B. Hinton and J. K. Shaw, On the Titchmarsh-Weyl M(λ)-Functions for linear hamiltonian systems, J. Difference Equ. Appl. 40, 316-342 (1981). C. Remling, Spectral analysis of higher order differential operator I, general properties of the M-Functions, J. Lond. Math. Soc (2) 58, 367-380 (1998). C. Remling, Spectral analysis of higher order differential operator II, fourth order equations, J. Lond. Math. Soc (2) 59, 188-206 (1999). G. Ren and Y. Shi, Defect indices and definiteness conditions for a class of discrete linear hamiltonian systems, Appl. Math. Comput. 218, 3414-3429 (2011). R. Ansorge, T. Meis, and W. Törnig, Iterative Solutions of Non-linear Systems of Equations: Proceedings, Oberwolfach, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1982). F. V. Atkinson, Discrete and Continuous Boundary Problems (Academic Press, Inc., New York, 1964). F. O. Nyamwala, Spectral Theory of Differential and Difference Operators in Hilbert Spaces, Doctoral Dissertation (Universität Osnabrück, Germany, 2010). H. Behncke and F. O. Nyamwala, Spectral theory of differential operators with unbounded coefficients II, Math. Nachr. 285(2-3), 181-201 (2012). A. M. Krall, M(λ) theory for singular hamiltonian systems with one singular point, SIAM J. Math. Anal 20, 664-700 (1989). H. Behncke, A spectral theory of higher order differential operators, Proc. Lond. Math. Soc. (3) 92, 139-160 (2006). Y. Shi, Weyl-Titchmarsh theory for a class of discrete linear hamiltonian systems, Linear Algebra Appl. 416, 452-519 (2006). D. B. Hinton and A. Schneider, On the Titchmarsh-Weyl coefficients for singular S-Hermitian systems I, Math. Nachr. 163, 323-342 (1993). Y. Shi and H. Sun, Self-adjoint extensions for second-order symmetric linear difference equations, Linear Algebra Appl. 434, 903-930 (2011). S. Elaydi, An Introduction to Difference Equations, third edition, Springer Science + Business Media (New York, 2005). S. L. Clark, A spectral analysis of selfadjoint operators generated by a class of second order difference equations, J. Math. Anal. 197, 267-285 (1996). G. Ren and Y. Shi, The defect index for singular symmetric linear difference equations with real coefficients, Proc. Am. Math. Soc. 138(7), 2463-2475 (2010). A. Fischer and C. Remling, The absolutely continuous spectrum of discrete canonical systems, Trans. Am. Math. Soc. 361, 793-818 (2008). H. Behncke and F. O. Nyamwala, Spectral theory of difference operators with almost constant coefficients II, J. Difference Equ. Appl. 17(5), 821-829 (2011). P. A. Cojuhari and J. Janas, Discreteness of the spectrum for some unbounded jacobi matrices, Acta Sci. Math. (Szeged) 73, 649-667 (2007). S. L. Clark and F. Gesztesy, On Weyl-Titchmarsh theory for singular finite hamiltonian systems, J. Comput. Appl. Math. 171, 151-184 (2004). J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258 (Springer, Berlin, 1987). H. Behncke, Asymptotically constant linear systems, Proc. Am. Math. Soc. (4) 138, 1387-1393 (2010). H. Behncke and F. O. Nyamwala, Spectral theory of difference operators with almost constant coefficients, J. Difference Equ. Appl. 17(5), 677-695 (2011). H. Behncke, Spectral analysis of fourth order differential operators III, Math. Nachr 283(11), 1558-1574 (2010). A. M. Krall, M(λ) theory for singular hamiltonian systems with two singular points, SIAM J. Math. Anal 20, 701-715 (1989). 2006; 92 2011; 434 1987; 77 2012; 285 2011; 218 2006; 416 1989; 20 2010 1993; 163 2005 2010; 283 2007; 73 2011; 17 1981; 40 2008; 361 2001; 175 2010; 138 1999; 59 2004; 171 1987 1964 1982 1996; 197 1989 1998; 58 Atkinson F. V. (e_1_2_6_3_1) 1964 e_1_2_6_10_1 e_1_2_6_30_1 Nyamwala F. O. (e_1_2_6_23_1) 2010 Cojuhari P. A. (e_1_2_6_15_1) 2007; 73 Eastham M. S. P. (e_1_2_6_16_1) 1989 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_18_1 Weidmann J. (e_1_2_6_31_1) 1987 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 Elaydi S. (e_1_2_6_17_1) 2005 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 17 start-page: 677 issue: 5 year: 2011 end-page: 695 article-title: Spectral theory of difference operators with almost constant coefficients publication-title: J. Difference Equ. Appl. – volume: 283 start-page: 1558 issue: 11 year: 2010 end-page: 1574 article-title: Spectral analysis of fourth order differential operators III publication-title: Math. Nachr – volume: 58 start-page: 367 year: 1998 end-page: 380 article-title: Spectral analysis of higher order differential operator I, general properties of the M‐Functions publication-title: J. Lond. Math. Soc (2) – year: 1964 – volume: 171 start-page: 151 year: 2004 end-page: 184 article-title: On Weyl‐Titchmarsh theory for singular finite hamiltonian systems publication-title: J. Comput. Appl. Math. – volume: 163 start-page: 323 year: 1993 end-page: 342 article-title: On the Titchmarsh‐Weyl coefficients for singular S‐Hermitian systems I publication-title: Math. Nachr. – year: 2005 – volume: 285 start-page: 181 issue: 2–3 year: 2012 end-page: 201 article-title: Spectral theory of differential operators with unbounded coefficients II publication-title: Math. Nachr. – volume: 197 start-page: 267 year: 1996 end-page: 285 article-title: A spectral analysis of selfadjoint operators generated by a class of second order difference equations publication-title: J. Math. Anal. – volume: 416 start-page: 452 year: 2006 end-page: 519 article-title: Weyl‐Titchmarsh theory for a class of discrete linear hamiltonian systems publication-title: Linear Algebra Appl. – year: 1987 – year: 1989 – volume: 175 start-page: 130 year: 2001 end-page: 162 article-title: The Spectrum of differential operators of order 2 with almost constant coefficients publication-title: J. Difference Equ. Appl. – volume: 218 start-page: 3414 year: 2011 end-page: 3429 article-title: Defect indices and definiteness conditions for a class of discrete linear hamiltonian systems publication-title: Appl. Math. Comput. – volume: 361 start-page: 793 year: 2008 end-page: 818 article-title: The absolutely continuous spectrum of discrete canonical systems publication-title: Trans. Am. Math. Soc. – volume: 20 start-page: 664 year: 1989 end-page: 700 article-title: (λ) theory for singular hamiltonian systems with one singular point publication-title: SIAM J. Math. Anal – year: 2010 – volume: 73 start-page: 649 year: 2007 end-page: 667 article-title: Discreteness of the spectrum for some unbounded jacobi matrices publication-title: Acta Sci. Math. (Szeged) – year: 1982 – volume: 285 start-page: 56 issue: 1 year: 2012 end-page: 73 article-title: Spectral theory of differential operators with unbounded coefficients publication-title: Math. Nachr. – volume: 138 start-page: 2463 issue: 7 year: 2010 end-page: 2475 article-title: The defect index for singular symmetric linear difference equations with real coefficients publication-title: Proc. Am. Math. Soc. – volume: 17 start-page: 821 issue: 5 year: 2011 end-page: 829 article-title: Spectral theory of difference operators with almost constant coefficients II publication-title: J. Difference Equ. Appl. – volume: 434 start-page: 903 year: 2011 end-page: 930 article-title: Self‐adjoint extensions for second‐order symmetric linear difference equations publication-title: Linear Algebra Appl. – volume: 77 start-page: 195 year: 1987 end-page: 221 article-title: Asymptotic representation of solutions of perturbed systems of linear difference equations publication-title: Stud. Appl. Math. – volume: 20 start-page: 701 year: 1989 end-page: 715 article-title: (λ) theory for singular hamiltonian systems with two singular points publication-title: SIAM J. Math. Anal – volume: 138 start-page: 1387 year: 2010 end-page: 1393 article-title: Asymptotically constant linear systems publication-title: Proc. Am. Math. Soc. (4) – volume: 59 start-page: 188 year: 1999 end-page: 206 article-title: Spectral analysis of higher order differential operator II, fourth order equations publication-title: J. Lond. Math. Soc (2) – volume: 40 start-page: 316 year: 1981 end-page: 342 article-title: On the Titchmarsh‐Weyl (λ)‐Functions for linear hamiltonian systems publication-title: J. Difference Equ. Appl. – volume: 92 start-page: 139 year: 2006 end-page: 160 article-title: A spectral theory of higher order differential operators publication-title: Proc. Lond. Math. Soc. (3) – ident: e_1_2_6_14_1 doi: 10.1016/j.cam.2004.01.011 – ident: e_1_2_6_20_1 doi: 10.1016/0022-0396(81)90002-4 – volume-title: Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258 year: 1987 ident: e_1_2_6_31_1 contributor: fullname: Weidmann J. – ident: e_1_2_6_7_1 doi: 10.1006/jdeq.2000.3963 – ident: e_1_2_6_22_1 doi: 10.1137/0520048 – ident: e_1_2_6_6_1 doi: 10.1090/S0002-9939-09-10146-6 – ident: e_1_2_6_28_1 – ident: e_1_2_6_19_1 doi: 10.1002/mana.19931630127 – volume-title: Spectral Theory of Differential and Difference Operators in Hilbert Spaces, Doctoral Dissertation year: 2010 ident: e_1_2_6_23_1 contributor: fullname: Nyamwala F. O. – ident: e_1_2_6_24_1 doi: 10.1112/S0024610798006474 – ident: e_1_2_6_8_1 doi: 10.1080/10236190903160681 – ident: e_1_2_6_10_1 doi: 10.1002/mana.200910178 – ident: e_1_2_6_21_1 doi: 10.1137/0520047 – ident: e_1_2_6_25_1 doi: 10.1112/S0024610799007012 – ident: e_1_2_6_27_1 doi: 10.1016/j.amc.2011.08.086 – ident: e_1_2_6_4_1 doi: 10.1017/S0024611505015480 – volume-title: The Asymptotic Solution of Linear Differential Sytems, London Math. Soc. Monographs New Series year: 1989 ident: e_1_2_6_16_1 contributor: fullname: Eastham M. S. P. – ident: e_1_2_6_26_1 doi: 10.1090/S0002-9939-10-10253-6 – ident: e_1_2_6_12_1 doi: 10.1002/sapm1987773195 – ident: e_1_2_6_13_1 doi: 10.1006/jmaa.1996.0020 – ident: e_1_2_6_9_1 doi: 10.1080/10236190903413577 – volume: 73 start-page: 649 year: 2007 ident: e_1_2_6_15_1 article-title: Discreteness of the spectrum for some unbounded jacobi matrices publication-title: Acta Sci. Math. (Szeged) contributor: fullname: Cojuhari P. A. – ident: e_1_2_6_2_1 doi: 10.1007/BFb0069370 – ident: e_1_2_6_5_1 doi: 10.1002/mana.200710227 – ident: e_1_2_6_11_1 doi: 10.1002/mana.201000031 – volume-title: An Introduction to Difference Equations year: 2005 ident: e_1_2_6_17_1 contributor: fullname: Elaydi S. – ident: e_1_2_6_30_1 doi: 10.1016/j.laa.2010.10.003 – ident: e_1_2_6_18_1 doi: 10.1090/S0002-9947-08-04711-9 – volume-title: Discrete and Continuous Boundary Problems year: 1964 ident: e_1_2_6_3_1 contributor: fullname: Atkinson F. V. – ident: e_1_2_6_29_1 doi: 10.1016/j.laa.2005.11.025 |
SSID | ssj0009976 |
Score | 2.0356448 |
Snippet | Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of... Abstract Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 323 |
SubjectTerms | absolutely continuous spectrum deficiency indices Eigenvalues MSC Primary: 39A20 Secondary: 47A55 |
Title | Deficiency indices and spectrum of fourth order difference equations with unbounded coefficients |
URI | https://api.istex.fr/ark:/67375/WNG-C0W39JS9-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmana.201200161 https://www.proquest.com/docview/1317491581 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctVBYYeCPKSx4QTKHN2x5RS0FIMABVuxnbtYVUkQJJJcSn585pQsuCBKOlxEl8tu9v5_w7Qk6sSRiLufE0eCcvYib1FNjeSyOuGSw4dOggrrd3yXU_uhnGw7lT_CUfot5ww5Hh5msc4FLlrW9oKEZ3YmhW4FQLTMJ-mGJMV_f-mx_Fucsu53K2gqcdVtTGdtBavH3BKy1jA38sSM554eo8T2-dyOqdy4CT8fm0UOf68wfO8T8ftUHWZrKUXpT9aJMsmWyLrN7WTNd8mzx1DdIm8KgmxR_dMMFQmY2oO6v5Pn2hE0st1FM8U8fzpFXuFW2oeSuJ4jnFfV86zRRmczIjqifGlrUW-Q7p9y4fO9feLD-Dp0Gl-J5vdDCSLJCJiZhvfKasNAwRgJhKNG7L0Kba13bEpARlpWLHMwxRlRibtFW4SxrZJDN7hPKQJaCErOPZs1gryRkUFKyVLQi0oEnOKvuI1xLDIUrgciCwzUTdZk1y6sxXXybfxxi8lsZicHclOu1ByG8euAib5LCyr5iN21z4IKci7scM6gmcoX55nMDEC3Vp_y83HZCVwOXYwMC2Q9IAk5kjUDqFOna9-QvkfvNh |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-swEB6xHIAD8FhEWX1Aj1OgWWsfEVvh0R5YBDdju7aQKlKgrYT49cw4TXjlggRHS7GTeDyez_b4-wB2nc04T4UNDEanIOG2EWi0fdBIhOG44DCxJ3FttbPmbXJxn5bZhHQXpuCHqDbcyDP8fE0OThvSB5-soZTeSblZkYctkzCNPh-TiMHx1SeDlBBeX86rtmKsvS95G-vRwXj9sbg0TV38NgY6_4euPvacLoAuv7pIOenuDwd637x_IXT81W8twvwImbLDYij9gQmbL8Fcq6J17S_Dw7Elwgm6rcnorBvnGKbyDvPXNV-HT6znmMN2Bo_MU3qyUn7FWGZfClLxPqOtXzbMNQk62Q4zPeuKVgf9Fbg9Pbk5agYjiYbAIFAJg9CaqKN4pDKb8NCGXDtlObEAkppoWlexa5jQuA5XCsGVTj2lYUzAxLqsruNVmMp7uV0DJmKeIRhyntKep0YrwbGgcbnsEKNFNdgrDSSfCyYOWXAuR5L6TFZ9VoO_3n7VY-q1S_lrjVTetc_kUf0uFhfXQsY12CwNLEeu25chIqpEhCnHdiJvqW9eJ0l7oSqt_6TSDsw0b1qX8vK8_W8DZiMvuUF5bpswheazWwh8BnrbD-0PJDn3ew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHLBKCAzuirD4gOAWy1z4iStkrxCJ6M7ZjC6kiBdpKiKfH4zSBckGCo6XESTy257cz_gZgx-iU0oRpT1nv5MVU1z1pbe_VY6aoXXCoyEFcr1rp6X183k7a307xF3yIasMNR4abr3GAv2Tm4AsaitGdGJoVOtUyDpNxGvkY1NW4-QJIMebSy7mkrdbVtktsox8ejN4_4pYmsYXfRzTnd-XqXE9zDkT50kXESWd_0Jf76uMHz_E_XzUPs0NdSg6LjrQAYzpfhJmrCuraW4LHhkbcBJ7VJPin284wROQZcYc13wbPpGuIsfX0n4gDepIy-YrSRL8WSPEewY1fMsglpnPSGVFdbYpa-71luG8e3x2desMEDZ6yMiXwAq3CTNBQpDqmgQ6oNEJTZABiLtHEF5Gpq0CZjAphpZVMHNAwQlmiTerLaAUm8m6uV4GwiKZWChkHtKeJkoJRW5B2sWysQgtrsFfah78UHA5eEJdDjm3Gqzarwa4zX3WZeOtg9Fo94Q-tE37kP0Ts_JbxqAYbpX35cOD2eGD1VMyChNp6QmeoXx7HMfNCVVr7y03bMHXdaPLLs9bFOkyHLt8GBrltwIS1nt60qqcvt1zH_gQ84_Yq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficiency+indices+and+spectrum+of+fourth+order+difference+equations+with+unbounded+coefficients&rft.jtitle=Mathematische+Nachrichten&rft.au=Agure%2C+John+Ogonji&rft.au=Ambogo%2C+David+Otieno&rft.au=Nyamwala%2C+Fredrick+Oluoch&rft.date=2013-03-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0025-584X&rft.eissn=1522-2616&rft.volume=286&rft.issue=4&rft.spage=323&rft.epage=339&rft_id=info:doi/10.1002%2Fmana.201200161&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_C0W39JS9_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-584X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-584X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-584X&client=summon |