Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices
•Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening efforts.•Google Street View (GSV) images and machine learning algorithms are used.•It might be biased if we use urban green cover as the only do...
Saved in:
Published in | Landscape and urban planning Vol. 191; p. 103434 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening efforts.•Google Street View (GSV) images and machine learning algorithms are used.•It might be biased if we use urban green cover as the only dominant criterion.
The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban greenery and planning practices. As a response to this situation, we proposed an actionable approach for quantifying the daily exposure of urban residents to eye-level street greenery by integrating high resolution measurements on both greenery and accessibility. Google Street View (GSV) images in Singapore were collected and extracted through machine learning algorithms to achieve an accurate measurement on visible greenery. Street networks collected from Open Street Map (OSM) were analysed through spatial design network analysis (sDNA) to quantify the accessibility value of each street. The integration of street greenery and accessibility helps to measure greenery from a human-centred perspective, and it provides a decision-support tool for urban planners to highlight areas with prioritisation for planning interventions. Moreover, the performance between GSV-based street greenery and the urban green cover mapped by remote sensing was compared to justify the contribution of this new measurement. It suggested there was a mismatch between these two measurements, i.e., existing top-down viewpoint through satellites might not be equivalent to the benefits enjoyed by city residents. In short, this analytical approach contributes to a growing trend in integrating large, freely-available datasets with machine learning to inform planners, and it makes a step forward for urban planning practices through focusing on the human-scale measurement of accessed street greenery. |
---|---|
AbstractList | •Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening efforts.•Google Street View (GSV) images and machine learning algorithms are used.•It might be biased if we use urban green cover as the only dominant criterion.
The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban greenery and planning practices. As a response to this situation, we proposed an actionable approach for quantifying the daily exposure of urban residents to eye-level street greenery by integrating high resolution measurements on both greenery and accessibility. Google Street View (GSV) images in Singapore were collected and extracted through machine learning algorithms to achieve an accurate measurement on visible greenery. Street networks collected from Open Street Map (OSM) were analysed through spatial design network analysis (sDNA) to quantify the accessibility value of each street. The integration of street greenery and accessibility helps to measure greenery from a human-centred perspective, and it provides a decision-support tool for urban planners to highlight areas with prioritisation for planning interventions. Moreover, the performance between GSV-based street greenery and the urban green cover mapped by remote sensing was compared to justify the contribution of this new measurement. It suggested there was a mismatch between these two measurements, i.e., existing top-down viewpoint through satellites might not be equivalent to the benefits enjoyed by city residents. In short, this analytical approach contributes to a growing trend in integrating large, freely-available datasets with machine learning to inform planners, and it makes a step forward for urban planning practices through focusing on the human-scale measurement of accessed street greenery. The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban greenery and planning practices. As a response to this situation, we proposed an actionable approach for quantifying the daily exposure of urban residents to eye-level street greenery by integrating high resolution measurements on both greenery and accessibility. Google Street View (GSV) images in Singapore were collected and extracted through machine learning algorithms to achieve an accurate measurement on visible greenery. Street networks collected from Open Street Map (OSM) were analysed through spatial design network analysis (sDNA) to quantify the accessibility value of each street. The integration of street greenery and accessibility helps to measure greenery from a human-centred perspective, and it provides a decision-support tool for urban planners to highlight areas with prioritisation for planning interventions. Moreover, the performance between GSV-based street greenery and the urban green cover mapped by remote sensing was compared to justify the contribution of this new measurement. It suggested there was a mismatch between these two measurements, i.e., existing top-down viewpoint through satellites might not be equivalent to the benefits enjoyed by city residents. In short, this analytical approach contributes to a growing trend in integrating large, freely-available datasets with machine learning to inform planners, and it makes a step forward for urban planning practices through focusing on the human-scale measurement of accessed street greenery. |
ArticleNumber | 103434 |
Author | Song, Xiaoping Zeng, Wei Zhong, Teng Richards, Daniel Lu, Yi Zhuang, Yu Ye, Yu |
Author_xml | – sequence: 1 givenname: Yu surname: Ye fullname: Ye, Yu email: yye@tongji.edu.cn organization: Tongji University, Department of Architecture, College of Architecture and Urban Planning, China – sequence: 2 givenname: Daniel orcidid: 0000-0002-8196-8421 surname: Richards fullname: Richards, Daniel email: richards@arch.ethz.ch organization: ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, Singapore – sequence: 3 givenname: Yi orcidid: 0000-0001-7614-6661 surname: Lu fullname: Lu, Yi email: yilu24@cityu.edu.hk organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China – sequence: 4 givenname: Xiaoping surname: Song fullname: Song, Xiaoping email: song@arch.ethz.ch organization: ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, Singapore – sequence: 5 givenname: Yu surname: Zhuang fullname: Zhuang, Yu organization: Tongji University, Department of Architecture, College of Architecture and Urban Planning, China – sequence: 6 givenname: Wei orcidid: 0000-0002-5600-8824 surname: Zeng fullname: Zeng, Wei organization: Shenzhen Institutes of Advanced Technology, Shenzhen VisuCA Key Lab, China – sequence: 7 givenname: Teng surname: Zhong fullname: Zhong, Teng email: tengzh@connect.hku.hk organization: The University of Hong Kong, Department of Urban Planning and Design, Hong Kong SAR, China |
BookMark | eNqNkE9r3DAQxUVJIZs_30G99eLtSLZluZcSlqYNJPTSnsWsNE60eGVXkgv77SOzPZSeAsMMDG9-83hX7CJMgRj7IGArQKhPh-2IwS1xP5e5lSD0FkpJ_Y5thO5kpUDJC7Yp2r6S0KhLdpXSAQBEq8SGhSfCtEQfnrlDP544WkspkeMpR6LMn0sPFE-f-R1_WY4YqmRxJI7zHCe0L3yYIveh9OMK2VPOFHkxhIGvnsK6nSPa7Av4hr0fcEx0-3des1_3X3_uvlePP7497O4eK1u3Ta6GWkvUiFQ7lICN7Ya27VvR66brtQLhuhr2hA7bxu0bBXrARltFSsDgQNbX7OOZW0z-Xihlc_TJ0lgM0bQkI0WnyifZQZF-OUttnFKKNBjrM2Y_hRxLIkaAWZM2B_NP0mZN2kApqQuh_48wR3_EeHrT7e58SyWNP56iSdZTsOR8JJuNm_wbKK8VaqUr |
CitedBy_id | crossref_primary_10_1016_j_compenvurbsys_2024_102087 crossref_primary_10_3390_ijerph192013308 crossref_primary_10_1016_j_scs_2022_104291 crossref_primary_10_17208_jkpa_2021_08_56_4_194 crossref_primary_10_3390_buildings13112822 crossref_primary_10_1016_j_scs_2024_105262 crossref_primary_10_3390_ijerph19105897 crossref_primary_10_3390_land14030517 crossref_primary_10_1080_24694452_2022_2114417 crossref_primary_10_1016_j_ecolind_2023_110756 crossref_primary_10_1016_j_ufug_2020_126789 crossref_primary_10_3390_ijgi13080277 crossref_primary_10_1016_j_scs_2020_102664 crossref_primary_10_1016_j_ufug_2023_127917 crossref_primary_10_1177_23998083231172985 crossref_primary_10_3389_frsc_2023_1160995 crossref_primary_10_3390_ijerph16214241 crossref_primary_10_3390_ijgi13070254 crossref_primary_10_1016_j_trd_2023_103646 crossref_primary_10_3390_ijgi9100586 crossref_primary_10_48044_jauf_2023_030 crossref_primary_10_1016_j_landurbplan_2021_104131 crossref_primary_10_1016_j_compenvurbsys_2020_101547 crossref_primary_10_1016_j_tust_2022_104528 crossref_primary_10_3390_land13111750 crossref_primary_10_1016_j_ecolind_2020_106192 crossref_primary_10_1016_j_landurbplan_2022_104631 crossref_primary_10_3390_buildings14113332 crossref_primary_10_1016_j_ecolind_2024_112630 crossref_primary_10_26565_2410_7360_2021_55_18 crossref_primary_10_1016_j_cities_2024_105535 crossref_primary_10_1016_j_uclim_2023_101414 crossref_primary_10_1371_journal_pone_0273191 crossref_primary_10_3390_buildings14051408 crossref_primary_10_1016_j_aei_2021_101281 crossref_primary_10_3390_land12040834 crossref_primary_10_3390_ijerph19105798 crossref_primary_10_3390_ijgi12030108 crossref_primary_10_1016_j_buildenv_2024_112154 crossref_primary_10_3390_su13084208 crossref_primary_10_3390_ijerph19031664 crossref_primary_10_3390_land12112069 crossref_primary_10_1016_j_ufug_2020_126886 crossref_primary_10_1016_j_ufug_2024_128524 crossref_primary_10_3390_land14030610 crossref_primary_10_1016_j_ecolind_2022_109153 crossref_primary_10_1016_j_jag_2023_103537 crossref_primary_10_1016_j_scs_2020_102442 crossref_primary_10_3389_fpubh_2022_1013421 crossref_primary_10_1016_j_ecoinf_2024_102640 crossref_primary_10_1088_1757_899X_1203_3_032019 crossref_primary_10_3390_ijerph16101782 crossref_primary_10_3390_f13081192 crossref_primary_10_3390_land11101757 crossref_primary_10_3390_land13060885 crossref_primary_10_1177_23998083231224013 crossref_primary_10_1016_j_softx_2024_101981 crossref_primary_10_1016_j_xpro_2023_102778 crossref_primary_10_1016_j_compenvurbsys_2021_101626 crossref_primary_10_1016_j_ufug_2024_128536 crossref_primary_10_4236_cus_2024_124028 crossref_primary_10_1016_j_apgeog_2024_103388 crossref_primary_10_1016_j_ufug_2020_126871 crossref_primary_10_1016_j_scs_2023_104498 crossref_primary_10_3390_land11050612 crossref_primary_10_3390_su16020560 crossref_primary_10_1109_JSTARS_2020_3006241 crossref_primary_10_1038_s41598_025_93366_x crossref_primary_10_1016_j_scitotenv_2019_134843 crossref_primary_10_1007_s44212_025_00069_9 crossref_primary_10_3390_su11226424 crossref_primary_10_1016_j_isprsjprs_2025_02_015 crossref_primary_10_3390_s25030748 crossref_primary_10_1016_j_scitotenv_2020_143050 crossref_primary_10_1016_j_ecolind_2023_110557 crossref_primary_10_1016_j_ufug_2022_127612 crossref_primary_10_3390_rs13081591 crossref_primary_10_3390_su16219512 crossref_primary_10_1016_j_ufug_2022_127617 crossref_primary_10_3390_su17072882 crossref_primary_10_1016_j_landurbplan_2021_104217 crossref_primary_10_1007_s10940_021_09506_9 crossref_primary_10_3390_land11050728 crossref_primary_10_1016_j_buildenv_2024_111932 crossref_primary_10_1016_j_trd_2025_104657 crossref_primary_10_1111_exsy_13065 crossref_primary_10_1080_13467581_2024_2349746 crossref_primary_10_1080_13574809_2022_2066512 crossref_primary_10_3390_su142215011 crossref_primary_10_1016_j_wss_2025_100247 crossref_primary_10_1016_j_aej_2020_08_008 crossref_primary_10_1038_s41598_025_91106_9 crossref_primary_10_3390_ijerph20043274 crossref_primary_10_1016_j_ufug_2022_127827 crossref_primary_10_1038_s41598_023_49308_6 crossref_primary_10_1016_j_isprsjprs_2022_06_011 crossref_primary_10_1016_j_landurbplan_2022_104660 crossref_primary_10_3390_buildings15020206 crossref_primary_10_1016_j_foar_2020_11_003 crossref_primary_10_3389_fpubh_2020_00332 crossref_primary_10_3390_buildings12081167 crossref_primary_10_1038_s41598_023_49845_0 crossref_primary_10_1016_j_jth_2024_101897 crossref_primary_10_3390_bs12110462 crossref_primary_10_1016_j_landurbplan_2020_103773 crossref_primary_10_3390_atmos15050549 crossref_primary_10_1016_j_habitatint_2025_103333 crossref_primary_10_1016_j_healthplace_2024_103176 crossref_primary_10_1016_j_ufug_2021_127310 crossref_primary_10_1016_j_eiar_2024_107559 crossref_primary_10_3390_f11121347 crossref_primary_10_1016_j_landurbplan_2023_104714 crossref_primary_10_1038_s41597_022_01168_x crossref_primary_10_1016_j_jag_2024_104322 crossref_primary_10_1016_j_ufug_2024_128294 crossref_primary_10_3390_buildings13030715 crossref_primary_10_1016_j_landurbplan_2021_104230 crossref_primary_10_1080_00167223_2021_2019073 crossref_primary_10_1007_s11524_025_00971_2 crossref_primary_10_1016_j_scs_2024_105992 crossref_primary_10_1016_j_scs_2025_106229 crossref_primary_10_1038_s41597_024_03746_7 crossref_primary_10_1007_s10980_021_01378_5 crossref_primary_10_1016_j_jth_2021_101312 crossref_primary_10_3390_land13050673 crossref_primary_10_3389_ffgc_2023_1071569 crossref_primary_10_3390_su13126594 crossref_primary_10_1016_j_isprsjprs_2025_01_018 crossref_primary_10_1016_j_cities_2023_104472 crossref_primary_10_3389_frsc_2024_1430071 crossref_primary_10_3390_buildings14103128 crossref_primary_10_1016_j_landusepol_2022_106048 crossref_primary_10_1016_j_scs_2019_101605 crossref_primary_10_1016_j_jth_2024_101958 crossref_primary_10_1016_j_trc_2021_103371 crossref_primary_10_1080_00330124_2024_2361407 crossref_primary_10_1016_j_ufug_2022_127811 crossref_primary_10_3390_ijerph192315858 crossref_primary_10_3390_f14101932 crossref_primary_10_1016_j_enbuild_2023_112813 crossref_primary_10_1016_j_landurbplan_2024_105204 crossref_primary_10_3390_s24103096 crossref_primary_10_3390_rs14143360 crossref_primary_10_1080_10095020_2024_2311866 crossref_primary_10_3390_f15071074 crossref_primary_10_3390_buildings14061759 crossref_primary_10_1080_17538947_2023_2283479 crossref_primary_10_1016_j_envres_2023_115344 crossref_primary_10_1177_00139165221147627 crossref_primary_10_1016_j_apgeog_2024_103287 crossref_primary_10_3390_su14031611 crossref_primary_10_3390_buildings15010113 crossref_primary_10_3390_su151813399 crossref_primary_10_1016_j_cities_2024_105022 crossref_primary_10_3390_f15010119 crossref_primary_10_3390_su13179598 crossref_primary_10_3390_ijgi10030138 crossref_primary_10_3390_electronics12081845 crossref_primary_10_1016_j_tra_2021_11_017 crossref_primary_10_1016_j_scitotenv_2021_151605 crossref_primary_10_1016_j_jag_2022_103078 crossref_primary_10_3390_ijgi12120486 crossref_primary_10_1016_j_cities_2020_103086 crossref_primary_10_1140_epjds_s13688_021_00313_7 crossref_primary_10_3390_rs15030568 crossref_primary_10_1016_j_ssresearch_2025_103142 crossref_primary_10_1016_j_ufug_2024_128493 crossref_primary_10_1177_23998083221108191 crossref_primary_10_1016_j_landurbplan_2023_104873 crossref_primary_10_3390_su12187434 crossref_primary_10_1088_2515_7620_acdecf crossref_primary_10_1016_j_landurbplan_2023_104756 crossref_primary_10_1108_ARCH_04_2024_0166 crossref_primary_10_1371_journal_pone_0258641 crossref_primary_10_3390_land13081161 crossref_primary_10_1016_j_ufug_2022_127488 crossref_primary_10_3390_su16093526 crossref_primary_10_3390_f15040655 crossref_primary_10_3390_su12114712 crossref_primary_10_1016_j_ufug_2023_127845 crossref_primary_10_1016_j_jag_2023_103205 crossref_primary_10_3390_su13020605 crossref_primary_10_1016_j_landurbplan_2022_104603 crossref_primary_10_3390_rs15051436 crossref_primary_10_1080_13467581_2024_2399739 crossref_primary_10_1016_j_ufug_2021_127161 crossref_primary_10_1080_13467581_2023_2270047 crossref_primary_10_1016_j_landurbplan_2021_104162 crossref_primary_10_3390_buildings15070998 crossref_primary_10_3390_urbansci8040257 crossref_primary_10_1016_j_ufug_2024_128540 crossref_primary_10_1016_j_jtrangeo_2023_103698 crossref_primary_10_3389_fpubh_2022_891736 crossref_primary_10_1371_journal_pone_0289305 crossref_primary_10_17208_jkpa_2024_08_59_4_38 crossref_primary_10_1016_j_jum_2023_09_003 crossref_primary_10_3390_su15107782 crossref_primary_10_1177_2399808320962511 crossref_primary_10_1016_j_dib_2024_111009 crossref_primary_10_3390_ijerph192416918 crossref_primary_10_3390_rs13234889 crossref_primary_10_1016_j_ufug_2024_128313 crossref_primary_10_9715_KILA_2023_51_6_061 crossref_primary_10_3390_f15060983 crossref_primary_10_1016_j_ufug_2021_127027 crossref_primary_10_1016_j_ufug_2021_127386 crossref_primary_10_3390_su12083192 crossref_primary_10_1016_j_jclepro_2021_128022 crossref_primary_10_3390_land12101957 crossref_primary_10_1016_j_buildenv_2024_112511 crossref_primary_10_1016_j_landurbplan_2021_104181 crossref_primary_10_3390_buildings14071982 crossref_primary_10_1016_j_landurbplan_2024_105152 crossref_primary_10_3390_buildings13071612 crossref_primary_10_1016_j_landurbplan_2023_104780 crossref_primary_10_1270_jsbbs_21073 crossref_primary_10_3390_ijgi11100504 crossref_primary_10_1016_j_ufug_2021_127153 crossref_primary_10_1016_j_buildenv_2021_107883 crossref_primary_10_3390_su11061741 crossref_primary_10_1016_j_landurbplan_2022_104494 crossref_primary_10_1186_s40249_021_00824_5 crossref_primary_10_1073_pnas_2220417120 crossref_primary_10_1007_s12652_021_03586_y crossref_primary_10_3390_ijgi11110537 |
Cites_doi | 10.1177/00139160121973124 10.1016/j.habitatint.2014.04.004 10.1016/j.cities.2013.02.001 10.1016/j.cities.2011.11.008 10.1016/j.landurbplan.2012.04.005 10.1016/j.socscimed.2018.05.022 10.1068/b250059 10.1080/02723638.2017.1381536 10.1016/j.landurbplan.2008.12.004 10.3390/ijerph15081576 10.1016/j.ufug.2009.06.003 10.1016/j.landurbplan.2015.12.015 10.1016/j.apgeog.2016.09.024 10.1016/j.landurbplan.2014.08.005 10.1016/j.landurbplan.2017.05.010 10.1016/j.landurbplan.2008.01.002 10.3390/ijgi4031166 10.1016/j.habitatint.2015.02.003 10.51347/jum.v18i2.3997 10.1215/08992363-2841808 10.1007/s11252-014-0343-6 10.1057/s41289-016-0035-3 10.1016/j.landurbplan.2016.07.010 10.1016/j.amepre.2010.09.034 10.1037/0022-3514.71.2.230 10.1016/j.scitotenv.2015.06.142 10.1068/b12970 10.1093/jof/103.8.396 10.1016/j.ecolind.2017.01.028 10.1016/j.ufug.2016.06.002 10.1061/(ASCE)UP.1943-5444.0000034 10.1016/j.cities.2012.06.017 10.1016/j.cities.2015.10.011 10.1016/j.landurbplan.2003.08.003 10.1016/j.jenvp.2009.03.002 10.1016/j.ufug.2015.06.006 10.1016/j.ecolind.2013.11.011 10.1016/j.cities.2013.06.011 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.landurbplan.2018.08.028 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sociology & Social History Ecology Environmental Sciences |
EISSN | 1872-6062 |
ExternalDocumentID | 10_1016_j_landurbplan_2018_08_028 S0169204618309940 |
GeographicLocations | Singapore |
GeographicLocations_xml | – name: Singapore |
GroupedDBID | --K --M .-4 .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JO AABNK AABVA AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYOK ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABMMH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACIUM ACKIV ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HMY HVGLF HZ~ IHE J1W KCYFY KOM LPU LW9 LY9 M3Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SEN SES SEW SPCBC SSA SSB SSJ SSO SSS SSZ T5K TN5 WUQ XOL Y6R ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c354t-f382a8aae3da20a4c7f55951984798601d730beada54db4608fa48c6e610fd023 |
IEDL.DBID | .~1 |
ISSN | 0169-2046 |
IngestDate | Fri Jul 11 05:07:47 EDT 2025 Tue Jul 01 01:45:26 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Fri Feb 23 02:19:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Google Street View Human-scale Visible greenery Accessible greenery Space syntax Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-f382a8aae3da20a4c7f55951984798601d730beada54db4608fa48c6e610fd023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8196-8421 0000-0001-7614-6661 0000-0002-5600-8824 |
PQID | 2176354270 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2176354270 crossref_citationtrail_10_1016_j_landurbplan_2018_08_028 crossref_primary_10_1016_j_landurbplan_2018_08_028 elsevier_sciencedirect_doi_10_1016_j_landurbplan_2018_08_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Landscape and urban planning |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nordh, Hartig, Hagerhall, Fry (b0185) 2009; 8 Li, Zhang, Li, Ricard, Meng, Zhang (b0145) 2015; 14 Barau (b0020) 2015; 47 Jiang, Chang, Sullivan (b0095) 2014; 132 Nowak, Greenfield (b0190) 2012; 107 LTA. (2014). Singapore land transport: Statistics in brief. Accessed 22.06.16. Jim, Shan (b0100) 2013; 31 Bargh, Chen, Burrows (b0025) 1996; 71 Krellenberg, Welz, Reyes-Päcke (b0110) 2014; 44 Richards, Edwards (b0200) 2017; 77 Ye, van Nes (b0245) 2013; 4 Erath, van Eggermond, Ordonez, Axhausen (b0065) 2016 Comber, Brunsdon, Green (b0060) 2008; 86 Camacho-Cervantes, Schondube, Castillo, MacGregor-Fors (b0035) 2014; 17 Tan, Wang, Sia (b0215) 2013; 32 Arbogast, Kane, Kirwan, Hertel (b0010) 2009; 29 Randall, Churchill, Baetz (b0195) 2003; 30 Chen, Xu, Gao (b0045) 2015; 536 Hillier, Penn, Banister, Xu (b0080) 1998; 25 Lu (b9000) 2018; 15 Kendall, A., Badrinarayanan, V., & Cipolla, R. (2015). Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680. Ye, Li, Liu (b0260) 2018; 39 Li, Zhang, Li, Kuzovkina (b0150) 2016; 18 Yin, Wang (b0265) 2016; 76 . Chiesura (b0055) 2004; 68 Kuo, Sullivan (b0115) 2001; 33 Al_Sayed, Turner, Hillier, Iida, Penn (b0005) 2014 Ye, Yeh, Zhuang, van Nes, Liu (b0255) 2017; 22 Wolf (b0230) 2005; 103 Hillier (b0075) 1996 Li, Ratti, Seiferling (b0155) 2017 Hillier, Iida (b0085) 2005 Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561. Chen, Wang (b0040) 2013; 6 Chiaradia, A., Cooper, C., & Webster, C. (2013), sDNA: a software for spatial design network analysis. Retrieved June 19, 2016, from Long, Liu (b0160) 2017; 12 Ye, van Nes (b0250) 2014; 18 Townsend (b0220) 2015; 27 Lu, Sarkar, Xiao (b9005) 2018; 208 Google, 2014. Google Street View Image API. Naik, Philipoom, Raskar, Hidalgo (b0180) 2014 Lee, Kim (b0125) 2016; 54 Jiang, Deal, Pan, Larsen, Hsieh, Chang, Sullivan (b0090) 2017; 157 Lee, Chua (b0130) 1992 Li, Zhang, Li (b0140) 2015; 4 van Nes (b0225) 2002 Batty (b0030) 2012; 29 Long, Ye (b0165) 2016; 8 Rundle, Bader, Richards, Neckerman, Teitler (b0205) 2011; 40 Yang, Zhao, Mcbride, Gong (b0240) 2009; 91 La Rosa (b0120) 2014; 42 Seiferling, Naik, Ratti, Proulx (b0210) 2017; 165 Wong, Tan, Tan, Sia, Wong (b0235) 2010; 136 Li, Sullivan (b0135) 2016; 148 Arbogast (10.1016/j.landurbplan.2018.08.028_b0010) 2009; 29 Hillier (10.1016/j.landurbplan.2018.08.028_b0080) 1998; 25 Li (10.1016/j.landurbplan.2018.08.028_b0155) 2017 10.1016/j.landurbplan.2018.08.028_b0015 Ye (10.1016/j.landurbplan.2018.08.028_b0260) 2018; 39 Nordh (10.1016/j.landurbplan.2018.08.028_b0185) 2009; 8 10.1016/j.landurbplan.2018.08.028_b0050 Erath (10.1016/j.landurbplan.2018.08.028_b0065) 2016 10.1016/j.landurbplan.2018.08.028_b0170 Comber (10.1016/j.landurbplan.2018.08.028_b0060) 2008; 86 Li (10.1016/j.landurbplan.2018.08.028_b0140) 2015; 4 Ye (10.1016/j.landurbplan.2018.08.028_b0245) 2013; 4 Barau (10.1016/j.landurbplan.2018.08.028_b0020) 2015; 47 Yin (10.1016/j.landurbplan.2018.08.028_b0265) 2016; 76 Hillier (10.1016/j.landurbplan.2018.08.028_b0075) 1996 Chiesura (10.1016/j.landurbplan.2018.08.028_b0055) 2004; 68 Lee (10.1016/j.landurbplan.2018.08.028_b0125) 2016; 54 Camacho-Cervantes (10.1016/j.landurbplan.2018.08.028_b0035) 2014; 17 Long (10.1016/j.landurbplan.2018.08.028_b0160) 2017; 12 Randall (10.1016/j.landurbplan.2018.08.028_b0195) 2003; 30 Jiang (10.1016/j.landurbplan.2018.08.028_b0090) 2017; 157 La Rosa (10.1016/j.landurbplan.2018.08.028_b0120) 2014; 42 Yang (10.1016/j.landurbplan.2018.08.028_b0240) 2009; 91 Jiang (10.1016/j.landurbplan.2018.08.028_b0095) 2014; 132 Lu (10.1016/j.landurbplan.2018.08.028_b9000) 2018; 15 Kuo (10.1016/j.landurbplan.2018.08.028_b0115) 2001; 33 Chen (10.1016/j.landurbplan.2018.08.028_b0040) 2013; 6 Jim (10.1016/j.landurbplan.2018.08.028_b0100) 2013; 31 Al_Sayed (10.1016/j.landurbplan.2018.08.028_b0005) 2014 Batty (10.1016/j.landurbplan.2018.08.028_b0030) 2012; 29 Li (10.1016/j.landurbplan.2018.08.028_b0135) 2016; 148 Lee (10.1016/j.landurbplan.2018.08.028_b0130) 1992 Seiferling (10.1016/j.landurbplan.2018.08.028_b0210) 2017; 165 10.1016/j.landurbplan.2018.08.028_b0070 Tan (10.1016/j.landurbplan.2018.08.028_b0215) 2013; 32 Long (10.1016/j.landurbplan.2018.08.028_b0165) 2016; 8 Bargh (10.1016/j.landurbplan.2018.08.028_b0025) 1996; 71 Richards (10.1016/j.landurbplan.2018.08.028_b0200) 2017; 77 Nowak (10.1016/j.landurbplan.2018.08.028_b0190) 2012; 107 Wolf (10.1016/j.landurbplan.2018.08.028_b0230) 2005; 103 van Nes (10.1016/j.landurbplan.2018.08.028_b0225) 2002 10.1016/j.landurbplan.2018.08.028_b0105 Krellenberg (10.1016/j.landurbplan.2018.08.028_b0110) 2014; 44 Li (10.1016/j.landurbplan.2018.08.028_b0150) 2016; 18 Hillier (10.1016/j.landurbplan.2018.08.028_b0085) 2005 Li (10.1016/j.landurbplan.2018.08.028_b0145) 2015; 14 Chen (10.1016/j.landurbplan.2018.08.028_b0045) 2015; 536 Rundle (10.1016/j.landurbplan.2018.08.028_b0205) 2011; 40 Lu (10.1016/j.landurbplan.2018.08.028_b9005) 2018; 208 Townsend (10.1016/j.landurbplan.2018.08.028_b0220) 2015; 27 Ye (10.1016/j.landurbplan.2018.08.028_b0255) 2017; 22 Wong (10.1016/j.landurbplan.2018.08.028_b0235) 2010; 136 Ye (10.1016/j.landurbplan.2018.08.028_b0250) 2014; 18 Naik (10.1016/j.landurbplan.2018.08.028_b0180) 2014 |
References_xml | – volume: 136 start-page: 330 year: 2010 end-page: 338 ident: b0235 article-title: Perception studies of vertical greenery systems in Singapore publication-title: Journal of Urban Planning and Development – volume: 47 start-page: 285 year: 2015 end-page: 297 ident: b0020 article-title: Perceptions and contributions of households towards sustainable urban green infrastructure in Malaysia publication-title: Habitat International – start-page: 793 year: 2014 end-page: 799 ident: b0180 article-title: Streetscore–Predicting the perceived safety of one million streetscapes publication-title: 2014 IEEE Conference on computer vision and pattern recognition workshops – volume: 25 start-page: 59 year: 1998 end-page: 84 ident: b0080 article-title: Configurational modelling of urban movement network publication-title: Environment and Planning B: Planning and Design – volume: 22 start-page: 73 year: 2017 end-page: 90 ident: b0255 article-title: “Form Syntax” as a contribution to geodesign: A morphological tool for urbanity-making in urban design publication-title: URBAN DESIGN International – year: 1992 ident: b0130 article-title: More than a garden city – year: 2016 ident: b0065 article-title: Walkability and pedestrian route choice – volume: 40 start-page: 94 year: 2011 end-page: 100 ident: b0205 article-title: Using Google Street View to audit neighborhood environments publication-title: American Journal of Preventive Medicine – volume: 31 start-page: 123 year: 2013 end-page: 131 ident: b0100 article-title: Socioeconomic effect on perception of urban green spaces in Guangzhou, China publication-title: Cities – start-page: 475 year: 2005 end-page: 490 ident: b0085 article-title: Network and psychological effects in urban movement publication-title: Proceedings of 5th international conference on spatial information theory – reference: > Accessed 22.06.16. – volume: 165 start-page: 93 year: 2017 end-page: 101 ident: b0210 article-title: Green streets–Quantifying and mapping urban trees with street-level imagery and computer vision publication-title: Landscape and Urban Planning – volume: 68 start-page: 129 year: 2004 end-page: 138 ident: b0055 article-title: The role of urban parks for the sustainable city publication-title: Landscape and Urban Planning – volume: 91 start-page: 97 year: 2009 end-page: 104 ident: b0240 article-title: Can you see green? Assessing the visibility of urban forests in cities publication-title: Landscape and Urban Planning – volume: 157 start-page: 270 year: 2017 end-page: 281 ident: b0090 article-title: Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density publication-title: Landscape and Urban Planning – volume: 4 start-page: 1166 year: 2015 end-page: 1183 ident: b0140 article-title: Does the visibility of greenery increase perceived safety in urban areas? Evidence from the place pulse 1.0 dataset publication-title: ISPRS International Journal of Geo-Information – volume: 14 start-page: 675 year: 2015 end-page: 685 ident: b0145 article-title: Assessing street-level urban greenery using Google Street View and a modified green view index publication-title: Urban Forestry and Urban Greening – volume: 30 start-page: 541 year: 2003 end-page: 563 ident: b0195 article-title: A GIS-based decision support system for neighbourhood greening publication-title: Environment and Planning B: Planning and Design – volume: 71 start-page: 230 year: 1996 end-page: 244 ident: b0025 article-title: Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action publication-title: Journal of Personality and Social Psychology – volume: 44 start-page: 11 year: 2014 end-page: 21 ident: b0110 article-title: Urban green areas and their potential for social interaction–A case study of a socio-economically mixed neighbourhood in Santiago de Chile publication-title: Habitat International – start-page: 341 year: 2017 end-page: 356 ident: b0155 article-title: Mapping urban landscapes along streets using google street view publication-title: International cartographic conference – volume: 29 start-page: S9 year: 2012 end-page: S16 ident: b0030 article-title: Building a science of cities publication-title: Cities – reference: LTA. (2014). Singapore land transport: Statistics in brief. < – volume: 103 start-page: 396 year: 2005 end-page: 400 ident: b0230 article-title: Business district streetscapes, trees, and consumer response publication-title: Journal of Forestry – volume: 76 start-page: 147 year: 2016 end-page: 153 ident: b0265 article-title: Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery publication-title: Applied Geography – year: 2002 ident: b0225 article-title: Road building and urban change: The effect of ring roads on the dispersal of shop and retail in Western European towns and cities – volume: 42 start-page: 122 year: 2014 end-page: 134 ident: b0120 article-title: Accessibility to greenspaces: GIS based indicators for sustainable planning in a dense urban context publication-title: Ecological Indicators – volume: 17 start-page: 761 year: 2014 end-page: 773 ident: b0035 article-title: How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city publication-title: Urban Ecosystems – volume: 6 start-page: 62 year: 2013 end-page: 68 ident: b0040 article-title: Urban forest development in China: Natural endowment or socioeconomic product? publication-title: Cities – volume: 32 start-page: 24 year: 2013 end-page: 32 ident: b0215 article-title: Perspectives on five decades of the urban greening of Singapore publication-title: Cities – volume: 29 start-page: 450 year: 2009 end-page: 456 ident: b0010 article-title: Vegetation and outdoor recess time at elementary schools: What are the connections? publication-title: Journal of Environmental Psychology – volume: 54 start-page: 20 year: 2016 end-page: 27 ident: b0125 article-title: South Korea's urban green energy strategies: Policy framework and local responses under the green growth publication-title: Cities – volume: 15 start-page: 1576 year: 2018 ident: b9000 article-title: The association of urban greenness and walking behavior: Using google street view and deep learning techniques to estimate residents’ exposure to urban greenness publication-title: International Journal of Environmental Research and Public Health – reference: Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561. – volume: 33 start-page: 543 year: 2001 end-page: 571 ident: b0115 article-title: Aggression and violence in the inner city effects of environment via mental fatigue publication-title: Environment and Behavior – volume: 208 start-page: 41 year: 2018 end-page: 49 ident: b9005 article-title: The effect of street-level greenery on walking behavior: Evidence from Hong Kong publication-title: Social Science and Medicine – volume: 8 start-page: 225 year: 2009 end-page: 235 ident: b0185 article-title: Components of small urban parks that predict the possibility for restoration publication-title: Urban Forestry & Urban Greening – volume: 107 start-page: 21 year: 2012 end-page: 30 ident: b0190 article-title: Tree and impervious cover in the United States publication-title: Landscape and Urban Planning – volume: 536 start-page: 232 year: 2015 end-page: 244 ident: b0045 article-title: Assessing visual green effects of individual urban trees using airborne Lidar data publication-title: Science of the Total Environment – reference: . – volume: 8 start-page: 39 year: 2016 end-page: 45 ident: b0165 article-title: Human-scale urban form: Measurements, performances, and urban planning & design interventions publication-title: South Architecture – volume: 27 start-page: 201 year: 2015 end-page: 212 ident: b0220 article-title: Cities of data: Examining the new urban science publication-title: Public Culture – volume: 18 start-page: 97 year: 2014 end-page: 118 ident: b0250 article-title: Quantitative tools in urban morphology: Combining space syntax, spacematrix and mixed-use index in a GIS framework publication-title: Urban Morphology – volume: 4 start-page: 18 year: 2013 end-page: 37 ident: b0245 article-title: Measuring urban maturation processes in Dutch and Chinese new towns: Combining street network configuration with building density and degree of land use diversification through GIS publication-title: Journal of Space Syntax – reference: Google, 2014. Google Street View Image API. < – volume: 77 start-page: 31 year: 2017 end-page: 40 ident: b0200 article-title: Quantifying street tree regulating ecosystem services using Google Street View publication-title: Ecological Indicators – volume: 132 start-page: 26 year: 2014 end-page: 36 ident: b0095 article-title: A dose of nature: Tree cover, stress reduction, and gender differences publication-title: Landscape and Urban Planning – reference: Kendall, A., Badrinarayanan, V., & Cipolla, R. (2015). Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680. – volume: 148 start-page: 149 year: 2016 end-page: 158 ident: b0135 article-title: Impact of views to school landscapes on recovery from stress and mental fatigue publication-title: Landscape and Urban Planning – volume: 86 start-page: 103 year: 2008 end-page: 114 ident: b0060 article-title: Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups publication-title: Landscape and Urban Planning – volume: 18 start-page: 163 year: 2016 end-page: 172 ident: b0150 article-title: Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut publication-title: Urban Forestry & Urban Greening – reference: Chiaradia, A., Cooper, C., & Webster, C. (2013), sDNA: a software for spatial design network analysis. Retrieved June 19, 2016, from – year: 1996 ident: b0075 article-title: Space is the machine: A configurational theory of architecture – volume: 39 start-page: 631 year: 2018 end-page: 652 ident: b0260 article-title: How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China publication-title: Urban Geography – year: 2014 ident: b0005 article-title: Space syntax methodology – volume: 12 year: 2017 ident: b0160 article-title: How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View publication-title: PLloS One – volume: 33 start-page: 543 issue: 4 year: 2001 ident: 10.1016/j.landurbplan.2018.08.028_b0115 article-title: Aggression and violence in the inner city effects of environment via mental fatigue publication-title: Environment and Behavior doi: 10.1177/00139160121973124 – start-page: 793 year: 2014 ident: 10.1016/j.landurbplan.2018.08.028_b0180 article-title: Streetscore–Predicting the perceived safety of one million streetscapes – ident: 10.1016/j.landurbplan.2018.08.028_b0050 – ident: 10.1016/j.landurbplan.2018.08.028_b0105 – volume: 44 start-page: 11 year: 2014 ident: 10.1016/j.landurbplan.2018.08.028_b0110 article-title: Urban green areas and their potential for social interaction–A case study of a socio-economically mixed neighbourhood in Santiago de Chile publication-title: Habitat International doi: 10.1016/j.habitatint.2014.04.004 – volume: 32 start-page: 24 year: 2013 ident: 10.1016/j.landurbplan.2018.08.028_b0215 article-title: Perspectives on five decades of the urban greening of Singapore publication-title: Cities doi: 10.1016/j.cities.2013.02.001 – ident: 10.1016/j.landurbplan.2018.08.028_b0070 – volume: 29 start-page: S9 issue: 2 year: 2012 ident: 10.1016/j.landurbplan.2018.08.028_b0030 article-title: Building a science of cities publication-title: Cities doi: 10.1016/j.cities.2011.11.008 – volume: 4 start-page: 18 issue: 1 year: 2013 ident: 10.1016/j.landurbplan.2018.08.028_b0245 article-title: Measuring urban maturation processes in Dutch and Chinese new towns: Combining street network configuration with building density and degree of land use diversification through GIS publication-title: Journal of Space Syntax – year: 2014 ident: 10.1016/j.landurbplan.2018.08.028_b0005 – volume: 107 start-page: 21 issue: 1 year: 2012 ident: 10.1016/j.landurbplan.2018.08.028_b0190 article-title: Tree and impervious cover in the United States publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2012.04.005 – year: 2016 ident: 10.1016/j.landurbplan.2018.08.028_b0065 – volume: 208 start-page: 41 year: 2018 ident: 10.1016/j.landurbplan.2018.08.028_b9005 article-title: The effect of street-level greenery on walking behavior: Evidence from Hong Kong publication-title: Social Science and Medicine doi: 10.1016/j.socscimed.2018.05.022 – year: 1996 ident: 10.1016/j.landurbplan.2018.08.028_b0075 – volume: 25 start-page: 59 issue: 1 year: 1998 ident: 10.1016/j.landurbplan.2018.08.028_b0080 article-title: Configurational modelling of urban movement network publication-title: Environment and Planning B: Planning and Design doi: 10.1068/b250059 – volume: 39 start-page: 631 issue: 4 year: 2018 ident: 10.1016/j.landurbplan.2018.08.028_b0260 article-title: How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China publication-title: Urban Geography doi: 10.1080/02723638.2017.1381536 – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.landurbplan.2018.08.028_b0160 article-title: How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View publication-title: PLloS One – volume: 91 start-page: 97 issue: 2 year: 2009 ident: 10.1016/j.landurbplan.2018.08.028_b0240 article-title: Can you see green? Assessing the visibility of urban forests in cities publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2008.12.004 – volume: 15 start-page: 1576 year: 2018 ident: 10.1016/j.landurbplan.2018.08.028_b9000 article-title: The association of urban greenness and walking behavior: Using google street view and deep learning techniques to estimate residents’ exposure to urban greenness publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15081576 – start-page: 341 year: 2017 ident: 10.1016/j.landurbplan.2018.08.028_b0155 article-title: Mapping urban landscapes along streets using google street view – year: 1992 ident: 10.1016/j.landurbplan.2018.08.028_b0130 – volume: 8 start-page: 225 issue: 4 year: 2009 ident: 10.1016/j.landurbplan.2018.08.028_b0185 article-title: Components of small urban parks that predict the possibility for restoration publication-title: Urban Forestry & Urban Greening doi: 10.1016/j.ufug.2009.06.003 – ident: 10.1016/j.landurbplan.2018.08.028_b0015 – volume: 148 start-page: 149 issue: 2 year: 2016 ident: 10.1016/j.landurbplan.2018.08.028_b0135 article-title: Impact of views to school landscapes on recovery from stress and mental fatigue publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2015.12.015 – volume: 76 start-page: 147 year: 2016 ident: 10.1016/j.landurbplan.2018.08.028_b0265 article-title: Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery publication-title: Applied Geography doi: 10.1016/j.apgeog.2016.09.024 – volume: 132 start-page: 26 year: 2014 ident: 10.1016/j.landurbplan.2018.08.028_b0095 article-title: A dose of nature: Tree cover, stress reduction, and gender differences publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2014.08.005 – volume: 8 start-page: 39 issue: 5 year: 2016 ident: 10.1016/j.landurbplan.2018.08.028_b0165 article-title: Human-scale urban form: Measurements, performances, and urban planning & design interventions publication-title: South Architecture – volume: 165 start-page: 93 year: 2017 ident: 10.1016/j.landurbplan.2018.08.028_b0210 article-title: Green streets–Quantifying and mapping urban trees with street-level imagery and computer vision publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2017.05.010 – volume: 86 start-page: 103 issue: 1 year: 2008 ident: 10.1016/j.landurbplan.2018.08.028_b0060 article-title: Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2008.01.002 – volume: 4 start-page: 1166 issue: 3 year: 2015 ident: 10.1016/j.landurbplan.2018.08.028_b0140 article-title: Does the visibility of greenery increase perceived safety in urban areas? Evidence from the place pulse 1.0 dataset publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi4031166 – volume: 47 start-page: 285 year: 2015 ident: 10.1016/j.landurbplan.2018.08.028_b0020 article-title: Perceptions and contributions of households towards sustainable urban green infrastructure in Malaysia publication-title: Habitat International doi: 10.1016/j.habitatint.2015.02.003 – volume: 18 start-page: 97 issue: 2 year: 2014 ident: 10.1016/j.landurbplan.2018.08.028_b0250 article-title: Quantitative tools in urban morphology: Combining space syntax, spacematrix and mixed-use index in a GIS framework publication-title: Urban Morphology doi: 10.51347/jum.v18i2.3997 – volume: 27 start-page: 201 issue: 2 (76) year: 2015 ident: 10.1016/j.landurbplan.2018.08.028_b0220 article-title: Cities of data: Examining the new urban science publication-title: Public Culture doi: 10.1215/08992363-2841808 – volume: 17 start-page: 761 issue: 3 year: 2014 ident: 10.1016/j.landurbplan.2018.08.028_b0035 article-title: How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city publication-title: Urban Ecosystems doi: 10.1007/s11252-014-0343-6 – volume: 22 start-page: 73 issue: 1 year: 2017 ident: 10.1016/j.landurbplan.2018.08.028_b0255 article-title: “Form Syntax” as a contribution to geodesign: A morphological tool for urbanity-making in urban design publication-title: URBAN DESIGN International doi: 10.1057/s41289-016-0035-3 – volume: 157 start-page: 270 issue: 6 year: 2017 ident: 10.1016/j.landurbplan.2018.08.028_b0090 article-title: Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2016.07.010 – volume: 40 start-page: 94 issue: 1 year: 2011 ident: 10.1016/j.landurbplan.2018.08.028_b0205 article-title: Using Google Street View to audit neighborhood environments publication-title: American Journal of Preventive Medicine doi: 10.1016/j.amepre.2010.09.034 – year: 2002 ident: 10.1016/j.landurbplan.2018.08.028_b0225 – volume: 71 start-page: 230 issue: 2 year: 1996 ident: 10.1016/j.landurbplan.2018.08.028_b0025 article-title: Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action publication-title: Journal of Personality and Social Psychology doi: 10.1037/0022-3514.71.2.230 – volume: 536 start-page: 232 year: 2015 ident: 10.1016/j.landurbplan.2018.08.028_b0045 article-title: Assessing visual green effects of individual urban trees using airborne Lidar data publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2015.06.142 – start-page: 475 year: 2005 ident: 10.1016/j.landurbplan.2018.08.028_b0085 article-title: Network and psychological effects in urban movement – volume: 30 start-page: 541 issue: 4 year: 2003 ident: 10.1016/j.landurbplan.2018.08.028_b0195 article-title: A GIS-based decision support system for neighbourhood greening publication-title: Environment and Planning B: Planning and Design doi: 10.1068/b12970 – volume: 103 start-page: 396 issue: 8 year: 2005 ident: 10.1016/j.landurbplan.2018.08.028_b0230 article-title: Business district streetscapes, trees, and consumer response publication-title: Journal of Forestry doi: 10.1093/jof/103.8.396 – volume: 77 start-page: 31 year: 2017 ident: 10.1016/j.landurbplan.2018.08.028_b0200 article-title: Quantifying street tree regulating ecosystem services using Google Street View publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2017.01.028 – volume: 18 start-page: 163 issue: 1 year: 2016 ident: 10.1016/j.landurbplan.2018.08.028_b0150 article-title: Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut publication-title: Urban Forestry & Urban Greening doi: 10.1016/j.ufug.2016.06.002 – volume: 136 start-page: 330 issue: 4 year: 2010 ident: 10.1016/j.landurbplan.2018.08.028_b0235 article-title: Perception studies of vertical greenery systems in Singapore publication-title: Journal of Urban Planning and Development doi: 10.1061/(ASCE)UP.1943-5444.0000034 – volume: 31 start-page: 123 issue: 2 year: 2013 ident: 10.1016/j.landurbplan.2018.08.028_b0100 article-title: Socioeconomic effect on perception of urban green spaces in Guangzhou, China publication-title: Cities doi: 10.1016/j.cities.2012.06.017 – volume: 54 start-page: 20 issue: 2 year: 2016 ident: 10.1016/j.landurbplan.2018.08.028_b0125 article-title: South Korea's urban green energy strategies: Policy framework and local responses under the green growth publication-title: Cities doi: 10.1016/j.cities.2015.10.011 – volume: 68 start-page: 129 issue: 1 year: 2004 ident: 10.1016/j.landurbplan.2018.08.028_b0055 article-title: The role of urban parks for the sustainable city publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2003.08.003 – ident: 10.1016/j.landurbplan.2018.08.028_b0170 – volume: 29 start-page: 450 issue: 4 year: 2009 ident: 10.1016/j.landurbplan.2018.08.028_b0010 article-title: Vegetation and outdoor recess time at elementary schools: What are the connections? publication-title: Journal of Environmental Psychology doi: 10.1016/j.jenvp.2009.03.002 – volume: 14 start-page: 675 issue: 3 year: 2015 ident: 10.1016/j.landurbplan.2018.08.028_b0145 article-title: Assessing street-level urban greenery using Google Street View and a modified green view index publication-title: Urban Forestry and Urban Greening doi: 10.1016/j.ufug.2015.06.006 – volume: 42 start-page: 122 year: 2014 ident: 10.1016/j.landurbplan.2018.08.028_b0120 article-title: Accessibility to greenspaces: GIS based indicators for sustainable planning in a dense urban context publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2013.11.011 – volume: 6 start-page: 62 issue: 35 year: 2013 ident: 10.1016/j.landurbplan.2018.08.028_b0040 article-title: Urban forest development in China: Natural endowment or socioeconomic product? publication-title: Cities doi: 10.1016/j.cities.2013.06.011 |
SSID | ssj0001561 |
Score | 2.650803 |
Snippet | •Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening... The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103434 |
SubjectTerms | Accessible greenery algorithms analytical methods artificial intelligence data collection decision support systems Google Street View Human-scale Machine learning prioritization remote sensing satellites Singapore social benefit Space syntax urban planning vegetation Visible greenery |
Title | Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices |
URI | https://dx.doi.org/10.1016/j.landurbplan.2018.08.028 https://www.proquest.com/docview/2176354270 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-tAEB9E8eFFtD7xmxHk3fKaprvJVrwUqVRFL0_B27Kb3TwqEkvTHnrxb3d2N7EqHgRPIWE3XzOZ-U125jcAJ7bDNTe5iTrKUIBiKWB1vjkqeKZ0zA2zIdviNh3es6sH_rAE500tjEurrG1_sOneWtdH2vXbbI9Ho_Y_xyOSOL5w0SWYw1zczljmtPzvyyLNg-KT0JMw7UVu9C84XuR4ueTB2USPaeuyvIRn83SN2b_2UZ-stXdBFxuwXmNH7Ifb24QlW7ZgdeB5p-ct2B4sitZoWP3VVi3Ye6tKwT8Y6nEx0IPMt6C88X8JyYOhUaOnOSrfQtEarPyCNf53mTl2Mj_FPvqOflFFcrXYsJEjwV4M_KvuJNrXByE9rypxXLdEwqYYq_oN9xeDu_NhVDdhiPIuZ9Oo6IpECaVs16gkVizPCgpCCPeRW-sJCucM2QhN-qg4M5qlsSgUE3lqCZcVhhDBNiyXz6XdAcxM2uNG2462hnEuNI-NIkGoDqeRutgF0bx2mdcM5a5RxpNsUtEe5TuJSScx6ZpoJmIXkrep40DT8Z1JZ41s5Qedk-ROvjP9uNEHSd-kW2hRpX2eVZLCPMJxLMnivZ9dYh_WaK8Xah8PYHk6mdlDAkFTfeS1_AhW-pfXw9tXwtYL9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9CTDAuCLohPgZ7SGi30DS1U3faBaGiwmgvFImbZcfO1AmFqmkPvfC382wnlCEOlXaKlNj58LPfR_ze7wdwZltcc5OZqKUMBSiWAlZnm6Ocd5SOuWE2ZFsM0_49u3ngD2twWdfCuLTKSvcHne61dXWmWY1mczIeN-8cjkji8MJFm9wcRnH7J0bL19EYnD8v8zwoQAmkhGk3cs034XSZ5OWyB-dTPaGjS_MSHs7TMbN_bKTeqWtvg652YLtyHvEivN8urNmiARs9Dzy9aMBeb1m1Rs2qZVs24PC1LAV_YCjIxYAPsvgCxcD_JiQThkaNHxeoPIeiNVj6HWv841Jz7HTxEy_QU_pFJQnWYg1HjuT3YgBgdTfRvkAI6XtVgZOKEwnraqzyK9xf9UaX_ahiYYiyNmezKKchVUIp2zYqiRXLOjlFIeT4kV3rCornDCkJTRNScWY0S2ORKyay1JJjlhtyCfZgvXgq7D5gx6RdbrRtaWsY50Lz2CgShGpxaqnzAxD1sMusgih3TBmPss5F-yvfSEw6iUnHopmIA0heu04CTscqnX7VspX_TDpJ9mSV7qf1fJC0KN1Oiyrs07yUFOeRI8eSTnz4f4_4Dp_7o8GtvL0e_j6CLbrSDYWQ32B9Np3bY_KIZvrEz_gXwQcNhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+daily+accessed+street+greenery%3A+A+human-scale+approach+for+informing+better+urban+planning+practices&rft.jtitle=Landscape+and+urban+planning&rft.au=Ye%2C+Yu&rft.au=Richards%2C+Daniel&rft.au=Lu%2C+Yi&rft.au=Song%2C+Xiaoping&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0169-2046&rft.eissn=1872-6062&rft.volume=191&rft_id=info:doi/10.1016%2Fj.landurbplan.2018.08.028&rft.externalDocID=S0169204618309940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2046&client=summon |