Laser material interactions in tamped materials on picosecond time scales in aluminum

A 100 ps laser is used to probe the pressure generation, depth of the non-solid ablator, and the non-linear optical effects through tamper materials. Samples consisted of an aluminum ablator with tampers of sapphire and coverslip glass. In general, the sapphire tamped sample achieves higher pressure...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 123; no. 20
Main Authors Parsons, Sophie E., Turner, Ross E., Armstrong, Michael R., Radousky, Harry B., Garay, Javier E., Beg, Farhat N.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 13.11.2023
American Institute of Physics (AIP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A 100 ps laser is used to probe the pressure generation, depth of the non-solid ablator, and the non-linear optical effects through tamper materials. Samples consisted of an aluminum ablator with tampers of sapphire and coverslip glass. In general, the sapphire tamped sample achieves higher pressures at lower laser intensities as compared to the coverslip glass tamped sample. Attempts to model the details of this set of experimental data with standard available radiation coupled hydrodynamic codes make clear that more physics is needed in these simulations to accurately predict the impact of the tamper material on the pressure generation and the depth of non-solid aluminum.
AbstractList A 100 ps laser is used to probe the pressure generation, depth of the non-solid ablator, and the non-linear optical effects through tamper materials. Samples consisted of an aluminum ablator with tampers of sapphire and coverslip glass. In general, the sapphire tamped sample achieves higher pressures at lower laser intensities as compared to the coverslip glass tamped sample. Attempts to model the details of this set of experimental data with standard available radiation coupled hydrodynamic codes make clear that more physics is needed in these simulations to accurately predict the impact of the tamper material on the pressure generation and the depth of non-solid aluminum.
Here, a 100 ps laser is used to probe the pressure generation, depth of the non-solid ablator, and the non-linear optical effects through tamper materials. Samples consisted of an aluminum ablator with tampers of sapphire and coverslip glass. In general, the sapphire tamped sample achieves higher pressures at lower laser intensities as compared to the coverslip glass tamped sample. Attempts to model the details of this set of experimental data with standard available radiation coupled hydrodynamic codes make clear that more physics is needed in these simulations to accurately predict the impact of the tamper material on the pressure generation and the depth of non-solid aluminum.
Author Garay, Javier E.
Beg, Farhat N.
Turner, Ross E.
Radousky, Harry B.
Parsons, Sophie E.
Armstrong, Michael R.
Author_xml – sequence: 1
  givenname: Sophie E.
  surname: Parsons
  fullname: Parsons, Sophie E.
  organization: 2Mechanical and Aerospace Engineering Department, The University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
– sequence: 2
  givenname: Ross E.
  surname: Turner
  fullname: Turner, Ross E.
  organization: 2Mechanical and Aerospace Engineering Department, The University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
– sequence: 3
  givenname: Michael R.
  surname: Armstrong
  fullname: Armstrong, Michael R.
  organization: Lawrence Livermore National Laboratory
– sequence: 4
  givenname: Harry B.
  surname: Radousky
  fullname: Radousky, Harry B.
  organization: Lawrence Livermore National Laboratory
– sequence: 5
  givenname: Javier E.
  surname: Garay
  fullname: Garay, Javier E.
  organization: Mechanical and Aerospace Engineering Department, The University of California, San Diego
– sequence: 6
  givenname: Farhat N.
  surname: Beg
  fullname: Beg, Farhat N.
  organization: Mechanical and Aerospace Engineering Department, The University of California, San Diego
BackLink https://www.osti.gov/servlets/purl/2228559$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoNUsK0e_AeLnhS2zWfTPUrxCwpe7Dlks7OYspusSXrw35va6kHE08zwPjPz8k7QyHkHCF0SPCN4weZihsmiEoydoDHBUpaMkOUIjTHGrMwCOUOTGLd5FJSxMdqsdYRQ9DpBsLorrMuNNsl6F_NQJN0P0PzosfCuGKzxEYx3TZFsD0U0uoMvWne73rpdf45O2wzDxbFO0ebh_nX1VK5fHp9Xd-vSMMFTCdI0klJMuATDG4OJFIxSbiqOBa54yypJOTR1Nt_WWFLWENKIRS1qQTgAm6Krw10fk1XR2ATmLRtzYJKilC6FqDJ0fYCG4N93EJPa-l1w2Zeiy2UlOSWSZermQJngYwzQqiHYXocPRbDaR6uEOkab2fkvNn_W-8xS0Lb7c-P2sBG_yX_OfwJ8S4hy
CODEN APPLAB
CitedBy_id crossref_primary_10_1063_5_0222979
Cites_doi 10.1086/317361
10.1016/S0169-4332(97)00218-3
10.1103/PhysRevLett.77.3359
10.1063/5.0078895
10.1111/j.1745-5871.2008.00551.x
10.1364/OE.491526
10.1063/1.5092244
10.1063/5.0138389
10.1016/j.commatsci.2021.110668
10.1103/PhysRevLett.107.144302
10.1063/1.4890012
10.1016/j.mre.2017.03.001
10.1364/OL.35.002702
10.1038/nphys3736
10.1134/S0021364010200051
10.1063/1.346783
10.1088/1009-1963/15/3/023
10.1016/j.optlastec.2011.11.003
10.1007/s10853-020-05523-4
10.1103/PhysRevE.77.066402
10.1016/j.jqsrt.2005.05.031
10.1098/rsta.2020.0030
10.1016/j.phpro.2014.08.011
10.1088/1361-651X/ac8abc
10.1109/JQE.2014.2328101
10.1038/s43246-020-00094-y
10.1063/1.5080628
10.1063/1.3460801
10.1088/1361-6463/50/19/193001
10.1364/JOSA.72.000156
10.1063/1.44887
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID AAYXX
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
DOI 10.1063/5.0169533
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 2228559
10_1063_5_0169533
apl
GrantInformation_xml – fundername: Defense Threat Reduction Agency
  grantid: HDTRA12020001
  funderid: 10.13039/100000774
GroupedDBID -DZ
-~X
.DC
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
ID FETCH-LOGICAL-c354t-e7cd7220147ec4dc01753224c9405094f39724edb003fb0723d11d56b5b514ee3
ISSN 0003-6951
IngestDate Mon Nov 18 02:22:37 EST 2024
Sun Jun 29 16:15:18 EDT 2025
Tue Jul 01 01:08:35 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Fri Jun 21 00:10:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c354t-e7cd7220147ec4dc01753224c9405094f39724edb003fb0723d11d56b5b514ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
LLNL-JRNL-843831
Defense Threat Reduction Agency (DTRA)
AC52-07NA27344; HDTRA12020001
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-0391-8944
0000-0001-9836-3667
0000-0002-8184-6600
0000-0001-9348-1648
0000-0003-2375-1491
0000-0002-2996-2719
0000000281846600
0000000193481648
0000000323751491
0000000198363667
0000000229962719
0000000303918944
OpenAccessLink https://www.osti.gov/servlets/purl/2228559
PQID 2889742173
PQPubID 2050678
PageCount 6
ParticipantIDs osti_scitechconnect_2228559
proquest_journals_2889742173
crossref_primary_10_1063_5_0169533
crossref_citationtrail_10_1063_5_0169533
scitation_primary_10_1063_5_0169533
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-13
PublicationDateYYYYMMDD 2023-11-13
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-13
  day: 13
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics (AIP)
References Takeda, Ina, Kobayashi (c26) 1982
Swift, Kraus (c11) 2008
Zhi-Yuan1, Jie1, Zuo-Qiang (c12) 2006
Shu, Fu, Huang (c17) 2014
Armstrong, Crowhurst, Bastea, Zaug (c24) 2010
Jiang, Xiang, Wang (c34) 2012
Miller, Bude, Suratwala (c4) 2010
Powell, Bowlan, Son (c16) 2019
Ly, Lee, Rubenchik (c15) 2023
Hoon, Thomas, Linton (c30) 2009
MacFarlane, Golovkin, Woodruff (c36) 2006
Fryxell1, Olson, Ricker (c31) 2000
Campbell, Goncharov, Sangster (c2) 2017
Echeverria, Galitskiy, Mishra (c21) 2021
DePond, Fuller, Khairallah (c5) 2020
Ashitkov, Agranat, Kanel (c14) 2010
Keller, Shen, Rubenchik (c20) 2019
Fabbro, Fournier, Ballard (c13) 1990
Chen, Galitskiy, Mishra, Dongare (c23) 2023
Betti, Hurricane (c3) 2016
Kaselouris, Fitilis, Skoulakis (c1) 2020
Rapp, Heinrich, Domke (c9) 2014
Rethfeld, Ivanov, Garcia (c10) 2017
Bloembergen (c8) 1993
Miloshevsky (c19) 2022
Crowhurst, Armstrong, Knight (c25) 2011
Evans, Badger, Falliès (c18) 1996
Ashkenasi, Rosenfeld, Varel (c33) 1997
Batani, Batani, He, Shigemori (c6) 2022
Galitskiy, Dongare (c22) 2021
Arola (c35) 2014
(2023111413565674600_c12) 2006; 15
(2023111413565674600_c22) 2021; 56
(2023111413565674600_c17) 2014; 116
(2023111413565674600_c19) 2022; 30
(2023111413565674600_c15) 2023; 31
(2023111413565674600_c21) 2021; 198
(2023111413565674600_c34) 2012; 44
(2023111413565674600_c26) 1982; 72
(2023111413565674600_c25) 2011; 107
(2023111413565674600_c27) 1980
(2023111413565674600_c18) 1996; 77
(2023111413565674600_c24) 2010; 108
(2023111413565674600_c1) 2020; 378
(2023111413565674600_c23) 2023; 133
(2023111413565674600_c13) 1990; 68
(2023111413565674600_c20) 2019; 125
(2023111413565674600_c2) 2017; 2
2023111413565674600_c29
(2023111413565674600_c32) 2014
(2023111413565674600_c11) 2008; 77
(2023111413565674600_c36) 2006; 99
(2023111413565674600_c14) 2010; 92
(2023111413565674600_c16) 2019; 90
(2023111413565674600_c33) 1997; 120
(2023111413565674600_c9) 2014; 56
(2023111413565674600_c35) 2014; 50
(2023111413565674600_c30) 2009; 47
(2023111413565674600_c3) 2016; 12
(2023111413565674600_c28) 2023
(2023111413565674600_c31) 2000; 131
(2023111413565674600_c5) 2020; 1
(2023111413565674600_c8) 1993; 388
(2023111413565674600_c10) 2017; 50
(2023111413565674600_c6) 2022; 7
(2023111413565674600_c4) 2010; 35
(2023111413565674600_c7) 1995
References_xml – start-page: 066402
  year: 2008
  ident: c11
  article-title: Properties of plastic ablators in laser-driven material dynamics experiments
  publication-title: Phys. Rev. E
– start-page: 516
  year: 2010
  ident: c14
  article-title: Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses
  publication-title: JETP Lett.
– start-page: 998
  year: 2014
  ident: c9
  article-title: The combination of direct and confined laser ablation mechanisms for the selective structuring of thin silicon nitride layers
  publication-title: Phys. Proc.
– start-page: 083001
  year: 2022
  ident: c19
  article-title: Ultrafast laser matter interactions: Modeling approaches, challenges, and prospects
  publication-title: Modell. Simul. Mater. Sci. Eng.
– start-page: 023511
  year: 2010
  ident: c24
  article-title: Ultrafast observation of shocked states in a precompressed material
  publication-title: J. Appl. Phys.
– start-page: 085103
  year: 2019
  ident: c20
  article-title: Physics of picosecond pulse laser ablation
  publication-title: J. Appl. Phys.
– start-page: 273
  year: 2000
  ident: c31
  article-title: Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
  publication-title: Astrophys. J. Suppl. Ser.
– start-page: 033506
  year: 2014
  ident: c17
  article-title: Plastic behavior of aluminum in high strain rate regime
  publication-title: J. Appl. Phys.
– start-page: 948
  year: 2012
  ident: c34
  article-title: Damage/ablation morphology of laser conditioned sapphire under 1064 nm laser irradiation
  publication-title: Opt. Laser Technol.
– start-page: 381
  year: 2006
  ident: c36
  article-title: HELIOS-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– start-page: 92
  year: 2020
  ident: c5
  article-title: Laser-metal interaction dynamics during additive manufacturing resolved by detection of thermally-induced electron emission
  publication-title: Commun. Mater.
– start-page: 435
  year: 2016
  ident: c3
  article-title: Inertial-confinement fusion with lasers
  publication-title: Nat. Phys.
– start-page: 65
  year: 1997
  ident: c33
  article-title: Laser processing of sapphire with picosecond and sub-picosecond pulses
  publication-title: Appl. Surf. Sci.
– start-page: 20200030
  year: 2020
  ident: c1
  article-title: The importance of the laser pulse-ablator interaction dynamics prior to the ablation plasma phase in inertial confinement fusion studies
  publication-title: Philos. Trans. R. Soc. A
– start-page: 22532
  year: 2023
  ident: c15
  article-title: Tamper performance for confined laser drive applications
  publication-title: Opt. Express
– start-page: 1
  year: 2014
  ident: c35
  article-title: Theoretical studies on multiphoton absorption of ultrashort laser pulses in sapphire
  publication-title: IEEE J. Quantum Electron.
– start-page: 775
  year: 1990
  ident: c13
  article-title: Physical study of laser-produced plasma in confined geometry
  publication-title: J. Appl. Phys.
– start-page: 37
  year: 2017
  ident: c2
  article-title: Laser-direct-drive program: Promise, challenge, and path forward
  publication-title: Matter Radiat. Extremes
– start-page: 193001
  year: 2017
  ident: c10
  article-title: Modelling ultrafast laser ablation
  publication-title: J. Phys. D
– start-page: 91
  year: 1993
  ident: c8
  article-title: Laser–material interactions: Fundamentals and applications
  publication-title: AIP Conf. Proc.
– start-page: 105901
  year: 2023
  ident: c23
  article-title: Modeling laser interactions with aluminum and tantalum targets using a hybrid atomistic-continuum model
  publication-title: J. Appl. Phys.
– start-page: 110668
  year: 2021
  ident: c21
  article-title: Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales
  publication-title: Comput. Mater. Sci.
– start-page: 2702
  year: 2010
  ident: c4
  article-title: Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces
  publication-title: Opt. Lett.
– start-page: 580
  year: 2006
  ident: c12
  article-title: The characteristics of confined ablation in laser propulsion
  publication-title: Chin. Phys.
– start-page: 4446
  year: 2021
  ident: c22
  article-title: Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales
  publication-title: J. Mater. Sci.
– start-page: 144302
  year: 2011
  ident: c25
  article-title: Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold
  publication-title: Phys. Rev. Lett.
– start-page: 71
  year: 2009
  ident: c30
  article-title: The design and development of a closed chamber for the quantification of dryland soil carbon dioxide fluxes
  publication-title: Geogr. Res.
– start-page: 013001
  year: 2022
  ident: c6
  article-title: Recent progress in matter in extreme states created by laser
  publication-title: Matter Radiat. Extremes
– start-page: 063001
  year: 2019
  ident: c16
  article-title: A benchtop shock physics laboratory: Ultrafast laser driven shock spectroscopy and interferometry methods
  publication-title: Rev. Sci. Instrum.
– start-page: 3359
  year: 1996
  ident: c18
  article-title: Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum
  publication-title: Phys. Rev. Lett.
– start-page: 156
  year: 1982
  ident: c26
  article-title: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry
  publication-title: J. Opt. Soc. Am.
– volume: 131
  start-page: 273
  year: 2000
  ident: 2023111413565674600_c31
  article-title: Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1086/317361
– volume: 120
  start-page: 65
  year: 1997
  ident: 2023111413565674600_c33
  article-title: Laser processing of sapphire with picosecond and sub-picosecond pulses
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(97)00218-3
– volume: 77
  start-page: 3359
  year: 1996
  ident: 2023111413565674600_c18
  article-title: Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3359
– volume-title: Instabilities in Laser-Matter Interaction
  year: 1995
  ident: 2023111413565674600_c7
– volume: 7
  start-page: 013001
  year: 2022
  ident: 2023111413565674600_c6
  article-title: Recent progress in matter in extreme states created by laser
  publication-title: Matter Radiat. Extremes
  doi: 10.1063/5.0078895
– volume: 47
  start-page: 71
  year: 2009
  ident: 2023111413565674600_c30
  article-title: The design and development of a closed chamber for the in-situ quantification of dryland soil carbon dioxide fluxes
  publication-title: Geogr. Res.
  doi: 10.1111/j.1745-5871.2008.00551.x
– volume: 31
  start-page: 22532
  year: 2023
  ident: 2023111413565674600_c15
  article-title: Tamper performance for confined laser drive applications
  publication-title: Opt. Express
  doi: 10.1364/OE.491526
– volume: 90
  start-page: 063001
  year: 2019
  ident: 2023111413565674600_c16
  article-title: A benchtop shock physics laboratory: Ultrafast laser driven shock spectroscopy and interferometry methods
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5092244
– volume: 133
  start-page: 105901
  year: 2023
  ident: 2023111413565674600_c23
  article-title: Modeling laser interactions with aluminum and tantalum targets using a hybrid atomistic-continuum model
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0138389
– volume: 198
  start-page: 110668
  year: 2021
  ident: 2023111413565674600_c21
  article-title: Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110668
– volume: 107
  start-page: 144302
  year: 2011
  ident: 2023111413565674600_c25
  article-title: Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.144302
– volume: 116
  start-page: 033506
  year: 2014
  ident: 2023111413565674600_c17
  article-title: Plastic behavior of aluminum in high strain rate regime
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4890012
– volume-title: Nonlinear Optics and Photonics
  year: 2014
  ident: 2023111413565674600_c32
  article-title: Self-focusing, self-phase modulation, and spectral self-broadening
– volume: 2
  start-page: 37
  year: 2017
  ident: 2023111413565674600_c2
  article-title: Laser-direct-drive program: Promise, challenge, and path forward
  publication-title: Matter Radiat. Extremes
  doi: 10.1016/j.mre.2017.03.001
– volume-title: LASL Shock Hugoniot Data
  year: 1980
  ident: 2023111413565674600_c27
– volume: 35
  start-page: 2702
  year: 2010
  ident: 2023111413565674600_c4
  article-title: Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.002702
– volume: 12
  start-page: 435
  year: 2016
  ident: 2023111413565674600_c3
  article-title: Inertial-confinement fusion with lasers
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3736
– volume: 92
  start-page: 516
  year: 2010
  ident: 2023111413565674600_c14
  article-title: Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses
  publication-title: JETP Lett.
  doi: 10.1134/S0021364010200051
– ident: 2023111413565674600_c29
– volume: 68
  start-page: 775
  year: 1990
  ident: 2023111413565674600_c13
  article-title: Physical study of laser-produced plasma in confined geometry
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346783
– volume: 15
  start-page: 580
  year: 2006
  ident: 2023111413565674600_c12
  article-title: The characteristics of confined ablation in laser propulsion
  publication-title: Chin. Phys.
  doi: 10.1088/1009-1963/15/3/023
– year: 2023
  ident: 2023111413565674600_c28
  article-title: A method of determining ablation depth from free surface velocities in laser induced ablation experiments
– volume: 44
  start-page: 948
  year: 2012
  ident: 2023111413565674600_c34
  article-title: Damage/ablation morphology of laser conditioned sapphire under 1064 nm laser irradiation
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2011.11.003
– volume: 56
  start-page: 4446
  year: 2021
  ident: 2023111413565674600_c22
  article-title: Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05523-4
– volume: 77
  start-page: 066402
  year: 2008
  ident: 2023111413565674600_c11
  article-title: Properties of plastic ablators in laser-driven material dynamics experiments
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.066402
– volume: 99
  start-page: 381
  year: 2006
  ident: 2023111413565674600_c36
  article-title: HELIOS-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2005.05.031
– volume: 378
  start-page: 20200030
  year: 2020
  ident: 2023111413565674600_c1
  article-title: The importance of the laser pulse-ablator interaction dynamics prior to the ablation plasma phase in inertial confinement fusion studies
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0030
– volume: 56
  start-page: 998
  year: 2014
  ident: 2023111413565674600_c9
  article-title: The combination of direct and confined laser ablation mechanisms for the selective structuring of thin silicon nitride layers
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2014.08.011
– volume: 30
  start-page: 083001
  year: 2022
  ident: 2023111413565674600_c19
  article-title: Ultrafast laser matter interactions: Modeling approaches, challenges, and prospects
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/ac8abc
– volume: 50
  start-page: 1
  year: 2014
  ident: 2023111413565674600_c35
  article-title: Theoretical studies on multiphoton absorption of ultrashort laser pulses in sapphire
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2014.2328101
– volume: 1
  start-page: 92
  year: 2020
  ident: 2023111413565674600_c5
  article-title: Laser-metal interaction dynamics during additive manufacturing resolved by detection of thermally-induced electron emission
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-020-00094-y
– volume: 125
  start-page: 085103
  year: 2019
  ident: 2023111413565674600_c20
  article-title: Physics of picosecond pulse laser ablation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5080628
– volume: 108
  start-page: 023511
  year: 2010
  ident: 2023111413565674600_c24
  article-title: Ultrafast observation of shocked states in a precompressed material
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3460801
– volume: 50
  start-page: 193001
  year: 2017
  ident: 2023111413565674600_c10
  article-title: Modelling ultrafast laser ablation
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/50/19/193001
– volume: 72
  start-page: 156
  year: 1982
  ident: 2023111413565674600_c26
  article-title: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.72.000156
– volume: 388
  start-page: 91
  year: 1993
  ident: 2023111413565674600_c8
  article-title: Laser–material interactions: Fundamentals and applications
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.44887
SSID ssj0005233
Score 2.457924
Snippet A 100 ps laser is used to probe the pressure generation, depth of the non-solid ablator, and the non-linear optical effects through tamper materials. Samples...
Here, a 100 ps laser is used to probe the pressure generation, depth of the non-solid ablator, and the non-linear optical effects through tamper materials....
SourceID osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Aluminum
Applied physics
hydrodynamic codes
laser ablation
laser materials
Lasers
optical effects
Sapphire
shock waves
speed of sound
Title Laser material interactions in tamped materials on picosecond time scales in aluminum
URI http://dx.doi.org/10.1063/5.0169533
https://www.proquest.com/docview/2889742173
https://www.osti.gov/servlets/purl/2228559
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELagEwIeJhggyjZkAQ9IUUoWO6nz2I2hgjZUdau0tyhxHFZpSqoke4Bfz11sJ6kYCHiJ2jhN0ruvl8_X-86EvMtyiYJF3_UU0DfsV-Km0mNuGnmKs1yIhKF2-PxrOF_xL1fBVZ_Qb9UlTTqRP-7UlfyPV2Ef-BVVsv_g2e6ksANeg39hCx6G7V_5-AweQZUDnFPptTfQSFqo0Fa5Nglw4qwbb_8Y2KyxQl2iagWXlXdq8FFbk-UkEKbWhenMYPvSGo6q8x-1c9OKfzoavkiQrrdIuCg312vlnE76go3KaGmWJdbVTwbQqjH__m1Qte8su-FlkpW3JqM7T6rqu3M8GaYmfIYaPa0sHagBkmK77mFh7hgI9OzzwuY7bHhmbhiZDrQ2PGs9ssFhq5z7Ne4D0QJnYQfWEOtl-4dbV3KImS6YPd0nOz5MKCAi7sw-np9dDMqBGLOrK-It2C5UIfvQnXaLu4xK-FJb85KHQFp0_cSAolw-IbtmbkFnGihPyT1V7JHHg46Te-SBscszsmrBQy046BA88IZq8HTjNS0L2oOHInioBg8ebcHznKw-nV6ezF2zxoYrWcAbV01lNvWBBfKpkjyTHnZuBVonI46dgXgOfNXnKsPon6ceWC47OsqCMA1SoNpKsRdkVJSFekloIDKRMhHg6i08yJXI81D4kfAiphSw7jF5b60XW0PhOig3cVsIEbI4iI2hx-RNd-hGd12566B9dEGMVlfyWmJhmGxi4-gxObCeic1Pto59IWD-DLNw-PDbzlu_v8SrP15inzzqUX9ARk11qw6Bojbpa4OunwhYkVc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+material+interactions+in+tamped+materials+on+picosecond+time+scales+in+aluminum&rft.jtitle=Applied+physics+letters&rft.au=Parsons%2C+Sophie+E.&rft.au=Turner%2C+Ross+E.&rft.au=Armstrong%2C+Michael+R.&rft.au=Radousky%2C+Harry+B.&rft.date=2023-11-13&rft.pub=American+Institute+of+Physics+%28AIP%29&rft.issn=0003-6951&rft.volume=123&rft.issue=20&rft_id=info:doi/10.1063%2F5.0169533&rft.externalDocID=2228559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon