Deficiency indices and spectrum of fourth order difference equations with unbounded coefficients

Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{a...

Full description

Saved in:
Bibliographic Details
Published inMathematische Nachrichten Vol. 286; no. 4; pp. 323 - 339
Main Authors Agure, John Ogonji, Ambogo, David Otieno, Nyamwala, Fredrick Oluoch
Format Journal Article
LanguageEnglish
French
German
Published Germany WILEY-VCH Verlag 01.03.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document} with a spectral multiplicity one.
AbstractList Abstract Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document} with a spectral multiplicity one.
Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document} with a spectral multiplicity one. [PUBLICATION ABSTRACT]
Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients. In particular, we found the absolutely continuous spectrum to be \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {R}}$\end{document} with a spectral multiplicity one.
Author Agure, John Ogonji
Nyamwala, Fredrick Oluoch
Ambogo, David Otieno
Author_xml – sequence: 1
  givenname: John Ogonji
  surname: Agure
  fullname: Agure, John Ogonji
  email: johnagure@yahoo.com
  organization: School of Mathematics, Applied Statistics & Actuarial Science, Maseno University, Box 333 Maseno, Kenya
– sequence: 2
  givenname: David Otieno
  surname: Ambogo
  fullname: Ambogo, David Otieno
  email: otivoe@yahoo.com
  organization: School of Mathematics, Applied Statistics & Actuarial Science, Maseno University, Box 333 Maseno, Kenya
– sequence: 3
  givenname: Fredrick Oluoch
  surname: Nyamwala
  fullname: Nyamwala, Fredrick Oluoch
  email: foluoch2000@yahoo.com
  organization: School of Mathematics, Applied Statistics & Actuarial Science, Maseno University, Box 333 Maseno, Kenya
BookMark eNqFkE1PGzEQhq0KJJLAlbOlnjf12PGu9xilLS2CcABEb67jHaumxA72rkL-fY0Wod44zWGeZz7eKTkKMSAh58DmwBj_sjXBzDkDzhjU8IlMQHJe8RrqIzIpgKykWvw6IdOcHxljbdvUE_L7KzpvPQZ7oD503mKmJnQ079D2adjS6KiLQ-r_0Jg6TLTzzmEqPFJ8HkzvY8h070t_CJs4hA47aiO6cWqfT8mxM08Zz97qjNx__3a3-lFd3Vz8XC2vKiukhArQ8s4obmpcKEBQG2dQiQYWdSOUZEa4xoJ1nTKGy3ojy5OSCcYaha5mGzEjn8e5uxSfB8y9fixnh7JSg4Bm0YJUUKj5SNkUc07o9C75rUkHDUy_pqhfU9TvKRahHYW9f8LDB7S-Xq6X_7vV6Prc48u7a9JfXZ5qpH5YX-gVexDt5W2rhfgH8OWH5w
CitedBy_id crossref_primary_10_1002_mana_201600183
crossref_primary_10_1016_j_aml_2013_08_011
crossref_primary_10_1186_s13662_020_03084_z
crossref_primary_10_1007_s11785_022_01313_9
crossref_primary_10_1016_j_laa_2021_11_001
crossref_primary_10_1080_10236198_2013_824432
crossref_primary_10_1155_2020_1940481
crossref_primary_10_1002_mana_201500030
crossref_primary_10_1002_mana_201400057
Cites_doi 10.1016/j.cam.2004.01.011
10.1016/0022-0396(81)90002-4
10.1006/jdeq.2000.3963
10.1137/0520048
10.1090/S0002-9939-09-10146-6
10.1002/mana.19931630127
10.1112/S0024610798006474
10.1080/10236190903160681
10.1002/mana.200910178
10.1137/0520047
10.1112/S0024610799007012
10.1016/j.amc.2011.08.086
10.1017/S0024611505015480
10.1090/S0002-9939-10-10253-6
10.1002/sapm1987773195
10.1006/jmaa.1996.0020
10.1080/10236190903413577
10.1007/BFb0069370
10.1002/mana.200710227
10.1002/mana.201000031
10.1016/j.laa.2010.10.003
10.1090/S0002-9947-08-04711-9
10.1016/j.laa.2005.11.025
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/mana.201200161
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1522-2616
EndPage 339
ExternalDocumentID 2920197121
10_1002_mana_201200161
MANA201200161
ark_67375_WNG_C0W39JS9_3
Genre article
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YNT
YQT
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3551-1ec2da82a6e481e18bfae83714673850a3f7c1cfd8aa256b50015030078ef60b3
IEDL.DBID DR2
ISSN 0025-584X
IngestDate Thu Oct 10 22:08:21 EDT 2024
Fri Aug 23 01:09:40 EDT 2024
Sat Aug 24 00:58:16 EDT 2024
Wed Oct 30 10:01:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
French
German
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3551-1ec2da82a6e481e18bfae83714673850a3f7c1cfd8aa256b50015030078ef60b3
Notes ArticleID:MANA201200161
istex:9582756AD5C78BC85988F7422AFCAB5A0005F761
ark:/67375/WNG-C0W39JS9-3
Phone: +254 721 271 122, Fax: +254 57 351221
Phone: +254 723 843 943, Fax: +254 57 351221
PQID 1317491581
PQPubID 1016385
PageCount 17
ParticipantIDs proquest_journals_1317491581
crossref_primary_10_1002_mana_201200161
wiley_primary_10_1002_mana_201200161_MANA201200161
istex_primary_ark_67375_WNG_C0W39JS9_3
PublicationCentury 2000
PublicationDate 2013-03
March 2013
2013-03-00
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Mathematische Nachrichten
PublicationTitleAlternate Math. Nachr
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References H. Behncke and F. O. Nyamwala, Spectral theory of differential operators with unbounded coefficients, Math. Nachr. 285(1), 56-73 (2012).
M. S. P. Eastham, The Asymptotic Solution of Linear Differential Sytems, London Math. Soc. Monographs New Series (Oxford University Press, Oxford, 1989).
H. Behncke, D. B. Hinton, and C. Remling, The Spectrum of differential operators of order 2n with almost constant coefficients, J. Difference Equ. Appl. 175, 130-162 (2001).
Z. Benzaid and D. A. Lutz, Asymptotic representation of solutions of perturbed systems of linear difference equations, Stud. Appl. Math. 77, 195-221 (1987).
D. B. Hinton and J. K. Shaw, On the Titchmarsh-Weyl M(λ)-Functions for linear hamiltonian systems, J. Difference Equ. Appl. 40, 316-342 (1981).
C. Remling, Spectral analysis of higher order differential operator I, general properties of the M-Functions, J. Lond. Math. Soc (2) 58, 367-380 (1998).
C. Remling, Spectral analysis of higher order differential operator II, fourth order equations, J. Lond. Math. Soc (2) 59, 188-206 (1999).
G. Ren and Y. Shi, Defect indices and definiteness conditions for a class of discrete linear hamiltonian systems, Appl. Math. Comput. 218, 3414-3429 (2011).
R. Ansorge, T. Meis, and W. Törnig, Iterative Solutions of Non-linear Systems of Equations: Proceedings, Oberwolfach, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1982).
F. V. Atkinson, Discrete and Continuous Boundary Problems (Academic Press, Inc., New York, 1964).
F. O. Nyamwala, Spectral Theory of Differential and Difference Operators in Hilbert Spaces, Doctoral Dissertation (Universität Osnabrück, Germany, 2010).
H. Behncke and F. O. Nyamwala, Spectral theory of differential operators with unbounded coefficients II, Math. Nachr. 285(2-3), 181-201 (2012).
A. M. Krall, M(λ) theory for singular hamiltonian systems with one singular point, SIAM J. Math. Anal 20, 664-700 (1989).
H. Behncke, A spectral theory of higher order differential operators, Proc. Lond. Math. Soc. (3) 92, 139-160 (2006).
Y. Shi, Weyl-Titchmarsh theory for a class of discrete linear hamiltonian systems, Linear Algebra Appl. 416, 452-519 (2006).
D. B. Hinton and A. Schneider, On the Titchmarsh-Weyl coefficients for singular S-Hermitian systems I, Math. Nachr. 163, 323-342 (1993).
Y. Shi and H. Sun, Self-adjoint extensions for second-order symmetric linear difference equations, Linear Algebra Appl. 434, 903-930 (2011).
S. Elaydi, An Introduction to Difference Equations, third edition, Springer Science + Business Media (New York, 2005).
S. L. Clark, A spectral analysis of selfadjoint operators generated by a class of second order difference equations, J. Math. Anal. 197, 267-285 (1996).
G. Ren and Y. Shi, The defect index for singular symmetric linear difference equations with real coefficients, Proc. Am. Math. Soc. 138(7), 2463-2475 (2010).
A. Fischer and C. Remling, The absolutely continuous spectrum of discrete canonical systems, Trans. Am. Math. Soc. 361, 793-818 (2008).
H. Behncke and F. O. Nyamwala, Spectral theory of difference operators with almost constant coefficients II, J. Difference Equ. Appl. 17(5), 821-829 (2011).
P. A. Cojuhari and J. Janas, Discreteness of the spectrum for some unbounded jacobi matrices, Acta Sci. Math. (Szeged) 73, 649-667 (2007).
S. L. Clark and F. Gesztesy, On Weyl-Titchmarsh theory for singular finite hamiltonian systems, J. Comput. Appl. Math. 171, 151-184 (2004).
J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258 (Springer, Berlin, 1987).
H. Behncke, Asymptotically constant linear systems, Proc. Am. Math. Soc. (4) 138, 1387-1393 (2010).
H. Behncke and F. O. Nyamwala, Spectral theory of difference operators with almost constant coefficients, J. Difference Equ. Appl. 17(5), 677-695 (2011).
H. Behncke, Spectral analysis of fourth order differential operators III, Math. Nachr 283(11), 1558-1574 (2010).
A. M. Krall, M(λ) theory for singular hamiltonian systems with two singular points, SIAM J. Math. Anal 20, 701-715 (1989).
2006; 92
2011; 434
1987; 77
2012; 285
2011; 218
2006; 416
1989; 20
2010
1993; 163
2005
2010; 283
2007; 73
2011; 17
1981; 40
2008; 361
2001; 175
2010; 138
1999; 59
2004; 171
1987
1964
1982
1996; 197
1989
1998; 58
Atkinson F. V. (e_1_2_6_3_1) 1964
e_1_2_6_10_1
e_1_2_6_30_1
Nyamwala F. O. (e_1_2_6_23_1) 2010
Cojuhari P. A. (e_1_2_6_15_1) 2007; 73
Eastham M. S. P. (e_1_2_6_16_1) 1989
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_18_1
Weidmann J. (e_1_2_6_31_1) 1987
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
Elaydi S. (e_1_2_6_17_1) 2005
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 17
  start-page: 677
  issue: 5
  year: 2011
  end-page: 695
  article-title: Spectral theory of difference operators with almost constant coefficients
  publication-title: J. Difference Equ. Appl.
– volume: 283
  start-page: 1558
  issue: 11
  year: 2010
  end-page: 1574
  article-title: Spectral analysis of fourth order differential operators III
  publication-title: Math. Nachr
– volume: 58
  start-page: 367
  year: 1998
  end-page: 380
  article-title: Spectral analysis of higher order differential operator I, general properties of the M‐Functions
  publication-title: J. Lond. Math. Soc (2)
– year: 1964
– volume: 171
  start-page: 151
  year: 2004
  end-page: 184
  article-title: On Weyl‐Titchmarsh theory for singular finite hamiltonian systems
  publication-title: J. Comput. Appl. Math.
– volume: 163
  start-page: 323
  year: 1993
  end-page: 342
  article-title: On the Titchmarsh‐Weyl coefficients for singular S‐Hermitian systems I
  publication-title: Math. Nachr.
– year: 2005
– volume: 285
  start-page: 181
  issue: 2–3
  year: 2012
  end-page: 201
  article-title: Spectral theory of differential operators with unbounded coefficients II
  publication-title: Math. Nachr.
– volume: 197
  start-page: 267
  year: 1996
  end-page: 285
  article-title: A spectral analysis of selfadjoint operators generated by a class of second order difference equations
  publication-title: J. Math. Anal.
– volume: 416
  start-page: 452
  year: 2006
  end-page: 519
  article-title: Weyl‐Titchmarsh theory for a class of discrete linear hamiltonian systems
  publication-title: Linear Algebra Appl.
– year: 1987
– year: 1989
– volume: 175
  start-page: 130
  year: 2001
  end-page: 162
  article-title: The Spectrum of differential operators of order 2 with almost constant coefficients
  publication-title: J. Difference Equ. Appl.
– volume: 218
  start-page: 3414
  year: 2011
  end-page: 3429
  article-title: Defect indices and definiteness conditions for a class of discrete linear hamiltonian systems
  publication-title: Appl. Math. Comput.
– volume: 361
  start-page: 793
  year: 2008
  end-page: 818
  article-title: The absolutely continuous spectrum of discrete canonical systems
  publication-title: Trans. Am. Math. Soc.
– volume: 20
  start-page: 664
  year: 1989
  end-page: 700
  article-title: (λ) theory for singular hamiltonian systems with one singular point
  publication-title: SIAM J. Math. Anal
– year: 2010
– volume: 73
  start-page: 649
  year: 2007
  end-page: 667
  article-title: Discreteness of the spectrum for some unbounded jacobi matrices
  publication-title: Acta Sci. Math. (Szeged)
– year: 1982
– volume: 285
  start-page: 56
  issue: 1
  year: 2012
  end-page: 73
  article-title: Spectral theory of differential operators with unbounded coefficients
  publication-title: Math. Nachr.
– volume: 138
  start-page: 2463
  issue: 7
  year: 2010
  end-page: 2475
  article-title: The defect index for singular symmetric linear difference equations with real coefficients
  publication-title: Proc. Am. Math. Soc.
– volume: 17
  start-page: 821
  issue: 5
  year: 2011
  end-page: 829
  article-title: Spectral theory of difference operators with almost constant coefficients II
  publication-title: J. Difference Equ. Appl.
– volume: 434
  start-page: 903
  year: 2011
  end-page: 930
  article-title: Self‐adjoint extensions for second‐order symmetric linear difference equations
  publication-title: Linear Algebra Appl.
– volume: 77
  start-page: 195
  year: 1987
  end-page: 221
  article-title: Asymptotic representation of solutions of perturbed systems of linear difference equations
  publication-title: Stud. Appl. Math.
– volume: 20
  start-page: 701
  year: 1989
  end-page: 715
  article-title: (λ) theory for singular hamiltonian systems with two singular points
  publication-title: SIAM J. Math. Anal
– volume: 138
  start-page: 1387
  year: 2010
  end-page: 1393
  article-title: Asymptotically constant linear systems
  publication-title: Proc. Am. Math. Soc. (4)
– volume: 59
  start-page: 188
  year: 1999
  end-page: 206
  article-title: Spectral analysis of higher order differential operator II, fourth order equations
  publication-title: J. Lond. Math. Soc (2)
– volume: 40
  start-page: 316
  year: 1981
  end-page: 342
  article-title: On the Titchmarsh‐Weyl (λ)‐Functions for linear hamiltonian systems
  publication-title: J. Difference Equ. Appl.
– volume: 92
  start-page: 139
  year: 2006
  end-page: 160
  article-title: A spectral theory of higher order differential operators
  publication-title: Proc. Lond. Math. Soc. (3)
– ident: e_1_2_6_14_1
  doi: 10.1016/j.cam.2004.01.011
– ident: e_1_2_6_20_1
  doi: 10.1016/0022-0396(81)90002-4
– volume-title: Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258
  year: 1987
  ident: e_1_2_6_31_1
  contributor:
    fullname: Weidmann J.
– ident: e_1_2_6_7_1
  doi: 10.1006/jdeq.2000.3963
– ident: e_1_2_6_22_1
  doi: 10.1137/0520048
– ident: e_1_2_6_6_1
  doi: 10.1090/S0002-9939-09-10146-6
– ident: e_1_2_6_28_1
– ident: e_1_2_6_19_1
  doi: 10.1002/mana.19931630127
– volume-title: Spectral Theory of Differential and Difference Operators in Hilbert Spaces, Doctoral Dissertation
  year: 2010
  ident: e_1_2_6_23_1
  contributor:
    fullname: Nyamwala F. O.
– ident: e_1_2_6_24_1
  doi: 10.1112/S0024610798006474
– ident: e_1_2_6_8_1
  doi: 10.1080/10236190903160681
– ident: e_1_2_6_10_1
  doi: 10.1002/mana.200910178
– ident: e_1_2_6_21_1
  doi: 10.1137/0520047
– ident: e_1_2_6_25_1
  doi: 10.1112/S0024610799007012
– ident: e_1_2_6_27_1
  doi: 10.1016/j.amc.2011.08.086
– ident: e_1_2_6_4_1
  doi: 10.1017/S0024611505015480
– volume-title: The Asymptotic Solution of Linear Differential Sytems, London Math. Soc. Monographs New Series
  year: 1989
  ident: e_1_2_6_16_1
  contributor:
    fullname: Eastham M. S. P.
– ident: e_1_2_6_26_1
  doi: 10.1090/S0002-9939-10-10253-6
– ident: e_1_2_6_12_1
  doi: 10.1002/sapm1987773195
– ident: e_1_2_6_13_1
  doi: 10.1006/jmaa.1996.0020
– ident: e_1_2_6_9_1
  doi: 10.1080/10236190903413577
– volume: 73
  start-page: 649
  year: 2007
  ident: e_1_2_6_15_1
  article-title: Discreteness of the spectrum for some unbounded jacobi matrices
  publication-title: Acta Sci. Math. (Szeged)
  contributor:
    fullname: Cojuhari P. A.
– ident: e_1_2_6_2_1
  doi: 10.1007/BFb0069370
– ident: e_1_2_6_5_1
  doi: 10.1002/mana.200710227
– ident: e_1_2_6_11_1
  doi: 10.1002/mana.201000031
– volume-title: An Introduction to Difference Equations
  year: 2005
  ident: e_1_2_6_17_1
  contributor:
    fullname: Elaydi S.
– ident: e_1_2_6_30_1
  doi: 10.1016/j.laa.2010.10.003
– ident: e_1_2_6_18_1
  doi: 10.1090/S0002-9947-08-04711-9
– volume-title: Discrete and Continuous Boundary Problems
  year: 1964
  ident: e_1_2_6_3_1
  contributor:
    fullname: Atkinson F. V.
– ident: e_1_2_6_29_1
  doi: 10.1016/j.laa.2005.11.025
SSID ssj0009976
Score 2.0356448
Snippet Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous spectrum of...
Abstract Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency indices and absolutely continuous...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 323
SubjectTerms absolutely continuous spectrum
deficiency indices
Eigenvalues
MSC Primary: 39A20
Secondary: 47A55
Title Deficiency indices and spectrum of fourth order difference equations with unbounded coefficients
URI https://api.istex.fr/ark:/67375/WNG-C0W39JS9-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmana.201200161
https://www.proquest.com/docview/1317491581
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctVBYYeCPKSx4QTKHN2x5RS0FIMABVuxnbtYVUkQJJJcSn585pQsuCBKOlxEl8tu9v5_w7Qk6sSRiLufE0eCcvYib1FNjeSyOuGSw4dOggrrd3yXU_uhnGw7lT_CUfot5ww5Hh5msc4FLlrW9oKEZ3YmhW4FQLTMJ-mGJMV_f-mx_Fucsu53K2gqcdVtTGdtBavH3BKy1jA38sSM554eo8T2-dyOqdy4CT8fm0UOf68wfO8T8ftUHWZrKUXpT9aJMsmWyLrN7WTNd8mzx1DdIm8KgmxR_dMMFQmY2oO6v5Pn2hE0st1FM8U8fzpFXuFW2oeSuJ4jnFfV86zRRmczIjqifGlrUW-Q7p9y4fO9feLD-Dp0Gl-J5vdDCSLJCJiZhvfKasNAwRgJhKNG7L0Kba13bEpARlpWLHMwxRlRibtFW4SxrZJDN7hPKQJaCErOPZs1gryRkUFKyVLQi0oEnOKvuI1xLDIUrgciCwzUTdZk1y6sxXXybfxxi8lsZicHclOu1ByG8euAib5LCyr5iN21z4IKci7scM6gmcoX55nMDEC3Vp_y83HZCVwOXYwMC2Q9IAk5kjUDqFOna9-QvkfvNh
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-swEB6xHIAD8FhEWX1Aj1OgWWsfEVvh0R5YBDdju7aQKlKgrYT49cw4TXjlggRHS7GTeDyez_b4-wB2nc04T4UNDEanIOG2EWi0fdBIhOG44DCxJ3FttbPmbXJxn5bZhHQXpuCHqDbcyDP8fE0OThvSB5-soZTeSblZkYctkzCNPh-TiMHx1SeDlBBeX86rtmKsvS95G-vRwXj9sbg0TV38NgY6_4euPvacLoAuv7pIOenuDwd637x_IXT81W8twvwImbLDYij9gQmbL8Fcq6J17S_Dw7Elwgm6rcnorBvnGKbyDvPXNV-HT6znmMN2Bo_MU3qyUn7FWGZfClLxPqOtXzbMNQk62Q4zPeuKVgf9Fbg9Pbk5agYjiYbAIFAJg9CaqKN4pDKb8NCGXDtlObEAkppoWlexa5jQuA5XCsGVTj2lYUzAxLqsruNVmMp7uV0DJmKeIRhyntKep0YrwbGgcbnsEKNFNdgrDSSfCyYOWXAuR5L6TFZ9VoO_3n7VY-q1S_lrjVTetc_kUf0uFhfXQsY12CwNLEeu25chIqpEhCnHdiJvqW9eJ0l7oSqt_6TSDsw0b1qX8vK8_W8DZiMvuUF5bpswheazWwh8BnrbD-0PJDn3ew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHLBKCAzuirD4gOAWy1z4iStkrxCJ6M7ZjC6kiBdpKiKfH4zSBckGCo6XESTy257cz_gZgx-iU0oRpT1nv5MVU1z1pbe_VY6aoXXCoyEFcr1rp6X183k7a307xF3yIasMNR4abr3GAv2Tm4AsaitGdGJoVOtUyDpNxGvkY1NW4-QJIMebSy7mkrdbVtktsox8ejN4_4pYmsYXfRzTnd-XqXE9zDkT50kXESWd_0Jf76uMHz_E_XzUPs0NdSg6LjrQAYzpfhJmrCuraW4LHhkbcBJ7VJPin284wROQZcYc13wbPpGuIsfX0n4gDepIy-YrSRL8WSPEewY1fMsglpnPSGVFdbYpa-71luG8e3x2desMEDZ6yMiXwAq3CTNBQpDqmgQ6oNEJTZABiLtHEF5Gpq0CZjAphpZVMHNAwQlmiTerLaAUm8m6uV4GwiKZWChkHtKeJkoJRW5B2sWysQgtrsFfah78UHA5eEJdDjm3Gqzarwa4zX3WZeOtg9Fo94Q-tE37kP0Ts_JbxqAYbpX35cOD2eGD1VMyChNp6QmeoXx7HMfNCVVr7y03bMHXdaPLLs9bFOkyHLt8GBrltwIS1nt60qqcvt1zH_gQ84_Yq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficiency+indices+and+spectrum+of+fourth+order+difference+equations+with+unbounded+coefficients&rft.jtitle=Mathematische+Nachrichten&rft.au=Agure%2C+John+Ogonji&rft.au=Ambogo%2C+David+Otieno&rft.au=Nyamwala%2C+Fredrick+Oluoch&rft.date=2013-03-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0025-584X&rft.eissn=1522-2616&rft.volume=286&rft.issue=4&rft.spage=323&rft.epage=339&rft_id=info:doi/10.1002%2Fmana.201200161&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_C0W39JS9_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-584X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-584X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-584X&client=summon