Classical simulation of linear optics subject to nonuniform losses

We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumven...

Full description

Saved in:
Bibliographic Details
Published inQuantum (Vienna, Austria) Vol. 4; p. 267
Main Authors Brod, Daniel Jost, Oszmaniec, Michał
Format Journal Article
LanguageEnglish
Published Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 14.05.2020
Online AccessGet full text
ISSN2521-327X
2521-327X
DOI10.22331/q-2020-05-14-267

Cover

Loading…
Abstract We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumvent the efficient classical simulations based on losses.To achieve our result we obtain new intermediate results that can be of independent interest. First we show that, for any network of lossy beam-splitters, it is possible to extract a layer of non-uniform losses that depends on the network geometry. We prove that, for every input mode of the network it is possible to commute s i layers of losses to the input, where s i is the length of the shortest path connecting the i th input to any output. We then extend a recent classical simulation algorithm due to P. Clifford and R. Clifford to allow for arbitrary n -photon input Fock states (i.e. to include collision states). Consequently, we identify two types of input states where boson sampling becomes classically simulable: (A) when n input photons occupy a constant number of input modes; (B) when all but O ( log ⁡ n ) photons are concentrated on a single input mode, while an additional O ( log ⁡ n ) modes contain one photon each.
AbstractList We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumvent the efficient classical simulations based on losses.To achieve our result we obtain new intermediate results that can be of independent interest. First we show that, for any network of lossy beam-splitters, it is possible to extract a layer of non-uniform losses that depends on the network geometry. We prove that, for every input mode of the network it is possible to commute s i layers of losses to the input, where s i is the length of the shortest path connecting the i th input to any output. We then extend a recent classical simulation algorithm due to P. Clifford and R. Clifford to allow for arbitrary n -photon input Fock states (i.e. to include collision states). Consequently, we identify two types of input states where boson sampling becomes classically simulable: (A) when n input photons occupy a constant number of input modes; (B) when all but O ( log ⁡ n ) photons are concentrated on a single input mode, while an additional O ( log ⁡ n ) modes contain one photon each.
We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical processes. Our main result states that, if each beam splitter in a network induces some loss probability, non-uniform network designs cannot circumvent the efficient classical simulations based on losses. To achieve our result we obtain new intermediate results that can be of independent interest. First we show that, for any network of lossy beam-splitters, it is possible to extract a layer of non-uniform losses that depends on the network geometry. We prove that, for every input mode of the network it is possible to commute $s_i$ layers of losses to the input, where $s_i$ is the length of the shortest path connecting the $i$th input to any output. We then extend a recent classical simulation algorithm due to P. Clifford and R. Clifford to allow for arbitrary $n$-photon input Fock states (i.e. to include collision states). Consequently, we identify two types of input states where boson sampling becomes classically simulable: (A) when $n$ input photons occupy a constant number of input modes; (B) when all but $O(\log n)$ photons are concentrated on a single input mode, while an additional $O(\log n)$ modes contain one photon each.
ArticleNumber 267
Author Oszmaniec, Michał
Brod, Daniel Jost
Author_xml – sequence: 1
  givenname: Daniel Jost
  surname: Brod
  fullname: Brod, Daniel Jost
  organization: Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, 24210-340, Brazil
– sequence: 2
  givenname: Michał
  surname: Oszmaniec
  fullname: Oszmaniec, Michał
  organization: International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland, Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
BookMark eNp9kM9KAzEQh4NUUGsfwFteIJpkskn2qMU_hYIXBW8hm00kJd3UZHvw7V2riHjwNMPA75uZ7wzNhjx4hC4YveQcgF29EU45JbQhTBAu1RE65Q1nBLh6mf3qT9Ci1g2llGslpRan6GaZbK3R2YRr3O6THWMecA44xcHbgvNujK7iuu823o14zHjavR9iyGWLU67V13N0HGyqfvFd5-j57vZp-UDWj_er5fWaOGjESJxoQ1AgaRcYD9RrLZXroBcUQsOEZdCq1gtunet10AE0dNBIxsBr2vUW5mj1xe2z3ZhdiVtb3k220RwGubwaW6Zrkzc97VyvApsWSME1tB0NTStBgAhCgJtY7IvlyvRD8eGHx6g5ODVv5tOpoY1hwkxOp4z6k3FxPPgai43pn-QHB4N9fA
CitedBy_id crossref_primary_10_1103_PhysRevA_106_043707
crossref_primary_10_1117_1_APN_4_1_016011
crossref_primary_10_1038_s41586_021_03202_1
crossref_primary_10_1103_PhysRevA_105_052608
crossref_primary_10_22331_q_2021_03_29_423
crossref_primary_10_1126_sciadv_abl9236
crossref_primary_10_22331_q_2024_06_18_1378
crossref_primary_10_1088_1402_4896_ad4688
crossref_primary_10_1103_PhysRevA_109_052613
crossref_primary_10_22331_qv_2021_04_28_53
crossref_primary_10_1103_PhysRevA_110_052437
crossref_primary_10_1088_2058_9565_acf06c
crossref_primary_10_1088_2058_9565_ac969b
crossref_primary_10_1364_AOP_445496
crossref_primary_10_22331_q_2024_09_19_1479
crossref_primary_10_1103_PhysRevA_110_043715
crossref_primary_10_1088_1367_2630_ad313b
crossref_primary_10_1103_PhysRevLett_133_050604
crossref_primary_10_1103_PhysRevA_104_022407
crossref_primary_10_1103_PhysRevA_110_022622
crossref_primary_10_1103_PhysRevResearch_6_033337
Cites_doi 10.1103/PhysRevA.93.012335
10.1038/nphoton.2014.152
10.1364/OPTICA.3.001460
10.22331/q-2019-08-05-169
10.1103/PhysRevA.92.062326
10.1038/nature23458
10.1117/1.AP.1.3.034001
10.1038/nphoton.2017.63
10.1103/PhysRevLett.120.220502
10.1103/PhysRevLett.120.230502
doi:10.1038/nphys4270
10.4086/toc.2013.v009a004
10.1038/s41567-018-0124-x
10.22331/q-2020-05-11-264
10.1038/nphoton.2014.135
10.1103/PhysRevX.6.021039
10.26421/QIC15.5-6-8
10.1038/nphoton.2013.112
10.1126/science.aar7053
10.1126/sciadv.1400255
10.1103/PhysRevLett.118.130503
10.1126/science.1231440
10.1103/PhysRevLett.73.58
10.1093/nsr/nwy079
10.1088/1367-2630/aadfa8
10.1038/s41586-019-1666-5
10.1126/science.aab3642
10.1103/PhysRevA.97.062329
10.1088/2058-9565/ab5555
10.1103/PhysRevLett.119.170501
10.1126/science.1231692
10.1103/PhysRevA.89.062316
10.1142/S0219749913500457
10.1038/s41598
10.1103/PhysRevLett.124.100502
10.26421/QIC16.3-4-6
10.1038/s41598-020-71892-0
10.1103/PhysRevLett.123.250503
10.1007/s00023-017-0604-z
10.1103/PhysRevX.8.021017
10.1137/1.9781611975031.10
10.1103/PhysRevLett.118.190501
10.1038/nphoton.2013.102
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22331/q-2020-05-14-267
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2521-327X
ExternalDocumentID oai_doaj_org_article_d0bcd7f17cb642839b0f5963434f443c
10_22331_q_2020_05_14_267
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c354t-c49ff7360bf12f0e8867cb3d403f514a13979e42accd8f8f383b356113e80bda3
IEDL.DBID DOA
ISSN 2521-327X
IngestDate Wed Aug 27 01:33:00 EDT 2025
Tue Jul 01 01:59:49 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-c49ff7360bf12f0e8867cb3d403f514a13979e42accd8f8f383b356113e80bda3
OpenAccessLink https://doaj.org/article/d0bcd7f17cb642839b0f5963434f443c
ParticipantIDs doaj_primary_oai_doaj_org_article_d0bcd7f17cb642839b0f5963434f443c
crossref_primary_10_22331_q_2020_05_14_267
crossref_citationtrail_10_22331_q_2020_05_14_267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-14
PublicationDateYYYYMMDD 2020-05-14
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-14
  day: 14
PublicationDecade 2020
PublicationTitle Quantum (Vienna, Austria)
PublicationYear 2020
Publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Publisher_xml – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
References 22
44
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
0
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 20
  doi: 10.1103/PhysRevA.93.012335
– ident: 8
  doi: 10.1038/nphoton.2014.152
– ident: 41
  doi: 10.1364/OPTICA.3.001460
– ident: 21
  doi: 10.22331/q-2019-08-05-169
– ident: 25
  doi: 10.1103/PhysRevA.92.062326
– ident: 0
  doi: 10.1038/nature23458
– ident: 2
  doi: 10.1117/1.AP.1.3.034001
– ident: 13
  doi: 10.1038/nphoton.2017.63
– ident: 28
  doi: 10.1103/PhysRevLett.120.220502
– ident: 14
  doi: 10.1103/PhysRevLett.120.230502
– ident: 15
  doi: doi:10.1038/nphys4270
– ident: 1
  doi: 10.4086/toc.2013.v009a004
– ident: 32
  doi: 10.1038/s41567-018-0124-x
– ident: 19
  doi: 10.22331/q-2020-05-11-264
– ident: 7
  doi: 10.1038/nphoton.2014.135
– ident: 27
  doi: 10.1103/PhysRevX.6.021039
– ident: 26
  doi: 10.26421/QIC15.5-6-8
– ident: 4
  doi: 10.1038/nphoton.2013.112
– ident: 44
  doi: 10.1126/science.aar7053
– ident: 10
  doi: 10.1126/sciadv.1400255
– ident: 11
  doi: 10.1103/PhysRevLett.118.130503
– ident: 3
  doi: 10.1126/science.1231440
– ident: 30
  doi: 10.1103/PhysRevLett.73.58
– ident: 18
  doi: 10.1093/nsr/nwy079
– ident: 22
  doi: 10.1088/1367-2630/aadfa8
– ident: 31
  doi: 10.1038/s41586-019-1666-5
– ident: 9
  doi: 10.1126/science.aab3642
– ident: 34
  doi: 10.1103/PhysRevA.97.062329
– ident: 24
  doi: 10.1088/2058-9565/ab5555
– ident: 42
  doi: 10.1103/PhysRevLett.119.170501
– ident: 5
  doi: 10.1126/science.1231692
– ident: 37
  doi: 10.1103/PhysRevA.89.062316
– ident: 36
  doi: 10.1142/S0219749913500457
– ident: 35
  doi: 10.1038/s41598
– ident: 29
– ident: 43
  doi: 10.1103/PhysRevLett.124.100502
– ident: 38
  doi: 10.26421/QIC16.3-4-6
– ident: 17
  doi: 10.1038/s41598-020-71892-0
– ident: 33
  doi: 10.1103/PhysRevLett.123.250503
– ident: 39
  doi: 10.1007/s00023-017-0604-z
– ident: 40
  doi: 10.1103/PhysRevX.8.021017
– ident: 16
  doi: 10.1137/1.9781611975031.10
– ident: 12
  doi: 10.1103/PhysRevLett.118.190501
– ident: 6
  doi: 10.1038/nphoton.2013.102
– ident: 23
SSID ssj0002876684
Score 2.2562876
Snippet We present a comprehensive study of the impact of non-uniform, i.e. path-dependent, photonic losses on the computational complexity of linear-optical...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 267
Title Classical simulation of linear optics subject to nonuniform losses
URI https://doaj.org/article/d0bcd7f17cb642839b0f5963434f443c
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxYEAkR5yQMTklUndhJnpIiqQoKJSt0iPyVQ2_SR_j_3OqHtBAtr5Dx8ruV7jh2fS8iD1gZIRVDM-1wz0F-eaRc0QyMYbkRwpcbDyW_v-XgiX6fZ9KDUF_4T1toDt8ANHDfWFSEprEGqLErDQwajRgoZpBQWZ1_IeQdi6isuGRV5rmS7jQkZUCSDFQyING78JpKlsa78PhEd-PXHxDI6JScdI6RP7ZeckSO_OCfDWKwSAaSbz3lXYovWgSIr1GtaL9FemW62BtdRaFNTkPHbBR6zmtNZjTu5F2Qyevl4HrOu3AGzIpMNsxLXT0XOTUjSwL1SOXRaOMlFAFqjkauVXqbaWqeCCqAtjQD6kwgPsDotLkkP3uWvCIVZjDuTSm2Nl4nyqgjcGkju0pWgx3yf8J--V7bzAseSFLMKNEGEq1pVCFfFMxAHFcDVJ4-7W5atEcZvjYcI6K4heljHCxDZqots9Vdkr__jITfkeB_2W9Jr1lt_BzSiMfdxxHwDvUbEEg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+simulation+of+linear+optics+subject+to+nonuniform+losses&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Brod%2C+Daniel+Jost&rft.au=Oszmaniec%2C+Micha%C5%82&rft.date=2020-05-14&rft.issn=2521-327X&rft.eissn=2521-327X&rft.volume=4&rft.spage=267&rft_id=info:doi/10.22331%2Fq-2020-05-14-267&rft.externalDBID=n%2Fa&rft.externalDocID=10_22331_q_2020_05_14_267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon