Classical simulation of linear optics subject to nonuniform losses
We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumven...
Saved in:
Published in | Quantum (Vienna, Austria) Vol. 4; p. 267 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
14.05.2020
|
Online Access | Get full text |
ISSN | 2521-327X 2521-327X |
DOI | 10.22331/q-2020-05-14-267 |
Cover
Loading…
Abstract | We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumvent the efficient classical simulations based on losses.To achieve our result we obtain new intermediate results that can be of independent interest. First we show that, for any network of lossy beam-splitters, it is possible to extract a layer of non-uniform losses that depends on the network geometry. We prove that, for every input mode of the network it is possible to commute
s
i
layers of losses to the input, where
s
i
is the length of the shortest path connecting the
i
th input to any output. We then extend a recent classical simulation algorithm due to P. Clifford and R. Clifford to allow for arbitrary
n
-photon input Fock states (i.e. to include collision states). Consequently, we identify two types of input states where boson sampling becomes classically simulable: (A) when
n
input photons occupy a constant number of input modes; (B) when all but
O
(
log
n
)
photons are concentrated on a single input mode, while an additional
O
(
log
n
)
modes contain one photon each. |
---|---|
AbstractList | We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumvent the efficient classical simulations based on losses.To achieve our result we obtain new intermediate results that can be of independent interest. First we show that, for any network of lossy beam-splitters, it is possible to extract a layer of non-uniform losses that depends on the network geometry. We prove that, for every input mode of the network it is possible to commute
s
i
layers of losses to the input, where
s
i
is the length of the shortest path connecting the
i
th input to any output. We then extend a recent classical simulation algorithm due to P. Clifford and R. Clifford to allow for arbitrary
n
-photon input Fock states (i.e. to include collision states). Consequently, we identify two types of input states where boson sampling becomes classically simulable: (A) when
n
input photons occupy a constant number of input modes; (B) when all but
O
(
log
n
)
photons are concentrated on a single input mode, while an additional
O
(
log
n
)
modes contain one photon each. We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumvent the efficient classical simulations based on losses. To achieve our result we obtain new intermediate results that can be of independent interest. First we show that, for any network of lossy beam-splitters, it is possible to extract a layer of non-uniform losses that depends on the network geometry. We prove that, for every input mode of the network it is possible to commute $s_i$ layers of losses to the input, where $s_i$ is the length of the shortest path connecting the $i$th input to any output. We then extend a recent classical simulation algorithm due to P. Clifford and R. Clifford to allow for arbitrary $n$-photon input Fock states (i.e. to include collision states). Consequently, we identify two types of input states where boson sampling becomes classically simulable: (A) when $n$ input photons occupy a constant number of input modes; (B) when all but $O(\log n)$ photons are concentrated on a single input mode, while an additional $O(\log n)$ modes contain one photon each. |
ArticleNumber | 267 |
Author | Oszmaniec, Michał Brod, Daniel Jost |
Author_xml | – sequence: 1 givenname: Daniel Jost surname: Brod fullname: Brod, Daniel Jost organization: Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, 24210-340, Brazil – sequence: 2 givenname: Michał surname: Oszmaniec fullname: Oszmaniec, Michał organization: International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland, Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland |
BookMark | eNp9kM9KAzEQh4NUUGsfwFteIJpkskn2qMU_hYIXBW8hm00kJd3UZHvw7V2riHjwNMPA75uZ7wzNhjx4hC4YveQcgF29EU45JbQhTBAu1RE65Q1nBLh6mf3qT9Ci1g2llGslpRan6GaZbK3R2YRr3O6THWMecA44xcHbgvNujK7iuu823o14zHjavR9iyGWLU67V13N0HGyqfvFd5-j57vZp-UDWj_er5fWaOGjESJxoQ1AgaRcYD9RrLZXroBcUQsOEZdCq1gtunet10AE0dNBIxsBr2vUW5mj1xe2z3ZhdiVtb3k220RwGubwaW6Zrkzc97VyvApsWSME1tB0NTStBgAhCgJtY7IvlyvRD8eGHx6g5ODVv5tOpoY1hwkxOp4z6k3FxPPgai43pn-QHB4N9fA |
CitedBy_id | crossref_primary_10_1103_PhysRevA_106_043707 crossref_primary_10_1117_1_APN_4_1_016011 crossref_primary_10_1038_s41586_021_03202_1 crossref_primary_10_1103_PhysRevA_105_052608 crossref_primary_10_22331_q_2021_03_29_423 crossref_primary_10_1126_sciadv_abl9236 crossref_primary_10_22331_q_2024_06_18_1378 crossref_primary_10_1088_1402_4896_ad4688 crossref_primary_10_1103_PhysRevA_109_052613 crossref_primary_10_22331_qv_2021_04_28_53 crossref_primary_10_1103_PhysRevA_110_052437 crossref_primary_10_1088_2058_9565_acf06c crossref_primary_10_1088_2058_9565_ac969b crossref_primary_10_1364_AOP_445496 crossref_primary_10_22331_q_2024_09_19_1479 crossref_primary_10_1103_PhysRevA_110_043715 crossref_primary_10_1088_1367_2630_ad313b crossref_primary_10_1103_PhysRevLett_133_050604 crossref_primary_10_1103_PhysRevA_104_022407 crossref_primary_10_1103_PhysRevA_110_022622 crossref_primary_10_1103_PhysRevResearch_6_033337 |
Cites_doi | 10.1103/PhysRevA.93.012335 10.1038/nphoton.2014.152 10.1364/OPTICA.3.001460 10.22331/q-2019-08-05-169 10.1103/PhysRevA.92.062326 10.1038/nature23458 10.1117/1.AP.1.3.034001 10.1038/nphoton.2017.63 10.1103/PhysRevLett.120.220502 10.1103/PhysRevLett.120.230502 doi:10.1038/nphys4270 10.4086/toc.2013.v009a004 10.1038/s41567-018-0124-x 10.22331/q-2020-05-11-264 10.1038/nphoton.2014.135 10.1103/PhysRevX.6.021039 10.26421/QIC15.5-6-8 10.1038/nphoton.2013.112 10.1126/science.aar7053 10.1126/sciadv.1400255 10.1103/PhysRevLett.118.130503 10.1126/science.1231440 10.1103/PhysRevLett.73.58 10.1093/nsr/nwy079 10.1088/1367-2630/aadfa8 10.1038/s41586-019-1666-5 10.1126/science.aab3642 10.1103/PhysRevA.97.062329 10.1088/2058-9565/ab5555 10.1103/PhysRevLett.119.170501 10.1126/science.1231692 10.1103/PhysRevA.89.062316 10.1142/S0219749913500457 10.1038/s41598 10.1103/PhysRevLett.124.100502 10.26421/QIC16.3-4-6 10.1038/s41598-020-71892-0 10.1103/PhysRevLett.123.250503 10.1007/s00023-017-0604-z 10.1103/PhysRevX.8.021017 10.1137/1.9781611975031.10 10.1103/PhysRevLett.118.190501 10.1038/nphoton.2013.102 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.22331/q-2020-05-14-267 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2521-327X |
ExternalDocumentID | oai_doaj_org_article_d0bcd7f17cb642839b0f5963434f443c 10_22331_q_2020_05_14_267 |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c354t-c49ff7360bf12f0e8867cb3d403f514a13979e42accd8f8f383b356113e80bda3 |
IEDL.DBID | DOA |
ISSN | 2521-327X |
IngestDate | Wed Aug 27 01:33:00 EDT 2025 Tue Jul 01 01:59:49 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-c49ff7360bf12f0e8867cb3d403f514a13979e42accd8f8f383b356113e80bda3 |
OpenAccessLink | https://doaj.org/article/d0bcd7f17cb642839b0f5963434f443c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d0bcd7f17cb642839b0f5963434f443c crossref_primary_10_22331_q_2020_05_14_267 crossref_citationtrail_10_22331_q_2020_05_14_267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-14 |
PublicationDateYYYYMMDD | 2020-05-14 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Quantum (Vienna, Austria) |
PublicationYear | 2020 |
Publisher | Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
Publisher_xml | – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
References | 22 44 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 0 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – ident: 20 doi: 10.1103/PhysRevA.93.012335 – ident: 8 doi: 10.1038/nphoton.2014.152 – ident: 41 doi: 10.1364/OPTICA.3.001460 – ident: 21 doi: 10.22331/q-2019-08-05-169 – ident: 25 doi: 10.1103/PhysRevA.92.062326 – ident: 0 doi: 10.1038/nature23458 – ident: 2 doi: 10.1117/1.AP.1.3.034001 – ident: 13 doi: 10.1038/nphoton.2017.63 – ident: 28 doi: 10.1103/PhysRevLett.120.220502 – ident: 14 doi: 10.1103/PhysRevLett.120.230502 – ident: 15 doi: doi:10.1038/nphys4270 – ident: 1 doi: 10.4086/toc.2013.v009a004 – ident: 32 doi: 10.1038/s41567-018-0124-x – ident: 19 doi: 10.22331/q-2020-05-11-264 – ident: 7 doi: 10.1038/nphoton.2014.135 – ident: 27 doi: 10.1103/PhysRevX.6.021039 – ident: 26 doi: 10.26421/QIC15.5-6-8 – ident: 4 doi: 10.1038/nphoton.2013.112 – ident: 44 doi: 10.1126/science.aar7053 – ident: 10 doi: 10.1126/sciadv.1400255 – ident: 11 doi: 10.1103/PhysRevLett.118.130503 – ident: 3 doi: 10.1126/science.1231440 – ident: 30 doi: 10.1103/PhysRevLett.73.58 – ident: 18 doi: 10.1093/nsr/nwy079 – ident: 22 doi: 10.1088/1367-2630/aadfa8 – ident: 31 doi: 10.1038/s41586-019-1666-5 – ident: 9 doi: 10.1126/science.aab3642 – ident: 34 doi: 10.1103/PhysRevA.97.062329 – ident: 24 doi: 10.1088/2058-9565/ab5555 – ident: 42 doi: 10.1103/PhysRevLett.119.170501 – ident: 5 doi: 10.1126/science.1231692 – ident: 37 doi: 10.1103/PhysRevA.89.062316 – ident: 36 doi: 10.1142/S0219749913500457 – ident: 35 doi: 10.1038/s41598 – ident: 29 – ident: 43 doi: 10.1103/PhysRevLett.124.100502 – ident: 38 doi: 10.26421/QIC16.3-4-6 – ident: 17 doi: 10.1038/s41598-020-71892-0 – ident: 33 doi: 10.1103/PhysRevLett.123.250503 – ident: 39 doi: 10.1007/s00023-017-0604-z – ident: 40 doi: 10.1103/PhysRevX.8.021017 – ident: 16 doi: 10.1137/1.9781611975031.10 – ident: 12 doi: 10.1103/PhysRevLett.118.190501 – ident: 6 doi: 10.1038/nphoton.2013.102 – ident: 23 |
SSID | ssj0002876684 |
Score | 2.2562876 |
Snippet | We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 267 |
Title | Classical simulation of linear optics subject to nonuniform losses |
URI | https://doaj.org/article/d0bcd7f17cb642839b0f5963434f443c |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxYEAkR5yQMTklUndhJnpIiqQoKJSt0iPyVQ2_SR_j_3OqHtBAtr5Dx8ruV7jh2fS8iD1gZIRVDM-1wz0F-eaRc0QyMYbkRwpcbDyW_v-XgiX6fZ9KDUF_4T1toDt8ANHDfWFSEprEGqLErDQwajRgoZpBQWZ1_IeQdi6isuGRV5rmS7jQkZUCSDFQyING78JpKlsa78PhEd-PXHxDI6JScdI6RP7ZeckSO_OCfDWKwSAaSbz3lXYovWgSIr1GtaL9FemW62BtdRaFNTkPHbBR6zmtNZjTu5F2Qyevl4HrOu3AGzIpMNsxLXT0XOTUjSwL1SOXRaOMlFAFqjkauVXqbaWqeCCqAtjQD6kwgPsDotLkkP3uWvCIVZjDuTSm2Nl4nyqgjcGkju0pWgx3yf8J--V7bzAseSFLMKNEGEq1pVCFfFMxAHFcDVJ4-7W5atEcZvjYcI6K4heljHCxDZqots9Vdkr__jITfkeB_2W9Jr1lt_BzSiMfdxxHwDvUbEEg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+simulation+of+linear+optics+subject+to+nonuniform+losses&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Brod%2C+Daniel+Jost&rft.au=Oszmaniec%2C+Micha%C5%82&rft.date=2020-05-14&rft.issn=2521-327X&rft.eissn=2521-327X&rft.volume=4&rft.spage=267&rft_id=info:doi/10.22331%2Fq-2020-05-14-267&rft.externalDBID=n%2Fa&rft.externalDocID=10_22331_q_2020_05_14_267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon |