Light-based 3D printing of hydrogels with high-resolution channels

Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite con...

Full description

Saved in:
Bibliographic Details
Published inBiomedical physics & engineering express Vol. 5; no. 2; pp. 25035 - 25044
Main Authors Benjamin, Aaron D, Abbasi, Reha, Owens, Madison, Olsen, Robert J, Walsh, Danica J, LeFevre, Thomas B, Wilking, James N
Format Journal Article
LanguageEnglish
Published IOP Publishing 28.01.2019
Subjects
Online AccessGet full text
ISSN2057-1976
2057-1976
DOI10.1088/2057-1976/aad667

Cover

Loading…
Abstract Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite control over material structure. However, the use of these methods for structuring hydrogels is underdeveloped. In particular, the ability to print hydrogel objects containing internal voids and channels is limited by the lack of well-characterized formulations that strongly attenuate light and the lack of a theoretical framework for predicting and mitigating channel occlusion. Here we present a combined experimental and theoretical approach for creating well-defined channels with any orientation in hydrogels using light-based 3D printing. This is achieved by the incorporation of photoblocker and the optimization of print conditions to ensure layer-layer adhesion while minimizing channel occlusion. To demonstrate the value of this approach we print hydrogels containing individual spiral channels with centimeter-scale length and submillimeter-scale cross-section. While the channels presented here are relatively simple, this same approach could be used to achieve more complex channel designs mimicking, for example, the complex vasculature of living organisms. The low cytotoxicity of the gel makes the formulation a promising candidate for biological applications.
AbstractList Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite control over material structure. However, the use of these methods for structuring hydrogels is underdeveloped. In particular, the ability to print hydrogel objects containing internal voids and channels is limited by the lack of well-characterized formulations that strongly attenuate light and the lack of a theoretical framework for predicting and mitigating channel occlusion. Here we present a combined experimental and theoretical approach for creating well-defined channels with any orientation in hydrogels using light-based 3D printing. This is achieved by the incorporation of photoblocker and the optimization of print conditions to ensure layer-layer adhesion while minimizing channel occlusion. To demonstrate the value of this approach we print hydrogels containing individual spiral channels with centimeter-scale length and submillimeter-scale cross-section. While the channels presented here are relatively simple, this same approach could be used to achieve more complex channel designs mimicking, for example, the complex vasculature of living organisms. The low cytotoxicity of the gel makes the formulation a promising candidate for biological applications.
Author Owens, Madison
Abbasi, Reha
Olsen, Robert J
Wilking, James N
Walsh, Danica J
Benjamin, Aaron D
LeFevre, Thomas B
Author_xml – sequence: 1
  givenname: Aaron D
  surname: Benjamin
  fullname: Benjamin, Aaron D
  organization: Montana State University Mechanical and Industrial Engineering Department, 220 Roberts Hall, Bozeman, MT, 59717, United States of America
– sequence: 2
  givenname: Reha
  orcidid: 0000-0001-6240-2097
  surname: Abbasi
  fullname: Abbasi, Reha
  organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America
– sequence: 3
  givenname: Madison
  surname: Owens
  fullname: Owens, Madison
  organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America
– sequence: 4
  givenname: Robert J
  surname: Olsen
  fullname: Olsen, Robert J
  organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America
– sequence: 5
  givenname: Danica J
  surname: Walsh
  fullname: Walsh, Danica J
  organization: Montana State University Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry, Bozeman, MT, 59717, United States of America
– sequence: 6
  givenname: Thomas B
  orcidid: 0000-0002-1340-9521
  surname: LeFevre
  fullname: LeFevre, Thomas B
  organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America
– sequence: 7
  givenname: James N
  orcidid: 0000-0002-7255-7209
  surname: Wilking
  fullname: Wilking, James N
  email: james.wilking@montana.edu
  organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America
BookMark eNp9kL1PwzAQxS1UJErpzpiNhYA_YicZoXxKlVhgts6O3bgKdmWngv73JCpCCKFOd7p7v9N7d4omPniD0DnBVwRX1TXFvMxJXYprgEaI8ghNf0aTX_0Jmqe0xhgTQYWo-RTdLt2q7XMFyTQZu8s20fne-VUWbNbumhhWpkvZh-vbrB2UeTQpdNveBZ_pFrwftmfo2EKXzPy7ztDbw_3r4ilfvjw-L26WuWa86HPNgVBCC6qIInXFoAatNBhV6wYYJrRWtMZMcMOgwZZQW4DVqiS2LCqjCJshvL-rY0gpGisHs-8Qd5JgOb5BjjnlmFPu3zAg4g-iXQ-j-z6C6w6Bl3vQhY1ch230Q7JD8ot_5GpjPiWXVGLKMeNy01j2Bfm_f6I
CODEN NJOPFM
CitedBy_id crossref_primary_10_1016_j_rineng_2022_100442
crossref_primary_10_1080_17452759_2023_2248101
crossref_primary_10_3390_mi16020115
crossref_primary_10_1016_j_addma_2024_104350
crossref_primary_10_1002_adfm_202310835
crossref_primary_10_1021_acsomega_9b04392
crossref_primary_10_1002_smll_202306564
crossref_primary_10_1039_D1SM00163A
crossref_primary_10_1557_s43578_023_01078_7
crossref_primary_10_1002_advs_202306784
crossref_primary_10_1002_admt_202100790
crossref_primary_10_3390_ma12203381
crossref_primary_10_1002_advs_202105144
crossref_primary_10_1038_s41598_022_07739_7
crossref_primary_10_1016_j_ces_2024_121156
crossref_primary_10_1016_j_colcom_2022_100667
crossref_primary_10_1088_1758_5090_ac57a7
crossref_primary_10_1016_j_bprint_2021_e00137
crossref_primary_10_1089_3dp_2021_0235
crossref_primary_10_1016_j_jddst_2024_106308
crossref_primary_10_1021_acsbiomaterials_3c00175
crossref_primary_10_1039_D1SM00461A
crossref_primary_10_1021_acsnano_3c12928
crossref_primary_10_1242_dev_199463
crossref_primary_10_1063_5_0097903
crossref_primary_10_1016_j_addma_2022_102867
crossref_primary_10_1002_adfm_202107437
crossref_primary_10_1021_acsapm_3c00197
crossref_primary_10_1038_s41598_024_82076_5
crossref_primary_10_1088_2631_8695_ab5e9f
crossref_primary_10_3390_polym14051012
crossref_primary_10_3390_molecules26092817
crossref_primary_10_3390_gels11030192
crossref_primary_10_1002_adma_202301670
crossref_primary_10_1016_j_apmt_2023_101854
crossref_primary_10_1021_acsapm_3c02891
crossref_primary_10_1557_s43579_021_00069_1
crossref_primary_10_1002_agt2_368
crossref_primary_10_1002_mabi_202200448
crossref_primary_10_1080_17452759_2024_2318774
crossref_primary_10_1186_s41205_025_00255_0
crossref_primary_10_1098_rsos_230929
crossref_primary_10_1039_D1LC00135C
crossref_primary_10_1016_j_jmbbm_2024_106531
crossref_primary_10_1016_j_mtadv_2022_100233
crossref_primary_10_1051_bioconf_20248601013
crossref_primary_10_3390_bioengineering11030202
crossref_primary_10_1021_acs_chemrev_9b00810
crossref_primary_10_1038_s41598_024_63846_7
crossref_primary_10_1039_D1SM00483B
crossref_primary_10_1038_s41598_021_82102_w
crossref_primary_10_1063_5_0091507
crossref_primary_10_1016_j_slast_2023_02_003
crossref_primary_10_1016_j_addma_2024_104443
crossref_primary_10_1016_j_addma_2021_102320
Cites_doi 10.1016/S0142-9612(03)00340-5
10.3390/jfb7030026
10.1016/S0939-6411(00)00090-4
10.1073/pnas.1524510113
10.1002/adhm.201500721
10.1016/j.biomaterials.2012.01.048
10.1039/c004285d
10.1039/C6LC00284F
10.1016/j.addr.2003.09.001
10.1002/adma.201501372
10.1126/science.aaa2397
10.1002/adma.200802106
10.1007/s10439-006-9156-y
10.1016/S0169-409X(01)00203-4
10.1038/s41598-017-17198-0
10.2307/3576902
10.1002/jbm.a.35478
10.1023/A:1020932105236
10.1093/oso/9780198520597.001.0001
10.1039/C7LC00926G
10.1016/j.biomaterials.2010.02.044
10.2217/nnm.14.168
10.1002/macp.1991.021921010
10.1002/jbm.a.30601
10.18088/ejbmr.1.3.2015.pp3-8
10.1016/0027-5107(84)90158-1
10.1002/aic.11678
10.1016/j.biomaterials.2010.04.050
10.1039/C7RA04492E
10.1039/b615486g
10.1021/acsbiomaterials.6b00140
10.1002/adhm.201500168
10.1002/adma.201202024
10.1016/j.biomaterials.2009.08.055
10.1038/s41598-018-20385-2
10.1016/j.biomaterials.2012.04.050
10.1111/j.1751-1097.1984.tb03426.x
10.1021/ja01061a010
10.1002/pola.10162
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/2057-1976/aad667
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Light-based 3D printing of hydrogels with high-resolution channels
EISSN 2057-1976
ExternalDocumentID 10_1088_2057_1976_aad667
bpexaad667
GrantInformation_xml – fundername: Division of Materials Research
  grantid: 1455247
  funderid: https://doi.org/10.13039/100000078
– fundername: Office of Integrative Activities
  grantid: 1736255
  funderid: https://doi.org/10.13039/100000106
– fundername: Division of Chemical, Bioengineering, Environmental, and Transport Systems
  grantid: 1626604
  funderid: https://doi.org/10.13039/100000146
GroupedDBID 53G
AAGCD
AAJIO
AATNI
ABHWH
ABVAM
ACGFS
ACHIP
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
CJUJL
CRLBU
EBS
EJD
IJHAN
IOP
IZVLO
KOT
N5L
O3W
PJBAE
RIN
ROL
RPA
TSCCA
AAYXX
ABJNI
ADEQX
CITATION
ID FETCH-LOGICAL-c354t-c5a121242b1b1983a9acbcaeb9cda30129b290365e3ad0f12f4afcb71f748eb13
IEDL.DBID O3W
ISSN 2057-1976
IngestDate Tue Jul 01 03:24:19 EDT 2025
Thu Apr 24 23:13:27 EDT 2025
Wed Aug 21 03:33:23 EDT 2024
Thu Jan 07 13:52:06 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-c5a121242b1b1983a9acbcaeb9cda30129b290365e3ad0f12f4afcb71f748eb13
Notes BPEX-101175.R1
ORCID 0000-0002-7255-7209
0000-0001-6240-2097
0000-0002-1340-9521
OpenAccessLink https://iopscience.iop.org/article/10.1088/2057-1976/aad667
PageCount 10
ParticipantIDs iop_journals_10_1088_2057_1976_aad667
crossref_primary_10_1088_2057_1976_aad667
crossref_citationtrail_10_1088_2057_1976_aad667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-28
PublicationDateYYYYMMDD 2019-01-28
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-28
  day: 28
PublicationDecade 2010
PublicationTitle Biomedical physics & engineering express
PublicationTitleAbbrev BPEX
PublicationTitleAlternate Biomed. Phys. Eng. Express
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
44
23
24
46
25
26
Rubinstein M C (47) 2003
28
29
Browning M B (40) 2014; 102
Jacobs P F (27) 1992
Bae M (8) 2010; 28
30
31
10
32
11
33
12
34
13
14
36
El-Sherbiny I M (15) 2013; 2013
37
16
38
17
18
19
Andley U P (39) 1994; 35
1
2
3
4
5
6
7
9
Sikorski Z (45) 2008
41
20
Sambrook J (35) 2001
42
21
43
References_xml – ident: 1
  doi: 10.1016/S0142-9612(03)00340-5
– volume: 35
  start-page: 367
  year: 1994
  ident: 39
  publication-title: Investigative Ophthalmology & Visual Science
– ident: 11
  doi: 10.3390/jfb7030026
– ident: 2
  doi: 10.1016/S0939-6411(00)00090-4
– ident: 13
  doi: 10.1073/pnas.1524510113
– ident: 16
  doi: 10.1002/adhm.201500721
– year: 1992
  ident: 27
  publication-title: Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography
– ident: 26
  doi: 10.1016/j.biomaterials.2012.01.048
– volume: 102
  start-page: 4244
  issn: 1097-4636
  year: 2014
  ident: 40
  publication-title: J. Biomed. Mater. Res.
– ident: 31
  doi: 10.1039/c004285d
– ident: 10
  doi: 10.1039/C6LC00284F
– ident: 18
  doi: 10.1016/j.addr.2003.09.001
– ident: 6
  doi: 10.1002/adma.201501372
– ident: 24
  doi: 10.1126/science.aaa2397
– ident: 19
  doi: 10.1002/adma.200802106
– ident: 29
  doi: 10.1007/s10439-006-9156-y
– ident: 3
  doi: 10.1016/S0169-409X(01)00203-4
– ident: 33
  doi: 10.1038/s41598-017-17198-0
– volume: 28
  start-page: C6P24–26P29
  year: 2010
  ident: 8
  publication-title: J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom
– ident: 36
  doi: 10.2307/3576902
– ident: 32
  doi: 10.1002/jbm.a.35478
– ident: 14
  doi: 10.1023/A:1020932105236
– year: 2003
  ident: 47
  publication-title: Polymer Physics
  doi: 10.1093/oso/9780198520597.001.0001
– ident: 28
  doi: 10.1039/C7LC00926G
– ident: 4
  doi: 10.1016/j.biomaterials.2010.02.044
– ident: 9
  doi: 10.2217/nnm.14.168
– ident: 42
  doi: 10.1002/macp.1991.021921010
– ident: 30
  doi: 10.1002/jbm.a.30601
– ident: 22
  doi: 10.18088/ejbmr.1.3.2015.pp3-8
– volume: 2013
  start-page: 316
  year: 2013
  ident: 15
  publication-title: Glob Cardiol Sci Pract
– ident: 37
  doi: 10.1016/0027-5107(84)90158-1
– ident: 5
  doi: 10.1002/aic.11678
– ident: 23
  doi: 10.1016/j.biomaterials.2010.04.050
– year: 2008
  ident: 45
  publication-title: Food Colorants
– ident: 34
  doi: 10.1039/C7RA04492E
– ident: 17
  doi: 10.1039/b615486g
– year: 2001
  ident: 35
  publication-title: Molecular Cloning: a Laboratory Manual
– ident: 20
  doi: 10.1021/acsbiomaterials.6b00140
– ident: 21
  doi: 10.1002/adhm.201500168
– ident: 25
  doi: 10.1002/adma.201202024
– ident: 41
  doi: 10.1016/j.biomaterials.2009.08.055
– ident: 7
  doi: 10.1002/adma.200802106
– ident: 43
  doi: 10.1038/s41598-018-20385-2
– ident: 12
  doi: 10.1016/j.biomaterials.2012.04.050
– ident: 38
  doi: 10.1111/j.1751-1097.1984.tb03426.x
– ident: 44
  doi: 10.1021/ja01061a010
– ident: 46
  doi: 10.1002/pola.10162
SSID ssj0001626695
Score 2.3304944
Snippet Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 25035
SubjectTerms 3D printing
additive manufacturing
hydrogel
photopolymerization
SLA
stereolithography
vasculature
Title Light-based 3D printing of hydrogels with high-resolution channels
URI https://iopscience.iop.org/article/10.1088/2057-1976/aad667
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tvXgRRcX6KDnowUNsd5PsJnjyVaqo9WCxt5CnHqRbagX992a6a7UgxdvCTvYxJPm-eWQGoUPakT4uNEsSz8FbZQMxaUaJ9BwQKNI5DRHdu_usN2A3Qz6sodP5WZhiXG39J_GyLBRcqrBKiBPRXOc5SSKMtrV2WZbX0QoVmQDLq0-ffhwskapnklehyb8GLkBRPb7uF7J019FaRQnxWfkBG6jmR5vo_HZW4QNAxmF6icH_BhnKuAj45dNNiucIahi8qBgqDpNoNVeTCMNZ3lG8u4UG3avHix6p-h0QSzmbEst1EpGEpSYxiRRUS22N1d5I6zQFj5FJZUQc7ql2nZCkgelgTZ6EnIm459Jt1BgVI7-DMGNSOx4EN5RBDznDdE6tcYEKR1Mqm6j9_evKVsXAoSfFq5oFpYVQoCwFylKlsproeD5iXBbCWCJ7FLWpqtXwtkQOL8iZsf9QXKUKiBnlauzC7j8ftYdWI5WB1C-Sin3UmE7e_UGkC1PTQvXr_kNrNjm-ABoEuZ0
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4SIgFgQDxxgMMDKYktpN45FUVKIWBim6WnzCgtoIiwb_nrjEvCVVskXJO4ovt7_Pd-Y6QPX6kAkw0x7Ig0VrlIrN5wZkKEhEI6JxBj-51p2h1xWVP9lKd0_FZmMEwLf2HcFknCq5VmALiKtiuy5JlAKMNY3xRlI2hj9NkVvKiwNoNN_z-28gCdL1QMrkn_2r8C46m4ZU_0KW5SBYSLaTH9UcskanQXyYn7XGWDwQaT_kZRRscRinTQaSP7_558ADARtGSSjHrMIOdcxpIFM_z9uHuCuk2z-9OWyzVPGCOSzFiTpoM0ETkNrOZqrhRxllnglXOG45WI5srQB0ZuPFHMcujMNHZMoulqGDd5atkpj_ohzVChVDGy1hJywXWkbPClNxZH3nlec7VOml8dl27lBAc61I86bFjuqo0KkujsnStrHVy8NViWCfDmCC7D9rUaUa8TJCjv-TsMLxpqXON5IxLDT9345-P2iVzt2dN3b7oXG2SeWA2GAnG8mqLzIyeX8M2sIeR3RmPkA9NBLyD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-based+3D+printing+of+hydrogels+with+high-resolution+channels&rft.jtitle=Biomedical+physics+%26+engineering+express&rft.au=Benjamin%2C+Aaron+D&rft.au=Abbasi%2C+Reha&rft.au=Owens%2C+Madison&rft.au=Olsen%2C+Robert+J&rft.date=2019-01-28&rft.pub=IOP+Publishing&rft.eissn=2057-1976&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1088%2F2057-1976%2Faad667&rft.externalDocID=bpexaad667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-1976&client=summon