Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems

Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the e...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of non-linear mechanics Vol. 77; pp. 208 - 222
Main Authors Paraskevopoulos, Elias, Natsiavas, Sotirios
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the equations of motion of the corresponding unconstrained system are presented on a configuration manifold with general properties, first in strong and then in a primal weak form, using Newton׳s law of motion as a foundation. Next, the final weak form is obtained by performing a crucial integration by parts step, involving a covariant derivative. This step required the clarification and enhancement of some concepts related to the variations employed in generating the weak form. The second part of this work is devoted to systems involving holonomic and non-holonomic scleronomic constraints. The equations of motion derived in a recent study of the authors are utilized as a basis. The novel characteristic of these equations is that they form a set of second order ordinary differential equations (ODEs) in both the coordinates and the Lagrange multipliers associated to the constraint action. Based on these equations, the corresponding weak form is first obtained, leading eventually to a consistent first order ODE form of the equations of motion. These equations are found to appear in a form resembling the form obtained after application of the classical Hamilton׳s canonical equations. Finally, the new theoretical findings are illustrated by three representative examples. •A three field weak form is presented for constrained mechanical systems.•It is based on a new ODE form of the equations of motion.•The configuration space possesses general geometric properties.•Constraint violation, scaling and coordinate partitioning are avoided.•The equations of motion resemble the classical Hamilton׳s canonical equations.
AbstractList Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the equations of motion of the corresponding unconstrained system are presented on a configuration manifold with general properties, first in strong and then in a primal weak form, using Newton's law of motion as a foundation. Next, the final weak form is obtained by performing a crucial integration by parts step, involving a covariant derivative. This step required the clarification and enhancement of some concepts related to the variations employed in generating the weak form. The second part of this work is devoted to systems involving holonomic and non-holonomic scleronomic constraints. The equations of motion derived in a recent study of the authors are utilized as a basis. The novel characteristic of these equations is that they form a set of second order ordinary differential equations (ODEs) in both the coordinates and the Lagrange multipliers associated to the constraint action. Based on these equations, the corresponding weak form is first obtained, leading eventually to a consistent first order ODE form of the equations of motion. These equations are found to appear in a form resembling the form obtained after application of the classical Hamilton's canonical equations. Finally, the new theoretical findings are illustrated by three representative examples.
Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the equations of motion of the corresponding unconstrained system are presented on a configuration manifold with general properties, first in strong and then in a primal weak form, using Newton׳s law of motion as a foundation. Next, the final weak form is obtained by performing a crucial integration by parts step, involving a covariant derivative. This step required the clarification and enhancement of some concepts related to the variations employed in generating the weak form. The second part of this work is devoted to systems involving holonomic and non-holonomic scleronomic constraints. The equations of motion derived in a recent study of the authors are utilized as a basis. The novel characteristic of these equations is that they form a set of second order ordinary differential equations (ODEs) in both the coordinates and the Lagrange multipliers associated to the constraint action. Based on these equations, the corresponding weak form is first obtained, leading eventually to a consistent first order ODE form of the equations of motion. These equations are found to appear in a form resembling the form obtained after application of the classical Hamilton׳s canonical equations. Finally, the new theoretical findings are illustrated by three representative examples. •A three field weak form is presented for constrained mechanical systems.•It is based on a new ODE form of the equations of motion.•The configuration space possesses general geometric properties.•Constraint violation, scaling and coordinate partitioning are avoided.•The equations of motion resemble the classical Hamilton׳s canonical equations.
Author Natsiavas, Sotirios
Paraskevopoulos, Elias
Author_xml – sequence: 1
  givenname: Elias
  surname: Paraskevopoulos
  fullname: Paraskevopoulos, Elias
– sequence: 2
  givenname: Sotirios
  surname: Natsiavas
  fullname: Natsiavas, Sotirios
  email: natsiava@auth.gr
BookMark eNqNkE1LwzAYx4NMcJt-h3jz0pq2SdOdRIZvIHhRPIY0ecoy22RLMmHf3qzzIJ52Cvm_8fCboYl1FhC6LkhekKK-XedmnaTe2AFUXpKC5YTnhPAzNC0a3mSsrpoJmhJSkozTurxAsxDWJHUp4VNkP0F-4c75YdfLaJzF0mrcGR8idl6DHz3sOhxXgGG7G0PhIAxuzCcfS6x6GUZVJTd6aSxonE5aSWuU7HHYhwhDuETnnewDXP2-c_Tx-PC-fM5e355elvevmaoYjZliqgLoNF3QiutC05bWC1Y3LU9Hs4YRSVugjHVN27Zcg-oY4W368VIB1KSao5vj7sa77Q5CFIMJCvpeWnC7IIqmZJSyum5SdHGMKu9C8NCJjTeD9HtREHFgLNbiD2NxYCwIF4lx6t796yoTR0IHBP1JC8vjAiQa3wa8CMqAVaCNBxWFduaElR9IWaWZ
CitedBy_id crossref_primary_10_1007_s11044_022_09824_1
crossref_primary_10_1007_s11071_019_05059_6
crossref_primary_10_1016_j_mechmachtheory_2021_104591
crossref_primary_10_1016_j_ijsolstr_2018_05_008
crossref_primary_10_1016_j_ijsolstr_2020_06_045
crossref_primary_10_1007_s11071_021_06500_5
crossref_primary_10_1016_j_ijnonlinmec_2017_05_007
crossref_primary_10_1016_j_ijnonlinmec_2021_103683
crossref_primary_10_1007_s11071_016_2847_5
crossref_primary_10_1007_s11071_022_07748_1
crossref_primary_10_1016_j_apm_2018_06_012
Cites_doi 10.1007/s11071-012-0727-1
10.1016/S0020-7462(01)00033-6
10.1177/1081286505044137
10.1016/0377-0427(85)90008-1
10.1119/1.17470
10.1016/0094-114X(94)90114-7
10.1007/s11044-007-9051-9
10.1115/1.3256318
10.1088/0305-4470/31/22/016
10.1016/j.ijnonlinmec.2009.01.006
10.1007/s11071-014-1783-5
10.1007/s00466-009-0428-x
10.1016/j.mechmachtheory.2011.07.017
10.1016/0045-7825(72)90018-7
10.1007/BF02429858
10.1016/j.ijsolstr.2012.09.001
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.ijnonlinmec.2015.07.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1878-5638
EndPage 222
ExternalDocumentID 10_1016_j_ijnonlinmec_2015_07_007
S002074621500133X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMJ
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M25
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SME
SPC
SPCBC
SPD
SPG
SSQ
SST
SSZ
T5K
T9H
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c354t-c5c3eefd49437d1d4b469568b74075850a4be455f8bbb7decf507bf8b72cee603
IEDL.DBID .~1
ISSN 0020-7462
IngestDate Fri Jul 11 11:48:06 EDT 2025
Tue Jul 01 04:03:38 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Fri Feb 23 02:20:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hamilton׳s canonical equations
Strong and weak form of equations of motion
Integrable and non-integrable variations
Holonomic and non-holonomic constraints
Newton׳s law of motion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-c5c3eefd49437d1d4b469568b74075850a4be455f8bbb7decf507bf8b72cee603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825445668
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1825445668
crossref_primary_10_1016_j_ijnonlinmec_2015_07_007
crossref_citationtrail_10_1016_j_ijnonlinmec_2015_07_007
elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2015_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of non-linear mechanics
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wehage, Haug (bib13) 1982; 104
Paraskevopoulos, Panagiotopoulos, Manolis (bib19) 2010; 45
Papastavridis (bib23) 1999
Theodosiou, Natsiavas (bib4) 2009; 44
Brüls, Cardona, Arnold (bib35) 2012; 48
Baumgarte (bib12) 1972; 1
Hughes (bib6) 1987
Ženišek (bib21) 1990
Casey (bib28) 1994; 62
Geradin, Cardona (bib7) 2001
Kane, Levinson (bib14) 1985
Bloch (bib27) 2003
Crouch, Grossman (bib34) 1993; 3
Bowen, Wang (bib25) 2008
Natsiavas, Paraskevopoulos (bib16) 2015; 79
Frankel (bib17) 1997
Rektorys (bib20) 1977
Βrenan, Campbell, Petzhold (bib9) 1989
Casey, O׳Reilly (bib29) 2006; 11
Bauchau (bib10) 2011
Bullo, Lewis (bib18) 2005
Murray, Li, Sastry (bib2) 1994
Rosenberg (bib5) 1977
Marsden, Ratiu (bib24) 1999
Angeles (bib1) 2007
Gear, Leimkuhler (bib36) 1985; 12&13
Paraskevopoulos, Natsiavas (bib38) 2013; 50
Paraskevopoulos, Natsiavas (bib30) 2013; 72
Lanczos (bib32) 1952
Shabana (bib3) 2005
Udwadia, Kalaba (bib15) 2002; 37
Bayo, Jimenez, Serna, Bastero (bib37) 1994; 29
Greenwood (bib22) 1977
Borri, Bottasso, Mantegazza (bib33) 1992; 11
Nikravesh (bib8) 1988
Bottasso, Dopico, Trainelli (bib11) 2008; 19
Νeimark, Fufaev (bib26) 1972
Shabanov (bib31) 1998; 31
Baumgarte (10.1016/j.ijnonlinmec.2015.07.007_bib12) 1972; 1
Frankel (10.1016/j.ijnonlinmec.2015.07.007_bib17) 1997
Paraskevopoulos (10.1016/j.ijnonlinmec.2015.07.007_bib38) 2013; 50
Rosenberg (10.1016/j.ijnonlinmec.2015.07.007_bib5) 1977
Ženišek (10.1016/j.ijnonlinmec.2015.07.007_bib21) 1990
Wehage (10.1016/j.ijnonlinmec.2015.07.007_bib13) 1982; 104
Bauchau (10.1016/j.ijnonlinmec.2015.07.007_bib10) 2011
Papastavridis (10.1016/j.ijnonlinmec.2015.07.007_bib23) 1999
Brüls (10.1016/j.ijnonlinmec.2015.07.007_bib35) 2012; 48
Theodosiou (10.1016/j.ijnonlinmec.2015.07.007_bib4) 2009; 44
Greenwood (10.1016/j.ijnonlinmec.2015.07.007_bib22) 1977
Βrenan (10.1016/j.ijnonlinmec.2015.07.007_bib9) 1989
Kane (10.1016/j.ijnonlinmec.2015.07.007_bib14) 1985
Lanczos (10.1016/j.ijnonlinmec.2015.07.007_bib32) 1952
Shabana (10.1016/j.ijnonlinmec.2015.07.007_bib3) 2005
Geradin (10.1016/j.ijnonlinmec.2015.07.007_bib7) 2001
Marsden (10.1016/j.ijnonlinmec.2015.07.007_bib24) 1999
Gear (10.1016/j.ijnonlinmec.2015.07.007_bib36) 1985; 12&13
Paraskevopoulos (10.1016/j.ijnonlinmec.2015.07.007_bib30) 2013; 72
Murray (10.1016/j.ijnonlinmec.2015.07.007_bib2) 1994
Bloch (10.1016/j.ijnonlinmec.2015.07.007_bib27) 2003
Bullo (10.1016/j.ijnonlinmec.2015.07.007_bib18) 2005
Shabanov (10.1016/j.ijnonlinmec.2015.07.007_bib31) 1998; 31
Borri (10.1016/j.ijnonlinmec.2015.07.007_bib33) 1992; 11
Bayo (10.1016/j.ijnonlinmec.2015.07.007_bib37) 1994; 29
Νeimark (10.1016/j.ijnonlinmec.2015.07.007_bib26) 1972
Nikravesh (10.1016/j.ijnonlinmec.2015.07.007_bib8) 1988
Natsiavas (10.1016/j.ijnonlinmec.2015.07.007_bib16) 2015; 79
Casey (10.1016/j.ijnonlinmec.2015.07.007_bib28) 1994; 62
Bowen (10.1016/j.ijnonlinmec.2015.07.007_bib25) 2008
Bottasso (10.1016/j.ijnonlinmec.2015.07.007_bib11) 2008; 19
Hughes (10.1016/j.ijnonlinmec.2015.07.007_bib6) 1987
Angeles (10.1016/j.ijnonlinmec.2015.07.007_bib1) 2007
Paraskevopoulos (10.1016/j.ijnonlinmec.2015.07.007_bib19) 2010; 45
Casey (10.1016/j.ijnonlinmec.2015.07.007_bib29) 2006; 11
Crouch (10.1016/j.ijnonlinmec.2015.07.007_bib34) 1993; 3
Udwadia (10.1016/j.ijnonlinmec.2015.07.007_bib15) 2002; 37
Rektorys (10.1016/j.ijnonlinmec.2015.07.007_bib20) 1977
References_xml – volume: 1
  start-page: 1
  year: 1972
  end-page: 16
  ident: bib12
  article-title: Stabilization of constraints and integrals of motion in dynamical systems
  publication-title: Comp. Methods Appl. Mech. Eng.
– year: 1985
  ident: bib14
  article-title: Dynamics: Theory and Applications
– volume: 12&13
  start-page: 77
  year: 1985
  end-page: 90
  ident: bib36
  article-title: Automatic integration of Euler–Lagrange equations with constraints
  publication-title: J. Comput. Appl. Math.
– volume: 11
  start-page: 701
  year: 1992
  end-page: 727
  ident: bib33
  article-title: A modified phase space formulation for constrained mechanical systems - differential approach
  publication-title: Eur. J. Mech. A/Solids
– volume: 3
  start-page: 1
  year: 1993
  end-page: 33
  ident: bib34
  article-title: Numerical integration of ordinary differential equations on manifolds
  publication-title: J. Nonlinear Sci.
– volume: 50
  start-page: 57
  year: 2013
  end-page: 72
  ident: bib38
  article-title: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory
  publication-title: Int. J. Solids Struct.
– year: 1952
  ident: bib32
  article-title: The Variational Principles of Mechanics
– year: 1988
  ident: bib8
  article-title: Computer-Aided Analysis of Mechanical Systems
– year: 1990
  ident: bib21
  article-title: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations
– year: 1997
  ident: bib17
  article-title: The Geometry of Physics: An Introduction
– year: 2008
  ident: bib25
  article-title: Introduction to Vectors and Tensors
– volume: 11
  start-page: 401
  year: 2006
  end-page: 422
  ident: bib29
  article-title: Geometrical derivation of Lagrange׳s equations for a system of rigid bodies
  publication-title: Math. Mech. Solids
– year: 1977
  ident: bib20
  article-title: Variational Methods in Mathematics, Science and Engineering
– volume: 72
  start-page: 455
  year: 2013
  end-page: 475
  ident: bib30
  article-title: On application of Newton׳s law to mechanical systems with motion constraints
  publication-title: Nonlinear Dyn.
– year: 1977
  ident: bib5
  article-title: Analytical Dynamics of Discrete Systems
– year: 1972
  ident: bib26
  article-title: Dynamics of Nonholonomic Systems
– year: 1999
  ident: bib23
  article-title: Tensor Calculus and Analytical Dynamics
– volume: 62
  start-page: 836
  year: 1994
  end-page: 847
  ident: bib28
  article-title: Geometrical derivation of Lagrange׳s equations for a system of particles
  publication-title: Am. J. Phys.
– year: 1994
  ident: bib2
  article-title: A Mathematical Introduction to Robot Manipulation
– volume: 45
  start-page: 157
  year: 2010
  end-page: 166
  ident: bib19
  article-title: Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods
  publication-title: Comput. Mech.
– volume: 104
  start-page: 247
  year: 1982
  end-page: 255
  ident: bib13
  article-title: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems
  publication-title: ASME J. Mech. Design
– year: 1987
  ident: bib6
  article-title: The Finite Element Method
– year: 2011
  ident: bib10
  article-title: Flexible Multibody Dynamics
– year: 2007
  ident: bib1
  article-title: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms
– volume: 44
  start-page: 371
  year: 2009
  end-page: 382
  ident: bib4
  article-title: Dynamics of finite element structural models with multiple unilateral constraints
  publication-title: Int. J. Non-Linear Mech.
– volume: 31
  start-page: 5177
  year: 1998
  end-page: 5190
  ident: bib31
  article-title: Constrained systems and analytical mechanics in spaces with torsion
  publication-title: J. Phys. A: Math. Gen.
– volume: 37
  start-page: 1079
  year: 2002
  end-page: 1090
  ident: bib15
  article-title: On the foundations of analytical dynamics
  publication-title: Int. J. Non-Linear Mech.
– year: 1999
  ident: bib24
  article-title: Introduction to Mechanics and Symmetry
– year: 2001
  ident: bib7
  article-title: Flexible Multibody Dynamics: A Finite Element Approach
– volume: 19
  start-page: 3
  year: 2008
  end-page: 20
  ident: bib11
  article-title: On the optimal scaling of index three DAEs in multibody dynamics
  publication-title: Multibody Syst. Dyn.
– year: 1989
  ident: bib9
  article-title: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
– year: 2003
  ident: bib27
  article-title: Nonholonomic Mechanics and Control
– volume: 29
  start-page: 725
  year: 1994
  end-page: 737
  ident: bib37
  article-title: Penalty based Hamiltonian equations for the dynamic analysis of constrained mechanical systems
  publication-title: Mech. Mach. Theory
– year: 1977
  ident: bib22
  article-title: Classical Dynamics
– year: 2005
  ident: bib18
  article-title: Geometric Control of Mechanical Systems
– volume: 48
  start-page: 121
  year: 2012
  end-page: 137
  ident: bib35
  article-title: Lie group generalized-α time integration of constrained flexible multibody systems
  publication-title: Mech. Mach. Theory
– year: 2005
  ident: bib3
  article-title: Dynamics of Multibody Systems
– volume: 79
  start-page: 1911
  year: 2015
  end-page: 1938
  ident: bib16
  article-title: A set of ordinary differential equations of motion for constrained mechanical systems
  publication-title: Nonlinear Dyn.
– volume: 72
  start-page: 455
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib30
  article-title: On application of Newton׳s law to mechanical systems with motion constraints
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0727-1
– year: 1989
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib9
– volume: 37
  start-page: 1079
  year: 2002
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib15
  article-title: On the foundations of analytical dynamics
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(01)00033-6
– year: 1999
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib24
– year: 1990
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib21
– year: 1977
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib22
– year: 1994
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib2
– year: 2007
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib1
– volume: 11
  start-page: 401
  year: 2006
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib29
  article-title: Geometrical derivation of Lagrange׳s equations for a system of rigid bodies
  publication-title: Math. Mech. Solids
  doi: 10.1177/1081286505044137
– year: 2008
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib25
– year: 2003
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib27
– volume: 12&13
  start-page: 77
  year: 1985
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib36
  article-title: Automatic integration of Euler–Lagrange equations with constraints
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(85)90008-1
– volume: 62
  start-page: 836
  year: 1994
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib28
  article-title: Geometrical derivation of Lagrange׳s equations for a system of particles
  publication-title: Am. J. Phys.
  doi: 10.1119/1.17470
– volume: 29
  start-page: 725
  year: 1994
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib37
  article-title: Penalty based Hamiltonian equations for the dynamic analysis of constrained mechanical systems
  publication-title: Mech. Mach. Theory
  doi: 10.1016/0094-114X(94)90114-7
– volume: 19
  start-page: 3
  year: 2008
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib11
  article-title: On the optimal scaling of index three DAEs in multibody dynamics
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-007-9051-9
– volume: 104
  start-page: 247
  year: 1982
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib13
  article-title: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems
  publication-title: ASME J. Mech. Design
  doi: 10.1115/1.3256318
– year: 1985
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib14
– year: 1972
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib26
– year: 1977
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib5
– year: 2005
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib18
– volume: 31
  start-page: 5177
  year: 1998
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib31
  article-title: Constrained systems and analytical mechanics in spaces with torsion
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/31/22/016
– volume: 44
  start-page: 371
  year: 2009
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib4
  article-title: Dynamics of finite element structural models with multiple unilateral constraints
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2009.01.006
– volume: 79
  start-page: 1911
  year: 2015
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib16
  article-title: A set of ordinary differential equations of motion for constrained mechanical systems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1783-5
– year: 1997
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib17
– volume: 45
  start-page: 157
  year: 2010
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib19
  article-title: Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-009-0428-x
– volume: 48
  start-page: 121
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib35
  article-title: Lie group generalized-α time integration of constrained flexible multibody systems
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2011.07.017
– year: 1977
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib20
– year: 1999
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib23
– year: 1952
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib32
– year: 1988
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib8
– volume: 1
  start-page: 1
  year: 1972
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib12
  article-title: Stabilization of constraints and integrals of motion in dynamical systems
  publication-title: Comp. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(72)90018-7
– volume: 11
  start-page: 701
  year: 1992
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib33
  article-title: A modified phase space formulation for constrained mechanical systems - differential approach
  publication-title: Eur. J. Mech. A/Solids
– year: 2005
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib3
– year: 1987
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib6
– year: 2001
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib7
– year: 2011
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib10
– volume: 3
  start-page: 1
  year: 1993
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib34
  article-title: Numerical integration of ordinary differential equations on manifolds
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/BF02429858
– volume: 50
  start-page: 57
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2015.07.007_bib38
  article-title: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.09.001
SSID ssj0016407
Score 2.1635969
Snippet Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 208
SubjectTerms Derivatives
Differential equations
Dynamic response
Dynamical systems
Equations of motion
Hamilton׳s canonical equations
Holonomic and non-holonomic constraints
Integrable and non-integrable variations
Mathematical analysis
Mathematical models
Mechanical systems
Newton׳s law of motion
Strong and weak form of equations of motion
Title Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems
URI https://dx.doi.org/10.1016/j.ijnonlinmec.2015.07.007
https://www.proquest.com/docview/1825445668
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHoQn_gmgtfqtk3aFLwsi8uq6MnFvYU8cX3U1d29-tudSdv1gQfBW5N2aJpJZ76QmW8IOba5UdbrIkq0drBBUWkktLaRSLTLRZEIG9Kjr2-yXp9dDvhgjnSaXBgMq6xtf2XTg7Wue07r2TwdDYeY45tgsQzwWYhj0gFmsLMcV_nJ-yzMI8aDqirMoxXh04vk6DPGa_hQBkKKZ4dshjEPPJ5YWfZ3H_XDWgcX1F0lKzV2pO1qeGtkzpXrZPkLoyC0rmc0rOMNUt459UgRltZFuqgqLfVDQHw0cG6Ge_TFUxCi7rWi_R5jR1XdB-9TRQ1CbOw1iCaxqISzFL7mXoWsSlrRQY83Sb97ftvpRXWBhciknE0iw03qnLesYGluY8s0bJZ5JnQOkwb7iJZi2jHOPahP59YZD-hRQytPwLdmrXSLzMMEum1CTeIdg92TFYlnCi5i7b0XTnAFkKvgO0Q0UypNzT6O432STZjZg_yiDYnakC08G893SDITHVUUHH8ROmv0Jr-tJwmu4i_iR42uJfxveIiiSvcyHctYBFK3LBO7_3vFHlnCVhUas0_mJ29TdwAAZ6IPwwo-JAvti6vezQfDaAAe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkKA9IKBF5W0kroFNYideqReEQMtjOYHYm-WnupQGyi5XfjszTrI8xAGJW2xnFGfG9nyWx98A7LrSahdMN8mM8bhB0XkijXGJzIwvZTeTLl6P7l8UvSt-OhCDKThs78JQWGWz9tdrelytm5r9Rpv798Mh3fHNKFkG-izCMflgGmY5Tl9KY7D3NInzSOmkqo7z6CT0-hzsvAR5DW-qyEjxzxOdYSoikSellv3YSb1brqMPOl6EhQY8soO6f0sw5atl-P6KUhBL_QkP6-gHVNde_2WES5ssXUxXjoUhQj4WSTdjG7sLDIWY_1_zfo-ook7vQ-1MM0sYm2otwUnKKuEdw7_5o-O1SlbzQY9-wtXx0eVhL2kyLCQ2F3ycWGFz74PjXZ6XLnXc4G5ZFNKUqDTcSHQ0N54LEdB-pnTeBoSPBktlhs616OQrMIMK9L-A2Sx4jtsnJ7PANT6kJoQgvRQaMVdXrIJsVapsQz9O_b1VbZzZjXplDUXWUB06HC9XIZuI3tccHJ8R-t3aTb0ZUAp9xWfEd1pbK5xwdIqiK3_3OFKpjKxuRSHXvvaJbZjvXfbP1fnJxdk6fKOWOk5mA2bGD49-E9HO2GzF0fwMi-4BrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+formulation+and+first+order+form+of+the+equations+of+motion+for+a+class+of+constrained+mechanical+systems&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Paraskevopoulos%2C+Elias&rft.au=Natsiavas%2C+Sotirios&rft.date=2015-12-01&rft.issn=0020-7462&rft.volume=77&rft.spage=208&rft.epage=222&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2015.07.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon