Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices

•Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening efforts.•Google Street View (GSV) images and machine learning algorithms are used.•It might be biased if we use urban green cover as the only do...

Full description

Saved in:
Bibliographic Details
Published inLandscape and urban planning Vol. 191; p. 103434
Main Authors Ye, Yu, Richards, Daniel, Lu, Yi, Song, Xiaoping, Zhuang, Yu, Zeng, Wei, Zhong, Teng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening efforts.•Google Street View (GSV) images and machine learning algorithms are used.•It might be biased if we use urban green cover as the only dominant criterion. The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban greenery and planning practices. As a response to this situation, we proposed an actionable approach for quantifying the daily exposure of urban residents to eye-level street greenery by integrating high resolution measurements on both greenery and accessibility. Google Street View (GSV) images in Singapore were collected and extracted through machine learning algorithms to achieve an accurate measurement on visible greenery. Street networks collected from Open Street Map (OSM) were analysed through spatial design network analysis (sDNA) to quantify the accessibility value of each street. The integration of street greenery and accessibility helps to measure greenery from a human-centred perspective, and it provides a decision-support tool for urban planners to highlight areas with prioritisation for planning interventions. Moreover, the performance between GSV-based street greenery and the urban green cover mapped by remote sensing was compared to justify the contribution of this new measurement. It suggested there was a mismatch between these two measurements, i.e., existing top-down viewpoint through satellites might not be equivalent to the benefits enjoyed by city residents. In short, this analytical approach contributes to a growing trend in integrating large, freely-available datasets with machine learning to inform planners, and it makes a step forward for urban planning practices through focusing on the human-scale measurement of accessed street greenery.
AbstractList •Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening efforts.•Google Street View (GSV) images and machine learning algorithms are used.•It might be biased if we use urban green cover as the only dominant criterion. The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban greenery and planning practices. As a response to this situation, we proposed an actionable approach for quantifying the daily exposure of urban residents to eye-level street greenery by integrating high resolution measurements on both greenery and accessibility. Google Street View (GSV) images in Singapore were collected and extracted through machine learning algorithms to achieve an accurate measurement on visible greenery. Street networks collected from Open Street Map (OSM) were analysed through spatial design network analysis (sDNA) to quantify the accessibility value of each street. The integration of street greenery and accessibility helps to measure greenery from a human-centred perspective, and it provides a decision-support tool for urban planners to highlight areas with prioritisation for planning interventions. Moreover, the performance between GSV-based street greenery and the urban green cover mapped by remote sensing was compared to justify the contribution of this new measurement. It suggested there was a mismatch between these two measurements, i.e., existing top-down viewpoint through satellites might not be equivalent to the benefits enjoyed by city residents. In short, this analytical approach contributes to a growing trend in integrating large, freely-available datasets with machine learning to inform planners, and it makes a step forward for urban planning practices through focusing on the human-scale measurement of accessed street greenery.
The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban greenery and planning practices. As a response to this situation, we proposed an actionable approach for quantifying the daily exposure of urban residents to eye-level street greenery by integrating high resolution measurements on both greenery and accessibility. Google Street View (GSV) images in Singapore were collected and extracted through machine learning algorithms to achieve an accurate measurement on visible greenery. Street networks collected from Open Street Map (OSM) were analysed through spatial design network analysis (sDNA) to quantify the accessibility value of each street. The integration of street greenery and accessibility helps to measure greenery from a human-centred perspective, and it provides a decision-support tool for urban planners to highlight areas with prioritisation for planning interventions. Moreover, the performance between GSV-based street greenery and the urban green cover mapped by remote sensing was compared to justify the contribution of this new measurement. It suggested there was a mismatch between these two measurements, i.e., existing top-down viewpoint through satellites might not be equivalent to the benefits enjoyed by city residents. In short, this analytical approach contributes to a growing trend in integrating large, freely-available datasets with machine learning to inform planners, and it makes a step forward for urban planning practices through focusing on the human-scale measurement of accessed street greenery.
ArticleNumber 103434
Author Song, Xiaoping
Zeng, Wei
Zhong, Teng
Richards, Daniel
Lu, Yi
Zhuang, Yu
Ye, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Ye
  fullname: Ye, Yu
  email: yye@tongji.edu.cn
  organization: Tongji University, Department of Architecture, College of Architecture and Urban Planning, China
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0002-8196-8421
  surname: Richards
  fullname: Richards, Daniel
  email: richards@arch.ethz.ch
  organization: ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, Singapore
– sequence: 3
  givenname: Yi
  orcidid: 0000-0001-7614-6661
  surname: Lu
  fullname: Lu, Yi
  email: yilu24@cityu.edu.hk
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China
– sequence: 4
  givenname: Xiaoping
  surname: Song
  fullname: Song, Xiaoping
  email: song@arch.ethz.ch
  organization: ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, Singapore
– sequence: 5
  givenname: Yu
  surname: Zhuang
  fullname: Zhuang, Yu
  organization: Tongji University, Department of Architecture, College of Architecture and Urban Planning, China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-5600-8824
  surname: Zeng
  fullname: Zeng, Wei
  organization: Shenzhen Institutes of Advanced Technology, Shenzhen VisuCA Key Lab, China
– sequence: 7
  givenname: Teng
  surname: Zhong
  fullname: Zhong, Teng
  email: tengzh@connect.hku.hk
  organization: The University of Hong Kong, Department of Urban Planning and Design, Hong Kong SAR, China
BookMark eNqNkE9r3DAQxUVJIZs_30G99eLtSLZluZcSlqYNJPTSnsWsNE60eGVXkgv77SOzPZSeAsMMDG9-83hX7CJMgRj7IGArQKhPh-2IwS1xP5e5lSD0FkpJ_Y5thO5kpUDJC7Yp2r6S0KhLdpXSAQBEq8SGhSfCtEQfnrlDP544WkspkeMpR6LMn0sPFE-f-R1_WY4YqmRxJI7zHCe0L3yYIveh9OMK2VPOFHkxhIGvnsK6nSPa7Av4hr0fcEx0-3des1_3X3_uvlePP7497O4eK1u3Ta6GWkvUiFQ7lICN7Ya27VvR66brtQLhuhr2hA7bxu0bBXrARltFSsDgQNbX7OOZW0z-Xihlc_TJ0lgM0bQkI0WnyifZQZF-OUttnFKKNBjrM2Y_hRxLIkaAWZM2B_NP0mZN2kApqQuh_48wR3_EeHrT7e58SyWNP56iSdZTsOR8JJuNm_wbKK8VaqUr
CitedBy_id crossref_primary_10_1016_j_compenvurbsys_2024_102087
crossref_primary_10_3390_ijerph192013308
crossref_primary_10_1016_j_scs_2022_104291
crossref_primary_10_17208_jkpa_2021_08_56_4_194
crossref_primary_10_3390_buildings13112822
crossref_primary_10_1016_j_scs_2024_105262
crossref_primary_10_3390_ijerph19105897
crossref_primary_10_3390_land14030517
crossref_primary_10_1080_24694452_2022_2114417
crossref_primary_10_1016_j_ecolind_2023_110756
crossref_primary_10_1016_j_ufug_2020_126789
crossref_primary_10_3390_ijgi13080277
crossref_primary_10_1016_j_scs_2020_102664
crossref_primary_10_1016_j_ufug_2023_127917
crossref_primary_10_1177_23998083231172985
crossref_primary_10_3389_frsc_2023_1160995
crossref_primary_10_3390_ijerph16214241
crossref_primary_10_3390_ijgi13070254
crossref_primary_10_1016_j_trd_2023_103646
crossref_primary_10_3390_ijgi9100586
crossref_primary_10_48044_jauf_2023_030
crossref_primary_10_1016_j_landurbplan_2021_104131
crossref_primary_10_1016_j_compenvurbsys_2020_101547
crossref_primary_10_1016_j_tust_2022_104528
crossref_primary_10_3390_land13111750
crossref_primary_10_1016_j_ecolind_2020_106192
crossref_primary_10_1016_j_landurbplan_2022_104631
crossref_primary_10_3390_buildings14113332
crossref_primary_10_1016_j_ecolind_2024_112630
crossref_primary_10_26565_2410_7360_2021_55_18
crossref_primary_10_1016_j_cities_2024_105535
crossref_primary_10_1016_j_uclim_2023_101414
crossref_primary_10_1371_journal_pone_0273191
crossref_primary_10_3390_buildings14051408
crossref_primary_10_1016_j_aei_2021_101281
crossref_primary_10_3390_land12040834
crossref_primary_10_3390_ijerph19105798
crossref_primary_10_3390_ijgi12030108
crossref_primary_10_1016_j_buildenv_2024_112154
crossref_primary_10_3390_su13084208
crossref_primary_10_3390_ijerph19031664
crossref_primary_10_3390_land12112069
crossref_primary_10_1016_j_ufug_2020_126886
crossref_primary_10_1016_j_ufug_2024_128524
crossref_primary_10_3390_land14030610
crossref_primary_10_1016_j_ecolind_2022_109153
crossref_primary_10_1016_j_jag_2023_103537
crossref_primary_10_1016_j_scs_2020_102442
crossref_primary_10_3389_fpubh_2022_1013421
crossref_primary_10_1016_j_ecoinf_2024_102640
crossref_primary_10_1088_1757_899X_1203_3_032019
crossref_primary_10_3390_ijerph16101782
crossref_primary_10_3390_f13081192
crossref_primary_10_3390_land11101757
crossref_primary_10_3390_land13060885
crossref_primary_10_1177_23998083231224013
crossref_primary_10_1016_j_softx_2024_101981
crossref_primary_10_1016_j_xpro_2023_102778
crossref_primary_10_1016_j_compenvurbsys_2021_101626
crossref_primary_10_1016_j_ufug_2024_128536
crossref_primary_10_4236_cus_2024_124028
crossref_primary_10_1016_j_apgeog_2024_103388
crossref_primary_10_1016_j_ufug_2020_126871
crossref_primary_10_1016_j_scs_2023_104498
crossref_primary_10_3390_land11050612
crossref_primary_10_3390_su16020560
crossref_primary_10_1109_JSTARS_2020_3006241
crossref_primary_10_1038_s41598_025_93366_x
crossref_primary_10_1016_j_scitotenv_2019_134843
crossref_primary_10_1007_s44212_025_00069_9
crossref_primary_10_3390_su11226424
crossref_primary_10_1016_j_isprsjprs_2025_02_015
crossref_primary_10_3390_s25030748
crossref_primary_10_1016_j_scitotenv_2020_143050
crossref_primary_10_1016_j_ecolind_2023_110557
crossref_primary_10_1016_j_ufug_2022_127612
crossref_primary_10_3390_rs13081591
crossref_primary_10_3390_su16219512
crossref_primary_10_1016_j_ufug_2022_127617
crossref_primary_10_3390_su17072882
crossref_primary_10_1016_j_landurbplan_2021_104217
crossref_primary_10_1007_s10940_021_09506_9
crossref_primary_10_3390_land11050728
crossref_primary_10_1016_j_buildenv_2024_111932
crossref_primary_10_1016_j_trd_2025_104657
crossref_primary_10_1111_exsy_13065
crossref_primary_10_1080_13467581_2024_2349746
crossref_primary_10_1080_13574809_2022_2066512
crossref_primary_10_3390_su142215011
crossref_primary_10_1016_j_wss_2025_100247
crossref_primary_10_1016_j_aej_2020_08_008
crossref_primary_10_1038_s41598_025_91106_9
crossref_primary_10_3390_ijerph20043274
crossref_primary_10_1016_j_ufug_2022_127827
crossref_primary_10_1038_s41598_023_49308_6
crossref_primary_10_1016_j_isprsjprs_2022_06_011
crossref_primary_10_1016_j_landurbplan_2022_104660
crossref_primary_10_3390_buildings15020206
crossref_primary_10_1016_j_foar_2020_11_003
crossref_primary_10_3389_fpubh_2020_00332
crossref_primary_10_3390_buildings12081167
crossref_primary_10_1038_s41598_023_49845_0
crossref_primary_10_1016_j_jth_2024_101897
crossref_primary_10_3390_bs12110462
crossref_primary_10_1016_j_landurbplan_2020_103773
crossref_primary_10_3390_atmos15050549
crossref_primary_10_1016_j_habitatint_2025_103333
crossref_primary_10_1016_j_healthplace_2024_103176
crossref_primary_10_1016_j_ufug_2021_127310
crossref_primary_10_1016_j_eiar_2024_107559
crossref_primary_10_3390_f11121347
crossref_primary_10_1016_j_landurbplan_2023_104714
crossref_primary_10_1038_s41597_022_01168_x
crossref_primary_10_1016_j_jag_2024_104322
crossref_primary_10_1016_j_ufug_2024_128294
crossref_primary_10_3390_buildings13030715
crossref_primary_10_1016_j_landurbplan_2021_104230
crossref_primary_10_1080_00167223_2021_2019073
crossref_primary_10_1007_s11524_025_00971_2
crossref_primary_10_1016_j_scs_2024_105992
crossref_primary_10_1016_j_scs_2025_106229
crossref_primary_10_1038_s41597_024_03746_7
crossref_primary_10_1007_s10980_021_01378_5
crossref_primary_10_1016_j_jth_2021_101312
crossref_primary_10_3390_land13050673
crossref_primary_10_3389_ffgc_2023_1071569
crossref_primary_10_3390_su13126594
crossref_primary_10_1016_j_isprsjprs_2025_01_018
crossref_primary_10_1016_j_cities_2023_104472
crossref_primary_10_3389_frsc_2024_1430071
crossref_primary_10_3390_buildings14103128
crossref_primary_10_1016_j_landusepol_2022_106048
crossref_primary_10_1016_j_scs_2019_101605
crossref_primary_10_1016_j_jth_2024_101958
crossref_primary_10_1016_j_trc_2021_103371
crossref_primary_10_1080_00330124_2024_2361407
crossref_primary_10_1016_j_ufug_2022_127811
crossref_primary_10_3390_ijerph192315858
crossref_primary_10_3390_f14101932
crossref_primary_10_1016_j_enbuild_2023_112813
crossref_primary_10_1016_j_landurbplan_2024_105204
crossref_primary_10_3390_s24103096
crossref_primary_10_3390_rs14143360
crossref_primary_10_1080_10095020_2024_2311866
crossref_primary_10_3390_f15071074
crossref_primary_10_3390_buildings14061759
crossref_primary_10_1080_17538947_2023_2283479
crossref_primary_10_1016_j_envres_2023_115344
crossref_primary_10_1177_00139165221147627
crossref_primary_10_1016_j_apgeog_2024_103287
crossref_primary_10_3390_su14031611
crossref_primary_10_3390_buildings15010113
crossref_primary_10_3390_su151813399
crossref_primary_10_1016_j_cities_2024_105022
crossref_primary_10_3390_f15010119
crossref_primary_10_3390_su13179598
crossref_primary_10_3390_ijgi10030138
crossref_primary_10_3390_electronics12081845
crossref_primary_10_1016_j_tra_2021_11_017
crossref_primary_10_1016_j_scitotenv_2021_151605
crossref_primary_10_1016_j_jag_2022_103078
crossref_primary_10_3390_ijgi12120486
crossref_primary_10_1016_j_cities_2020_103086
crossref_primary_10_1140_epjds_s13688_021_00313_7
crossref_primary_10_3390_rs15030568
crossref_primary_10_1016_j_ssresearch_2025_103142
crossref_primary_10_1016_j_ufug_2024_128493
crossref_primary_10_1177_23998083221108191
crossref_primary_10_1016_j_landurbplan_2023_104873
crossref_primary_10_3390_su12187434
crossref_primary_10_1088_2515_7620_acdecf
crossref_primary_10_1016_j_landurbplan_2023_104756
crossref_primary_10_1108_ARCH_04_2024_0166
crossref_primary_10_1371_journal_pone_0258641
crossref_primary_10_3390_land13081161
crossref_primary_10_1016_j_ufug_2022_127488
crossref_primary_10_3390_su16093526
crossref_primary_10_3390_f15040655
crossref_primary_10_3390_su12114712
crossref_primary_10_1016_j_ufug_2023_127845
crossref_primary_10_1016_j_jag_2023_103205
crossref_primary_10_3390_su13020605
crossref_primary_10_1016_j_landurbplan_2022_104603
crossref_primary_10_3390_rs15051436
crossref_primary_10_1080_13467581_2024_2399739
crossref_primary_10_1016_j_ufug_2021_127161
crossref_primary_10_1080_13467581_2023_2270047
crossref_primary_10_1016_j_landurbplan_2021_104162
crossref_primary_10_3390_buildings15070998
crossref_primary_10_3390_urbansci8040257
crossref_primary_10_1016_j_ufug_2024_128540
crossref_primary_10_1016_j_jtrangeo_2023_103698
crossref_primary_10_3389_fpubh_2022_891736
crossref_primary_10_1371_journal_pone_0289305
crossref_primary_10_17208_jkpa_2024_08_59_4_38
crossref_primary_10_1016_j_jum_2023_09_003
crossref_primary_10_3390_su15107782
crossref_primary_10_1177_2399808320962511
crossref_primary_10_1016_j_dib_2024_111009
crossref_primary_10_3390_ijerph192416918
crossref_primary_10_3390_rs13234889
crossref_primary_10_1016_j_ufug_2024_128313
crossref_primary_10_9715_KILA_2023_51_6_061
crossref_primary_10_3390_f15060983
crossref_primary_10_1016_j_ufug_2021_127027
crossref_primary_10_1016_j_ufug_2021_127386
crossref_primary_10_3390_su12083192
crossref_primary_10_1016_j_jclepro_2021_128022
crossref_primary_10_3390_land12101957
crossref_primary_10_1016_j_buildenv_2024_112511
crossref_primary_10_1016_j_landurbplan_2021_104181
crossref_primary_10_3390_buildings14071982
crossref_primary_10_1016_j_landurbplan_2024_105152
crossref_primary_10_3390_buildings13071612
crossref_primary_10_1016_j_landurbplan_2023_104780
crossref_primary_10_1270_jsbbs_21073
crossref_primary_10_3390_ijgi11100504
crossref_primary_10_1016_j_ufug_2021_127153
crossref_primary_10_1016_j_buildenv_2021_107883
crossref_primary_10_3390_su11061741
crossref_primary_10_1016_j_landurbplan_2022_104494
crossref_primary_10_1186_s40249_021_00824_5
crossref_primary_10_1073_pnas_2220417120
crossref_primary_10_1007_s12652_021_03586_y
crossref_primary_10_3390_ijgi11110537
Cites_doi 10.1177/00139160121973124
10.1016/j.habitatint.2014.04.004
10.1016/j.cities.2013.02.001
10.1016/j.cities.2011.11.008
10.1016/j.landurbplan.2012.04.005
10.1016/j.socscimed.2018.05.022
10.1068/b250059
10.1080/02723638.2017.1381536
10.1016/j.landurbplan.2008.12.004
10.3390/ijerph15081576
10.1016/j.ufug.2009.06.003
10.1016/j.landurbplan.2015.12.015
10.1016/j.apgeog.2016.09.024
10.1016/j.landurbplan.2014.08.005
10.1016/j.landurbplan.2017.05.010
10.1016/j.landurbplan.2008.01.002
10.3390/ijgi4031166
10.1016/j.habitatint.2015.02.003
10.51347/jum.v18i2.3997
10.1215/08992363-2841808
10.1007/s11252-014-0343-6
10.1057/s41289-016-0035-3
10.1016/j.landurbplan.2016.07.010
10.1016/j.amepre.2010.09.034
10.1037/0022-3514.71.2.230
10.1016/j.scitotenv.2015.06.142
10.1068/b12970
10.1093/jof/103.8.396
10.1016/j.ecolind.2017.01.028
10.1016/j.ufug.2016.06.002
10.1061/(ASCE)UP.1943-5444.0000034
10.1016/j.cities.2012.06.017
10.1016/j.cities.2015.10.011
10.1016/j.landurbplan.2003.08.003
10.1016/j.jenvp.2009.03.002
10.1016/j.ufug.2015.06.006
10.1016/j.ecolind.2013.11.011
10.1016/j.cities.2013.06.011
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.landurbplan.2018.08.028
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Sociology & Social History
Ecology
Environmental Sciences
EISSN 1872-6062
ExternalDocumentID 10_1016_j_landurbplan_2018_08_028
S0169204618309940
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GroupedDBID --K
--M
.-4
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYOK
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACIUM
ACKIV
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HMY
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LPU
LW9
LY9
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SEN
SES
SEW
SPCBC
SSA
SSB
SSJ
SSO
SSS
SSZ
T5K
TN5
WUQ
XOL
Y6R
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c354t-f382a8aae3da20a4c7f55951984798601d730beada54db4608fa48c6e610fd023
IEDL.DBID .~1
ISSN 0169-2046
IngestDate Fri Jul 11 05:07:47 EDT 2025
Tue Jul 01 01:45:26 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Fri Feb 23 02:19:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Google Street View
Human-scale
Visible greenery
Accessible greenery
Space syntax
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-f382a8aae3da20a4c7f55951984798601d730beada54db4608fa48c6e610fd023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8196-8421
0000-0001-7614-6661
0000-0002-5600-8824
PQID 2176354270
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2176354270
crossref_citationtrail_10_1016_j_landurbplan_2018_08_028
crossref_primary_10_1016_j_landurbplan_2018_08_028
elsevier_sciencedirect_doi_10_1016_j_landurbplan_2018_08_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Landscape and urban planning
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nordh, Hartig, Hagerhall, Fry (b0185) 2009; 8
Li, Zhang, Li, Ricard, Meng, Zhang (b0145) 2015; 14
Barau (b0020) 2015; 47
Jiang, Chang, Sullivan (b0095) 2014; 132
Nowak, Greenfield (b0190) 2012; 107
LTA. (2014). Singapore land transport: Statistics in brief.
Accessed 22.06.16.
Jim, Shan (b0100) 2013; 31
Bargh, Chen, Burrows (b0025) 1996; 71
Krellenberg, Welz, Reyes-Päcke (b0110) 2014; 44
Richards, Edwards (b0200) 2017; 77
Ye, van Nes (b0245) 2013; 4
Erath, van Eggermond, Ordonez, Axhausen (b0065) 2016
Comber, Brunsdon, Green (b0060) 2008; 86
Camacho-Cervantes, Schondube, Castillo, MacGregor-Fors (b0035) 2014; 17
Tan, Wang, Sia (b0215) 2013; 32
Arbogast, Kane, Kirwan, Hertel (b0010) 2009; 29
Randall, Churchill, Baetz (b0195) 2003; 30
Chen, Xu, Gao (b0045) 2015; 536
Hillier, Penn, Banister, Xu (b0080) 1998; 25
Lu (b9000) 2018; 15
Kendall, A., Badrinarayanan, V., & Cipolla, R. (2015). Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680.
Ye, Li, Liu (b0260) 2018; 39
Li, Zhang, Li, Kuzovkina (b0150) 2016; 18
Yin, Wang (b0265) 2016; 76
.
Chiesura (b0055) 2004; 68
Kuo, Sullivan (b0115) 2001; 33
Al_Sayed, Turner, Hillier, Iida, Penn (b0005) 2014
Ye, Yeh, Zhuang, van Nes, Liu (b0255) 2017; 22
Wolf (b0230) 2005; 103
Hillier (b0075) 1996
Li, Ratti, Seiferling (b0155) 2017
Hillier, Iida (b0085) 2005
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.
Chen, Wang (b0040) 2013; 6
Chiaradia, A., Cooper, C., & Webster, C. (2013), sDNA: a software for spatial design network analysis. Retrieved June 19, 2016, from
Long, Liu (b0160) 2017; 12
Ye, van Nes (b0250) 2014; 18
Townsend (b0220) 2015; 27
Lu, Sarkar, Xiao (b9005) 2018; 208
Google, 2014. Google Street View Image API.
Naik, Philipoom, Raskar, Hidalgo (b0180) 2014
Lee, Kim (b0125) 2016; 54
Jiang, Deal, Pan, Larsen, Hsieh, Chang, Sullivan (b0090) 2017; 157
Lee, Chua (b0130) 1992
Li, Zhang, Li (b0140) 2015; 4
van Nes (b0225) 2002
Batty (b0030) 2012; 29
Long, Ye (b0165) 2016; 8
Rundle, Bader, Richards, Neckerman, Teitler (b0205) 2011; 40
Yang, Zhao, Mcbride, Gong (b0240) 2009; 91
La Rosa (b0120) 2014; 42
Seiferling, Naik, Ratti, Proulx (b0210) 2017; 165
Wong, Tan, Tan, Sia, Wong (b0235) 2010; 136
Li, Sullivan (b0135) 2016; 148
Arbogast (10.1016/j.landurbplan.2018.08.028_b0010) 2009; 29
Hillier (10.1016/j.landurbplan.2018.08.028_b0080) 1998; 25
Li (10.1016/j.landurbplan.2018.08.028_b0155) 2017
10.1016/j.landurbplan.2018.08.028_b0015
Ye (10.1016/j.landurbplan.2018.08.028_b0260) 2018; 39
Nordh (10.1016/j.landurbplan.2018.08.028_b0185) 2009; 8
10.1016/j.landurbplan.2018.08.028_b0050
Erath (10.1016/j.landurbplan.2018.08.028_b0065) 2016
10.1016/j.landurbplan.2018.08.028_b0170
Comber (10.1016/j.landurbplan.2018.08.028_b0060) 2008; 86
Li (10.1016/j.landurbplan.2018.08.028_b0140) 2015; 4
Ye (10.1016/j.landurbplan.2018.08.028_b0245) 2013; 4
Barau (10.1016/j.landurbplan.2018.08.028_b0020) 2015; 47
Yin (10.1016/j.landurbplan.2018.08.028_b0265) 2016; 76
Hillier (10.1016/j.landurbplan.2018.08.028_b0075) 1996
Chiesura (10.1016/j.landurbplan.2018.08.028_b0055) 2004; 68
Lee (10.1016/j.landurbplan.2018.08.028_b0125) 2016; 54
Camacho-Cervantes (10.1016/j.landurbplan.2018.08.028_b0035) 2014; 17
Long (10.1016/j.landurbplan.2018.08.028_b0160) 2017; 12
Randall (10.1016/j.landurbplan.2018.08.028_b0195) 2003; 30
Jiang (10.1016/j.landurbplan.2018.08.028_b0090) 2017; 157
La Rosa (10.1016/j.landurbplan.2018.08.028_b0120) 2014; 42
Yang (10.1016/j.landurbplan.2018.08.028_b0240) 2009; 91
Jiang (10.1016/j.landurbplan.2018.08.028_b0095) 2014; 132
Lu (10.1016/j.landurbplan.2018.08.028_b9000) 2018; 15
Kuo (10.1016/j.landurbplan.2018.08.028_b0115) 2001; 33
Chen (10.1016/j.landurbplan.2018.08.028_b0040) 2013; 6
Jim (10.1016/j.landurbplan.2018.08.028_b0100) 2013; 31
Al_Sayed (10.1016/j.landurbplan.2018.08.028_b0005) 2014
Batty (10.1016/j.landurbplan.2018.08.028_b0030) 2012; 29
Li (10.1016/j.landurbplan.2018.08.028_b0135) 2016; 148
Lee (10.1016/j.landurbplan.2018.08.028_b0130) 1992
Seiferling (10.1016/j.landurbplan.2018.08.028_b0210) 2017; 165
10.1016/j.landurbplan.2018.08.028_b0070
Tan (10.1016/j.landurbplan.2018.08.028_b0215) 2013; 32
Long (10.1016/j.landurbplan.2018.08.028_b0165) 2016; 8
Bargh (10.1016/j.landurbplan.2018.08.028_b0025) 1996; 71
Richards (10.1016/j.landurbplan.2018.08.028_b0200) 2017; 77
Nowak (10.1016/j.landurbplan.2018.08.028_b0190) 2012; 107
Wolf (10.1016/j.landurbplan.2018.08.028_b0230) 2005; 103
van Nes (10.1016/j.landurbplan.2018.08.028_b0225) 2002
10.1016/j.landurbplan.2018.08.028_b0105
Krellenberg (10.1016/j.landurbplan.2018.08.028_b0110) 2014; 44
Li (10.1016/j.landurbplan.2018.08.028_b0150) 2016; 18
Hillier (10.1016/j.landurbplan.2018.08.028_b0085) 2005
Li (10.1016/j.landurbplan.2018.08.028_b0145) 2015; 14
Chen (10.1016/j.landurbplan.2018.08.028_b0045) 2015; 536
Rundle (10.1016/j.landurbplan.2018.08.028_b0205) 2011; 40
Lu (10.1016/j.landurbplan.2018.08.028_b9005) 2018; 208
Townsend (10.1016/j.landurbplan.2018.08.028_b0220) 2015; 27
Ye (10.1016/j.landurbplan.2018.08.028_b0255) 2017; 22
Wong (10.1016/j.landurbplan.2018.08.028_b0235) 2010; 136
Ye (10.1016/j.landurbplan.2018.08.028_b0250) 2014; 18
Naik (10.1016/j.landurbplan.2018.08.028_b0180) 2014
References_xml – volume: 136
  start-page: 330
  year: 2010
  end-page: 338
  ident: b0235
  article-title: Perception studies of vertical greenery systems in Singapore
  publication-title: Journal of Urban Planning and Development
– volume: 47
  start-page: 285
  year: 2015
  end-page: 297
  ident: b0020
  article-title: Perceptions and contributions of households towards sustainable urban green infrastructure in Malaysia
  publication-title: Habitat International
– start-page: 793
  year: 2014
  end-page: 799
  ident: b0180
  article-title: Streetscore–Predicting the perceived safety of one million streetscapes
  publication-title: 2014 IEEE Conference on computer vision and pattern recognition workshops
– volume: 25
  start-page: 59
  year: 1998
  end-page: 84
  ident: b0080
  article-title: Configurational modelling of urban movement network
  publication-title: Environment and Planning B: Planning and Design
– volume: 22
  start-page: 73
  year: 2017
  end-page: 90
  ident: b0255
  article-title: “Form Syntax” as a contribution to geodesign: A morphological tool for urbanity-making in urban design
  publication-title: URBAN DESIGN International
– year: 1992
  ident: b0130
  article-title: More than a garden city
– year: 2016
  ident: b0065
  article-title: Walkability and pedestrian route choice
– volume: 40
  start-page: 94
  year: 2011
  end-page: 100
  ident: b0205
  article-title: Using Google Street View to audit neighborhood environments
  publication-title: American Journal of Preventive Medicine
– volume: 31
  start-page: 123
  year: 2013
  end-page: 131
  ident: b0100
  article-title: Socioeconomic effect on perception of urban green spaces in Guangzhou, China
  publication-title: Cities
– start-page: 475
  year: 2005
  end-page: 490
  ident: b0085
  article-title: Network and psychological effects in urban movement
  publication-title: Proceedings of 5th international conference on spatial information theory
– reference: > Accessed 22.06.16.
– volume: 165
  start-page: 93
  year: 2017
  end-page: 101
  ident: b0210
  article-title: Green streets–Quantifying and mapping urban trees with street-level imagery and computer vision
  publication-title: Landscape and Urban Planning
– volume: 68
  start-page: 129
  year: 2004
  end-page: 138
  ident: b0055
  article-title: The role of urban parks for the sustainable city
  publication-title: Landscape and Urban Planning
– volume: 91
  start-page: 97
  year: 2009
  end-page: 104
  ident: b0240
  article-title: Can you see green? Assessing the visibility of urban forests in cities
  publication-title: Landscape and Urban Planning
– volume: 157
  start-page: 270
  year: 2017
  end-page: 281
  ident: b0090
  article-title: Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density
  publication-title: Landscape and Urban Planning
– volume: 4
  start-page: 1166
  year: 2015
  end-page: 1183
  ident: b0140
  article-title: Does the visibility of greenery increase perceived safety in urban areas? Evidence from the place pulse 1.0 dataset
  publication-title: ISPRS International Journal of Geo-Information
– volume: 14
  start-page: 675
  year: 2015
  end-page: 685
  ident: b0145
  article-title: Assessing street-level urban greenery using Google Street View and a modified green view index
  publication-title: Urban Forestry and Urban Greening
– volume: 30
  start-page: 541
  year: 2003
  end-page: 563
  ident: b0195
  article-title: A GIS-based decision support system for neighbourhood greening
  publication-title: Environment and Planning B: Planning and Design
– volume: 71
  start-page: 230
  year: 1996
  end-page: 244
  ident: b0025
  article-title: Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action
  publication-title: Journal of Personality and Social Psychology
– volume: 44
  start-page: 11
  year: 2014
  end-page: 21
  ident: b0110
  article-title: Urban green areas and their potential for social interaction–A case study of a socio-economically mixed neighbourhood in Santiago de Chile
  publication-title: Habitat International
– start-page: 341
  year: 2017
  end-page: 356
  ident: b0155
  article-title: Mapping urban landscapes along streets using google street view
  publication-title: International cartographic conference
– volume: 29
  start-page: S9
  year: 2012
  end-page: S16
  ident: b0030
  article-title: Building a science of cities
  publication-title: Cities
– reference: LTA. (2014). Singapore land transport: Statistics in brief. <
– volume: 103
  start-page: 396
  year: 2005
  end-page: 400
  ident: b0230
  article-title: Business district streetscapes, trees, and consumer response
  publication-title: Journal of Forestry
– volume: 76
  start-page: 147
  year: 2016
  end-page: 153
  ident: b0265
  article-title: Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery
  publication-title: Applied Geography
– year: 2002
  ident: b0225
  article-title: Road building and urban change: The effect of ring roads on the dispersal of shop and retail in Western European towns and cities
– volume: 42
  start-page: 122
  year: 2014
  end-page: 134
  ident: b0120
  article-title: Accessibility to greenspaces: GIS based indicators for sustainable planning in a dense urban context
  publication-title: Ecological Indicators
– volume: 17
  start-page: 761
  year: 2014
  end-page: 773
  ident: b0035
  article-title: How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city
  publication-title: Urban Ecosystems
– volume: 6
  start-page: 62
  year: 2013
  end-page: 68
  ident: b0040
  article-title: Urban forest development in China: Natural endowment or socioeconomic product?
  publication-title: Cities
– volume: 32
  start-page: 24
  year: 2013
  end-page: 32
  ident: b0215
  article-title: Perspectives on five decades of the urban greening of Singapore
  publication-title: Cities
– volume: 29
  start-page: 450
  year: 2009
  end-page: 456
  ident: b0010
  article-title: Vegetation and outdoor recess time at elementary schools: What are the connections?
  publication-title: Journal of Environmental Psychology
– volume: 54
  start-page: 20
  year: 2016
  end-page: 27
  ident: b0125
  article-title: South Korea's urban green energy strategies: Policy framework and local responses under the green growth
  publication-title: Cities
– volume: 15
  start-page: 1576
  year: 2018
  ident: b9000
  article-title: The association of urban greenness and walking behavior: Using google street view and deep learning techniques to estimate residents’ exposure to urban greenness
  publication-title: International Journal of Environmental Research and Public Health
– reference: Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.
– volume: 33
  start-page: 543
  year: 2001
  end-page: 571
  ident: b0115
  article-title: Aggression and violence in the inner city effects of environment via mental fatigue
  publication-title: Environment and Behavior
– volume: 208
  start-page: 41
  year: 2018
  end-page: 49
  ident: b9005
  article-title: The effect of street-level greenery on walking behavior: Evidence from Hong Kong
  publication-title: Social Science and Medicine
– volume: 8
  start-page: 225
  year: 2009
  end-page: 235
  ident: b0185
  article-title: Components of small urban parks that predict the possibility for restoration
  publication-title: Urban Forestry & Urban Greening
– volume: 107
  start-page: 21
  year: 2012
  end-page: 30
  ident: b0190
  article-title: Tree and impervious cover in the United States
  publication-title: Landscape and Urban Planning
– volume: 536
  start-page: 232
  year: 2015
  end-page: 244
  ident: b0045
  article-title: Assessing visual green effects of individual urban trees using airborne Lidar data
  publication-title: Science of the Total Environment
– reference: .
– volume: 8
  start-page: 39
  year: 2016
  end-page: 45
  ident: b0165
  article-title: Human-scale urban form: Measurements, performances, and urban planning & design interventions
  publication-title: South Architecture
– volume: 27
  start-page: 201
  year: 2015
  end-page: 212
  ident: b0220
  article-title: Cities of data: Examining the new urban science
  publication-title: Public Culture
– volume: 18
  start-page: 97
  year: 2014
  end-page: 118
  ident: b0250
  article-title: Quantitative tools in urban morphology: Combining space syntax, spacematrix and mixed-use index in a GIS framework
  publication-title: Urban Morphology
– volume: 4
  start-page: 18
  year: 2013
  end-page: 37
  ident: b0245
  article-title: Measuring urban maturation processes in Dutch and Chinese new towns: Combining street network configuration with building density and degree of land use diversification through GIS
  publication-title: Journal of Space Syntax
– reference: Google, 2014. Google Street View Image API. <
– volume: 77
  start-page: 31
  year: 2017
  end-page: 40
  ident: b0200
  article-title: Quantifying street tree regulating ecosystem services using Google Street View
  publication-title: Ecological Indicators
– volume: 132
  start-page: 26
  year: 2014
  end-page: 36
  ident: b0095
  article-title: A dose of nature: Tree cover, stress reduction, and gender differences
  publication-title: Landscape and Urban Planning
– reference: Kendall, A., Badrinarayanan, V., & Cipolla, R. (2015). Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680.
– volume: 148
  start-page: 149
  year: 2016
  end-page: 158
  ident: b0135
  article-title: Impact of views to school landscapes on recovery from stress and mental fatigue
  publication-title: Landscape and Urban Planning
– volume: 86
  start-page: 103
  year: 2008
  end-page: 114
  ident: b0060
  article-title: Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups
  publication-title: Landscape and Urban Planning
– volume: 18
  start-page: 163
  year: 2016
  end-page: 172
  ident: b0150
  article-title: Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut
  publication-title: Urban Forestry & Urban Greening
– reference: Chiaradia, A., Cooper, C., & Webster, C. (2013), sDNA: a software for spatial design network analysis. Retrieved June 19, 2016, from
– year: 1996
  ident: b0075
  article-title: Space is the machine: A configurational theory of architecture
– volume: 39
  start-page: 631
  year: 2018
  end-page: 652
  ident: b0260
  article-title: How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China
  publication-title: Urban Geography
– year: 2014
  ident: b0005
  article-title: Space syntax methodology
– volume: 12
  year: 2017
  ident: b0160
  article-title: How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View
  publication-title: PLloS One
– volume: 33
  start-page: 543
  issue: 4
  year: 2001
  ident: 10.1016/j.landurbplan.2018.08.028_b0115
  article-title: Aggression and violence in the inner city effects of environment via mental fatigue
  publication-title: Environment and Behavior
  doi: 10.1177/00139160121973124
– start-page: 793
  year: 2014
  ident: 10.1016/j.landurbplan.2018.08.028_b0180
  article-title: Streetscore–Predicting the perceived safety of one million streetscapes
– ident: 10.1016/j.landurbplan.2018.08.028_b0050
– ident: 10.1016/j.landurbplan.2018.08.028_b0105
– volume: 44
  start-page: 11
  year: 2014
  ident: 10.1016/j.landurbplan.2018.08.028_b0110
  article-title: Urban green areas and their potential for social interaction–A case study of a socio-economically mixed neighbourhood in Santiago de Chile
  publication-title: Habitat International
  doi: 10.1016/j.habitatint.2014.04.004
– volume: 32
  start-page: 24
  year: 2013
  ident: 10.1016/j.landurbplan.2018.08.028_b0215
  article-title: Perspectives on five decades of the urban greening of Singapore
  publication-title: Cities
  doi: 10.1016/j.cities.2013.02.001
– ident: 10.1016/j.landurbplan.2018.08.028_b0070
– volume: 29
  start-page: S9
  issue: 2
  year: 2012
  ident: 10.1016/j.landurbplan.2018.08.028_b0030
  article-title: Building a science of cities
  publication-title: Cities
  doi: 10.1016/j.cities.2011.11.008
– volume: 4
  start-page: 18
  issue: 1
  year: 2013
  ident: 10.1016/j.landurbplan.2018.08.028_b0245
  article-title: Measuring urban maturation processes in Dutch and Chinese new towns: Combining street network configuration with building density and degree of land use diversification through GIS
  publication-title: Journal of Space Syntax
– year: 2014
  ident: 10.1016/j.landurbplan.2018.08.028_b0005
– volume: 107
  start-page: 21
  issue: 1
  year: 2012
  ident: 10.1016/j.landurbplan.2018.08.028_b0190
  article-title: Tree and impervious cover in the United States
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2012.04.005
– year: 2016
  ident: 10.1016/j.landurbplan.2018.08.028_b0065
– volume: 208
  start-page: 41
  year: 2018
  ident: 10.1016/j.landurbplan.2018.08.028_b9005
  article-title: The effect of street-level greenery on walking behavior: Evidence from Hong Kong
  publication-title: Social Science and Medicine
  doi: 10.1016/j.socscimed.2018.05.022
– year: 1996
  ident: 10.1016/j.landurbplan.2018.08.028_b0075
– volume: 25
  start-page: 59
  issue: 1
  year: 1998
  ident: 10.1016/j.landurbplan.2018.08.028_b0080
  article-title: Configurational modelling of urban movement network
  publication-title: Environment and Planning B: Planning and Design
  doi: 10.1068/b250059
– volume: 39
  start-page: 631
  issue: 4
  year: 2018
  ident: 10.1016/j.landurbplan.2018.08.028_b0260
  article-title: How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China
  publication-title: Urban Geography
  doi: 10.1080/02723638.2017.1381536
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.landurbplan.2018.08.028_b0160
  article-title: How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View
  publication-title: PLloS One
– volume: 91
  start-page: 97
  issue: 2
  year: 2009
  ident: 10.1016/j.landurbplan.2018.08.028_b0240
  article-title: Can you see green? Assessing the visibility of urban forests in cities
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2008.12.004
– volume: 15
  start-page: 1576
  year: 2018
  ident: 10.1016/j.landurbplan.2018.08.028_b9000
  article-title: The association of urban greenness and walking behavior: Using google street view and deep learning techniques to estimate residents’ exposure to urban greenness
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph15081576
– start-page: 341
  year: 2017
  ident: 10.1016/j.landurbplan.2018.08.028_b0155
  article-title: Mapping urban landscapes along streets using google street view
– year: 1992
  ident: 10.1016/j.landurbplan.2018.08.028_b0130
– volume: 8
  start-page: 225
  issue: 4
  year: 2009
  ident: 10.1016/j.landurbplan.2018.08.028_b0185
  article-title: Components of small urban parks that predict the possibility for restoration
  publication-title: Urban Forestry & Urban Greening
  doi: 10.1016/j.ufug.2009.06.003
– ident: 10.1016/j.landurbplan.2018.08.028_b0015
– volume: 148
  start-page: 149
  issue: 2
  year: 2016
  ident: 10.1016/j.landurbplan.2018.08.028_b0135
  article-title: Impact of views to school landscapes on recovery from stress and mental fatigue
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2015.12.015
– volume: 76
  start-page: 147
  year: 2016
  ident: 10.1016/j.landurbplan.2018.08.028_b0265
  article-title: Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery
  publication-title: Applied Geography
  doi: 10.1016/j.apgeog.2016.09.024
– volume: 132
  start-page: 26
  year: 2014
  ident: 10.1016/j.landurbplan.2018.08.028_b0095
  article-title: A dose of nature: Tree cover, stress reduction, and gender differences
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2014.08.005
– volume: 8
  start-page: 39
  issue: 5
  year: 2016
  ident: 10.1016/j.landurbplan.2018.08.028_b0165
  article-title: Human-scale urban form: Measurements, performances, and urban planning & design interventions
  publication-title: South Architecture
– volume: 165
  start-page: 93
  year: 2017
  ident: 10.1016/j.landurbplan.2018.08.028_b0210
  article-title: Green streets–Quantifying and mapping urban trees with street-level imagery and computer vision
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2017.05.010
– volume: 86
  start-page: 103
  issue: 1
  year: 2008
  ident: 10.1016/j.landurbplan.2018.08.028_b0060
  article-title: Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2008.01.002
– volume: 4
  start-page: 1166
  issue: 3
  year: 2015
  ident: 10.1016/j.landurbplan.2018.08.028_b0140
  article-title: Does the visibility of greenery increase perceived safety in urban areas? Evidence from the place pulse 1.0 dataset
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi4031166
– volume: 47
  start-page: 285
  year: 2015
  ident: 10.1016/j.landurbplan.2018.08.028_b0020
  article-title: Perceptions and contributions of households towards sustainable urban green infrastructure in Malaysia
  publication-title: Habitat International
  doi: 10.1016/j.habitatint.2015.02.003
– volume: 18
  start-page: 97
  issue: 2
  year: 2014
  ident: 10.1016/j.landurbplan.2018.08.028_b0250
  article-title: Quantitative tools in urban morphology: Combining space syntax, spacematrix and mixed-use index in a GIS framework
  publication-title: Urban Morphology
  doi: 10.51347/jum.v18i2.3997
– volume: 27
  start-page: 201
  issue: 2 (76)
  year: 2015
  ident: 10.1016/j.landurbplan.2018.08.028_b0220
  article-title: Cities of data: Examining the new urban science
  publication-title: Public Culture
  doi: 10.1215/08992363-2841808
– volume: 17
  start-page: 761
  issue: 3
  year: 2014
  ident: 10.1016/j.landurbplan.2018.08.028_b0035
  article-title: How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city
  publication-title: Urban Ecosystems
  doi: 10.1007/s11252-014-0343-6
– volume: 22
  start-page: 73
  issue: 1
  year: 2017
  ident: 10.1016/j.landurbplan.2018.08.028_b0255
  article-title: “Form Syntax” as a contribution to geodesign: A morphological tool for urbanity-making in urban design
  publication-title: URBAN DESIGN International
  doi: 10.1057/s41289-016-0035-3
– volume: 157
  start-page: 270
  issue: 6
  year: 2017
  ident: 10.1016/j.landurbplan.2018.08.028_b0090
  article-title: Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2016.07.010
– volume: 40
  start-page: 94
  issue: 1
  year: 2011
  ident: 10.1016/j.landurbplan.2018.08.028_b0205
  article-title: Using Google Street View to audit neighborhood environments
  publication-title: American Journal of Preventive Medicine
  doi: 10.1016/j.amepre.2010.09.034
– year: 2002
  ident: 10.1016/j.landurbplan.2018.08.028_b0225
– volume: 71
  start-page: 230
  issue: 2
  year: 1996
  ident: 10.1016/j.landurbplan.2018.08.028_b0025
  article-title: Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.71.2.230
– volume: 536
  start-page: 232
  year: 2015
  ident: 10.1016/j.landurbplan.2018.08.028_b0045
  article-title: Assessing visual green effects of individual urban trees using airborne Lidar data
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2015.06.142
– start-page: 475
  year: 2005
  ident: 10.1016/j.landurbplan.2018.08.028_b0085
  article-title: Network and psychological effects in urban movement
– volume: 30
  start-page: 541
  issue: 4
  year: 2003
  ident: 10.1016/j.landurbplan.2018.08.028_b0195
  article-title: A GIS-based decision support system for neighbourhood greening
  publication-title: Environment and Planning B: Planning and Design
  doi: 10.1068/b12970
– volume: 103
  start-page: 396
  issue: 8
  year: 2005
  ident: 10.1016/j.landurbplan.2018.08.028_b0230
  article-title: Business district streetscapes, trees, and consumer response
  publication-title: Journal of Forestry
  doi: 10.1093/jof/103.8.396
– volume: 77
  start-page: 31
  year: 2017
  ident: 10.1016/j.landurbplan.2018.08.028_b0200
  article-title: Quantifying street tree regulating ecosystem services using Google Street View
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2017.01.028
– volume: 18
  start-page: 163
  issue: 1
  year: 2016
  ident: 10.1016/j.landurbplan.2018.08.028_b0150
  article-title: Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut
  publication-title: Urban Forestry & Urban Greening
  doi: 10.1016/j.ufug.2016.06.002
– volume: 136
  start-page: 330
  issue: 4
  year: 2010
  ident: 10.1016/j.landurbplan.2018.08.028_b0235
  article-title: Perception studies of vertical greenery systems in Singapore
  publication-title: Journal of Urban Planning and Development
  doi: 10.1061/(ASCE)UP.1943-5444.0000034
– volume: 31
  start-page: 123
  issue: 2
  year: 2013
  ident: 10.1016/j.landurbplan.2018.08.028_b0100
  article-title: Socioeconomic effect on perception of urban green spaces in Guangzhou, China
  publication-title: Cities
  doi: 10.1016/j.cities.2012.06.017
– volume: 54
  start-page: 20
  issue: 2
  year: 2016
  ident: 10.1016/j.landurbplan.2018.08.028_b0125
  article-title: South Korea's urban green energy strategies: Policy framework and local responses under the green growth
  publication-title: Cities
  doi: 10.1016/j.cities.2015.10.011
– volume: 68
  start-page: 129
  issue: 1
  year: 2004
  ident: 10.1016/j.landurbplan.2018.08.028_b0055
  article-title: The role of urban parks for the sustainable city
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2003.08.003
– ident: 10.1016/j.landurbplan.2018.08.028_b0170
– volume: 29
  start-page: 450
  issue: 4
  year: 2009
  ident: 10.1016/j.landurbplan.2018.08.028_b0010
  article-title: Vegetation and outdoor recess time at elementary schools: What are the connections?
  publication-title: Journal of Environmental Psychology
  doi: 10.1016/j.jenvp.2009.03.002
– volume: 14
  start-page: 675
  issue: 3
  year: 2015
  ident: 10.1016/j.landurbplan.2018.08.028_b0145
  article-title: Assessing street-level urban greenery using Google Street View and a modified green view index
  publication-title: Urban Forestry and Urban Greening
  doi: 10.1016/j.ufug.2015.06.006
– volume: 42
  start-page: 122
  year: 2014
  ident: 10.1016/j.landurbplan.2018.08.028_b0120
  article-title: Accessibility to greenspaces: GIS based indicators for sustainable planning in a dense urban context
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2013.11.011
– volume: 6
  start-page: 62
  issue: 35
  year: 2013
  ident: 10.1016/j.landurbplan.2018.08.028_b0040
  article-title: Urban forest development in China: Natural endowment or socioeconomic product?
  publication-title: Cities
  doi: 10.1016/j.cities.2013.06.011
SSID ssj0001561
Score 2.650803
Snippet •Daily accessed, visible street greenery is quantitatively measured at city scale.•An exploratory tool to map priority streets for potential urban greening...
The public benefits of visible street greenery have been well recognised in a growing literature. Nevertheless, this issue was rare to be included into urban...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103434
SubjectTerms Accessible greenery
algorithms
analytical methods
artificial intelligence
data collection
decision support systems
Google Street View
Human-scale
Machine learning
prioritization
remote sensing
satellites
Singapore
social benefit
Space syntax
urban planning
vegetation
Visible greenery
Title Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices
URI https://dx.doi.org/10.1016/j.landurbplan.2018.08.028
https://www.proquest.com/docview/2176354270
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-tAEB9E8eFFtD7xmxHk3fKaprvJVrwUqVRFL0_B27Kb3TwqEkvTHnrxb3d2N7EqHgRPIWE3XzOZ-U125jcAJ7bDNTe5iTrKUIBiKWB1vjkqeKZ0zA2zIdviNh3es6sH_rAE500tjEurrG1_sOneWtdH2vXbbI9Ho_Y_xyOSOL5w0SWYw1zczljmtPzvyyLNg-KT0JMw7UVu9C84XuR4ueTB2USPaeuyvIRn83SN2b_2UZ-stXdBFxuwXmNH7Ifb24QlW7ZgdeB5p-ct2B4sitZoWP3VVi3Ye6tKwT8Y6nEx0IPMt6C88X8JyYOhUaOnOSrfQtEarPyCNf53mTl2Mj_FPvqOflFFcrXYsJEjwV4M_KvuJNrXByE9rypxXLdEwqYYq_oN9xeDu_NhVDdhiPIuZ9Oo6IpECaVs16gkVizPCgpCCPeRW-sJCucM2QhN-qg4M5qlsSgUE3lqCZcVhhDBNiyXz6XdAcxM2uNG2462hnEuNI-NIkGoDqeRutgF0bx2mdcM5a5RxpNsUtEe5TuJSScx6ZpoJmIXkrep40DT8Z1JZ41s5Qedk-ROvjP9uNEHSd-kW2hRpX2eVZLCPMJxLMnivZ9dYh_WaK8Xah8PYHk6mdlDAkFTfeS1_AhW-pfXw9tXwtYL9g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9CTDAuCLohPgZ7SGi30DS1U3faBaGiwmgvFImbZcfO1AmFqmkPvfC382wnlCEOlXaKlNj58LPfR_ze7wdwZltcc5OZqKUMBSiWAlZnm6Ocd5SOuWE2ZFsM0_49u3ngD2twWdfCuLTKSvcHne61dXWmWY1mczIeN-8cjkji8MJFm9wcRnH7J0bL19EYnD8v8zwoQAmkhGk3cs034XSZ5OWyB-dTPaGjS_MSHs7TMbN_bKTeqWtvg652YLtyHvEivN8urNmiARs9Dzy9aMBeb1m1Rs2qZVs24PC1LAV_YCjIxYAPsvgCxcD_JiQThkaNHxeoPIeiNVj6HWv841Jz7HTxEy_QU_pFJQnWYg1HjuT3YgBgdTfRvkAI6XtVgZOKEwnraqzyK9xf9UaX_ahiYYiyNmezKKchVUIp2zYqiRXLOjlFIeT4kV3rCornDCkJTRNScWY0S2ORKyay1JJjlhtyCfZgvXgq7D5gx6RdbrRtaWsY50Lz2CgShGpxaqnzAxD1sMusgih3TBmPss5F-yvfSEw6iUnHopmIA0heu04CTscqnX7VspX_TDpJ9mSV7qf1fJC0KN1Oiyrs07yUFOeRI8eSTnz4f4_4Dp_7o8GtvL0e_j6CLbrSDYWQ32B9Np3bY_KIZvrEz_gXwQcNhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+daily+accessed+street+greenery%3A+A+human-scale+approach+for+informing+better+urban+planning+practices&rft.jtitle=Landscape+and+urban+planning&rft.au=Ye%2C+Yu&rft.au=Richards%2C+Daniel&rft.au=Lu%2C+Yi&rft.au=Song%2C+Xiaoping&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0169-2046&rft.eissn=1872-6062&rft.volume=191&rft_id=info:doi/10.1016%2Fj.landurbplan.2018.08.028&rft.externalDocID=S0169204618309940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2046&client=summon