Light-based 3D printing of hydrogels with high-resolution channels
Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite con...
Saved in:
Published in | Biomedical physics & engineering express Vol. 5; no. 2; pp. 25035 - 25044 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
28.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2057-1976 2057-1976 |
DOI | 10.1088/2057-1976/aad667 |
Cover
Loading…
Abstract | Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite control over material structure. However, the use of these methods for structuring hydrogels is underdeveloped. In particular, the ability to print hydrogel objects containing internal voids and channels is limited by the lack of well-characterized formulations that strongly attenuate light and the lack of a theoretical framework for predicting and mitigating channel occlusion. Here we present a combined experimental and theoretical approach for creating well-defined channels with any orientation in hydrogels using light-based 3D printing. This is achieved by the incorporation of photoblocker and the optimization of print conditions to ensure layer-layer adhesion while minimizing channel occlusion. To demonstrate the value of this approach we print hydrogels containing individual spiral channels with centimeter-scale length and submillimeter-scale cross-section. While the channels presented here are relatively simple, this same approach could be used to achieve more complex channel designs mimicking, for example, the complex vasculature of living organisms. The low cytotoxicity of the gel makes the formulation a promising candidate for biological applications. |
---|---|
AbstractList | Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite control over material structure. However, the use of these methods for structuring hydrogels is underdeveloped. In particular, the ability to print hydrogel objects containing internal voids and channels is limited by the lack of well-characterized formulations that strongly attenuate light and the lack of a theoretical framework for predicting and mitigating channel occlusion. Here we present a combined experimental and theoretical approach for creating well-defined channels with any orientation in hydrogels using light-based 3D printing. This is achieved by the incorporation of photoblocker and the optimization of print conditions to ensure layer-layer adhesion while minimizing channel occlusion. To demonstrate the value of this approach we print hydrogels containing individual spiral channels with centimeter-scale length and submillimeter-scale cross-section. While the channels presented here are relatively simple, this same approach could be used to achieve more complex channel designs mimicking, for example, the complex vasculature of living organisms. The low cytotoxicity of the gel makes the formulation a promising candidate for biological applications. |
Author | Owens, Madison Abbasi, Reha Olsen, Robert J Wilking, James N Walsh, Danica J Benjamin, Aaron D LeFevre, Thomas B |
Author_xml | – sequence: 1 givenname: Aaron D surname: Benjamin fullname: Benjamin, Aaron D organization: Montana State University Mechanical and Industrial Engineering Department, 220 Roberts Hall, Bozeman, MT, 59717, United States of America – sequence: 2 givenname: Reha orcidid: 0000-0001-6240-2097 surname: Abbasi fullname: Abbasi, Reha organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America – sequence: 3 givenname: Madison surname: Owens fullname: Owens, Madison organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America – sequence: 4 givenname: Robert J surname: Olsen fullname: Olsen, Robert J organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America – sequence: 5 givenname: Danica J surname: Walsh fullname: Walsh, Danica J organization: Montana State University Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry, Bozeman, MT, 59717, United States of America – sequence: 6 givenname: Thomas B orcidid: 0000-0002-1340-9521 surname: LeFevre fullname: LeFevre, Thomas B organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America – sequence: 7 givenname: James N orcidid: 0000-0002-7255-7209 surname: Wilking fullname: Wilking, James N email: james.wilking@montana.edu organization: Montana State University Chemical and Biological Engineering Department, 306 Cobleigh Hall, Bozeman, MT, 59717, United States of America |
BookMark | eNp9kL1PwzAQxS1UJErpzpiNhYA_YicZoXxKlVhgts6O3bgKdmWngv73JCpCCKFOd7p7v9N7d4omPniD0DnBVwRX1TXFvMxJXYprgEaI8ghNf0aTX_0Jmqe0xhgTQYWo-RTdLt2q7XMFyTQZu8s20fne-VUWbNbumhhWpkvZh-vbrB2UeTQpdNveBZ_pFrwftmfo2EKXzPy7ztDbw_3r4ilfvjw-L26WuWa86HPNgVBCC6qIInXFoAatNBhV6wYYJrRWtMZMcMOgwZZQW4DVqiS2LCqjCJshvL-rY0gpGisHs-8Qd5JgOb5BjjnlmFPu3zAg4g-iXQ-j-z6C6w6Bl3vQhY1ch230Q7JD8ot_5GpjPiWXVGLKMeNy01j2Bfm_f6I |
CODEN | NJOPFM |
CitedBy_id | crossref_primary_10_1016_j_rineng_2022_100442 crossref_primary_10_1080_17452759_2023_2248101 crossref_primary_10_3390_mi16020115 crossref_primary_10_1016_j_addma_2024_104350 crossref_primary_10_1002_adfm_202310835 crossref_primary_10_1021_acsomega_9b04392 crossref_primary_10_1002_smll_202306564 crossref_primary_10_1039_D1SM00163A crossref_primary_10_1557_s43578_023_01078_7 crossref_primary_10_1002_advs_202306784 crossref_primary_10_1002_admt_202100790 crossref_primary_10_3390_ma12203381 crossref_primary_10_1002_advs_202105144 crossref_primary_10_1038_s41598_022_07739_7 crossref_primary_10_1016_j_ces_2024_121156 crossref_primary_10_1016_j_colcom_2022_100667 crossref_primary_10_1088_1758_5090_ac57a7 crossref_primary_10_1016_j_bprint_2021_e00137 crossref_primary_10_1089_3dp_2021_0235 crossref_primary_10_1016_j_jddst_2024_106308 crossref_primary_10_1021_acsbiomaterials_3c00175 crossref_primary_10_1039_D1SM00461A crossref_primary_10_1021_acsnano_3c12928 crossref_primary_10_1242_dev_199463 crossref_primary_10_1063_5_0097903 crossref_primary_10_1016_j_addma_2022_102867 crossref_primary_10_1002_adfm_202107437 crossref_primary_10_1021_acsapm_3c00197 crossref_primary_10_1038_s41598_024_82076_5 crossref_primary_10_1088_2631_8695_ab5e9f crossref_primary_10_3390_polym14051012 crossref_primary_10_3390_molecules26092817 crossref_primary_10_3390_gels11030192 crossref_primary_10_1002_adma_202301670 crossref_primary_10_1016_j_apmt_2023_101854 crossref_primary_10_1021_acsapm_3c02891 crossref_primary_10_1557_s43579_021_00069_1 crossref_primary_10_1002_agt2_368 crossref_primary_10_1002_mabi_202200448 crossref_primary_10_1080_17452759_2024_2318774 crossref_primary_10_1186_s41205_025_00255_0 crossref_primary_10_1098_rsos_230929 crossref_primary_10_1039_D1LC00135C crossref_primary_10_1016_j_jmbbm_2024_106531 crossref_primary_10_1016_j_mtadv_2022_100233 crossref_primary_10_1051_bioconf_20248601013 crossref_primary_10_3390_bioengineering11030202 crossref_primary_10_1021_acs_chemrev_9b00810 crossref_primary_10_1038_s41598_024_63846_7 crossref_primary_10_1039_D1SM00483B crossref_primary_10_1038_s41598_021_82102_w crossref_primary_10_1063_5_0091507 crossref_primary_10_1016_j_slast_2023_02_003 crossref_primary_10_1016_j_addma_2024_104443 crossref_primary_10_1016_j_addma_2021_102320 |
Cites_doi | 10.1016/S0142-9612(03)00340-5 10.3390/jfb7030026 10.1016/S0939-6411(00)00090-4 10.1073/pnas.1524510113 10.1002/adhm.201500721 10.1016/j.biomaterials.2012.01.048 10.1039/c004285d 10.1039/C6LC00284F 10.1016/j.addr.2003.09.001 10.1002/adma.201501372 10.1126/science.aaa2397 10.1002/adma.200802106 10.1007/s10439-006-9156-y 10.1016/S0169-409X(01)00203-4 10.1038/s41598-017-17198-0 10.2307/3576902 10.1002/jbm.a.35478 10.1023/A:1020932105236 10.1093/oso/9780198520597.001.0001 10.1039/C7LC00926G 10.1016/j.biomaterials.2010.02.044 10.2217/nnm.14.168 10.1002/macp.1991.021921010 10.1002/jbm.a.30601 10.18088/ejbmr.1.3.2015.pp3-8 10.1016/0027-5107(84)90158-1 10.1002/aic.11678 10.1016/j.biomaterials.2010.04.050 10.1039/C7RA04492E 10.1039/b615486g 10.1021/acsbiomaterials.6b00140 10.1002/adhm.201500168 10.1002/adma.201202024 10.1016/j.biomaterials.2009.08.055 10.1038/s41598-018-20385-2 10.1016/j.biomaterials.2012.04.050 10.1111/j.1751-1097.1984.tb03426.x 10.1021/ja01061a010 10.1002/pola.10162 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd |
Copyright_xml | – notice: 2019 IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/2057-1976/aad667 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Light-based 3D printing of hydrogels with high-resolution channels |
EISSN | 2057-1976 |
ExternalDocumentID | 10_1088_2057_1976_aad667 bpexaad667 |
GrantInformation_xml | – fundername: Division of Materials Research grantid: 1455247 funderid: https://doi.org/10.13039/100000078 – fundername: Office of Integrative Activities grantid: 1736255 funderid: https://doi.org/10.13039/100000106 – fundername: Division of Chemical, Bioengineering, Environmental, and Transport Systems grantid: 1626604 funderid: https://doi.org/10.13039/100000146 |
GroupedDBID | 53G AAGCD AAJIO AATNI ABHWH ABVAM ACGFS ACHIP AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT CJUJL CRLBU EBS EJD IJHAN IOP IZVLO KOT N5L O3W PJBAE RIN ROL RPA TSCCA AAYXX ABJNI ADEQX CITATION |
ID | FETCH-LOGICAL-c354t-c5a121242b1b1983a9acbcaeb9cda30129b290365e3ad0f12f4afcb71f748eb13 |
IEDL.DBID | O3W |
ISSN | 2057-1976 |
IngestDate | Tue Jul 01 03:24:19 EDT 2025 Thu Apr 24 23:13:27 EDT 2025 Wed Aug 21 03:33:23 EDT 2024 Thu Jan 07 13:52:06 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-c5a121242b1b1983a9acbcaeb9cda30129b290365e3ad0f12f4afcb71f748eb13 |
Notes | BPEX-101175.R1 |
ORCID | 0000-0002-7255-7209 0000-0001-6240-2097 0000-0002-1340-9521 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/2057-1976/aad667 |
PageCount | 10 |
ParticipantIDs | iop_journals_10_1088_2057_1976_aad667 crossref_primary_10_1088_2057_1976_aad667 crossref_citationtrail_10_1088_2057_1976_aad667 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-28 |
PublicationDateYYYYMMDD | 2019-01-28 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical physics & engineering express |
PublicationTitleAbbrev | BPEX |
PublicationTitleAlternate | Biomed. Phys. Eng. Express |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 44 23 24 46 25 26 Rubinstein M C (47) 2003 28 29 Browning M B (40) 2014; 102 Jacobs P F (27) 1992 Bae M (8) 2010; 28 30 31 10 32 11 33 12 34 13 14 36 El-Sherbiny I M (15) 2013; 2013 37 16 38 17 18 19 Andley U P (39) 1994; 35 1 2 3 4 5 6 7 9 Sikorski Z (45) 2008 41 20 Sambrook J (35) 2001 42 21 43 |
References_xml | – ident: 1 doi: 10.1016/S0142-9612(03)00340-5 – volume: 35 start-page: 367 year: 1994 ident: 39 publication-title: Investigative Ophthalmology & Visual Science – ident: 11 doi: 10.3390/jfb7030026 – ident: 2 doi: 10.1016/S0939-6411(00)00090-4 – ident: 13 doi: 10.1073/pnas.1524510113 – ident: 16 doi: 10.1002/adhm.201500721 – year: 1992 ident: 27 publication-title: Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography – ident: 26 doi: 10.1016/j.biomaterials.2012.01.048 – volume: 102 start-page: 4244 issn: 1097-4636 year: 2014 ident: 40 publication-title: J. Biomed. Mater. Res. – ident: 31 doi: 10.1039/c004285d – ident: 10 doi: 10.1039/C6LC00284F – ident: 18 doi: 10.1016/j.addr.2003.09.001 – ident: 6 doi: 10.1002/adma.201501372 – ident: 24 doi: 10.1126/science.aaa2397 – ident: 19 doi: 10.1002/adma.200802106 – ident: 29 doi: 10.1007/s10439-006-9156-y – ident: 3 doi: 10.1016/S0169-409X(01)00203-4 – ident: 33 doi: 10.1038/s41598-017-17198-0 – volume: 28 start-page: C6P24–26P29 year: 2010 ident: 8 publication-title: J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom – ident: 36 doi: 10.2307/3576902 – ident: 32 doi: 10.1002/jbm.a.35478 – ident: 14 doi: 10.1023/A:1020932105236 – year: 2003 ident: 47 publication-title: Polymer Physics doi: 10.1093/oso/9780198520597.001.0001 – ident: 28 doi: 10.1039/C7LC00926G – ident: 4 doi: 10.1016/j.biomaterials.2010.02.044 – ident: 9 doi: 10.2217/nnm.14.168 – ident: 42 doi: 10.1002/macp.1991.021921010 – ident: 30 doi: 10.1002/jbm.a.30601 – ident: 22 doi: 10.18088/ejbmr.1.3.2015.pp3-8 – volume: 2013 start-page: 316 year: 2013 ident: 15 publication-title: Glob Cardiol Sci Pract – ident: 37 doi: 10.1016/0027-5107(84)90158-1 – ident: 5 doi: 10.1002/aic.11678 – ident: 23 doi: 10.1016/j.biomaterials.2010.04.050 – year: 2008 ident: 45 publication-title: Food Colorants – ident: 34 doi: 10.1039/C7RA04492E – ident: 17 doi: 10.1039/b615486g – year: 2001 ident: 35 publication-title: Molecular Cloning: a Laboratory Manual – ident: 20 doi: 10.1021/acsbiomaterials.6b00140 – ident: 21 doi: 10.1002/adhm.201500168 – ident: 25 doi: 10.1002/adma.201202024 – ident: 41 doi: 10.1016/j.biomaterials.2009.08.055 – ident: 7 doi: 10.1002/adma.200802106 – ident: 43 doi: 10.1038/s41598-018-20385-2 – ident: 12 doi: 10.1016/j.biomaterials.2012.04.050 – ident: 38 doi: 10.1111/j.1751-1097.1984.tb03426.x – ident: 44 doi: 10.1021/ja01061a010 – ident: 46 doi: 10.1002/pola.10162 |
SSID | ssj0001626695 |
Score | 2.3304944 |
Snippet | Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 25035 |
SubjectTerms | 3D printing additive manufacturing hydrogel photopolymerization SLA stereolithography vasculature |
Title | Light-based 3D printing of hydrogels with high-resolution channels |
URI | https://iopscience.iop.org/article/10.1088/2057-1976/aad667 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tvXgRRcX6KDnowUNsd5PsJnjyVaqo9WCxt5CnHqRbagX992a6a7UgxdvCTvYxJPm-eWQGoUPakT4uNEsSz8FbZQMxaUaJ9BwQKNI5DRHdu_usN2A3Qz6sodP5WZhiXG39J_GyLBRcqrBKiBPRXOc5SSKMtrV2WZbX0QoVmQDLq0-ffhwskapnklehyb8GLkBRPb7uF7J019FaRQnxWfkBG6jmR5vo_HZW4QNAxmF6icH_BhnKuAj45dNNiucIahi8qBgqDpNoNVeTCMNZ3lG8u4UG3avHix6p-h0QSzmbEst1EpGEpSYxiRRUS22N1d5I6zQFj5FJZUQc7ql2nZCkgelgTZ6EnIm459Jt1BgVI7-DMGNSOx4EN5RBDznDdE6tcYEKR1Mqm6j9_evKVsXAoSfFq5oFpYVQoCwFylKlsproeD5iXBbCWCJ7FLWpqtXwtkQOL8iZsf9QXKUKiBnlauzC7j8ftYdWI5WB1C-Sin3UmE7e_UGkC1PTQvXr_kNrNjm-ABoEuZ0 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4SIgFgQDxxgMMDKYktpN45FUVKIWBim6WnzCgtoIiwb_nrjEvCVVskXJO4ovt7_Pd-Y6QPX6kAkw0x7Ig0VrlIrN5wZkKEhEI6JxBj-51p2h1xWVP9lKd0_FZmMEwLf2HcFknCq5VmALiKtiuy5JlAKMNY3xRlI2hj9NkVvKiwNoNN_z-28gCdL1QMrkn_2r8C46m4ZU_0KW5SBYSLaTH9UcskanQXyYn7XGWDwQaT_kZRRscRinTQaSP7_558ADARtGSSjHrMIOdcxpIFM_z9uHuCuk2z-9OWyzVPGCOSzFiTpoM0ETkNrOZqrhRxllnglXOG45WI5srQB0ZuPFHMcujMNHZMoulqGDd5atkpj_ohzVChVDGy1hJywXWkbPClNxZH3nlec7VOml8dl27lBAc61I86bFjuqo0KkujsnStrHVy8NViWCfDmCC7D9rUaUa8TJCjv-TsMLxpqXON5IxLDT9345-P2iVzt2dN3b7oXG2SeWA2GAnG8mqLzIyeX8M2sIeR3RmPkA9NBLyD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-based+3D+printing+of+hydrogels+with+high-resolution+channels&rft.jtitle=Biomedical+physics+%26+engineering+express&rft.au=Benjamin%2C+Aaron+D&rft.au=Abbasi%2C+Reha&rft.au=Owens%2C+Madison&rft.au=Olsen%2C+Robert+J&rft.date=2019-01-28&rft.pub=IOP+Publishing&rft.eissn=2057-1976&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1088%2F2057-1976%2Faad667&rft.externalDocID=bpexaad667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-1976&client=summon |