Special quasirandom structures for perovskite solid solutions
Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x = 1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for t...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 28; no. 47; pp. 475901 - 475913 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
30.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x = 1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x = 1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1−xSrx)TiO3, Pb(Zr1−xTix)O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1−xTix)O3, Pb(Mg1/3Nb2/3)O3 and (Bi1−xNdx)FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained. |
---|---|
AbstractList | Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x = 1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x = 1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1−xSrx)TiO3, Pb(Zr1−xTix)O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1−xTix)O3, Pb(Mg1/3Nb2/3)O3 and (Bi1−xNdx)FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained. Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite solid solutions, with x = 1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x = 1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1-x Sr x )TiO3, Pb(Zr1-x Ti x )O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1-x Ti x )O3, Pb(Mg1/3Nb2/3)O3 and (Bi1-x Nd x )FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained.Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite solid solutions, with x = 1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x = 1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1-x Sr x )TiO3, Pb(Zr1-x Ti x )O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1-x Ti x )O3, Pb(Mg1/3Nb2/3)O3 and (Bi1-x Nd x )FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained. Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite solid solutions, with x = 1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x = 1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1-x Sr x )TiO3, Pb(Zr1-x Ti x )O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1-x Ti x )O3, Pb(Mg1/3Nb2/3)O3 and (Bi1-x Nd x )FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained. |
Author | Xu, Bin Wang, Dawei Jiang, Zhijun Prosandeev, Sergey Nahas, Yousra Bellaiche, Laurent |
Author_xml | – sequence: 1 givenname: Zhijun surname: Jiang fullname: Jiang, Zhijun organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA – sequence: 2 givenname: Yousra surname: Nahas fullname: Nahas, Yousra organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA – sequence: 3 givenname: Bin surname: Xu fullname: Xu, Bin organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA – sequence: 4 givenname: Sergey surname: Prosandeev fullname: Prosandeev, Sergey organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA – sequence: 5 givenname: Dawei surname: Wang fullname: Wang, Dawei organization: Xi'an Jiaotong University School of Electronic and Information Engineering & State Key Laboratory for Mechanical Behavior of Materials, Xi'an 710049, People's Republic of China – sequence: 6 givenname: Laurent surname: Bellaiche fullname: Bellaiche, Laurent email: laurent@uark.edu organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27661191$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LwzAYgINM3If-hdGjl7q8TZqkoAcZfsHAgwreQpqmkNk1XdIK_ntbOnfwMghvLs_zwvvM0aR2tUFoCfgGsBArnKUkFpmgq0SsKO9fmmE4QzMgDGJGxecEzY7QFM1D2GKMqSD0Ak0TzhhABjN099YYbVUV7TsVrFd14XZRaH2n286bEJXOR43x7jt82dZEwVW2GGbXWleHS3ReqiqYq8O_QB-PD-_r53jz-vSyvt_EmqS0jQ0WudYiA11ijnVKE14C1xQIcEXyguWQFhwoSxTDhSlECWWeM8JzkaeEYbJA1-Pexrt9Z0IrdzZoU1WqNq4LEkRCMsyFSHt0eUC7fGcK2Xi7U_5H_p3cA2wEtHcheFMeEcByaCuHbHLIJhMhKZdj2168_Sdq26qhQ-uVrU7ryahb18it63zdFzsl_QJgAY24 |
CODEN | JCOMEL |
CitedBy_id | crossref_primary_10_1002_pssb_201900671 crossref_primary_10_1002_ijch_201900124 crossref_primary_10_1021_acs_jpcc_0c02486 crossref_primary_10_1021_acs_jpcc_7b08681 crossref_primary_10_1088_1361_651X_ac59d8 crossref_primary_10_1016_j_commatsci_2017_12_020 crossref_primary_10_1016_j_xcrp_2024_101942 crossref_primary_10_1021_acs_jpcc_4c03530 crossref_primary_10_1088_2515_7639_adb181 crossref_primary_10_1021_jacs_0c10739 crossref_primary_10_1021_acs_jctc_4c00460 crossref_primary_10_1116_6_0001471 crossref_primary_10_1021_acs_chemmater_0c02976 crossref_primary_10_1007_s11837_021_04840_6 crossref_primary_10_1021_acsaem_3c00186 crossref_primary_10_1103_PhysRevMaterials_6_064401 crossref_primary_10_1103_PhysRevResearch_5_013007 crossref_primary_10_1063_5_0182543 |
Cites_doi | 10.1103/PhysRev.77.669 10.1002/adma.200802849 10.1103/PhysRevB.90.024105 10.1002/adfm.201403811 10.1103/PhysRevLett.65.353 10.1007/s10853-009-3545-1 10.1103/PhysRevLett.87.095503 10.1103/PhysRevLett.84.5423 10.1063/1.126843 10.1103/PhysRevB.82.132102 10.1103/PhysRevB.42.3757 10.1103/PhysRevB.57.4425 10.1080/00150190902850822 10.1103/PhysRevB.66.060103 10.1103/PhysRevB.71.054104 10.1103/PhysRevLett.91.045504 10.1524/zkri.2011.1336 10.1103/PhysRevB.91.214117 10.1063/1.1328765 10.1134/S1063783409110225 10.1038/358136a0 10.1103/PhysRevB.88.014104 10.1103/PhysRevLett.76.664 10.1103/PhysRevLett.80.4939 10.1063/1.358856 10.1103/PhysRevB.65.224104 10.1063/1.2195927 10.1038/ncomms6100 10.1038/35065039 10.1103/PhysRevB.88.104102 10.1002/adfm.201501113 10.1063/1.1641528 10.1103/PhysRevB.73.144105 10.1002/adfm.201201467 10.1038/372532a0 10.1103/PhysRevB.81.064105 10.1080/00150190008216254 10.1103/PhysRevB.34.5253 10.1103/PhysRevB.93.014104 10.1021/cm1036925 10.1038/35092530 10.1103/PhysRevLett.110.207601 10.1063/1.1399704 10.1103/PhysRevB.28.2527 10.1126/science.195.4281.827 10.1103/PhysRevLett.84.5427 10.1080/00150190211456 10.1038/ncomms11014 10.1063/1.123756 10.1063/1.355874 10.1103/PhysRevB.51.10462 10.1103/PhysRevB.86.014106 10.1126/science.1168636 10.1107/S0567740872007976 10.1080/00150199908225278 10.1103/PhysRevB.73.144109 10.1103/RevModPhys.77.1083 10.1007/s100510050803 10.1088/0953-8984/19/9/092001 10.1063/1.2790481 10.1103/PhysRevB.81.020103 10.1103/PhysRevB.54.3151 10.1103/PhysRevLett.111.247602 10.1103/PhysRevB.61.7877 10.1103/PhysRevB.83.094105 10.1103/PhysRevLett.80.4911 10.1063/1.1324442 10.1103/PhysRevB.42.9622 10.1016/S0364-5916(02)80006-2 10.1002/andp.19314010507 10.1103/PhysRevLett.73.1861 10.1115/1.2892008 10.1103/PhysRevLett.97.157601 10.1007/s10853-005-5929-1 10.1103/PhysRev.120.1648 10.1103/PhysRevB.81.094203 10.1063/1.3097222 10.1103/PhysRevLett.108.257601 10.1111/j.1551-2916.2008.02442.x 10.1063/1.3142385 10.1002/adfm.200902017 10.1103/PhysRevB.57.6427 10.1103/PhysRevB.52.6301 10.1016/S0022-3697(99)00300-5 10.1088/0953-8984/16/6/023 10.1088/0953-8984/9/35/022 |
ContentType | Journal Article |
Copyright | 2016 IOP Publishing Ltd |
Copyright_xml | – notice: 2016 IOP Publishing Ltd |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/0953-8984/28/47/475901 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Special quasirandom structures for perovskite solid solutions |
EISSN | 1361-648X |
ExternalDocumentID | 27661191 10_1088_0953_8984_28_47_475901 cmaa3e63 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency grantid: HR0011-15-2-0038 funderid: http://dx.doi.org/10.13039/100000185 |
GroupedDBID | --- -~X 1JI 4.4 53G 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT ADIYS AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 WH7 XPP YQT ZMT ~02 AAYXX ADEQX CITATION ADACN NPM 7X8 |
ID | FETCH-LOGICAL-c354t-e08bcc891cf070c5427f17c41317a3bd6b15d71462a60ded8f1fbb637b8b53603 |
IEDL.DBID | IOP |
ISSN | 0953-8984 1361-648X |
IngestDate | Fri Jul 11 07:29:00 EDT 2025 Thu Apr 03 07:01:21 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Tue Jul 01 02:46:12 EDT 2025 Wed Aug 21 03:40:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-e08bcc891cf070c5427f17c41317a3bd6b15d71462a60ded8f1fbb637b8b53603 |
Notes | JPCM-107717.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27661191 |
PQID | 1823907885 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1823907885 crossref_primary_10_1088_0953_8984_28_47_475901 iop_journals_10_1088_0953_8984_28_47_475901 crossref_citationtrail_10_1088_0953_8984_28_47_475901 pubmed_primary_27661191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-30 |
PublicationDateYYYYMMDD | 2016-11-30 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of physics. Condensed matter |
PublicationTitleAbbrev | JPhysCM |
PublicationTitleAlternate | J. Phys.: Condens. Matter |
PublicationYear | 2016 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 88 45 89 46 47 48 49 Papaconstantopoulos D A (40) 1998 Lines M E (68) 1977 90 91 50 51 52 53 10 54 11 55 12 56 13 57 14 58 Cagigas J A M (92) 2010; 200 15 59 16 17 19 Rabe K M ed Ogale S B (4) 2013 1 3 5 6 8 9 60 61 62 63 20 64 21 65 22 66 67 24 25 69 26 27 28 29 Uchino K (2) 2000 71 72 73 30 74 31 75 32 76 33 77 34 78 35 79 36 37 38 39 Malibert C (70) 1997; 9 Simon A (18) 2004; 16 Bokov A A (23) 2007; 19 Jaffe B (7) 1971 80 81 82 83 84 41 85 42 86 43 87 |
References_xml | – ident: 48 doi: 10.1103/PhysRev.77.669 – ident: 6 doi: 10.1002/adma.200802849 – ident: 42 doi: 10.1103/PhysRevB.90.024105 – ident: 26 doi: 10.1002/adfm.201403811 – volume: 200 issn: 1742-6596 year: 2010 ident: 92 publication-title: J. Phys.: Conf. Ser. – ident: 43 doi: 10.1103/PhysRevLett.65.353 – ident: 84 doi: 10.1007/s10853-009-3545-1 – ident: 60 doi: 10.1103/PhysRevLett.87.095503 – ident: 16 doi: 10.1103/PhysRevLett.84.5423 – ident: 36 doi: 10.1063/1.126843 – ident: 21 doi: 10.1103/PhysRevB.82.132102 – ident: 45 doi: 10.1103/PhysRevB.42.3757 – ident: 51 doi: 10.1103/PhysRevB.57.4425 – ident: 24 doi: 10.1080/00150190902850822 – ident: 65 doi: 10.1103/PhysRevB.66.060103 – ident: 37 doi: 10.1103/PhysRevB.71.054104 – ident: 52 doi: 10.1103/PhysRevLett.91.045504 – ident: 3 doi: 10.1524/zkri.2011.1336 – ident: 80 doi: 10.1103/PhysRevB.91.214117 – ident: 71 doi: 10.1063/1.1328765 – ident: 41 doi: 10.1134/S1063783409110225 – ident: 1 doi: 10.1038/358136a0 – ident: 88 doi: 10.1103/PhysRevB.88.014104 – ident: 53 doi: 10.1103/PhysRevLett.76.664 – ident: 54 doi: 10.1103/PhysRevLett.80.4939 – ident: 69 doi: 10.1063/1.358856 – ident: 61 doi: 10.1103/PhysRevB.65.224104 – ident: 91 doi: 10.1063/1.2195927 – ident: 77 doi: 10.1038/ncomms6100 – ident: 8 doi: 10.1038/35065039 – ident: 38 doi: 10.1103/PhysRevB.88.104102 – year: 2000 ident: 2 publication-title: Ferroelectric Devices – year: 1971 ident: 7 publication-title: Piezoelectric Ceramics – ident: 86 doi: 10.1002/adfm.201501113 – ident: 10 doi: 10.1063/1.1641528 – ident: 47 doi: 10.1103/PhysRevB.73.144105 – ident: 89 doi: 10.1002/adfm.201201467 – ident: 9 doi: 10.1038/372532a0 – ident: 64 doi: 10.1103/PhysRevB.81.064105 – ident: 67 doi: 10.1080/00150190008216254 – ident: 39 doi: 10.1103/PhysRevB.34.5253 – ident: 73 doi: 10.1103/PhysRevB.93.014104 – year: 1977 ident: 68 publication-title: Principles and Applications of Ferroelectrics and Related Materials – ident: 83 doi: 10.1021/cm1036925 – ident: 59 doi: 10.1038/35092530 – ident: 75 doi: 10.1103/PhysRevLett.110.207601 – ident: 72 doi: 10.1063/1.1399704 – ident: 79 doi: 10.1103/PhysRevB.28.2527 – ident: 5 doi: 10.1126/science.195.4281.827 – ident: 30 doi: 10.1103/PhysRevLett.84.5427 – ident: 31 doi: 10.1080/00150190211456 – ident: 78 doi: 10.1038/ncomms11014 – ident: 32 doi: 10.1063/1.123756 – ident: 15 doi: 10.1063/1.355874 – ident: 50 doi: 10.1103/PhysRevB.51.10462 – ident: 25 doi: 10.1103/PhysRevB.86.014106 – ident: 11 doi: 10.1126/science.1168636 – ident: 90 doi: 10.1107/S0567740872007976 – ident: 35 doi: 10.1080/00150199908225278 – ident: 58 doi: 10.1103/PhysRevB.73.144109 – ident: 12 doi: 10.1103/RevModPhys.77.1083 – ident: 17 doi: 10.1007/s100510050803 – volume: 19 issn: 0953-8984 year: 2007 ident: 23 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/9/092001 – year: 2013 ident: 4 publication-title: Functional Metal Oxides: New Science and Novel Applications – ident: 19 doi: 10.1063/1.2790481 – ident: 82 doi: 10.1103/PhysRevB.81.020103 – ident: 62 doi: 10.1103/PhysRevB.54.3151 – ident: 76 doi: 10.1103/PhysRevLett.111.247602 – ident: 28 doi: 10.1103/PhysRevB.61.7877 – ident: 87 doi: 10.1103/PhysRevB.83.094105 – year: 1998 ident: 40 publication-title: Tight-Binding Approach to Computational Materials Science – ident: 55 doi: 10.1103/PhysRevLett.80.4911 – ident: 63 doi: 10.1063/1.1324442 – ident: 44 doi: 10.1103/PhysRevB.42.9622 – ident: 46 doi: 10.1016/S0364-5916(02)80006-2 – ident: 27 doi: 10.1002/andp.19314010507 – ident: 33 doi: 10.1103/PhysRevLett.73.1861 – ident: 14 doi: 10.1115/1.2892008 – ident: 66 doi: 10.1103/PhysRevLett.97.157601 – ident: 22 doi: 10.1007/s10853-005-5929-1 – ident: 49 doi: 10.1103/PhysRev.120.1648 – ident: 57 doi: 10.1103/PhysRevB.81.094203 – ident: 85 doi: 10.1063/1.3097222 – ident: 74 doi: 10.1103/PhysRevLett.108.257601 – ident: 20 doi: 10.1111/j.1551-2916.2008.02442.x – ident: 13 doi: 10.1063/1.3142385 – ident: 81 doi: 10.1002/adfm.200902017 – ident: 56 doi: 10.1103/PhysRevB.57.6427 – ident: 34 doi: 10.1103/PhysRevB.52.6301 – ident: 29 doi: 10.1016/S0022-3697(99)00300-5 – volume: 16 start-page: 963 issn: 0953-8984 year: 2004 ident: 18 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/16/6/023 – volume: 9 start-page: 7485 issn: 0953-8984 year: 1997 ident: 70 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/9/35/022 |
SSID | ssj0004834 |
Score | 2.3177693 |
Snippet | Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x = 1/2 as well... Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 475901 |
SubjectTerms | Cowley parameters perovskite solid solutions special quasirandom structures |
Title | Special quasirandom structures for perovskite solid solutions |
URI | https://iopscience.iop.org/article/10.1088/0953-8984/28/47/475901 https://www.ncbi.nlm.nih.gov/pubmed/27661191 https://www.proquest.com/docview/1823907885 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Injx_VhfVPAm3bZpmqYHDyIuq-Dj4IK30KQJiNqudOvBX--kaSsKyyLeeuik6WSS-ZLMfIPQaZCkGoPrcbWfpC6RFLsJjbRrCr2YcwaSYZM7fHtHR2Ny8xS10YR1LkwxaZb-ATxaomCrwiYgjnmGIc1lCSMeZh6JPcNYZzK4lkJGqSlicH3_8J0ayeqL5U6mTRKe2c4P_7QIfZgNPWsXNFxDou28jTx5GVRTMZCfv3gd__V362i1AajOhRXYQAsq30TLdaCoLLfQeVOw3nmv0vIZHF1WvDmWhLaCnbsDGNgx3OMfpTkWdsCynzOns-9tNB5ePV6O3KYEgythoKau8pmQkiWB1LA2yIjgWAexBM8XxGkoMiqCKIthtcUp9TOVMR1oIWgYCyaikPrhDurlRa72kBMlsFXUvkgDmpAUM5FJDfBCUYD3ShG_j6JW8Vw2_OSmTMYrr-_JGeNGNdyohmPGScytavrI6-QmlqFjrsQZaJ83k7Wc-_ZJO_4cpp65T0lzVVQgx3CYgJ2zqI92rWF0PcAxAB_YC-__6VsHaAUAGbXUkoeoB6OnjgD0TMVxbdZfROHvwg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZ4iBUXYNkFhtd2JW6rTts0TdMDBwSMeMMBJG5R85IQMDOoMxz49ThNp2iREELceqj7sJ34S2J_BthJitISDD2hjYsypIqRsGCZDV2jF7fPQDVxtcPnF-zohp7cZrdTcNjWwgyGzdTfxUtPFOxV2CTE8cgxpIW84DQiPKJ55Bjr4iQaajsNs1nKUkehf3x59VYeyevD5VZuUij84bP-i1HT-B0fw886DPUWfbpIVbMXuuyT--54JLvq5R2347f_cAkWGqAa7HmhnzBl-sswVyeMquoX7DaN64OncVndYcDTg8fAk9GOcQUfIBYOHAf5c-W2hwP08DsdtH7-G256h9f7R2HTiiFUaLBRaGIuleJFoizOESqjJLdJrjACJnmZSs1kkukcZ11SslgbzW1ipWRpLrlEk8TpCsz0B32zBkFW4JLRxrJMWEFLwqVWFmGGYQjzjaFxB7KJ8oVqeMpdu4wHUZ-Xcy6ceoRTjyBc0Fx49XQgauWGnqnjU4l_aAHRDNrq07v_TnxA4BB05ypl3wzGKMdJWqC_86wDq9452i8gOQIgXBOvf-ldf-DH1UFPnB1fnG7APGI05tkmN2EGDWm2EAeN5Hbt5a-tX_Um |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Special+quasirandom+structures+for+perovskite+solid+solutions&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Jiang%2C+Zhijun&rft.au=Nahas%2C+Yousra&rft.au=Xu%2C+Bin&rft.au=Prosandeev%2C+Sergey&rft.date=2016-11-30&rft.eissn=1361-648X&rft.volume=28&rft.issue=47&rft.spage=475901&rft_id=info:doi/10.1088%2F0953-8984%2F28%2F47%2F475901&rft_id=info%3Apmid%2F27661191&rft.externalDocID=27661191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon |