The Gap test – Effects of crack parallel compression on fracture in carbon fiber composites
This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s...
Saved in:
Published in | Composites. Part A, Applied science and manufacturing Vol. 164; p. 107252 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s Type II Size Effect Law, it is found that there is a monotonic decrease in the Mode I fracture energy as the crack parallel compressive stress increases. Compared to the nominal value of fracture energy, where no crack parallel compression is applied, the fracture energy is observed to decrease by up to 37% for a compressive stress equal to 44% of the compressive failure limit of the composite. This weakening effect is attributed to splitting cracks that are induced at the crack tip due to the crack parallel compression, which are identified via crack tip photomicroscopy. This is a novel result that challenges the century old hypothesis of fracture energy being a constant material property and further, shows for the first time that crack parallel compression leads to a composite structure being dangerously weaker than expected.
The experimental campaign is also buttressed with a computational campaign that provides a framework capable of capturing the effects of crack parallel compression. Through the use of the crack band model, which correctly characterizes the fracture process zone tensorially, coupled with a fully tensorial damage law, the simulated results provide satisfactory agreement with the experimental data. Conversely, when a reduced tensorial damage law defines the crack band it is shown that the structural strength and fracture energy are dangerously overpredicted. This emphasizes the importance of using a crack band model coupled with a fully tensorial damage law to accurately predict fracture in composites. |
---|---|
AbstractList | This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s Type II Size Effect Law, it is found that there is a monotonic decrease in the Mode I fracture energy as the crack parallel compressive stress increases. Compared to the nominal value of fracture energy, where no crack parallel compression is applied, the fracture energy is observed to decrease by up to 37% for a compressive stress equal to 44% of the compressive failure limit of the composite. This weakening effect is attributed to splitting cracks that are induced at the crack tip due to the crack parallel compression, which are identified via crack tip photomicroscopy. This is a novel result that challenges the century old hypothesis of fracture energy being a constant material property and further, shows for the first time that crack parallel compression leads to a composite structure being dangerously weaker than expected.
The experimental campaign is also buttressed with a computational campaign that provides a framework capable of capturing the effects of crack parallel compression. Through the use of the crack band model, which correctly characterizes the fracture process zone tensorially, coupled with a fully tensorial damage law, the simulated results provide satisfactory agreement with the experimental data. Conversely, when a reduced tensorial damage law defines the crack band it is shown that the structural strength and fracture energy are dangerously overpredicted. This emphasizes the importance of using a crack band model coupled with a fully tensorial damage law to accurately predict fracture in composites. This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s Type II Size Effect Law, it is found that there is a monotonic decrease in the Mode I fracture energy as the crack parallel compressive stress increases. Compared to the nominal value of fracture energy, where no crack parallel compression is applied, the fracture energy is observed to decrease by up to 37% for a compressive stress equal to 44% of the compressive failure limit of the composite. This weakening effect is attributed to splitting cracks that are induced at the crack tip due to the crack parallel compression, which are identified via crack tip photomicroscopy. This is a novel result that challenges the century old hypothesis of fracture energy being a constant material property and further, shows for the first time that crack parallel compression leads to a composite structure being dangerously weaker than expected. The experimental campaign is also buttressed with a computational campaign that provides a framework capable of capturing the effects of crack parallel compression. Through the use of the crack band model, which correctly characterizes the fracture process zone tensorially, coupled with a fully tensorial damage law, the simulated results provide satisfactory agreement with the experimental data. Conversely, when a reduced tensorial damage law defines the crack band it is shown that the structural strength and fracture energy are dangerously overpredicted. This emphasizes the importance of using a crack band model coupled with a fully tensorial damage law to accurately predict fracture in composites. |
ArticleNumber | 107252 |
Author | Salviato, Marco Brockmann, Jeremy |
Author_xml | – sequence: 1 givenname: Jeremy surname: Brockmann fullname: Brockmann, Jeremy – sequence: 2 givenname: Marco surname: Salviato fullname: Salviato, Marco email: salviato@aa.washington.edu |
BookMark | eNqNkM1KAzEUhYNUsK2-Q9y5mZqfSSdZiZRahYKbCm4kZNI7mDqdjMlUcOc7-IY-iSkjKK4KgYSbc8699xuhQeMbQOickgkldHq5mVi_bX10HUQzYYSxVC-YYEdoSGUhMyFzMkhvLlQmuXg8QaMYN4QQzhUdoqfVM-CFaXHyd_jr4xPPqwpsF7GvsA3GvuDWBFPXUON9pwAxOt_gdKr02-0CYNdga0K5L7kSAv6d6BQdV6aOcPZzj9HDzXw1u82W94u72fUys1zkXQY5yxlTRnFRCilgypSYQhpQSSotrVRZclGYshBcmjUlOVhV8qQwnJhcSD5GF31uG_zrLm2ity5aqGvTgN9FzWlyMp4X0yRVvdQGH2OASrfBbU1415ToPVK90X-Q6j1S3SNN3qt_Xus60yUeXTCuPihh1idAovHmIOhoHTQW1i4k6nrt3QEp3x9Endo |
CitedBy_id | crossref_primary_10_1073_pnas_2410668121 crossref_primary_10_1016_j_compositesa_2023_107945 crossref_primary_10_1016_j_compositesa_2024_108264 crossref_primary_10_1016_j_jmps_2023_105470 crossref_primary_10_3390_app122211843 |
Cites_doi | 10.1115/1.2744036 10.1016/S0020-7683(99)00077-3 10.1115/1.3601206 10.1016/j.compstruct.2019.111245 10.1002/nme.1620100306 10.1115/1.2806812 10.1016/j.engfracmech.2014.10.013 10.1115/1.3153664 10.1073/pnas.2005646117 10.1115/1.4047215 10.1177/002199837100500106 10.1098/rsta.1921.0006 10.5957/mt1.1994.31.4.296 10.1016/j.engfracmech.2009.06.008 10.1016/j.compositesa.2014.09.020 10.1016/j.compstruct.2015.10.033 10.1115/1.4032275 10.1016/0022-5096(68)90013-6 10.1016/j.compositesa.2019.105520 10.1115/1.4034312 10.1111/j.1151-2916.1990.tb05233.x 10.1016/j.compositesa.2019.105640 10.1016/j.ijsolstr.2020.02.010 10.1016/j.compscitech.2016.08.021 10.1016/j.ijsolstr.2016.12.017 10.1115/1.4043889 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.compositesa.2022.107252 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-5840 |
ExternalDocumentID | 10_1016_j_compositesa_2022_107252 S1359835X2200433X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K TN5 ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c354t-e424229a935b585e62956e3399818c1f9bb357ab7538ad104ec9b36e3a30a4583 |
IEDL.DBID | .~1 |
ISSN | 1359-835X |
IngestDate | Tue Aug 05 10:39:01 EDT 2025 Tue Jul 01 00:48:52 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Fri Feb 23 02:42:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | A. Polymer-matrix composites (PMCs) The Gap Test B. Fracture toughness C. Finite Element Analysis (FEA) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-e424229a935b585e62956e3399818c1f9bb357ab7538ad104ec9b36e3a30a4583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153823476 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153823476 crossref_primary_10_1016_j_compositesa_2022_107252 crossref_citationtrail_10_1016_j_compositesa_2022_107252 elsevier_sciencedirect_doi_10_1016_j_compositesa_2022_107252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Composites. Part A, Applied science and manufacturing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | “ASTM E399-20a Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials,” ASTM International; 2021. Salviato, Chau, Li, Bazant, Cusatis (b0135) 2016; 83 “Defining the constitutive response of cohesive elements using a traction seperation description,” Abaqus , [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesivebehavior.htm. [Accessed 19 April 2022]. Rice, Rosengren (b0165) 1968; 16 Ko, Yang, Tuttle (b0090) 2019; 227 Bazant (b0125) 2000; 37 Gupta, Alderliesten, Benedictus (b0225) 2015; 134 Griffith A. The phenomena of rupture and flow in solids. Philosoph Trans Royal Soc Lond, pp. 163-198; 1921. Straznicky, Worswick, Majeed (b0120) 1993; 5 Qiao, Zhang, Nakagawa, Salviato (b0155) 2021 Abaqus, “Eigenvalue Buckling Prediction,” [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-eigenbuckling.htm. [Accessed 2 April 2022]. Bažant, Planas (b0055) 1998 Salviato, Kirane, Ashari, Bazant, Cusatis (b0080) 2016; 135 Hashin (b0180) 1980; 47 Tsai, Wu (b0140) 1971; 5 Rice (b0145) 1968; 35 “Modeling with cohesive elements,” Abaqus, [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesiveusage.htm. [Accessed 19 April 2022]. Anderson (b0050) 2005 Bazant, Daniel, Li (b0065) 1996; 118 Rana, Fangueiro (b0005) 2016 Cusatis, Beghini, Bazant (b0185) 2008; 75 Miller, Dillon (b0020) 1994; 31 Nguyen, Pathirage, Cusatis, Bažant (b0110) 2020; 87 Nguyen H, Pathirage M, Rezaei M, Issa M, Cusatisa G, Bazant Z. New perspective of fracture mechanics inspired by gap. PNAS, vol. 117, no. 25; 2020. Barsoum (b0150) 1976; 10 Ko, Davey, Douglass, Yang, Tuttle, Salviato (b0085) 2019; 125 Salviato, Kirane, Bazant, Cusatis (b0075) 2019; 86 Salviato, Ashari, Cusatis (b0190) 2016; 137 Daniel IM, Ishai O. Engineering mechanics of composite materials (Vol. 1994), New York: Oxford university press; 2006. Elmarakbi (b0015) 2013 Cusatis, Schauffert (b0210) 2009; 76 Chortis (b0010) 2013 Kumagai, Onodera, Salviato, Okabe (b0095) 2020; 193–194 Kirane, Salviato, Zdenek (b0195) 2016; 83 Bazant Z. Crack Band Model for Fracture of Geomaterials. In: Fourth International Conference on Numerical Methods in Geomechanics, Alberta; 1982. Qiao, Deleo, Salviato (b0070) 2019; 127 Wells A. The Condition of Fast Fracture in Aluminum Alloys with Particular Reference to Comet. British Welding Research Association Report; 1955. Shank M. A Critical Review of Brittle Failure in Carbon Plate Steel Structures Other than Ships,“ National Academy of Science-National Research Council; 1953. “ASTM D695-15 Standard Test Method for Compressive Properties of Rigid Plastics,” ASTM International; 2016. Okabe, Imamura, Sato, Higuchi, Koyanagi, Talreja (b0160) 2015; 68 Li, Qiao, Fenner, Warren, Salviato, Bazant (b0100) 2021; 4 Ceccato, Salviato, Pellegrino, Cusatis (b0025) 2017; 108 Bažant, Kazemi (b0105) 1990; 73 Barbero (b0215) 2013 Bazant, Le, Salviato (b0060) 2021 Straznicky (10.1016/j.compositesa.2022.107252_b0120) 1993; 5 Salviato (10.1016/j.compositesa.2022.107252_b0135) 2016; 83 Okabe (10.1016/j.compositesa.2022.107252_b0160) 2015; 68 10.1016/j.compositesa.2022.107252_b0040 Li (10.1016/j.compositesa.2022.107252_b0100) 2021; 4 10.1016/j.compositesa.2022.107252_b0205 Bazant (10.1016/j.compositesa.2022.107252_b0065) 1996; 118 Salviato (10.1016/j.compositesa.2022.107252_b0080) 2016; 135 Bazant (10.1016/j.compositesa.2022.107252_b0125) 2000; 37 Rice (10.1016/j.compositesa.2022.107252_b0165) 1968; 16 Anderson (10.1016/j.compositesa.2022.107252_b0050) 2005 Kirane (10.1016/j.compositesa.2022.107252_b0195) 2016; 83 Rana (10.1016/j.compositesa.2022.107252_b0005) 2016 10.1016/j.compositesa.2022.107252_b0220 10.1016/j.compositesa.2022.107252_b0045 Salviato (10.1016/j.compositesa.2022.107252_b0075) 2019; 86 10.1016/j.compositesa.2022.107252_b0200 Cusatis (10.1016/j.compositesa.2022.107252_b0210) 2009; 76 10.1016/j.compositesa.2022.107252_b0170 Hashin (10.1016/j.compositesa.2022.107252_b0180) 1980; 47 10.1016/j.compositesa.2022.107252_b0030 Miller (10.1016/j.compositesa.2022.107252_b0020) 1994; 31 10.1016/j.compositesa.2022.107252_b0130 Tsai (10.1016/j.compositesa.2022.107252_b0140) 1971; 5 Chortis (10.1016/j.compositesa.2022.107252_b0010) 2013 Bazant (10.1016/j.compositesa.2022.107252_b0060) 2021 Salviato (10.1016/j.compositesa.2022.107252_b0190) 2016; 137 Ko (10.1016/j.compositesa.2022.107252_b0085) 2019; 125 Qiao (10.1016/j.compositesa.2022.107252_b0070) 2019; 127 Barsoum (10.1016/j.compositesa.2022.107252_b0150) 1976; 10 Ko (10.1016/j.compositesa.2022.107252_b0090) 2019; 227 Elmarakbi (10.1016/j.compositesa.2022.107252_b0015) 2013 Bažant (10.1016/j.compositesa.2022.107252_b0055) 1998 Barbero (10.1016/j.compositesa.2022.107252_b0215) 2013 Rice (10.1016/j.compositesa.2022.107252_b0145) 1968; 35 Nguyen (10.1016/j.compositesa.2022.107252_b0110) 2020; 87 Ceccato (10.1016/j.compositesa.2022.107252_b0025) 2017; 108 10.1016/j.compositesa.2022.107252_b0175 Kumagai (10.1016/j.compositesa.2022.107252_b0095) 2020; 193–194 Cusatis (10.1016/j.compositesa.2022.107252_b0185) 2008; 75 Gupta (10.1016/j.compositesa.2022.107252_b0225) 2015; 134 10.1016/j.compositesa.2022.107252_b0035 Bažant (10.1016/j.compositesa.2022.107252_b0105) 1990; 73 Qiao (10.1016/j.compositesa.2022.107252_b0155) 2021 10.1016/j.compositesa.2022.107252_b0115 |
References_xml | – volume: 118 start-page: 317 year: 1996 end-page: 324 ident: b0065 article-title: Size effect and fracture characteristics of composite laminates publication-title: J Eng Mater Technol – volume: 83 year: 2016 ident: b0135 article-title: Direct testing of gradual postpeak softening of fracture specimens of fiber composites stabilized by enhanced grip stiffness and mass publication-title: J Appl Mech – volume: 68 start-page: 81 year: 2015 end-page: 89 ident: b0160 article-title: Experimental and numerical studies of initial cracking in CFRP cross-ply laminates publication-title: Compos A Appl Sci Manuf – reference: Griffith A. The phenomena of rupture and flow in solids. Philosoph Trans Royal Soc Lond, pp. 163-198; 1921. – reference: Daniel IM, Ishai O. Engineering mechanics of composite materials (Vol. 1994), New York: Oxford university press; 2006. – volume: 86 year: 2019 ident: b0075 article-title: Mode I and II Interlaminar Fracture in Laminated Composites: A Size Effect Study publication-title: J Appl Mech – volume: 137 start-page: 170 year: 2016 end-page: 184 ident: b0190 article-title: Spectral stiffness microplane model for damage and fracture of textile composites publication-title: Compos Struct – reference: “ASTM E399-20a Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials,” ASTM International; 2021. – volume: 5 start-page: 386 year: 1993 end-page: 393 ident: b0120 article-title: Impact Damage in Composite Laminates publication-title: ICCM/9 Composites Behavior – volume: 31 start-page: 296 year: 1994 end-page: 304 ident: b0020 article-title: The International Sailing Canoe: A Technical Review publication-title: Marine Technology and SNAME News – year: 2021 ident: b0155 article-title: A size effect study on the splitting crack initiation and propagation in off-axis layers of composite laminates publication-title: 36th American Society for Composites Conference – volume: 4 start-page: 1000098 year: 2021 ident: b0100 article-title: Elastic and fracture behavior of three-dimensional ply-to-ply angle interlock woven composites: Through-thickness, size effect, and multiaxial tests publication-title: Composites Part C: Open Access – reference: “ASTM D695-15 Standard Test Method for Compressive Properties of Rigid Plastics,” ASTM International; 2016. – reference: Nguyen H, Pathirage M, Rezaei M, Issa M, Cusatisa G, Bazant Z. New perspective of fracture mechanics inspired by gap. PNAS, vol. 117, no. 25; 2020. – volume: 108 start-page: 216 year: 2017 end-page: 229 ident: b0025 article-title: Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape publication-title: Int J Solids Struct – volume: 193–194 start-page: 172 year: 2020 end-page: 191 ident: b0095 article-title: Multiscale analysis and experimental validation of crack initiation in quasi-isotropic laminates publication-title: Int J Solids Struct – volume: 10 start-page: 551 year: 1976 end-page: 564 ident: b0150 article-title: A degenerate solid element for linear fracture analysis of plate bending and general shells publication-title: Int J Numer Methods Eng – volume: 83 year: 2016 ident: b0195 article-title: Microplane-triad model for elastic and fracturing behavior of woven composites publication-title: J Appl Mech – reference: Shank M. A Critical Review of Brittle Failure in Carbon Plate Steel Structures Other than Ships,“ National Academy of Science-National Research Council; 1953. – volume: 87 start-page: pp year: 2020 ident: b0110 article-title: Gap test of crack-parallel stress effect on quasibrittle fracture and its consequences publication-title: J Appl Mech – reference: “Modeling with cohesive elements,” Abaqus, [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesiveusage.htm. [Accessed 19 April 2022]. – year: 2013 ident: b0215 article-title: Finite element analysis of composite materials using AbaqusTM – volume: 75 year: 2008 ident: b0185 article-title: Spectral stiffness microplane model for quasibrittle composite laminates—Part I: theory publication-title: J Appl Mech – volume: 227 year: 2019 ident: b0090 article-title: Effect of the platelet size on the fracturing behavior and size effect of discontinuous fiber composite structures publication-title: Compos Struct – volume: 5 start-page: 58 year: 1971 end-page: 80 ident: b0140 article-title: A general theory of strength for anisotropic materials publication-title: J Compos Mater – volume: 135 start-page: 67 year: 2016 end-page: 75 ident: b0080 article-title: Experimental and numerical investigation of intra-laminar energy dissipation and size effect in two-dimensional textile composites publication-title: Compos Sci Technol – reference: Wells A. The Condition of Fast Fracture in Aluminum Alloys with Particular Reference to Comet. British Welding Research Association Report; 1955. – volume: 35 start-page: 379 year: 1968 end-page: 386 ident: b0145 article-title: A Path independent integral and the approximate analysis of strain concentration by notches and cracks publication-title: J Appl Mech – year: 2005 ident: b0050 article-title: Fracture mechanics: fundamentals and applications, 3E – volume: 125 year: 2019 ident: b0085 article-title: Effect of the thickness on the fracturing behavior of discontinuous fiber composite structures publication-title: Compos A Appl Sci Manuf – reference: Abaqus, “Eigenvalue Buckling Prediction,” [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-eigenbuckling.htm. [Accessed 2 April 2022]. – start-page: 1 year: 2016 end-page: 15 ident: b0005 article-title: Advanced composites in aerospace engineering publication-title: Advanced Composite Materials for Aerospace Engineering – volume: 47 start-page: 329 year: 1980 end-page: 334 ident: b0180 article-title: Failure Criteria for Unidirectional Composites publication-title: J Appl Mech – year: 2013 ident: b0015 article-title: Advanced composite materials for automotive applications: structural integrity and crashworthiness – volume: 73 start-page: 1841 year: 1990 end-page: 1853 ident: b0105 article-title: Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length publication-title: J Am Ceram Soc – volume: 127 year: 2019 ident: b0070 article-title: A study on the multi-axial fatigue failure behavior of notched composite laminates publication-title: Compos A Appl Sci Manuf – year: 1998 ident: b0055 article-title: Fracture and size effect in concrete and other quasibrittle materials – volume: 76 start-page: 2163 year: 2009 end-page: 2173 ident: b0210 article-title: Cohesive crack analysis of size effect publication-title: Eng Fract Mech – volume: 37 start-page: 69 year: 2000 end-page: 80 ident: b0125 article-title: Size effect publication-title: Int J Solids Struct – reference: “Defining the constitutive response of cohesive elements using a traction seperation description,” Abaqus , [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesivebehavior.htm. [Accessed 19 April 2022]. – volume: 134 start-page: 218 year: 2015 end-page: 241 ident: b0225 article-title: A review of T-stress and its effects in fracture mechanics publication-title: Eng Fract Mech – year: 2021 ident: b0060 article-title: Quasibrittle fracture mechanics and size effect: a first course – year: 2013 ident: b0010 article-title: Structural analysis of composite wind turbine blades – volume: 16 start-page: 1 year: 1968 end-page: 12 ident: b0165 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J Mech Phys Solids – reference: Bazant Z. Crack Band Model for Fracture of Geomaterials. In: Fourth International Conference on Numerical Methods in Geomechanics, Alberta; 1982. – volume: 75 issue: 2 year: 2008 ident: 10.1016/j.compositesa.2022.107252_b0185 article-title: Spectral stiffness microplane model for quasibrittle composite laminates—Part I: theory publication-title: J Appl Mech doi: 10.1115/1.2744036 – volume: 37 start-page: 69 year: 2000 ident: 10.1016/j.compositesa.2022.107252_b0125 article-title: Size effect publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(99)00077-3 – ident: 10.1016/j.compositesa.2022.107252_b0205 – volume: 35 start-page: 379 issue: 2 year: 1968 ident: 10.1016/j.compositesa.2022.107252_b0145 article-title: A Path independent integral and the approximate analysis of strain concentration by notches and cracks publication-title: J Appl Mech doi: 10.1115/1.3601206 – start-page: 1 year: 2016 ident: 10.1016/j.compositesa.2022.107252_b0005 article-title: Advanced composites in aerospace engineering – ident: 10.1016/j.compositesa.2022.107252_b0175 – volume: 227 year: 2019 ident: 10.1016/j.compositesa.2022.107252_b0090 article-title: Effect of the platelet size on the fracturing behavior and size effect of discontinuous fiber composite structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.111245 – ident: 10.1016/j.compositesa.2022.107252_b0045 – year: 2013 ident: 10.1016/j.compositesa.2022.107252_b0215 – volume: 10 start-page: 551 issue: 3 year: 1976 ident: 10.1016/j.compositesa.2022.107252_b0150 article-title: A degenerate solid element for linear fracture analysis of plate bending and general shells publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620100306 – volume: 118 start-page: 317 issue: 3 year: 1996 ident: 10.1016/j.compositesa.2022.107252_b0065 article-title: Size effect and fracture characteristics of composite laminates publication-title: J Eng Mater Technol doi: 10.1115/1.2806812 – volume: 134 start-page: 218 year: 2015 ident: 10.1016/j.compositesa.2022.107252_b0225 article-title: A review of T-stress and its effects in fracture mechanics publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2014.10.013 – volume: 47 start-page: 329 issue: 2 year: 1980 ident: 10.1016/j.compositesa.2022.107252_b0180 article-title: Failure Criteria for Unidirectional Composites publication-title: J Appl Mech doi: 10.1115/1.3153664 – year: 2005 ident: 10.1016/j.compositesa.2022.107252_b0050 – ident: 10.1016/j.compositesa.2022.107252_b0030 – year: 2013 ident: 10.1016/j.compositesa.2022.107252_b0010 – ident: 10.1016/j.compositesa.2022.107252_b0200 – ident: 10.1016/j.compositesa.2022.107252_b0115 doi: 10.1073/pnas.2005646117 – ident: 10.1016/j.compositesa.2022.107252_b0170 – volume: 87 start-page: pp issue: 7 year: 2020 ident: 10.1016/j.compositesa.2022.107252_b0110 article-title: Gap test of crack-parallel stress effect on quasibrittle fracture and its consequences publication-title: J Appl Mech doi: 10.1115/1.4047215 – volume: 5 start-page: 58 issue: 1 year: 1971 ident: 10.1016/j.compositesa.2022.107252_b0140 article-title: A general theory of strength for anisotropic materials publication-title: J Compos Mater doi: 10.1177/002199837100500106 – ident: 10.1016/j.compositesa.2022.107252_b0035 doi: 10.1098/rsta.1921.0006 – ident: 10.1016/j.compositesa.2022.107252_b0040 – volume: 4 start-page: 1000098 year: 2021 ident: 10.1016/j.compositesa.2022.107252_b0100 article-title: Elastic and fracture behavior of three-dimensional ply-to-ply angle interlock woven composites: Through-thickness, size effect, and multiaxial tests publication-title: Composites Part C: Open Access – volume: 31 start-page: 296 issue: 04 year: 1994 ident: 10.1016/j.compositesa.2022.107252_b0020 article-title: The International Sailing Canoe: A Technical Review publication-title: Marine Technology and SNAME News doi: 10.5957/mt1.1994.31.4.296 – volume: 76 start-page: 2163 issue: 14 year: 2009 ident: 10.1016/j.compositesa.2022.107252_b0210 article-title: Cohesive crack analysis of size effect publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2009.06.008 – volume: 68 start-page: 81 year: 2015 ident: 10.1016/j.compositesa.2022.107252_b0160 article-title: Experimental and numerical studies of initial cracking in CFRP cross-ply laminates publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2014.09.020 – volume: 137 start-page: 170 year: 2016 ident: 10.1016/j.compositesa.2022.107252_b0190 article-title: Spectral stiffness microplane model for damage and fracture of textile composites publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.10.033 – volume: 83 issue: 4 year: 2016 ident: 10.1016/j.compositesa.2022.107252_b0195 article-title: Microplane-triad model for elastic and fracturing behavior of woven composites publication-title: J Appl Mech doi: 10.1115/1.4032275 – year: 2013 ident: 10.1016/j.compositesa.2022.107252_b0015 – volume: 16 start-page: 1 issue: 1 year: 1968 ident: 10.1016/j.compositesa.2022.107252_b0165 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(68)90013-6 – volume: 125 year: 2019 ident: 10.1016/j.compositesa.2022.107252_b0085 article-title: Effect of the thickness on the fracturing behavior of discontinuous fiber composite structures publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2019.105520 – ident: 10.1016/j.compositesa.2022.107252_b0130 – volume: 83 issue: 11 year: 2016 ident: 10.1016/j.compositesa.2022.107252_b0135 article-title: Direct testing of gradual postpeak softening of fracture specimens of fiber composites stabilized by enhanced grip stiffness and mass publication-title: J Appl Mech doi: 10.1115/1.4034312 – volume: 73 start-page: 1841 issue: 7 year: 1990 ident: 10.1016/j.compositesa.2022.107252_b0105 article-title: Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1990.tb05233.x – volume: 127 year: 2019 ident: 10.1016/j.compositesa.2022.107252_b0070 article-title: A study on the multi-axial fatigue failure behavior of notched composite laminates publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2019.105640 – volume: 193–194 start-page: 172 year: 2020 ident: 10.1016/j.compositesa.2022.107252_b0095 article-title: Multiscale analysis and experimental validation of crack initiation in quasi-isotropic laminates publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2020.02.010 – year: 2021 ident: 10.1016/j.compositesa.2022.107252_b0060 – volume: 5 start-page: 386 year: 1993 ident: 10.1016/j.compositesa.2022.107252_b0120 article-title: Impact Damage in Composite Laminates publication-title: ICCM/9 Composites Behavior – year: 2021 ident: 10.1016/j.compositesa.2022.107252_b0155 article-title: A size effect study on the splitting crack initiation and propagation in off-axis layers of composite laminates – year: 1998 ident: 10.1016/j.compositesa.2022.107252_b0055 – volume: 135 start-page: 67 year: 2016 ident: 10.1016/j.compositesa.2022.107252_b0080 article-title: Experimental and numerical investigation of intra-laminar energy dissipation and size effect in two-dimensional textile composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2016.08.021 – ident: 10.1016/j.compositesa.2022.107252_b0220 – volume: 108 start-page: 216 year: 2017 ident: 10.1016/j.compositesa.2022.107252_b0025 article-title: Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2016.12.017 – volume: 86 issue: 9 year: 2019 ident: 10.1016/j.compositesa.2022.107252_b0075 article-title: Mode I and II Interlaminar Fracture in Laminated Composites: A Size Effect Study publication-title: J Appl Mech doi: 10.1115/1.4043889 |
SSID | ssj0003391 |
Score | 2.452459 |
Snippet | This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107252 |
SubjectTerms | A. Polymer-matrix composites (PMCs) B. Fracture toughness C. Finite Element Analysis (FEA) carbon fibers energy The Gap Test |
Title | The Gap test – Effects of crack parallel compression on fracture in carbon fiber composites |
URI | https://dx.doi.org/10.1016/j.compositesa.2022.107252 https://www.proquest.com/docview/3153823476 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGJ9lBS8rm2TfYKXUqxVoRct9CIhSbNQXbZlu72K_8F_6C9xptm1VRAEYU_ZhA0zszPzJV8mhFwoA1mIipUDybJ0XOVyJ4Q0w_HdcRxzP4jGlm0x8PtD927kjSqkW56FQVpl4futT19666KlWUizOZtMmg9tLD7HAWyhojkf4Ql2N0Arv3xd0Tw4jyzowuUu6L1JGiuOF9K2kRtl5liCiDFoD5jHfotRP7z1MgT1dslOkTvSjp3eHqmYdJ9sr1UUPCBPoHZ6I2cUPpbTj7d3assTz-k0pjqT-oVise8kMQnFaVkWbErhifG81CIzdJJSLTOFTUgnoavpH5Jh7_qx23eKGxQczT03d4wLEZhFMuKeAlxgfAZwyIBIIojTuh1HSnEvkAowSyjHgMyMjhSHHpK3JO6oHpFqOk3NMaFGhyG8NQwwmguRNdRahwFnoGytfNWqkbCUmdBFeXG85SIRJY_sWayJW6C4hRV3jbCvoTNbY-Mvg65KxYhvBiMgFvxleKNUpoAfCndJZGqmi7ngGAMYB0s6-d8nTskW3k1v12vOSDXPFuYcMphc1ZcmWicbndv7_uATRQXzng |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH7UCi4HccXdCF6HajIreClFbV16UaEXCUmagWqZlun07n_wH_pLfM_MuIEgCHPKzCPhvcxbki9fAI60xSxEp9rDZFl5vvaFF2Oa4YV-P01FGCV9h7bohu17_7IX9GrQqs7CEKyy9P3Op79767KlUWqzMR4MGrcnRD4nsNgiQwvRm4FZYqcK6jDb7Fy1ux8OWYjE1V204oUCc3D4CfMi5DbBo-yEWIg4x_aIB_y3MPXDYb9HofNlWCrTR9Z0I1yBms1WYfELqeAaPKDl2YUaM-ysYK_PL8wxFE_YKGUmV-aJEd_3cGiHjIblgLAZwyelI1PT3LJBxozKNTURooR9Dn8d7s_P7lptr7xEwTMi8AvP-hiEeaISEWgsDWzIsSKyqJIEQ7U5SROtRRApjWVLrPpYnFmTaIFfKHGsaFN1A-rZKLObwKyJY3xrOZZpPgbX2BgTR4KjvY0O9fEWxJXOpCkZxumii6GsoGSP8ou6JalbOnVvAf8QHTuajb8InVaGkd_mjMRw8Bfxw8qYEv8p2ihRmR1NJ1JQGODCj8Lt_3VxAPPtu5tred3pXu3AAl1V75ZvdqFe5FO7hwlNoffLCfsGl232Tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Gap+test+%E2%80%93+Effects+of+crack+parallel+compression+on+fracture+in+carbon+fiber+composites&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Brockmann%2C+Jeremy&rft.au=Salviato%2C+Marco&rft.date=2023-01-01&rft.issn=1359-835X&rft.volume=164+p.107252-&rft_id=info:doi/10.1016%2Fj.compositesa.2022.107252&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon |