Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems
Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the e...
Saved in:
Published in | International journal of non-linear mechanics Vol. 77; pp. 208 - 222 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the equations of motion of the corresponding unconstrained system are presented on a configuration manifold with general properties, first in strong and then in a primal weak form, using Newton׳s law of motion as a foundation. Next, the final weak form is obtained by performing a crucial integration by parts step, involving a covariant derivative. This step required the clarification and enhancement of some concepts related to the variations employed in generating the weak form. The second part of this work is devoted to systems involving holonomic and non-holonomic scleronomic constraints. The equations of motion derived in a recent study of the authors are utilized as a basis. The novel characteristic of these equations is that they form a set of second order ordinary differential equations (ODEs) in both the coordinates and the Lagrange multipliers associated to the constraint action. Based on these equations, the corresponding weak form is first obtained, leading eventually to a consistent first order ODE form of the equations of motion. These equations are found to appear in a form resembling the form obtained after application of the classical Hamilton׳s canonical equations. Finally, the new theoretical findings are illustrated by three representative examples.
•A three field weak form is presented for constrained mechanical systems.•It is based on a new ODE form of the equations of motion.•The configuration space possesses general geometric properties.•Constraint violation, scaling and coordinate partitioning are avoided.•The equations of motion resemble the classical Hamilton׳s canonical equations. |
---|---|
AbstractList | Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the equations of motion of the corresponding unconstrained system are presented on a configuration manifold with general properties, first in strong and then in a primal weak form, using Newton's law of motion as a foundation. Next, the final weak form is obtained by performing a crucial integration by parts step, involving a covariant derivative. This step required the clarification and enhancement of some concepts related to the variations employed in generating the weak form. The second part of this work is devoted to systems involving holonomic and non-holonomic scleronomic constraints. The equations of motion derived in a recent study of the authors are utilized as a basis. The novel characteristic of these equations is that they form a set of second order ordinary differential equations (ODEs) in both the coordinates and the Lagrange multipliers associated to the constraint action. Based on these equations, the corresponding weak form is first obtained, leading eventually to a consistent first order ODE form of the equations of motion. These equations are found to appear in a form resembling the form obtained after application of the classical Hamilton's canonical equations. Finally, the new theoretical findings are illustrated by three representative examples. Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints. Both the development and presentation are facilitated by employing some fundamental concepts of differential geometry. At the beginning, the equations of motion of the corresponding unconstrained system are presented on a configuration manifold with general properties, first in strong and then in a primal weak form, using Newton׳s law of motion as a foundation. Next, the final weak form is obtained by performing a crucial integration by parts step, involving a covariant derivative. This step required the clarification and enhancement of some concepts related to the variations employed in generating the weak form. The second part of this work is devoted to systems involving holonomic and non-holonomic scleronomic constraints. The equations of motion derived in a recent study of the authors are utilized as a basis. The novel characteristic of these equations is that they form a set of second order ordinary differential equations (ODEs) in both the coordinates and the Lagrange multipliers associated to the constraint action. Based on these equations, the corresponding weak form is first obtained, leading eventually to a consistent first order ODE form of the equations of motion. These equations are found to appear in a form resembling the form obtained after application of the classical Hamilton׳s canonical equations. Finally, the new theoretical findings are illustrated by three representative examples. •A three field weak form is presented for constrained mechanical systems.•It is based on a new ODE form of the equations of motion.•The configuration space possesses general geometric properties.•Constraint violation, scaling and coordinate partitioning are avoided.•The equations of motion resemble the classical Hamilton׳s canonical equations. |
Author | Natsiavas, Sotirios Paraskevopoulos, Elias |
Author_xml | – sequence: 1 givenname: Elias surname: Paraskevopoulos fullname: Paraskevopoulos, Elias – sequence: 2 givenname: Sotirios surname: Natsiavas fullname: Natsiavas, Sotirios email: natsiava@auth.gr |
BookMark | eNqNkE1LwzAYx4NMcJt-h3jz0pq2SdOdRIZvIHhRPIY0ecoy22RLMmHf3qzzIJ52Cvm_8fCboYl1FhC6LkhekKK-XedmnaTe2AFUXpKC5YTnhPAzNC0a3mSsrpoJmhJSkozTurxAsxDWJHUp4VNkP0F-4c75YdfLaJzF0mrcGR8idl6DHz3sOhxXgGG7G0PhIAxuzCcfS6x6GUZVJTd6aSxonE5aSWuU7HHYhwhDuETnnewDXP2-c_Tx-PC-fM5e355elvevmaoYjZliqgLoNF3QiutC05bWC1Y3LU9Hs4YRSVugjHVN27Zcg-oY4W368VIB1KSao5vj7sa77Q5CFIMJCvpeWnC7IIqmZJSyum5SdHGMKu9C8NCJjTeD9HtREHFgLNbiD2NxYCwIF4lx6t796yoTR0IHBP1JC8vjAiQa3wa8CMqAVaCNBxWFduaElR9IWaWZ |
CitedBy_id | crossref_primary_10_1007_s11044_022_09824_1 crossref_primary_10_1007_s11071_019_05059_6 crossref_primary_10_1016_j_mechmachtheory_2021_104591 crossref_primary_10_1016_j_ijsolstr_2018_05_008 crossref_primary_10_1016_j_ijsolstr_2020_06_045 crossref_primary_10_1007_s11071_021_06500_5 crossref_primary_10_1016_j_ijnonlinmec_2017_05_007 crossref_primary_10_1016_j_ijnonlinmec_2021_103683 crossref_primary_10_1007_s11071_016_2847_5 crossref_primary_10_1007_s11071_022_07748_1 crossref_primary_10_1016_j_apm_2018_06_012 |
Cites_doi | 10.1007/s11071-012-0727-1 10.1016/S0020-7462(01)00033-6 10.1177/1081286505044137 10.1016/0377-0427(85)90008-1 10.1119/1.17470 10.1016/0094-114X(94)90114-7 10.1007/s11044-007-9051-9 10.1115/1.3256318 10.1088/0305-4470/31/22/016 10.1016/j.ijnonlinmec.2009.01.006 10.1007/s11071-014-1783-5 10.1007/s00466-009-0428-x 10.1016/j.mechmachtheory.2011.07.017 10.1016/0045-7825(72)90018-7 10.1007/BF02429858 10.1016/j.ijsolstr.2012.09.001 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.ijnonlinmec.2015.07.007 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1878-5638 |
EndPage | 222 |
ExternalDocumentID | 10_1016_j_ijnonlinmec_2015_07_007 S002074621500133X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMJ HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M25 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SME SPC SPCBC SPD SPG SSQ SST SSZ T5K T9H TN5 UNMZH VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c354t-c5c3eefd49437d1d4b469568b74075850a4be455f8bbb7decf507bf8b72cee603 |
IEDL.DBID | .~1 |
ISSN | 0020-7462 |
IngestDate | Fri Jul 11 11:48:06 EDT 2025 Tue Jul 01 04:03:38 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Fri Feb 23 02:20:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hamilton׳s canonical equations Strong and weak form of equations of motion Integrable and non-integrable variations Holonomic and non-holonomic constraints Newton׳s law of motion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-c5c3eefd49437d1d4b469568b74075850a4be455f8bbb7decf507bf8b72cee603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825445668 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1825445668 crossref_primary_10_1016_j_ijnonlinmec_2015_07_007 crossref_citationtrail_10_1016_j_ijnonlinmec_2015_07_007 elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2015_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | International journal of non-linear mechanics |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wehage, Haug (bib13) 1982; 104 Paraskevopoulos, Panagiotopoulos, Manolis (bib19) 2010; 45 Papastavridis (bib23) 1999 Theodosiou, Natsiavas (bib4) 2009; 44 Brüls, Cardona, Arnold (bib35) 2012; 48 Baumgarte (bib12) 1972; 1 Hughes (bib6) 1987 Ženišek (bib21) 1990 Casey (bib28) 1994; 62 Geradin, Cardona (bib7) 2001 Kane, Levinson (bib14) 1985 Bloch (bib27) 2003 Crouch, Grossman (bib34) 1993; 3 Bowen, Wang (bib25) 2008 Natsiavas, Paraskevopoulos (bib16) 2015; 79 Frankel (bib17) 1997 Rektorys (bib20) 1977 Βrenan, Campbell, Petzhold (bib9) 1989 Casey, O׳Reilly (bib29) 2006; 11 Bauchau (bib10) 2011 Bullo, Lewis (bib18) 2005 Murray, Li, Sastry (bib2) 1994 Rosenberg (bib5) 1977 Marsden, Ratiu (bib24) 1999 Angeles (bib1) 2007 Gear, Leimkuhler (bib36) 1985; 12&13 Paraskevopoulos, Natsiavas (bib38) 2013; 50 Paraskevopoulos, Natsiavas (bib30) 2013; 72 Lanczos (bib32) 1952 Shabana (bib3) 2005 Udwadia, Kalaba (bib15) 2002; 37 Bayo, Jimenez, Serna, Bastero (bib37) 1994; 29 Greenwood (bib22) 1977 Borri, Bottasso, Mantegazza (bib33) 1992; 11 Nikravesh (bib8) 1988 Bottasso, Dopico, Trainelli (bib11) 2008; 19 Νeimark, Fufaev (bib26) 1972 Shabanov (bib31) 1998; 31 Baumgarte (10.1016/j.ijnonlinmec.2015.07.007_bib12) 1972; 1 Frankel (10.1016/j.ijnonlinmec.2015.07.007_bib17) 1997 Paraskevopoulos (10.1016/j.ijnonlinmec.2015.07.007_bib38) 2013; 50 Rosenberg (10.1016/j.ijnonlinmec.2015.07.007_bib5) 1977 Ženišek (10.1016/j.ijnonlinmec.2015.07.007_bib21) 1990 Wehage (10.1016/j.ijnonlinmec.2015.07.007_bib13) 1982; 104 Bauchau (10.1016/j.ijnonlinmec.2015.07.007_bib10) 2011 Papastavridis (10.1016/j.ijnonlinmec.2015.07.007_bib23) 1999 Brüls (10.1016/j.ijnonlinmec.2015.07.007_bib35) 2012; 48 Theodosiou (10.1016/j.ijnonlinmec.2015.07.007_bib4) 2009; 44 Greenwood (10.1016/j.ijnonlinmec.2015.07.007_bib22) 1977 Βrenan (10.1016/j.ijnonlinmec.2015.07.007_bib9) 1989 Kane (10.1016/j.ijnonlinmec.2015.07.007_bib14) 1985 Lanczos (10.1016/j.ijnonlinmec.2015.07.007_bib32) 1952 Shabana (10.1016/j.ijnonlinmec.2015.07.007_bib3) 2005 Geradin (10.1016/j.ijnonlinmec.2015.07.007_bib7) 2001 Marsden (10.1016/j.ijnonlinmec.2015.07.007_bib24) 1999 Gear (10.1016/j.ijnonlinmec.2015.07.007_bib36) 1985; 12&13 Paraskevopoulos (10.1016/j.ijnonlinmec.2015.07.007_bib30) 2013; 72 Murray (10.1016/j.ijnonlinmec.2015.07.007_bib2) 1994 Bloch (10.1016/j.ijnonlinmec.2015.07.007_bib27) 2003 Bullo (10.1016/j.ijnonlinmec.2015.07.007_bib18) 2005 Shabanov (10.1016/j.ijnonlinmec.2015.07.007_bib31) 1998; 31 Borri (10.1016/j.ijnonlinmec.2015.07.007_bib33) 1992; 11 Bayo (10.1016/j.ijnonlinmec.2015.07.007_bib37) 1994; 29 Νeimark (10.1016/j.ijnonlinmec.2015.07.007_bib26) 1972 Nikravesh (10.1016/j.ijnonlinmec.2015.07.007_bib8) 1988 Natsiavas (10.1016/j.ijnonlinmec.2015.07.007_bib16) 2015; 79 Casey (10.1016/j.ijnonlinmec.2015.07.007_bib28) 1994; 62 Bowen (10.1016/j.ijnonlinmec.2015.07.007_bib25) 2008 Bottasso (10.1016/j.ijnonlinmec.2015.07.007_bib11) 2008; 19 Hughes (10.1016/j.ijnonlinmec.2015.07.007_bib6) 1987 Angeles (10.1016/j.ijnonlinmec.2015.07.007_bib1) 2007 Paraskevopoulos (10.1016/j.ijnonlinmec.2015.07.007_bib19) 2010; 45 Casey (10.1016/j.ijnonlinmec.2015.07.007_bib29) 2006; 11 Crouch (10.1016/j.ijnonlinmec.2015.07.007_bib34) 1993; 3 Udwadia (10.1016/j.ijnonlinmec.2015.07.007_bib15) 2002; 37 Rektorys (10.1016/j.ijnonlinmec.2015.07.007_bib20) 1977 |
References_xml | – volume: 1 start-page: 1 year: 1972 end-page: 16 ident: bib12 article-title: Stabilization of constraints and integrals of motion in dynamical systems publication-title: Comp. Methods Appl. Mech. Eng. – year: 1985 ident: bib14 article-title: Dynamics: Theory and Applications – volume: 12&13 start-page: 77 year: 1985 end-page: 90 ident: bib36 article-title: Automatic integration of Euler–Lagrange equations with constraints publication-title: J. Comput. Appl. Math. – volume: 11 start-page: 701 year: 1992 end-page: 727 ident: bib33 article-title: A modified phase space formulation for constrained mechanical systems - differential approach publication-title: Eur. J. Mech. A/Solids – volume: 3 start-page: 1 year: 1993 end-page: 33 ident: bib34 article-title: Numerical integration of ordinary differential equations on manifolds publication-title: J. Nonlinear Sci. – volume: 50 start-page: 57 year: 2013 end-page: 72 ident: bib38 article-title: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory publication-title: Int. J. Solids Struct. – year: 1952 ident: bib32 article-title: The Variational Principles of Mechanics – year: 1988 ident: bib8 article-title: Computer-Aided Analysis of Mechanical Systems – year: 1990 ident: bib21 article-title: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations – year: 1997 ident: bib17 article-title: The Geometry of Physics: An Introduction – year: 2008 ident: bib25 article-title: Introduction to Vectors and Tensors – volume: 11 start-page: 401 year: 2006 end-page: 422 ident: bib29 article-title: Geometrical derivation of Lagrange׳s equations for a system of rigid bodies publication-title: Math. Mech. Solids – year: 1977 ident: bib20 article-title: Variational Methods in Mathematics, Science and Engineering – volume: 72 start-page: 455 year: 2013 end-page: 475 ident: bib30 article-title: On application of Newton׳s law to mechanical systems with motion constraints publication-title: Nonlinear Dyn. – year: 1977 ident: bib5 article-title: Analytical Dynamics of Discrete Systems – year: 1972 ident: bib26 article-title: Dynamics of Nonholonomic Systems – year: 1999 ident: bib23 article-title: Tensor Calculus and Analytical Dynamics – volume: 62 start-page: 836 year: 1994 end-page: 847 ident: bib28 article-title: Geometrical derivation of Lagrange׳s equations for a system of particles publication-title: Am. J. Phys. – year: 1994 ident: bib2 article-title: A Mathematical Introduction to Robot Manipulation – volume: 45 start-page: 157 year: 2010 end-page: 166 ident: bib19 article-title: Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods publication-title: Comput. Mech. – volume: 104 start-page: 247 year: 1982 end-page: 255 ident: bib13 article-title: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems publication-title: ASME J. Mech. Design – year: 1987 ident: bib6 article-title: The Finite Element Method – year: 2011 ident: bib10 article-title: Flexible Multibody Dynamics – year: 2007 ident: bib1 article-title: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms – volume: 44 start-page: 371 year: 2009 end-page: 382 ident: bib4 article-title: Dynamics of finite element structural models with multiple unilateral constraints publication-title: Int. J. Non-Linear Mech. – volume: 31 start-page: 5177 year: 1998 end-page: 5190 ident: bib31 article-title: Constrained systems and analytical mechanics in spaces with torsion publication-title: J. Phys. A: Math. Gen. – volume: 37 start-page: 1079 year: 2002 end-page: 1090 ident: bib15 article-title: On the foundations of analytical dynamics publication-title: Int. J. Non-Linear Mech. – year: 1999 ident: bib24 article-title: Introduction to Mechanics and Symmetry – year: 2001 ident: bib7 article-title: Flexible Multibody Dynamics: A Finite Element Approach – volume: 19 start-page: 3 year: 2008 end-page: 20 ident: bib11 article-title: On the optimal scaling of index three DAEs in multibody dynamics publication-title: Multibody Syst. Dyn. – year: 1989 ident: bib9 article-title: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations – year: 2003 ident: bib27 article-title: Nonholonomic Mechanics and Control – volume: 29 start-page: 725 year: 1994 end-page: 737 ident: bib37 article-title: Penalty based Hamiltonian equations for the dynamic analysis of constrained mechanical systems publication-title: Mech. Mach. Theory – year: 1977 ident: bib22 article-title: Classical Dynamics – year: 2005 ident: bib18 article-title: Geometric Control of Mechanical Systems – volume: 48 start-page: 121 year: 2012 end-page: 137 ident: bib35 article-title: Lie group generalized-α time integration of constrained flexible multibody systems publication-title: Mech. Mach. Theory – year: 2005 ident: bib3 article-title: Dynamics of Multibody Systems – volume: 79 start-page: 1911 year: 2015 end-page: 1938 ident: bib16 article-title: A set of ordinary differential equations of motion for constrained mechanical systems publication-title: Nonlinear Dyn. – volume: 72 start-page: 455 year: 2013 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib30 article-title: On application of Newton׳s law to mechanical systems with motion constraints publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0727-1 – year: 1989 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib9 – volume: 37 start-page: 1079 year: 2002 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib15 article-title: On the foundations of analytical dynamics publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(01)00033-6 – year: 1999 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib24 – year: 1990 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib21 – year: 1977 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib22 – year: 1994 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib2 – year: 2007 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib1 – volume: 11 start-page: 401 year: 2006 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib29 article-title: Geometrical derivation of Lagrange׳s equations for a system of rigid bodies publication-title: Math. Mech. Solids doi: 10.1177/1081286505044137 – year: 2008 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib25 – year: 2003 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib27 – volume: 12&13 start-page: 77 year: 1985 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib36 article-title: Automatic integration of Euler–Lagrange equations with constraints publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(85)90008-1 – volume: 62 start-page: 836 year: 1994 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib28 article-title: Geometrical derivation of Lagrange׳s equations for a system of particles publication-title: Am. J. Phys. doi: 10.1119/1.17470 – volume: 29 start-page: 725 year: 1994 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib37 article-title: Penalty based Hamiltonian equations for the dynamic analysis of constrained mechanical systems publication-title: Mech. Mach. Theory doi: 10.1016/0094-114X(94)90114-7 – volume: 19 start-page: 3 year: 2008 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib11 article-title: On the optimal scaling of index three DAEs in multibody dynamics publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-007-9051-9 – volume: 104 start-page: 247 year: 1982 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib13 article-title: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems publication-title: ASME J. Mech. Design doi: 10.1115/1.3256318 – year: 1985 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib14 – year: 1972 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib26 – year: 1977 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib5 – year: 2005 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib18 – volume: 31 start-page: 5177 year: 1998 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib31 article-title: Constrained systems and analytical mechanics in spaces with torsion publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/31/22/016 – volume: 44 start-page: 371 year: 2009 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib4 article-title: Dynamics of finite element structural models with multiple unilateral constraints publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2009.01.006 – volume: 79 start-page: 1911 year: 2015 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib16 article-title: A set of ordinary differential equations of motion for constrained mechanical systems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1783-5 – year: 1997 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib17 – volume: 45 start-page: 157 year: 2010 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib19 article-title: Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods publication-title: Comput. Mech. doi: 10.1007/s00466-009-0428-x – volume: 48 start-page: 121 year: 2012 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib35 article-title: Lie group generalized-α time integration of constrained flexible multibody systems publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2011.07.017 – year: 1977 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib20 – year: 1999 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib23 – year: 1952 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib32 – year: 1988 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib8 – volume: 1 start-page: 1 year: 1972 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib12 article-title: Stabilization of constraints and integrals of motion in dynamical systems publication-title: Comp. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(72)90018-7 – volume: 11 start-page: 701 year: 1992 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib33 article-title: A modified phase space formulation for constrained mechanical systems - differential approach publication-title: Eur. J. Mech. A/Solids – year: 2005 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib3 – year: 1987 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib6 – year: 2001 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib7 – year: 2011 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib10 – volume: 3 start-page: 1 year: 1993 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib34 article-title: Numerical integration of ordinary differential equations on manifolds publication-title: J. Nonlinear Sci. doi: 10.1007/BF02429858 – volume: 50 start-page: 57 year: 2013 ident: 10.1016/j.ijnonlinmec.2015.07.007_bib38 article-title: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.09.001 |
SSID | ssj0016407 |
Score | 2.1635969 |
Snippet | Some new theoretical results are presented on modeling the dynamic response of a class of discrete mechanical systems subject to equality motion constraints.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 208 |
SubjectTerms | Derivatives Differential equations Dynamic response Dynamical systems Equations of motion Hamilton׳s canonical equations Holonomic and non-holonomic constraints Integrable and non-integrable variations Mathematical analysis Mathematical models Mechanical systems Newton׳s law of motion Strong and weak form of equations of motion |
Title | Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems |
URI | https://dx.doi.org/10.1016/j.ijnonlinmec.2015.07.007 https://www.proquest.com/docview/1825445668 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHoQn_gmgtfqtk3aFLwsi8uq6MnFvYU8cX3U1d29-tudSdv1gQfBW5N2aJpJZ76QmW8IOba5UdbrIkq0drBBUWkktLaRSLTLRZEIG9Kjr2-yXp9dDvhgjnSaXBgMq6xtf2XTg7Wue07r2TwdDYeY45tgsQzwWYhj0gFmsLMcV_nJ-yzMI8aDqirMoxXh04vk6DPGa_hQBkKKZ4dshjEPPJ5YWfZ3H_XDWgcX1F0lKzV2pO1qeGtkzpXrZPkLoyC0rmc0rOMNUt459UgRltZFuqgqLfVDQHw0cG6Ge_TFUxCi7rWi_R5jR1XdB-9TRQ1CbOw1iCaxqISzFL7mXoWsSlrRQY83Sb97ftvpRXWBhciknE0iw03qnLesYGluY8s0bJZ5JnQOkwb7iJZi2jHOPahP59YZD-hRQytPwLdmrXSLzMMEum1CTeIdg92TFYlnCi5i7b0XTnAFkKvgO0Q0UypNzT6O432STZjZg_yiDYnakC08G893SDITHVUUHH8ROmv0Jr-tJwmu4i_iR42uJfxveIiiSvcyHctYBFK3LBO7_3vFHlnCVhUas0_mJ29TdwAAZ6IPwwo-JAvti6vezQfDaAAe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkKA9IKBF5W0kroFNYideqReEQMtjOYHYm-WnupQGyi5XfjszTrI8xAGJW2xnFGfG9nyWx98A7LrSahdMN8mM8bhB0XkijXGJzIwvZTeTLl6P7l8UvSt-OhCDKThs78JQWGWz9tdrelytm5r9Rpv798Mh3fHNKFkG-izCMflgGmY5Tl9KY7D3NInzSOmkqo7z6CT0-hzsvAR5DW-qyEjxzxOdYSoikSellv3YSb1brqMPOl6EhQY8soO6f0sw5atl-P6KUhBL_QkP6-gHVNde_2WES5ssXUxXjoUhQj4WSTdjG7sLDIWY_1_zfo-ook7vQ-1MM0sYm2otwUnKKuEdw7_5o-O1SlbzQY9-wtXx0eVhL2kyLCQ2F3ycWGFz74PjXZ6XLnXc4G5ZFNKUqDTcSHQ0N54LEdB-pnTeBoSPBktlhs616OQrMIMK9L-A2Sx4jtsnJ7PANT6kJoQgvRQaMVdXrIJsVapsQz9O_b1VbZzZjXplDUXWUB06HC9XIZuI3tccHJ8R-t3aTb0ZUAp9xWfEd1pbK5xwdIqiK3_3OFKpjKxuRSHXvvaJbZjvXfbP1fnJxdk6fKOWOk5mA2bGD49-E9HO2GzF0fwMi-4BrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+formulation+and+first+order+form+of+the+equations+of+motion+for+a+class+of+constrained+mechanical+systems&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Paraskevopoulos%2C+Elias&rft.au=Natsiavas%2C+Sotirios&rft.date=2015-12-01&rft.issn=0020-7462&rft.volume=77&rft.spage=208&rft.epage=222&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2015.07.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon |