The perception of body orientation after neck-proprioceptive stimulation Effects of time and of visual cueing

Different sensory systems (e.g. proprioception and vision) have a combined influence on the perception of body orientation, but the timescale over which they can be integrated remains unknown. Here we examined how visual information and neck proprioception interact in perception of the "subject...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 143; no. 3; pp. 350 - 358
Main Authors Karnath, H. -O., Reich, E., Rorden, C., Fetter, M., Driver, J.
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.04.2002
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0014-4819
1432-1106
DOI10.1007/s00221-001-0996-2

Cover

More Information
Summary:Different sensory systems (e.g. proprioception and vision) have a combined influence on the perception of body orientation, but the timescale over which they can be integrated remains unknown. Here we examined how visual information and neck proprioception interact in perception of the "subjective straight ahead" (SSA), as a function of time since initial stimulation. In complete darkness, healthy subjects directed a laser spot to the point felt subjectively to be exactly straight ahead of the trunk. As previously observed, left neck muscle vibration led to a disparity between subjective perception and objective position of the body midline, with SSA misplaced to the left. We found that this displacement was sustained throughout 28 min of continuous proprioceptive stimulation, provided there was no visual input. Moreover, prolonged vibration of neck muscles leads to a continuing disparity between subjective and objective body orientation even after offset of the vibration; the longer the preceding vibration, the more persistent the illusory deviation of body orientation. To examine the role of vision, one group of subjects fixated a central visual target at the start of each block of continuous neck vibration, with SSA then measured at successive intervals in darkness. The illusory deviation of SSA was eliminated whenever visual input was provided, but returned as a linear function of time when visual information was eliminated. These results reveal: the persistent effects of neck proprioception on the SSA, both during and after vibration; the influence of vision; and integration between incoming proprioceptive information and working memory traces of visual information.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-001-0996-2