Special quasirandom structures for perovskite solid solutions

Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x  =  1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for t...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 28; no. 47; pp. 475901 - 475913
Main Authors Jiang, Zhijun, Nahas, Yousra, Xu, Bin, Prosandeev, Sergey, Wang, Dawei, Bellaiche, Laurent
Format Journal Article
LanguageEnglish
Published England IOP Publishing 30.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x  =  1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x  =  1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1−xSrx)TiO3, Pb(Zr1−xTix)O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1−xTix)O3, Pb(Mg1/3Nb2/3)O3 and (Bi1−xNdx)FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained.
AbstractList Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x  =  1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x  =  1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1−xSrx)TiO3, Pb(Zr1−xTix)O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1−xTix)O3, Pb(Mg1/3Nb2/3)O3 and (Bi1−xNdx)FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained.
Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite solid solutions, with x  =  1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x  =  1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1-x Sr x )TiO3, Pb(Zr1-x Ti x )O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1-x Ti x )O3, Pb(Mg1/3Nb2/3)O3 and (Bi1-x Nd x )FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained.Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite solid solutions, with x  =  1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x  =  1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1-x Sr x )TiO3, Pb(Zr1-x Ti x )O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1-x Ti x )O3, Pb(Mg1/3Nb2/3)O3 and (Bi1-x Nd x )FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained.
Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite solid solutions, with x  =  1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x  =  1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1-x Sr x )TiO3, Pb(Zr1-x Ti x )O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1-x Ti x )O3, Pb(Mg1/3Nb2/3)O3 and (Bi1-x Nd x )FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained.
Author Xu, Bin
Wang, Dawei
Jiang, Zhijun
Prosandeev, Sergey
Nahas, Yousra
Bellaiche, Laurent
Author_xml – sequence: 1
  givenname: Zhijun
  surname: Jiang
  fullname: Jiang, Zhijun
  organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA
– sequence: 2
  givenname: Yousra
  surname: Nahas
  fullname: Nahas, Yousra
  organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA
– sequence: 3
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA
– sequence: 4
  givenname: Sergey
  surname: Prosandeev
  fullname: Prosandeev, Sergey
  organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA
– sequence: 5
  givenname: Dawei
  surname: Wang
  fullname: Wang, Dawei
  organization: Xi'an Jiaotong University School of Electronic and Information Engineering & State Key Laboratory for Mechanical Behavior of Materials, Xi'an 710049, People's Republic of China
– sequence: 6
  givenname: Laurent
  surname: Bellaiche
  fullname: Bellaiche, Laurent
  email: laurent@uark.edu
  organization: University of Arkansas Physics Department and Institute for Nanoscience and Engineering, Fayetteville, AR 72701, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27661191$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LwzAYgINM3If-hdGjl7q8TZqkoAcZfsHAgwreQpqmkNk1XdIK_ntbOnfwMghvLs_zwvvM0aR2tUFoCfgGsBArnKUkFpmgq0SsKO9fmmE4QzMgDGJGxecEzY7QFM1D2GKMqSD0Ak0TzhhABjN099YYbVUV7TsVrFd14XZRaH2n286bEJXOR43x7jt82dZEwVW2GGbXWleHS3ReqiqYq8O_QB-PD-_r53jz-vSyvt_EmqS0jQ0WudYiA11ijnVKE14C1xQIcEXyguWQFhwoSxTDhSlECWWeM8JzkaeEYbJA1-Pexrt9Z0IrdzZoU1WqNq4LEkRCMsyFSHt0eUC7fGcK2Xi7U_5H_p3cA2wEtHcheFMeEcByaCuHbHLIJhMhKZdj2168_Sdq26qhQ-uVrU7ryahb18it63zdFzsl_QJgAY24
CODEN JCOMEL
CitedBy_id crossref_primary_10_1002_pssb_201900671
crossref_primary_10_1002_ijch_201900124
crossref_primary_10_1021_acs_jpcc_0c02486
crossref_primary_10_1021_acs_jpcc_7b08681
crossref_primary_10_1088_1361_651X_ac59d8
crossref_primary_10_1016_j_commatsci_2017_12_020
crossref_primary_10_1016_j_xcrp_2024_101942
crossref_primary_10_1021_acs_jpcc_4c03530
crossref_primary_10_1088_2515_7639_adb181
crossref_primary_10_1021_jacs_0c10739
crossref_primary_10_1021_acs_jctc_4c00460
crossref_primary_10_1116_6_0001471
crossref_primary_10_1021_acs_chemmater_0c02976
crossref_primary_10_1007_s11837_021_04840_6
crossref_primary_10_1021_acsaem_3c00186
crossref_primary_10_1103_PhysRevMaterials_6_064401
crossref_primary_10_1103_PhysRevResearch_5_013007
crossref_primary_10_1063_5_0182543
Cites_doi 10.1103/PhysRev.77.669
10.1002/adma.200802849
10.1103/PhysRevB.90.024105
10.1002/adfm.201403811
10.1103/PhysRevLett.65.353
10.1007/s10853-009-3545-1
10.1103/PhysRevLett.87.095503
10.1103/PhysRevLett.84.5423
10.1063/1.126843
10.1103/PhysRevB.82.132102
10.1103/PhysRevB.42.3757
10.1103/PhysRevB.57.4425
10.1080/00150190902850822
10.1103/PhysRevB.66.060103
10.1103/PhysRevB.71.054104
10.1103/PhysRevLett.91.045504
10.1524/zkri.2011.1336
10.1103/PhysRevB.91.214117
10.1063/1.1328765
10.1134/S1063783409110225
10.1038/358136a0
10.1103/PhysRevB.88.014104
10.1103/PhysRevLett.76.664
10.1103/PhysRevLett.80.4939
10.1063/1.358856
10.1103/PhysRevB.65.224104
10.1063/1.2195927
10.1038/ncomms6100
10.1038/35065039
10.1103/PhysRevB.88.104102
10.1002/adfm.201501113
10.1063/1.1641528
10.1103/PhysRevB.73.144105
10.1002/adfm.201201467
10.1038/372532a0
10.1103/PhysRevB.81.064105
10.1080/00150190008216254
10.1103/PhysRevB.34.5253
10.1103/PhysRevB.93.014104
10.1021/cm1036925
10.1038/35092530
10.1103/PhysRevLett.110.207601
10.1063/1.1399704
10.1103/PhysRevB.28.2527
10.1126/science.195.4281.827
10.1103/PhysRevLett.84.5427
10.1080/00150190211456
10.1038/ncomms11014
10.1063/1.123756
10.1063/1.355874
10.1103/PhysRevB.51.10462
10.1103/PhysRevB.86.014106
10.1126/science.1168636
10.1107/S0567740872007976
10.1080/00150199908225278
10.1103/PhysRevB.73.144109
10.1103/RevModPhys.77.1083
10.1007/s100510050803
10.1088/0953-8984/19/9/092001
10.1063/1.2790481
10.1103/PhysRevB.81.020103
10.1103/PhysRevB.54.3151
10.1103/PhysRevLett.111.247602
10.1103/PhysRevB.61.7877
10.1103/PhysRevB.83.094105
10.1103/PhysRevLett.80.4911
10.1063/1.1324442
10.1103/PhysRevB.42.9622
10.1016/S0364-5916(02)80006-2
10.1002/andp.19314010507
10.1103/PhysRevLett.73.1861
10.1115/1.2892008
10.1103/PhysRevLett.97.157601
10.1007/s10853-005-5929-1
10.1103/PhysRev.120.1648
10.1103/PhysRevB.81.094203
10.1063/1.3097222
10.1103/PhysRevLett.108.257601
10.1111/j.1551-2916.2008.02442.x
10.1063/1.3142385
10.1002/adfm.200902017
10.1103/PhysRevB.57.6427
10.1103/PhysRevB.52.6301
10.1016/S0022-3697(99)00300-5
10.1088/0953-8984/16/6/023
10.1088/0953-8984/9/35/022
ContentType Journal Article
Copyright 2016 IOP Publishing Ltd
Copyright_xml – notice: 2016 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/0953-8984/28/47/475901
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Special quasirandom structures for perovskite solid solutions
EISSN 1361-648X
ExternalDocumentID 27661191
10_1088_0953_8984_28_47_475901
cmaa3e63
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  grantid: HR0011-15-2-0038
  funderid: http://dx.doi.org/10.13039/100000185
GroupedDBID ---
-~X
1JI
4.4
53G
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
WH7
XPP
YQT
ZMT
~02
AAYXX
ADEQX
CITATION
ADACN
NPM
7X8
ID FETCH-LOGICAL-c354t-e08bcc891cf070c5427f17c41317a3bd6b15d71462a60ded8f1fbb637b8b53603
IEDL.DBID IOP
ISSN 0953-8984
1361-648X
IngestDate Fri Jul 11 07:29:00 EDT 2025
Thu Apr 03 07:01:21 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Tue Jul 01 02:46:12 EDT 2025
Wed Aug 21 03:40:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-e08bcc891cf070c5427f17c41317a3bd6b15d71462a60ded8f1fbb637b8b53603
Notes JPCM-107717.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27661191
PQID 1823907885
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1823907885
crossref_primary_10_1088_0953_8984_28_47_475901
iop_journals_10_1088_0953_8984_28_47_475901
crossref_citationtrail_10_1088_0953_8984_28_47_475901
pubmed_primary_27661191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-30
PublicationDateYYYYMMDD 2016-11-30
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAbbrev JPhysCM
PublicationTitleAlternate J. Phys.: Condens. Matter
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
88
45
89
46
47
48
49
Papaconstantopoulos D A (40) 1998
Lines M E (68) 1977
90
91
50
51
52
53
10
54
11
55
12
56
13
57
14
58
Cagigas J A M (92) 2010; 200
15
59
16
17
19
Rabe K M ed Ogale S B (4) 2013
1
3
5
6
8
9
60
61
62
63
20
64
21
65
22
66
67
24
25
69
26
27
28
29
Uchino K (2) 2000
71
72
73
30
74
31
75
32
76
33
77
34
78
35
79
36
37
38
39
Malibert C (70) 1997; 9
Simon A (18) 2004; 16
Bokov A A (23) 2007; 19
Jaffe B (7) 1971
80
81
82
83
84
41
85
42
86
43
87
References_xml – ident: 48
  doi: 10.1103/PhysRev.77.669
– ident: 6
  doi: 10.1002/adma.200802849
– ident: 42
  doi: 10.1103/PhysRevB.90.024105
– ident: 26
  doi: 10.1002/adfm.201403811
– volume: 200
  issn: 1742-6596
  year: 2010
  ident: 92
  publication-title: J. Phys.: Conf. Ser.
– ident: 43
  doi: 10.1103/PhysRevLett.65.353
– ident: 84
  doi: 10.1007/s10853-009-3545-1
– ident: 60
  doi: 10.1103/PhysRevLett.87.095503
– ident: 16
  doi: 10.1103/PhysRevLett.84.5423
– ident: 36
  doi: 10.1063/1.126843
– ident: 21
  doi: 10.1103/PhysRevB.82.132102
– ident: 45
  doi: 10.1103/PhysRevB.42.3757
– ident: 51
  doi: 10.1103/PhysRevB.57.4425
– ident: 24
  doi: 10.1080/00150190902850822
– ident: 65
  doi: 10.1103/PhysRevB.66.060103
– ident: 37
  doi: 10.1103/PhysRevB.71.054104
– ident: 52
  doi: 10.1103/PhysRevLett.91.045504
– ident: 3
  doi: 10.1524/zkri.2011.1336
– ident: 80
  doi: 10.1103/PhysRevB.91.214117
– ident: 71
  doi: 10.1063/1.1328765
– ident: 41
  doi: 10.1134/S1063783409110225
– ident: 1
  doi: 10.1038/358136a0
– ident: 88
  doi: 10.1103/PhysRevB.88.014104
– ident: 53
  doi: 10.1103/PhysRevLett.76.664
– ident: 54
  doi: 10.1103/PhysRevLett.80.4939
– ident: 69
  doi: 10.1063/1.358856
– ident: 61
  doi: 10.1103/PhysRevB.65.224104
– ident: 91
  doi: 10.1063/1.2195927
– ident: 77
  doi: 10.1038/ncomms6100
– ident: 8
  doi: 10.1038/35065039
– ident: 38
  doi: 10.1103/PhysRevB.88.104102
– year: 2000
  ident: 2
  publication-title: Ferroelectric Devices
– year: 1971
  ident: 7
  publication-title: Piezoelectric Ceramics
– ident: 86
  doi: 10.1002/adfm.201501113
– ident: 10
  doi: 10.1063/1.1641528
– ident: 47
  doi: 10.1103/PhysRevB.73.144105
– ident: 89
  doi: 10.1002/adfm.201201467
– ident: 9
  doi: 10.1038/372532a0
– ident: 64
  doi: 10.1103/PhysRevB.81.064105
– ident: 67
  doi: 10.1080/00150190008216254
– ident: 39
  doi: 10.1103/PhysRevB.34.5253
– ident: 73
  doi: 10.1103/PhysRevB.93.014104
– year: 1977
  ident: 68
  publication-title: Principles and Applications of Ferroelectrics and Related Materials
– ident: 83
  doi: 10.1021/cm1036925
– ident: 59
  doi: 10.1038/35092530
– ident: 75
  doi: 10.1103/PhysRevLett.110.207601
– ident: 72
  doi: 10.1063/1.1399704
– ident: 79
  doi: 10.1103/PhysRevB.28.2527
– ident: 5
  doi: 10.1126/science.195.4281.827
– ident: 30
  doi: 10.1103/PhysRevLett.84.5427
– ident: 31
  doi: 10.1080/00150190211456
– ident: 78
  doi: 10.1038/ncomms11014
– ident: 32
  doi: 10.1063/1.123756
– ident: 15
  doi: 10.1063/1.355874
– ident: 50
  doi: 10.1103/PhysRevB.51.10462
– ident: 25
  doi: 10.1103/PhysRevB.86.014106
– ident: 11
  doi: 10.1126/science.1168636
– ident: 90
  doi: 10.1107/S0567740872007976
– ident: 35
  doi: 10.1080/00150199908225278
– ident: 58
  doi: 10.1103/PhysRevB.73.144109
– ident: 12
  doi: 10.1103/RevModPhys.77.1083
– ident: 17
  doi: 10.1007/s100510050803
– volume: 19
  issn: 0953-8984
  year: 2007
  ident: 23
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/9/092001
– year: 2013
  ident: 4
  publication-title: Functional Metal Oxides: New Science and Novel Applications
– ident: 19
  doi: 10.1063/1.2790481
– ident: 82
  doi: 10.1103/PhysRevB.81.020103
– ident: 62
  doi: 10.1103/PhysRevB.54.3151
– ident: 76
  doi: 10.1103/PhysRevLett.111.247602
– ident: 28
  doi: 10.1103/PhysRevB.61.7877
– ident: 87
  doi: 10.1103/PhysRevB.83.094105
– year: 1998
  ident: 40
  publication-title: Tight-Binding Approach to Computational Materials Science
– ident: 55
  doi: 10.1103/PhysRevLett.80.4911
– ident: 63
  doi: 10.1063/1.1324442
– ident: 44
  doi: 10.1103/PhysRevB.42.9622
– ident: 46
  doi: 10.1016/S0364-5916(02)80006-2
– ident: 27
  doi: 10.1002/andp.19314010507
– ident: 33
  doi: 10.1103/PhysRevLett.73.1861
– ident: 14
  doi: 10.1115/1.2892008
– ident: 66
  doi: 10.1103/PhysRevLett.97.157601
– ident: 22
  doi: 10.1007/s10853-005-5929-1
– ident: 49
  doi: 10.1103/PhysRev.120.1648
– ident: 57
  doi: 10.1103/PhysRevB.81.094203
– ident: 85
  doi: 10.1063/1.3097222
– ident: 74
  doi: 10.1103/PhysRevLett.108.257601
– ident: 20
  doi: 10.1111/j.1551-2916.2008.02442.x
– ident: 13
  doi: 10.1063/1.3142385
– ident: 81
  doi: 10.1002/adfm.200902017
– ident: 56
  doi: 10.1103/PhysRevB.57.6427
– ident: 34
  doi: 10.1103/PhysRevB.52.6301
– ident: 29
  doi: 10.1016/S0022-3697(99)00300-5
– volume: 16
  start-page: 963
  issn: 0953-8984
  year: 2004
  ident: 18
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/16/6/023
– volume: 9
  start-page: 7485
  issn: 0953-8984
  year: 1997
  ident: 70
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/9/35/022
SSID ssj0004834
Score 2.3177693
Snippet Special quasirandom structures (SQS) are presently generated for disordered (A′1−xA″x)BX3 and A(B′1−xB″x)X3 perovskite solid solutions, with x  =  1/2 as well...
Special quasirandom structures (SQS) are presently generated for disordered (A'1-x [Formula: see text] x )BX3 and A(B'1-x [Formula: see text] x )X3 perovskite...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 475901
SubjectTerms Cowley parameters
perovskite solid solutions
special quasirandom structures
Title Special quasirandom structures for perovskite solid solutions
URI https://iopscience.iop.org/article/10.1088/0953-8984/28/47/475901
https://www.ncbi.nlm.nih.gov/pubmed/27661191
https://www.proquest.com/docview/1823907885
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Injx_VhfVPAm3bZpmqYHDyIuq-Dj4IK30KQJiNqudOvBX--kaSsKyyLeeuik6WSS-ZLMfIPQaZCkGoPrcbWfpC6RFLsJjbRrCr2YcwaSYZM7fHtHR2Ny8xS10YR1LkwxaZb-ATxaomCrwiYgjnmGIc1lCSMeZh6JPcNYZzK4lkJGqSlicH3_8J0ayeqL5U6mTRKe2c4P_7QIfZgNPWsXNFxDou28jTx5GVRTMZCfv3gd__V362i1AajOhRXYQAsq30TLdaCoLLfQeVOw3nmv0vIZHF1WvDmWhLaCnbsDGNgx3OMfpTkWdsCynzOns-9tNB5ePV6O3KYEgythoKau8pmQkiWB1LA2yIjgWAexBM8XxGkoMiqCKIthtcUp9TOVMR1oIWgYCyaikPrhDurlRa72kBMlsFXUvkgDmpAUM5FJDfBCUYD3ShG_j6JW8Vw2_OSmTMYrr-_JGeNGNdyohmPGScytavrI6-QmlqFjrsQZaJ83k7Wc-_ZJO_4cpp65T0lzVVQgx3CYgJ2zqI92rWF0PcAxAB_YC-__6VsHaAUAGbXUkoeoB6OnjgD0TMVxbdZfROHvwg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZ4iBUXYNkFhtd2JW6rTts0TdMDBwSMeMMBJG5R85IQMDOoMxz49ThNp2iREELceqj7sJ34S2J_BthJitISDD2hjYsypIqRsGCZDV2jF7fPQDVxtcPnF-zohp7cZrdTcNjWwgyGzdTfxUtPFOxV2CTE8cgxpIW84DQiPKJ55Bjr4iQaajsNs1nKUkehf3x59VYeyevD5VZuUij84bP-i1HT-B0fw886DPUWfbpIVbMXuuyT--54JLvq5R2347f_cAkWGqAa7HmhnzBl-sswVyeMquoX7DaN64OncVndYcDTg8fAk9GOcQUfIBYOHAf5c-W2hwP08DsdtH7-G256h9f7R2HTiiFUaLBRaGIuleJFoizOESqjJLdJrjACJnmZSs1kkukcZ11SslgbzW1ipWRpLrlEk8TpCsz0B32zBkFW4JLRxrJMWEFLwqVWFmGGYQjzjaFxB7KJ8oVqeMpdu4wHUZ-Xcy6ceoRTjyBc0Fx49XQgauWGnqnjU4l_aAHRDNrq07v_TnxA4BB05ypl3wzGKMdJWqC_86wDq9452i8gOQIgXBOvf-ldf-DH1UFPnB1fnG7APGI05tkmN2EGDWm2EAeN5Hbt5a-tX_Um
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Special+quasirandom+structures+for+perovskite+solid+solutions&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Jiang%2C+Zhijun&rft.au=Nahas%2C+Yousra&rft.au=Xu%2C+Bin&rft.au=Prosandeev%2C+Sergey&rft.date=2016-11-30&rft.eissn=1361-648X&rft.volume=28&rft.issue=47&rft.spage=475901&rft_id=info:doi/10.1088%2F0953-8984%2F28%2F47%2F475901&rft_id=info%3Apmid%2F27661191&rft.externalDocID=27661191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon