The Gap test – Effects of crack parallel compression on fracture in carbon fiber composites

This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part A, Applied science and manufacturing Vol. 164; p. 107252
Main Authors Brockmann, Jeremy, Salviato, Marco
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s Type II Size Effect Law, it is found that there is a monotonic decrease in the Mode I fracture energy as the crack parallel compressive stress increases. Compared to the nominal value of fracture energy, where no crack parallel compression is applied, the fracture energy is observed to decrease by up to 37% for a compressive stress equal to 44% of the compressive failure limit of the composite. This weakening effect is attributed to splitting cracks that are induced at the crack tip due to the crack parallel compression, which are identified via crack tip photomicroscopy. This is a novel result that challenges the century old hypothesis of fracture energy being a constant material property and further, shows for the first time that crack parallel compression leads to a composite structure being dangerously weaker than expected. The experimental campaign is also buttressed with a computational campaign that provides a framework capable of capturing the effects of crack parallel compression. Through the use of the crack band model, which correctly characterizes the fracture process zone tensorially, coupled with a fully tensorial damage law, the simulated results provide satisfactory agreement with the experimental data. Conversely, when a reduced tensorial damage law defines the crack band it is shown that the structural strength and fracture energy are dangerously overpredicted. This emphasizes the importance of using a crack band model coupled with a fully tensorial damage law to accurately predict fracture in composites.
AbstractList This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s Type II Size Effect Law, it is found that there is a monotonic decrease in the Mode I fracture energy as the crack parallel compressive stress increases. Compared to the nominal value of fracture energy, where no crack parallel compression is applied, the fracture energy is observed to decrease by up to 37% for a compressive stress equal to 44% of the compressive failure limit of the composite. This weakening effect is attributed to splitting cracks that are induced at the crack tip due to the crack parallel compression, which are identified via crack tip photomicroscopy. This is a novel result that challenges the century old hypothesis of fracture energy being a constant material property and further, shows for the first time that crack parallel compression leads to a composite structure being dangerously weaker than expected. The experimental campaign is also buttressed with a computational campaign that provides a framework capable of capturing the effects of crack parallel compression. Through the use of the crack band model, which correctly characterizes the fracture process zone tensorially, coupled with a fully tensorial damage law, the simulated results provide satisfactory agreement with the experimental data. Conversely, when a reduced tensorial damage law defines the crack band it is shown that the structural strength and fracture energy are dangerously overpredicted. This emphasizes the importance of using a crack band model coupled with a fully tensorial damage law to accurately predict fracture in composites.
This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one stress component is compressive and parallel to the crack. Based on an experimental technique previously coined as The Gap Test and Bažant’s Type II Size Effect Law, it is found that there is a monotonic decrease in the Mode I fracture energy as the crack parallel compressive stress increases. Compared to the nominal value of fracture energy, where no crack parallel compression is applied, the fracture energy is observed to decrease by up to 37% for a compressive stress equal to 44% of the compressive failure limit of the composite. This weakening effect is attributed to splitting cracks that are induced at the crack tip due to the crack parallel compression, which are identified via crack tip photomicroscopy. This is a novel result that challenges the century old hypothesis of fracture energy being a constant material property and further, shows for the first time that crack parallel compression leads to a composite structure being dangerously weaker than expected. The experimental campaign is also buttressed with a computational campaign that provides a framework capable of capturing the effects of crack parallel compression. Through the use of the crack band model, which correctly characterizes the fracture process zone tensorially, coupled with a fully tensorial damage law, the simulated results provide satisfactory agreement with the experimental data. Conversely, when a reduced tensorial damage law defines the crack band it is shown that the structural strength and fracture energy are dangerously overpredicted. This emphasizes the importance of using a crack band model coupled with a fully tensorial damage law to accurately predict fracture in composites.
ArticleNumber 107252
Author Salviato, Marco
Brockmann, Jeremy
Author_xml – sequence: 1
  givenname: Jeremy
  surname: Brockmann
  fullname: Brockmann, Jeremy
– sequence: 2
  givenname: Marco
  surname: Salviato
  fullname: Salviato, Marco
  email: salviato@aa.washington.edu
BookMark eNqNkM1KAzEUhYNUsK2-Q9y5mZqfSSdZiZRahYKbCm4kZNI7mDqdjMlUcOc7-IY-iSkjKK4KgYSbc8699xuhQeMbQOickgkldHq5mVi_bX10HUQzYYSxVC-YYEdoSGUhMyFzMkhvLlQmuXg8QaMYN4QQzhUdoqfVM-CFaXHyd_jr4xPPqwpsF7GvsA3GvuDWBFPXUON9pwAxOt_gdKr02-0CYNdga0K5L7kSAv6d6BQdV6aOcPZzj9HDzXw1u82W94u72fUys1zkXQY5yxlTRnFRCilgypSYQhpQSSotrVRZclGYshBcmjUlOVhV8qQwnJhcSD5GF31uG_zrLm2ity5aqGvTgN9FzWlyMp4X0yRVvdQGH2OASrfBbU1415ToPVK90X-Q6j1S3SNN3qt_Xus60yUeXTCuPihh1idAovHmIOhoHTQW1i4k6nrt3QEp3x9Endo
CitedBy_id crossref_primary_10_1073_pnas_2410668121
crossref_primary_10_1016_j_compositesa_2023_107945
crossref_primary_10_1016_j_compositesa_2024_108264
crossref_primary_10_1016_j_jmps_2023_105470
crossref_primary_10_3390_app122211843
Cites_doi 10.1115/1.2744036
10.1016/S0020-7683(99)00077-3
10.1115/1.3601206
10.1016/j.compstruct.2019.111245
10.1002/nme.1620100306
10.1115/1.2806812
10.1016/j.engfracmech.2014.10.013
10.1115/1.3153664
10.1073/pnas.2005646117
10.1115/1.4047215
10.1177/002199837100500106
10.1098/rsta.1921.0006
10.5957/mt1.1994.31.4.296
10.1016/j.engfracmech.2009.06.008
10.1016/j.compositesa.2014.09.020
10.1016/j.compstruct.2015.10.033
10.1115/1.4032275
10.1016/0022-5096(68)90013-6
10.1016/j.compositesa.2019.105520
10.1115/1.4034312
10.1111/j.1151-2916.1990.tb05233.x
10.1016/j.compositesa.2019.105640
10.1016/j.ijsolstr.2020.02.010
10.1016/j.compscitech.2016.08.021
10.1016/j.ijsolstr.2016.12.017
10.1115/1.4043889
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compositesa.2022.107252
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-5840
ExternalDocumentID 10_1016_j_compositesa_2022_107252
S1359835X2200433X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
TN5
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c354t-e424229a935b585e62956e3399818c1f9bb357ab7538ad104ec9b36e3a30a4583
IEDL.DBID .~1
ISSN 1359-835X
IngestDate Tue Aug 05 10:39:01 EDT 2025
Tue Jul 01 00:48:52 EDT 2025
Thu Apr 24 23:10:09 EDT 2025
Fri Feb 23 02:42:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A. Polymer-matrix composites (PMCs)
The Gap Test
B. Fracture toughness
C. Finite Element Analysis (FEA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-e424229a935b585e62956e3399818c1f9bb357ab7538ad104ec9b36e3a30a4583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153823476
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153823476
crossref_primary_10_1016_j_compositesa_2022_107252
crossref_citationtrail_10_1016_j_compositesa_2022_107252
elsevier_sciencedirect_doi_10_1016_j_compositesa_2022_107252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Composites. Part A, Applied science and manufacturing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References “ASTM E399-20a Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials,” ASTM International; 2021.
Salviato, Chau, Li, Bazant, Cusatis (b0135) 2016; 83
“Defining the constitutive response of cohesive elements using a traction seperation description,” Abaqus , [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesivebehavior.htm. [Accessed 19 April 2022].
Rice, Rosengren (b0165) 1968; 16
Ko, Yang, Tuttle (b0090) 2019; 227
Bazant (b0125) 2000; 37
Gupta, Alderliesten, Benedictus (b0225) 2015; 134
Griffith A. The phenomena of rupture and flow in solids. Philosoph Trans Royal Soc Lond, pp. 163-198; 1921.
Straznicky, Worswick, Majeed (b0120) 1993; 5
Qiao, Zhang, Nakagawa, Salviato (b0155) 2021
Abaqus, “Eigenvalue Buckling Prediction,” [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-eigenbuckling.htm. [Accessed 2 April 2022].
Bažant, Planas (b0055) 1998
Salviato, Kirane, Ashari, Bazant, Cusatis (b0080) 2016; 135
Hashin (b0180) 1980; 47
Tsai, Wu (b0140) 1971; 5
Rice (b0145) 1968; 35
“Modeling with cohesive elements,” Abaqus, [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesiveusage.htm. [Accessed 19 April 2022].
Anderson (b0050) 2005
Bazant, Daniel, Li (b0065) 1996; 118
Rana, Fangueiro (b0005) 2016
Cusatis, Beghini, Bazant (b0185) 2008; 75
Miller, Dillon (b0020) 1994; 31
Nguyen, Pathirage, Cusatis, Bažant (b0110) 2020; 87
Nguyen H, Pathirage M, Rezaei M, Issa M, Cusatisa G, Bazant Z. New perspective of fracture mechanics inspired by gap. PNAS, vol. 117, no. 25; 2020.
Barsoum (b0150) 1976; 10
Ko, Davey, Douglass, Yang, Tuttle, Salviato (b0085) 2019; 125
Salviato, Kirane, Bazant, Cusatis (b0075) 2019; 86
Salviato, Ashari, Cusatis (b0190) 2016; 137
Daniel IM, Ishai O. Engineering mechanics of composite materials (Vol. 1994), New York: Oxford university press; 2006.
Elmarakbi (b0015) 2013
Cusatis, Schauffert (b0210) 2009; 76
Chortis (b0010) 2013
Kumagai, Onodera, Salviato, Okabe (b0095) 2020; 193–194
Kirane, Salviato, Zdenek (b0195) 2016; 83
Bazant Z. Crack Band Model for Fracture of Geomaterials. In: Fourth International Conference on Numerical Methods in Geomechanics, Alberta; 1982.
Qiao, Deleo, Salviato (b0070) 2019; 127
Wells A. The Condition of Fast Fracture in Aluminum Alloys with Particular Reference to Comet. British Welding Research Association Report; 1955.
Shank M. A Critical Review of Brittle Failure in Carbon Plate Steel Structures Other than Ships,“ National Academy of Science-National Research Council; 1953.
“ASTM D695-15 Standard Test Method for Compressive Properties of Rigid Plastics,” ASTM International; 2016.
Okabe, Imamura, Sato, Higuchi, Koyanagi, Talreja (b0160) 2015; 68
Li, Qiao, Fenner, Warren, Salviato, Bazant (b0100) 2021; 4
Ceccato, Salviato, Pellegrino, Cusatis (b0025) 2017; 108
Bažant, Kazemi (b0105) 1990; 73
Barbero (b0215) 2013
Bazant, Le, Salviato (b0060) 2021
Straznicky (10.1016/j.compositesa.2022.107252_b0120) 1993; 5
Salviato (10.1016/j.compositesa.2022.107252_b0135) 2016; 83
Okabe (10.1016/j.compositesa.2022.107252_b0160) 2015; 68
10.1016/j.compositesa.2022.107252_b0040
Li (10.1016/j.compositesa.2022.107252_b0100) 2021; 4
10.1016/j.compositesa.2022.107252_b0205
Bazant (10.1016/j.compositesa.2022.107252_b0065) 1996; 118
Salviato (10.1016/j.compositesa.2022.107252_b0080) 2016; 135
Bazant (10.1016/j.compositesa.2022.107252_b0125) 2000; 37
Rice (10.1016/j.compositesa.2022.107252_b0165) 1968; 16
Anderson (10.1016/j.compositesa.2022.107252_b0050) 2005
Kirane (10.1016/j.compositesa.2022.107252_b0195) 2016; 83
Rana (10.1016/j.compositesa.2022.107252_b0005) 2016
10.1016/j.compositesa.2022.107252_b0220
10.1016/j.compositesa.2022.107252_b0045
Salviato (10.1016/j.compositesa.2022.107252_b0075) 2019; 86
10.1016/j.compositesa.2022.107252_b0200
Cusatis (10.1016/j.compositesa.2022.107252_b0210) 2009; 76
10.1016/j.compositesa.2022.107252_b0170
Hashin (10.1016/j.compositesa.2022.107252_b0180) 1980; 47
10.1016/j.compositesa.2022.107252_b0030
Miller (10.1016/j.compositesa.2022.107252_b0020) 1994; 31
10.1016/j.compositesa.2022.107252_b0130
Tsai (10.1016/j.compositesa.2022.107252_b0140) 1971; 5
Chortis (10.1016/j.compositesa.2022.107252_b0010) 2013
Bazant (10.1016/j.compositesa.2022.107252_b0060) 2021
Salviato (10.1016/j.compositesa.2022.107252_b0190) 2016; 137
Ko (10.1016/j.compositesa.2022.107252_b0085) 2019; 125
Qiao (10.1016/j.compositesa.2022.107252_b0070) 2019; 127
Barsoum (10.1016/j.compositesa.2022.107252_b0150) 1976; 10
Ko (10.1016/j.compositesa.2022.107252_b0090) 2019; 227
Elmarakbi (10.1016/j.compositesa.2022.107252_b0015) 2013
Bažant (10.1016/j.compositesa.2022.107252_b0055) 1998
Barbero (10.1016/j.compositesa.2022.107252_b0215) 2013
Rice (10.1016/j.compositesa.2022.107252_b0145) 1968; 35
Nguyen (10.1016/j.compositesa.2022.107252_b0110) 2020; 87
Ceccato (10.1016/j.compositesa.2022.107252_b0025) 2017; 108
10.1016/j.compositesa.2022.107252_b0175
Kumagai (10.1016/j.compositesa.2022.107252_b0095) 2020; 193–194
Cusatis (10.1016/j.compositesa.2022.107252_b0185) 2008; 75
Gupta (10.1016/j.compositesa.2022.107252_b0225) 2015; 134
10.1016/j.compositesa.2022.107252_b0035
Bažant (10.1016/j.compositesa.2022.107252_b0105) 1990; 73
Qiao (10.1016/j.compositesa.2022.107252_b0155) 2021
10.1016/j.compositesa.2022.107252_b0115
References_xml – volume: 118
  start-page: 317
  year: 1996
  end-page: 324
  ident: b0065
  article-title: Size effect and fracture characteristics of composite laminates
  publication-title: J Eng Mater Technol
– volume: 83
  year: 2016
  ident: b0135
  article-title: Direct testing of gradual postpeak softening of fracture specimens of fiber composites stabilized by enhanced grip stiffness and mass
  publication-title: J Appl Mech
– volume: 68
  start-page: 81
  year: 2015
  end-page: 89
  ident: b0160
  article-title: Experimental and numerical studies of initial cracking in CFRP cross-ply laminates
  publication-title: Compos A Appl Sci Manuf
– reference: Griffith A. The phenomena of rupture and flow in solids. Philosoph Trans Royal Soc Lond, pp. 163-198; 1921.
– reference: Daniel IM, Ishai O. Engineering mechanics of composite materials (Vol. 1994), New York: Oxford university press; 2006.
– volume: 86
  year: 2019
  ident: b0075
  article-title: Mode I and II Interlaminar Fracture in Laminated Composites: A Size Effect Study
  publication-title: J Appl Mech
– volume: 137
  start-page: 170
  year: 2016
  end-page: 184
  ident: b0190
  article-title: Spectral stiffness microplane model for damage and fracture of textile composites
  publication-title: Compos Struct
– reference: “ASTM E399-20a Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials,” ASTM International; 2021.
– volume: 5
  start-page: 386
  year: 1993
  end-page: 393
  ident: b0120
  article-title: Impact Damage in Composite Laminates
  publication-title: ICCM/9 Composites Behavior
– volume: 31
  start-page: 296
  year: 1994
  end-page: 304
  ident: b0020
  article-title: The International Sailing Canoe: A Technical Review
  publication-title: Marine Technology and SNAME News
– year: 2021
  ident: b0155
  article-title: A size effect study on the splitting crack initiation and propagation in off-axis layers of composite laminates
  publication-title: 36th American Society for Composites Conference
– volume: 4
  start-page: 1000098
  year: 2021
  ident: b0100
  article-title: Elastic and fracture behavior of three-dimensional ply-to-ply angle interlock woven composites: Through-thickness, size effect, and multiaxial tests
  publication-title: Composites Part C: Open Access
– reference: “ASTM D695-15 Standard Test Method for Compressive Properties of Rigid Plastics,” ASTM International; 2016.
– reference: Nguyen H, Pathirage M, Rezaei M, Issa M, Cusatisa G, Bazant Z. New perspective of fracture mechanics inspired by gap. PNAS, vol. 117, no. 25; 2020.
– volume: 108
  start-page: 216
  year: 2017
  end-page: 229
  ident: b0025
  article-title: Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape
  publication-title: Int J Solids Struct
– volume: 193–194
  start-page: 172
  year: 2020
  end-page: 191
  ident: b0095
  article-title: Multiscale analysis and experimental validation of crack initiation in quasi-isotropic laminates
  publication-title: Int J Solids Struct
– volume: 10
  start-page: 551
  year: 1976
  end-page: 564
  ident: b0150
  article-title: A degenerate solid element for linear fracture analysis of plate bending and general shells
  publication-title: Int J Numer Methods Eng
– volume: 83
  year: 2016
  ident: b0195
  article-title: Microplane-triad model for elastic and fracturing behavior of woven composites
  publication-title: J Appl Mech
– reference: Shank M. A Critical Review of Brittle Failure in Carbon Plate Steel Structures Other than Ships,“ National Academy of Science-National Research Council; 1953.
– volume: 87
  start-page: pp
  year: 2020
  ident: b0110
  article-title: Gap test of crack-parallel stress effect on quasibrittle fracture and its consequences
  publication-title: J Appl Mech
– reference: “Modeling with cohesive elements,” Abaqus, [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesiveusage.htm. [Accessed 19 April 2022].
– year: 2013
  ident: b0215
  article-title: Finite element analysis of composite materials using AbaqusTM
– volume: 75
  year: 2008
  ident: b0185
  article-title: Spectral stiffness microplane model for quasibrittle composite laminates—Part I: theory
  publication-title: J Appl Mech
– volume: 227
  year: 2019
  ident: b0090
  article-title: Effect of the platelet size on the fracturing behavior and size effect of discontinuous fiber composite structures
  publication-title: Compos Struct
– volume: 5
  start-page: 58
  year: 1971
  end-page: 80
  ident: b0140
  article-title: A general theory of strength for anisotropic materials
  publication-title: J Compos Mater
– volume: 135
  start-page: 67
  year: 2016
  end-page: 75
  ident: b0080
  article-title: Experimental and numerical investigation of intra-laminar energy dissipation and size effect in two-dimensional textile composites
  publication-title: Compos Sci Technol
– reference: Wells A. The Condition of Fast Fracture in Aluminum Alloys with Particular Reference to Comet. British Welding Research Association Report; 1955.
– volume: 35
  start-page: 379
  year: 1968
  end-page: 386
  ident: b0145
  article-title: A Path independent integral and the approximate analysis of strain concentration by notches and cracks
  publication-title: J Appl Mech
– year: 2005
  ident: b0050
  article-title: Fracture mechanics: fundamentals and applications, 3E
– volume: 125
  year: 2019
  ident: b0085
  article-title: Effect of the thickness on the fracturing behavior of discontinuous fiber composite structures
  publication-title: Compos A Appl Sci Manuf
– reference: Abaqus, “Eigenvalue Buckling Prediction,” [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-eigenbuckling.htm. [Accessed 2 April 2022].
– start-page: 1
  year: 2016
  end-page: 15
  ident: b0005
  article-title: Advanced composites in aerospace engineering
  publication-title: Advanced Composite Materials for Aerospace Engineering
– volume: 47
  start-page: 329
  year: 1980
  end-page: 334
  ident: b0180
  article-title: Failure Criteria for Unidirectional Composites
  publication-title: J Appl Mech
– year: 2013
  ident: b0015
  article-title: Advanced composite materials for automotive applications: structural integrity and crashworthiness
– volume: 73
  start-page: 1841
  year: 1990
  end-page: 1853
  ident: b0105
  article-title: Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length
  publication-title: J Am Ceram Soc
– volume: 127
  year: 2019
  ident: b0070
  article-title: A study on the multi-axial fatigue failure behavior of notched composite laminates
  publication-title: Compos A Appl Sci Manuf
– year: 1998
  ident: b0055
  article-title: Fracture and size effect in concrete and other quasibrittle materials
– volume: 76
  start-page: 2163
  year: 2009
  end-page: 2173
  ident: b0210
  article-title: Cohesive crack analysis of size effect
  publication-title: Eng Fract Mech
– volume: 37
  start-page: 69
  year: 2000
  end-page: 80
  ident: b0125
  article-title: Size effect
  publication-title: Int J Solids Struct
– reference: “Defining the constitutive response of cohesive elements using a traction seperation description,” Abaqus , [Online]. Available: https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-cohesivebehavior.htm. [Accessed 19 April 2022].
– volume: 134
  start-page: 218
  year: 2015
  end-page: 241
  ident: b0225
  article-title: A review of T-stress and its effects in fracture mechanics
  publication-title: Eng Fract Mech
– year: 2021
  ident: b0060
  article-title: Quasibrittle fracture mechanics and size effect: a first course
– year: 2013
  ident: b0010
  article-title: Structural analysis of composite wind turbine blades
– volume: 16
  start-page: 1
  year: 1968
  end-page: 12
  ident: b0165
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J Mech Phys Solids
– reference: Bazant Z. Crack Band Model for Fracture of Geomaterials. In: Fourth International Conference on Numerical Methods in Geomechanics, Alberta; 1982.
– volume: 75
  issue: 2
  year: 2008
  ident: 10.1016/j.compositesa.2022.107252_b0185
  article-title: Spectral stiffness microplane model for quasibrittle composite laminates—Part I: theory
  publication-title: J Appl Mech
  doi: 10.1115/1.2744036
– volume: 37
  start-page: 69
  year: 2000
  ident: 10.1016/j.compositesa.2022.107252_b0125
  article-title: Size effect
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(99)00077-3
– ident: 10.1016/j.compositesa.2022.107252_b0205
– volume: 35
  start-page: 379
  issue: 2
  year: 1968
  ident: 10.1016/j.compositesa.2022.107252_b0145
  article-title: A Path independent integral and the approximate analysis of strain concentration by notches and cracks
  publication-title: J Appl Mech
  doi: 10.1115/1.3601206
– start-page: 1
  year: 2016
  ident: 10.1016/j.compositesa.2022.107252_b0005
  article-title: Advanced composites in aerospace engineering
– ident: 10.1016/j.compositesa.2022.107252_b0175
– volume: 227
  year: 2019
  ident: 10.1016/j.compositesa.2022.107252_b0090
  article-title: Effect of the platelet size on the fracturing behavior and size effect of discontinuous fiber composite structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111245
– ident: 10.1016/j.compositesa.2022.107252_b0045
– year: 2013
  ident: 10.1016/j.compositesa.2022.107252_b0215
– volume: 10
  start-page: 551
  issue: 3
  year: 1976
  ident: 10.1016/j.compositesa.2022.107252_b0150
  article-title: A degenerate solid element for linear fracture analysis of plate bending and general shells
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620100306
– volume: 118
  start-page: 317
  issue: 3
  year: 1996
  ident: 10.1016/j.compositesa.2022.107252_b0065
  article-title: Size effect and fracture characteristics of composite laminates
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.2806812
– volume: 134
  start-page: 218
  year: 2015
  ident: 10.1016/j.compositesa.2022.107252_b0225
  article-title: A review of T-stress and its effects in fracture mechanics
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2014.10.013
– volume: 47
  start-page: 329
  issue: 2
  year: 1980
  ident: 10.1016/j.compositesa.2022.107252_b0180
  article-title: Failure Criteria for Unidirectional Composites
  publication-title: J Appl Mech
  doi: 10.1115/1.3153664
– year: 2005
  ident: 10.1016/j.compositesa.2022.107252_b0050
– ident: 10.1016/j.compositesa.2022.107252_b0030
– year: 2013
  ident: 10.1016/j.compositesa.2022.107252_b0010
– ident: 10.1016/j.compositesa.2022.107252_b0200
– ident: 10.1016/j.compositesa.2022.107252_b0115
  doi: 10.1073/pnas.2005646117
– ident: 10.1016/j.compositesa.2022.107252_b0170
– volume: 87
  start-page: pp
  issue: 7
  year: 2020
  ident: 10.1016/j.compositesa.2022.107252_b0110
  article-title: Gap test of crack-parallel stress effect on quasibrittle fracture and its consequences
  publication-title: J Appl Mech
  doi: 10.1115/1.4047215
– volume: 5
  start-page: 58
  issue: 1
  year: 1971
  ident: 10.1016/j.compositesa.2022.107252_b0140
  article-title: A general theory of strength for anisotropic materials
  publication-title: J Compos Mater
  doi: 10.1177/002199837100500106
– ident: 10.1016/j.compositesa.2022.107252_b0035
  doi: 10.1098/rsta.1921.0006
– ident: 10.1016/j.compositesa.2022.107252_b0040
– volume: 4
  start-page: 1000098
  year: 2021
  ident: 10.1016/j.compositesa.2022.107252_b0100
  article-title: Elastic and fracture behavior of three-dimensional ply-to-ply angle interlock woven composites: Through-thickness, size effect, and multiaxial tests
  publication-title: Composites Part C: Open Access
– volume: 31
  start-page: 296
  issue: 04
  year: 1994
  ident: 10.1016/j.compositesa.2022.107252_b0020
  article-title: The International Sailing Canoe: A Technical Review
  publication-title: Marine Technology and SNAME News
  doi: 10.5957/mt1.1994.31.4.296
– volume: 76
  start-page: 2163
  issue: 14
  year: 2009
  ident: 10.1016/j.compositesa.2022.107252_b0210
  article-title: Cohesive crack analysis of size effect
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2009.06.008
– volume: 68
  start-page: 81
  year: 2015
  ident: 10.1016/j.compositesa.2022.107252_b0160
  article-title: Experimental and numerical studies of initial cracking in CFRP cross-ply laminates
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2014.09.020
– volume: 137
  start-page: 170
  year: 2016
  ident: 10.1016/j.compositesa.2022.107252_b0190
  article-title: Spectral stiffness microplane model for damage and fracture of textile composites
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.10.033
– volume: 83
  issue: 4
  year: 2016
  ident: 10.1016/j.compositesa.2022.107252_b0195
  article-title: Microplane-triad model for elastic and fracturing behavior of woven composites
  publication-title: J Appl Mech
  doi: 10.1115/1.4032275
– year: 2013
  ident: 10.1016/j.compositesa.2022.107252_b0015
– volume: 16
  start-page: 1
  issue: 1
  year: 1968
  ident: 10.1016/j.compositesa.2022.107252_b0165
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(68)90013-6
– volume: 125
  year: 2019
  ident: 10.1016/j.compositesa.2022.107252_b0085
  article-title: Effect of the thickness on the fracturing behavior of discontinuous fiber composite structures
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2019.105520
– ident: 10.1016/j.compositesa.2022.107252_b0130
– volume: 83
  issue: 11
  year: 2016
  ident: 10.1016/j.compositesa.2022.107252_b0135
  article-title: Direct testing of gradual postpeak softening of fracture specimens of fiber composites stabilized by enhanced grip stiffness and mass
  publication-title: J Appl Mech
  doi: 10.1115/1.4034312
– volume: 73
  start-page: 1841
  issue: 7
  year: 1990
  ident: 10.1016/j.compositesa.2022.107252_b0105
  article-title: Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1990.tb05233.x
– volume: 127
  year: 2019
  ident: 10.1016/j.compositesa.2022.107252_b0070
  article-title: A study on the multi-axial fatigue failure behavior of notched composite laminates
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2019.105640
– volume: 193–194
  start-page: 172
  year: 2020
  ident: 10.1016/j.compositesa.2022.107252_b0095
  article-title: Multiscale analysis and experimental validation of crack initiation in quasi-isotropic laminates
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2020.02.010
– year: 2021
  ident: 10.1016/j.compositesa.2022.107252_b0060
– volume: 5
  start-page: 386
  year: 1993
  ident: 10.1016/j.compositesa.2022.107252_b0120
  article-title: Impact Damage in Composite Laminates
  publication-title: ICCM/9 Composites Behavior
– year: 2021
  ident: 10.1016/j.compositesa.2022.107252_b0155
  article-title: A size effect study on the splitting crack initiation and propagation in off-axis layers of composite laminates
– year: 1998
  ident: 10.1016/j.compositesa.2022.107252_b0055
– volume: 135
  start-page: 67
  year: 2016
  ident: 10.1016/j.compositesa.2022.107252_b0080
  article-title: Experimental and numerical investigation of intra-laminar energy dissipation and size effect in two-dimensional textile composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2016.08.021
– ident: 10.1016/j.compositesa.2022.107252_b0220
– volume: 108
  start-page: 216
  year: 2017
  ident: 10.1016/j.compositesa.2022.107252_b0025
  article-title: Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2016.12.017
– volume: 86
  issue: 9
  year: 2019
  ident: 10.1016/j.compositesa.2022.107252_b0075
  article-title: Mode I and II Interlaminar Fracture in Laminated Composites: A Size Effect Study
  publication-title: J Appl Mech
  doi: 10.1115/1.4043889
SSID ssj0003391
Score 2.452459
Snippet This paper explores the global Mode I fracture energy of a carbon fiber composite subject to a biaxial stress state at the crack tip, specifically in which one...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107252
SubjectTerms A. Polymer-matrix composites (PMCs)
B. Fracture toughness
C. Finite Element Analysis (FEA)
carbon fibers
energy
The Gap Test
Title The Gap test – Effects of crack parallel compression on fracture in carbon fiber composites
URI https://dx.doi.org/10.1016/j.compositesa.2022.107252
https://www.proquest.com/docview/3153823476
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGJ9lBS8rm2TfYKXUqxVoRct9CIhSbNQXbZlu72K_8F_6C9xptm1VRAEYU_ZhA0zszPzJV8mhFwoA1mIipUDybJ0XOVyJ4Q0w_HdcRxzP4jGlm0x8PtD927kjSqkW56FQVpl4futT19666KlWUizOZtMmg9tLD7HAWyhojkf4Ql2N0Arv3xd0Tw4jyzowuUu6L1JGiuOF9K2kRtl5liCiDFoD5jHfotRP7z1MgT1dslOkTvSjp3eHqmYdJ9sr1UUPCBPoHZ6I2cUPpbTj7d3assTz-k0pjqT-oVise8kMQnFaVkWbErhifG81CIzdJJSLTOFTUgnoavpH5Jh7_qx23eKGxQczT03d4wLEZhFMuKeAlxgfAZwyIBIIojTuh1HSnEvkAowSyjHgMyMjhSHHpK3JO6oHpFqOk3NMaFGhyG8NQwwmguRNdRahwFnoGytfNWqkbCUmdBFeXG85SIRJY_sWayJW6C4hRV3jbCvoTNbY-Mvg65KxYhvBiMgFvxleKNUpoAfCndJZGqmi7ngGAMYB0s6-d8nTskW3k1v12vOSDXPFuYcMphc1ZcmWicbndv7_uATRQXzng
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH7UCi4HccXdCF6HajIreClFbV16UaEXCUmagWqZlun07n_wH_pLfM_MuIEgCHPKzCPhvcxbki9fAI60xSxEp9rDZFl5vvaFF2Oa4YV-P01FGCV9h7bohu17_7IX9GrQqs7CEKyy9P3Op79767KlUWqzMR4MGrcnRD4nsNgiQwvRm4FZYqcK6jDb7Fy1ux8OWYjE1V204oUCc3D4CfMi5DbBo-yEWIg4x_aIB_y3MPXDYb9HofNlWCrTR9Z0I1yBms1WYfELqeAaPKDl2YUaM-ysYK_PL8wxFE_YKGUmV-aJEd_3cGiHjIblgLAZwyelI1PT3LJBxozKNTURooR9Dn8d7s_P7lptr7xEwTMi8AvP-hiEeaISEWgsDWzIsSKyqJIEQ7U5SROtRRApjWVLrPpYnFmTaIFfKHGsaFN1A-rZKLObwKyJY3xrOZZpPgbX2BgTR4KjvY0O9fEWxJXOpCkZxumii6GsoGSP8ou6JalbOnVvAf8QHTuajb8InVaGkd_mjMRw8Bfxw8qYEv8p2ihRmR1NJ1JQGODCj8Lt_3VxAPPtu5tred3pXu3AAl1V75ZvdqFe5FO7hwlNoffLCfsGl232Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Gap+test+%E2%80%93+Effects+of+crack+parallel+compression+on+fracture+in+carbon+fiber+composites&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Brockmann%2C+Jeremy&rft.au=Salviato%2C+Marco&rft.date=2023-01-01&rft.issn=1359-835X&rft.volume=164+p.107252-&rft_id=info:doi/10.1016%2Fj.compositesa.2022.107252&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon