Two-fluid model of rf current condensation in magnetic islands
The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures...
Saved in:
Published in | Physics of plasmas Vol. 28; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures the balance of diffusive and thermal equilibration processes within the island. We show that the effective power and resulting strength of the condensation effect can be greatly enhanced by avoiding collisional heat loss to the ions. The relative impact of collisions on the overall power balance within the island depends on the ratio of the characteristic diffusion timescale and the electron–ion equilibration time, rather than the latter alone. Although relative heat loss to ions increases with island size, the heating efficiency does as well. In particular, we show that the latter safely dominates for large deposition profiles, as is typically the case for lower hybrid current drive. This supports the possibility of passive stabilization of neoclassical tearing modes without the precise aiming of the rf waves required for electron cyclotron current drive stabilization. |
---|---|
AbstractList | The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures the balance of diffusive and thermal equilibration processes within the island. We show that the effective power and resulting strength of the condensation effect can be greatly enhanced by avoiding collisional heat loss to the ions. The relative impact of collisions on the overall power balance within the island depends on the ratio of the characteristic diffusion timescale and the electron–ion equilibration time, rather than the latter alone. Although relative heat loss to ions increases with island size, the heating efficiency does as well. In particular, we show that the latter safely dominates for large deposition profiles, as is typically the case for lower hybrid current drive. This supports the possibility of passive stabilization of neoclassical tearing modes without the precise aiming of the rf waves required for electron cyclotron current drive stabilization. |
Author | Jin, S. Fisch, N. J. Reiman, A. H. |
Author_xml | – sequence: 1 givenname: S. surname: Jin fullname: Jin, S. organization: 2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA – sequence: 2 givenname: A. H. surname: Reiman fullname: Reiman, A. H. email: areiman@pppl.gov organization: 2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA – sequence: 3 givenname: N. J. surname: Fisch fullname: Fisch, N. J. email: fisch@pppl.gov organization: 2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA |
BackLink | https://www.osti.gov/biblio/1781878$$D View this record in Osti.gov |
BookMark | eNp9kE1LAzEQhoNUsK0e_AeLnhTWJrv52F4EKX5BwUsFbyGbTTRlm9Qkq_jvTd2qoOJcZmCeeeflHYGBdVYBcIjgGYK0nJAzCHFFIN0BQwSrac4ow4PNzGBOKX7YA6MQljBRlFRDcL54dbluO9NkK9eoNnM68zqTnffKxkw62ygbRDTOZsZmK_FoVTQyM6EVtgn7YFeLNqiDbR-D-6vLxewmn99d384u5rksCY55XTdEM0UkK2pINWqqKZECU4YoYZJhUaeVwqqWGiumi6pM1jEta8k00aIsx-Co13UhGh6kiUo-JXNWycgRq1DFqgQd99Dau-dOhciXrvM2-eIFKVJhjEiiTnpKeheCV5qvvVkJ_8YR5JsMOeHbDBM7-cGmzx9hRC9M--fFaX8RPskv-Rfnv0G-bvR_8G_ld670j-s |
CODEN | PHPAEN |
CitedBy_id | crossref_primary_10_1063_5_0191439 crossref_primary_10_1088_1741_4326_ad1c94 crossref_primary_10_1088_1741_4326_adb442 crossref_primary_10_1063_5_0060589 crossref_primary_10_1088_1741_4326_ac95ac |
Cites_doi | 10.1063/1.4928903 10.1103/PhysRevLett.115.175002 10.1063/5.0007861 10.1063/5.0013573 10.1063/1.872426 10.1103/RevModPhys.59.175 10.1103/PhysRevLett.121.225001 10.1088/0029-5515/49/4/045005 10.1088/0029-5515/39/5/101 10.1088/0029-5515/51/5/053018 10.1017/S0022377816001045 10.1063/1.4996021 10.1063/1.864258 10.1103/PhysRevA.32.2554 10.1063/1.1787791 10.1088/0741-3335/52/2/025002 10.1088/0029-5515/49/7/075002 10.1063/1.4811383 10.1088/0029-5515/56/3/036016 10.1103/PhysRevLett.92.055002 10.1063/1.872487 10.1063/1.4885635 10.1088/0029-5515/51/10/103007 10.1063/1.2180747 10.1088/0029-5515/44/2/004 10.1063/1.1456066 10.1088/0029-5515/48/5/054004 10.1063/1.1823415 10.1088/0029-5515/46/4/006 10.1088/0029-5515/38/7/305 10.1088/0741-3335/42/12/102 10.1103/PhysRevLett.85.574 10.1088/0029-5515/38/1/307 10.1063/1.4913433 10.1088/1741-4326/aba3fc 10.1088/0029-5515/48/11/115005 10.1088/0029-5515/41/2/306 10.1063/1.4935123 10.1103/PhysRevLett.85.1242 10.1063/1.4948560 10.1103/PhysRevLett.45.720 10.1063/1.3232325 10.1088/0741-3335/58/4/045015 10.1088/0029-5515/43/10/014 10.1063/1.5118424 10.1063/5.0042479 10.1063/5.0001881 10.1088/0029-5515/47/2/003 10.1103/PhysRevLett.41.873 10.1088/0029-5515/47/3/010 10.1103/PhysRevLett.109.065001 10.1088/0029-5515/52/7/074007 10.1088/0029-5515/41/12/312 10.1063/1.4872017 10.1088/0741-3335/40/11/011 10.1088/0029-5515/54/7/073001 10.1016/j.fusengdes.2019.02.089 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/5.0048506 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1089-7674 |
ExternalDocumentID | 1781878 10_1063_5_0048506 pop |
GrantInformation_xml | – fundername: U.S. Department of Energy grantid: DE-AC02-09CH11466 funderid: https://doi.org/10.13039/100000015 – fundername: U.S. Department of Energy grantid: DE-SC0016072 funderid: https://doi.org/10.13039/100000015 |
GroupedDBID | -~X 0ZJ 123 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABEFF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACXMS ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 N9A NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS T9H TN5 WH7 XFK AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M ABPTK AGIHO AQWKA OTOTI UE8 |
ID | FETCH-LOGICAL-c354t-bbd5f7e5c72b06f1d895ca4671657c74ab5c7e4ebcf4e7f283089463bc7f5fa33 |
ISSN | 1070-664X |
IngestDate | Thu May 18 22:26:57 EDT 2023 Sun Jun 29 15:34:25 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Tue Jul 01 01:15:15 EDT 2025 Fri Jun 21 00:13:47 EDT 2024 Thu Jun 23 13:44:58 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c354t-bbd5f7e5c72b06f1d895ca4671657c74ab5c7e4ebcf4e7f283089463bc7f5fa33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-09CH11466; SC0016072 USDOE |
ORCID | 0000-0001-7972-7226 0000-0002-9876-7351 0000-0002-0301-7380 0000000179727226 0000000298767351 0000000203017380 |
PQID | 2522224415 |
PQPubID | 2050668 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1063_5_0048506 scitation_primary_10_1063_5_0048506 osti_scitechconnect_1781878 proquest_journals_2522224415 crossref_citationtrail_10_1063_5_0048506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210500 2021-05-01 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210500 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Physics of plasmas |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Fisch (c47) 1987 Zohm, Gantenbein, Giruzzi, Günter, Leuterer, Maraschek, Meskat, Peeters, Suttrop, Wagner, Zabiégo (c21) 1999 Bertelli, Lazzari, Westerhof (c46) 2011 Nies, Reiman, Rodriguez, Bertelli, Fisch (c34) 2020 Borgogno, Comisso, Grasso, Lazzaro (c17) 2014 Westerhof, de Blank, Pratt (c55) 2016 Reiman, Fisch (c30) 2018 Yu, Günter (c8) 1998 Sauter, Henderson, Ramponi, Zohm, Zucca (c14) 2010 Prater, Haye, Lohr, Luce, Petty, Ferron, Humphreys, Strait, Perkins, Harvey (c22) 2003 Hegna, Callen (c6) 1997 La Haye (c12) 2006 Lazzari, Westerhof (c45) 2009 Li, Xiao, Lin, Wang (c19) 2017 Fisch, Boozer (c41) 1980 Reiman (c5) 1983 Frank, Reiman, Fisch, Bonoli (c54) 2020 Maraschek (c43) 2012 Fisch (c40) 1978 Ochs, Bertelli, Fisch (c48) 2015 Westerhof, Lazaros, Farshi, de Baar, de Bock, Classen, Jaspers, Hogeweij, Koslowski, Krämer-Flecken, Liang, Cardozo, Zimmermann (c39) 2007 Février, Maget, Lütjens, Luciani, Decker, Giruzzi, Reich, Beyer, Lazzaro, Nowak (c18) 2016 Ochs, Bertelli, Fisch (c49) 2015 Rodríguez, Reiman, Fisch (c31) 2019 de Vries, Johnson, Alper, Buratti, Hender, Koslowski, Riccardo (c1) 2011 Grasso, Lazzaro, Borgogno, Comisso (c20) 2016 Haye, Prater, Buttery, Hayashi, Isayama, Maraschek, Urso, Zohm (c3) 2006 Warrick, Buttery, Cunningham, Fielding, Hender, Lloyd, Morris, O'Brien, Pinfold, Stammers, Valovic, Walsh, Wilson (c23) 2000 Ayten, Westerhof (c16) 2014 Sauter (c56) 2004 Karney, Fisch, Jobes (c42) 1985 Harvey, Perkins (c9) 2001 Ida, Kamiya, Isayama (c38) 2012 Kamendje, Kasilov, Kernbichler, Pavlenko, Poli, Heyn (c11) 2005 Haye, Isayama, Maraschek (c4) 2009 Inagaki, Tamura, Ida, Nagayama, Kawahata, Sudo, Morisaki, Tanaka (c36) 2004 Nelson, Haye, Austin, Welander, Kolemen (c53) 2019 Volpe, Austin, La Haye, Lohr, Prater, Strait, Welander (c52) 2009 Bernabei, Cardinali, Giruzzi, Zabiégo (c10) 1998 Zohm (c7) 1997 Gantenbein, Zohm, Giruzzi, Günter, Leuterer, Maraschek, Meskat, Yu (c24) 2000 White, Gates, Brennan (c44) 2015 Erba, Aniel, Basiuk, Becoulet, Litaudon (c50) 1998 La Haye, Günter, Humphreys, Lohr, Luce, Maraschek, Petty, Prater, Scoville, Strait (c27) 2002 Volpe, Hyatt, La Haye, Lanctot, Lohr, Prater, Strait, Welander (c29) 2015 Zohm, Gantenbein, Gude, Günter, Leuterer, Maraschek, Meskat, Suttrop, Yu (c25) 2001 de Vries, Baruzzo, Hogeweij, Jachmich, Joffrin, Lomas, Matthews, Murari, Nunes, Pütterich, Reux, Vega (c2) 2014 Jin, Fisch, Reiman (c33) 2020 Isayama, Kamada, Ide, Hamamatsu, Oikawa, Suzuki, Neyatani, Ozeki, Ikeda, Kajiwara (c26) 2000 Zohm, Gantenbein, Leuterer, Manini, Maraschek, Yu (c51) 2007 Bardóczi, Rhodes, Carter, Crocker, Peebles, Grierson (c37) 2016 Smolyakov, Poye, Agullo, Benkadda, Garbet (c15) 2013 Haye, Ferron, Humphreys, Luce, Petty, Prater, Strait, Welander (c13) 2008 Spakman, Hogeweij, Jaspers, Schüller, Westerhof, Boom, Classen, Delabie, Domier, Donné, Kantor, Krämer-Flecken, Liang, Luhmann, Park, van de Pol, Schmitz, Oosterbeek (c35) 2008 Rodríguez, Reiman, Fisch (c32) 2020 Petty, Haye, Luce, Humphreys, Hyatt, Lohr, Prater, Strait, Wade (c28) 2004 (2023062321170660100_c21) 1999; 39 (2023062321170660100_c34) 2020; 27 (2023062321170660100_c25) 2001; 41 (2023062321170660100_c41) 1980; 45 (2023062321170660100_c42) 1985; 32 (2023062321170660100_c44) 2015; 22 (2023062321170660100_c36) 2004; 92 (2023062321170660100_c45) 2009; 49 (2023062321170660100_c10) 1998; 38 (2023062321170660100_c29) 2015; 115 (2023062321170660100_c38) 2012; 109 (2023062321170660100_c14) 2010; 52 (2023062321170660100_c28) 2004; 44 (2023062321170660100_c47) 1987; 59 (2023062321170660100_c15) 2013; 20 (2023062321170660100_c53) 2019; 141 (2023062321170660100_c48) 2015; 22 (2023062321170660100_c56) 2004; 11 (2023062321170660100_c3) 2006; 46 (2023062321170660100_c20) 2016; 82 (2023062321170660100_c8) 1998; 40 (2023062321170660100_c2) 2014; 21 (2023062321170660100_c11) 2005; 12 (2023062321170660100_c16) 2014; 54 (2023062321170660100_c43) 2012; 52 (2023062321170660100_c40) 1978; 41 (2023062321170660100_c1) 2011; 51 (2023062321170660100_c37) 2016; 23 (2023062321170660100_c24) 2000; 85 (2023062321170660100_c7) 1997; 4 (2023062321170660100_c4) 2009; 49 (2023062321170660100_c27) 2002; 9 (2023062321170660100_c32) 2020; 27 (2023062321170660100_c50) 1998; 38 (2023062321170660100_c13) 2008; 48 (2023062321170660100_c46) 2011; 51 (2023062321170660100_c30) 2018; 121 (2023062321170660100_c52) 2009; 16 (2023062321170660100_c54) 2020; 60 (2023062321170660100_c23) 2000; 85 2023062321170660100_c57 (2023062321170660100_c22) 2003; 43 (2023062321170660100_c18) 2016; 58 (2023062321170660100_c33) 2020; 27 (2023062321170660100_c35) 2008; 48 (2023062321170660100_c12) 2006; 13 (2023062321170660100_c19) 2017; 24 (2023062321170660100_c55) 2016; 56 (2023062321170660100_c6) 1997; 4 (2023062321170660100_c9) 2001; 41 (2023062321170660100_c26) 2000; 42 (2023062321170660100_c51) 2007; 47 (2023062321170660100_c17) 2014; 21 (2023062321170660100_c31) 2019; 26 (2023062321170660100_c49) 2015; 22 (2023062321170660100_c39) 2007; 47 (2023062321170660100_c5) 1983; 26 |
References_xml | – start-page: 082508 year: 2017 ident: c19 article-title: Effects of electron cyclotron current drive on magnetic islands in tokamak plasmas publication-title: Phys. Plasmas – start-page: 054004 year: 2008 ident: c13 article-title: Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER publication-title: Nucl. Fusion – start-page: 075002 year: 2009 ident: c45 article-title: On the merits of heating and current drive for tearing mode stabilization publication-title: Nucl. Fusion – start-page: 225001 year: 2018 ident: c30 article-title: Suppression of tearing modes by radio frequency current condensation publication-title: Phys. Rev. Lett. – start-page: 062508 year: 2020 ident: c33 article-title: Pulsed rf schemes for tearing mode stabilization publication-title: Phys. Plasmas – start-page: 577 year: 1999 ident: c21 article-title: Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX upgrade publication-title: Nucl. Fusion – start-page: 056101 year: 2014 ident: c2 article-title: The influence of an iter-like wall on disruptions at JET publication-title: Phys. Plasmas – start-page: 2051 year: 2002 ident: c27 article-title: Control of neoclassical tearing modes in DIII—D publication-title: Phys. Plasmas – start-page: 1977 year: 1998 ident: c8 article-title: On the stabilization of neoclassical tearing modes by phased electron cyclotron waves publication-title: Plasma Phys. Controlled Fusion – start-page: 060704 year: 2014 ident: c17 article-title: Nonlinear response of magnetic islands to localized electron cyclotron current injection publication-title: Phys. Plasmas – start-page: 052507 year: 2016 ident: c37 article-title: Non-perturbative measurement of cross-field thermal diffusivity reduction at the o-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak publication-title: Phys. Plasmas – start-page: 074007 year: 2012 ident: c43 article-title: Control of neoclassical tearing modes publication-title: Nucl. Fusion – start-page: 243 year: 2004 ident: c28 article-title: Complete suppression of the m= 2/n= 1 neoclassical tearing mode using electron cyclotron current drive in DIII-D publication-title: Nucl. Fusion – start-page: 175002 year: 2015 ident: c29 article-title: Avoiding tokamak disruptions by applying static magnetic fields that align locked modes with stabilizing wave-driven currents publication-title: Phys. Rev. Lett. – start-page: 112103 year: 2015 ident: c48 article-title: Alpha channeling with high-field launch of lower hybrid waves publication-title: Phys. Plasmas – start-page: 045015 year: 2016 ident: c18 article-title: First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD) publication-title: Plasma Phys. Controlled Fusion – start-page: 055002 year: 2004 ident: c36 article-title: Observation of reduced heat transport inside the magnetic island o point in the large helical device publication-title: Phys. Rev. Lett. – start-page: 1013 year: 1998 ident: c50 article-title: Validation of a new mixed bohm/gyro-bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges publication-title: Nucl. Fusion – start-page: 595820603 year: 2016 ident: c20 article-title: Open problems of magnetic island control by electron cyclotron current drive publication-title: J. Plasma Phys. – start-page: L37 year: 2000 ident: c26 article-title: Complete stabilization of a tearing mode in steady state high- ph-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U publication-title: Plasma Phys. Controlled Fusion – start-page: 2554 year: 1985 ident: c42 article-title: Comparison of the theory and the practice of lower-hybrid current drive publication-title: Phys. Rev. A – start-page: 228 year: 2007 ident: c51 article-title: Control of MHD instabilities by ECCD: ASDEX upgrade results and implications for ITER publication-title: Nucl. Fusion – start-page: 092503 year: 2020 ident: c34 article-title: Calculating rf current condensation with consistent ray-tracing and island heating publication-title: Phys. Plasmas – start-page: 451 year: 2006 ident: c3 article-title: Cross–machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive publication-title: Nucl. Fusion – start-page: 25 year: 2019 ident: c53 article-title: Simultaneous detection of neoclassical tearing mode and electron cyclotron current drive locations using electron cyclotron emission in DIII-D publication-title: Fusion Eng. Des. – start-page: 092511 year: 2019 ident: c31 article-title: Rf current condensation in magnetic islands and associated hysteresis phenomena publication-title: Phys. Plasmas – start-page: 87 year: 1998 ident: c10 article-title: Tearing mode stabilization in tokamaks with lower hybrid waves publication-title: Nucl. Fusion – start-page: 025002 year: 2010 ident: c14 article-title: On the requirements to control neoclassical tearing modes in burning plasmas publication-title: Plasma Phys. Controlled Fusion – start-page: 175 year: 1987 ident: c47 article-title: Theory of current drive in plasmas publication-title: Rev. Mod. Phys. – start-page: 055501 year: 2006 ident: c12 article-title: Neoclassical tearing modes and their control publication-title: Phys. Plasmas – start-page: 1242 year: 2000 ident: c24 article-title: Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX upgrade tokamak publication-title: Phys. Rev. Lett. – start-page: 065001 year: 2012 ident: c38 article-title: Reduction of ion thermal diffusivity inside a magnetic island in JT-60U tokamak plasma publication-title: Phys. Rev. Lett. – start-page: 053018 year: 2011 ident: c1 article-title: Survey of disruption causes at JET publication-title: Nucl. Fusion – start-page: 1847 year: 2001 ident: c9 article-title: Comparison of optimized ECCD for different launch locations in a next step tokamak reactor plasma publication-title: Nucl. Fusion – start-page: 720 year: 1980 ident: c41 article-title: Creating an asymmetric plasma resistivity with waves publication-title: Phys. Rev. Lett. – start-page: 197 year: 2001 ident: c25 article-title: The physics of neoclassical tearing modes and their stabilization by ECCD in ASDEX upgrade publication-title: Nucl. Fusion – start-page: 4808 year: 2004 ident: c56 article-title: On the contribution of local current density to neoclassical tearing mode stabilization publication-title: Phys. Plasmas – start-page: 042306 year: 2020 ident: c32 article-title: Rf current condensation in the presence of turbulent enhanced transport publication-title: Phys. Plasmas – start-page: 022514 year: 2015 ident: c44 article-title: Thermal island destabilization and the greenwald limit publication-title: Phys. Plasmas – start-page: 2940 year: 1997 ident: c6 article-title: On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating publication-title: Phys. Plasmas – start-page: 115005 year: 2008 ident: c35 article-title: Heat pulse propagation studies around magnetic islands induced by the dynamic ergodic divertor in TEXTOR publication-title: Nucl. Fusion – start-page: 102502 year: 2009 ident: c52 article-title: Advanced techniques for neoclassical tearing mode control in DIII-D publication-title: Phys. Plasmas – start-page: 045005 year: 2009 ident: c4 article-title: Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER publication-title: Nucl. Fusion – start-page: 1128 year: 2003 ident: c22 article-title: Discharge improvement through control of neoclassical tearing modes by localized ECCD in DIII-D publication-title: Nucl. Fusion – start-page: 036016 year: 2016 ident: c55 article-title: New insights into the generalized rutherford equation for nonlinear neoclassical tearing mode growth from 2D reduced MHD simulations publication-title: Nucl. Fusion – start-page: 082119 year: 2015 ident: c49 article-title: Coupling of alpha channeling to parallel wavenumber upshift in lower hybrid current drive publication-title: Phys. Plasmas – start-page: 073001 year: 2014 ident: c16 article-title: Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes publication-title: Nucl. Fusion – start-page: 85 year: 2007 ident: c39 article-title: Tearing mode stabilization by electron cyclotron resonance heating demonstrated in the TEXTOR tokamak and the implication for ITER publication-title: Nucl. Fusion – start-page: 012502 year: 2005 ident: c11 article-title: Modeling of nonlinear electron cyclotron resonance heating and current drive in a tokamak publication-title: Phys. Plasmas – start-page: 574 year: 2000 ident: c23 article-title: Complete stabilization of neoclassical tearing modes with lower hybrid current drive on COMPASS-D publication-title: Phys. Rev. Lett. – start-page: 096027 year: 2020 ident: c54 article-title: Generation of localized lower-hybrid current drive by temperature perturbations publication-title: Nucl. Fusion – start-page: 1338 year: 1983 ident: c5 article-title: Suppression of magnetic islands by rf driven currents publication-title: Phys. Fluids – start-page: 3433 year: 1997 ident: c7 article-title: Stabilization of neoclassical tearing modes by electron cyclotron current drive publication-title: Phys. Plasmas – start-page: 062506 year: 2013 ident: c15 article-title: Higher order and asymmetry effects on saturation of magnetic islands publication-title: Phys. Plasmas – start-page: 873 year: 1978 ident: c40 article-title: Confining a tokamak plasma with rf-driven currents publication-title: Phys. Rev. Lett. – start-page: 103007 year: 2011 ident: c46 article-title: Requirements on localized current drive for the suppression of neoclassical tearing modes publication-title: Nucl. Fusion – volume: 22 start-page: 082119 year: 2015 ident: 2023062321170660100_c49 article-title: Coupling of alpha channeling to parallel wavenumber upshift in lower hybrid current drive publication-title: Phys. Plasmas doi: 10.1063/1.4928903 – volume: 115 start-page: 175002 year: 2015 ident: 2023062321170660100_c29 article-title: Avoiding tokamak disruptions by applying static magnetic fields that align locked modes with stabilizing wave-driven currents publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.175002 – volume: 27 start-page: 062508 year: 2020 ident: 2023062321170660100_c33 article-title: Pulsed rf schemes for tearing mode stabilization publication-title: Phys. Plasmas doi: 10.1063/5.0007861 – volume: 27 start-page: 092503 year: 2020 ident: 2023062321170660100_c34 article-title: Calculating rf current condensation with consistent ray-tracing and island heating publication-title: Phys. Plasmas doi: 10.1063/5.0013573 – volume: 4 start-page: 2940 year: 1997 ident: 2023062321170660100_c6 article-title: On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating publication-title: Phys. Plasmas doi: 10.1063/1.872426 – volume: 59 start-page: 175 year: 1987 ident: 2023062321170660100_c47 article-title: Theory of current drive in plasmas publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.59.175 – volume: 121 start-page: 225001 year: 2018 ident: 2023062321170660100_c30 article-title: Suppression of tearing modes by radio frequency current condensation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.225001 – volume: 49 start-page: 045005 year: 2009 ident: 2023062321170660100_c4 article-title: Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER publication-title: Nucl. Fusion doi: 10.1088/0029-5515/49/4/045005 – volume: 39 start-page: 577 year: 1999 ident: 2023062321170660100_c21 article-title: Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX upgrade publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/5/101 – volume: 51 start-page: 053018 year: 2011 ident: 2023062321170660100_c1 article-title: Survey of disruption causes at JET publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/5/053018 – volume: 82 start-page: 595820603 year: 2016 ident: 2023062321170660100_c20 article-title: Open problems of magnetic island control by electron cyclotron current drive publication-title: J. Plasma Phys. doi: 10.1017/S0022377816001045 – volume: 24 start-page: 082508 year: 2017 ident: 2023062321170660100_c19 article-title: Effects of electron cyclotron current drive on magnetic islands in tokamak plasmas publication-title: Phys. Plasmas doi: 10.1063/1.4996021 – volume: 26 start-page: 1338 year: 1983 ident: 2023062321170660100_c5 article-title: Suppression of magnetic islands by rf driven currents publication-title: Phys. Fluids doi: 10.1063/1.864258 – volume: 32 start-page: 2554 year: 1985 ident: 2023062321170660100_c42 article-title: Comparison of the theory and the practice of lower-hybrid current drive publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.32.2554 – volume: 11 start-page: 4808 year: 2004 ident: 2023062321170660100_c56 article-title: On the contribution of local current density to neoclassical tearing mode stabilization publication-title: Phys. Plasmas doi: 10.1063/1.1787791 – volume: 52 start-page: 025002 year: 2010 ident: 2023062321170660100_c14 article-title: On the requirements to control neoclassical tearing modes in burning plasmas publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/52/2/025002 – volume: 49 start-page: 075002 year: 2009 ident: 2023062321170660100_c45 article-title: On the merits of heating and current drive for tearing mode stabilization publication-title: Nucl. Fusion doi: 10.1088/0029-5515/49/7/075002 – volume: 20 start-page: 062506 year: 2013 ident: 2023062321170660100_c15 article-title: Higher order and asymmetry effects on saturation of magnetic islands publication-title: Phys. Plasmas doi: 10.1063/1.4811383 – volume: 56 start-page: 036016 year: 2016 ident: 2023062321170660100_c55 article-title: New insights into the generalized rutherford equation for nonlinear neoclassical tearing mode growth from 2D reduced MHD simulations publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/3/036016 – volume: 92 start-page: 055002 year: 2004 ident: 2023062321170660100_c36 article-title: Observation of reduced heat transport inside the magnetic island o point in the large helical device publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.055002 – volume: 4 start-page: 3433 year: 1997 ident: 2023062321170660100_c7 article-title: Stabilization of neoclassical tearing modes by electron cyclotron current drive publication-title: Phys. Plasmas doi: 10.1063/1.872487 – volume: 21 start-page: 060704 year: 2014 ident: 2023062321170660100_c17 article-title: Nonlinear response of magnetic islands to localized electron cyclotron current injection publication-title: Phys. Plasmas doi: 10.1063/1.4885635 – volume: 51 start-page: 103007 year: 2011 ident: 2023062321170660100_c46 article-title: Requirements on localized current drive for the suppression of neoclassical tearing modes publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/10/103007 – volume: 13 start-page: 055501 year: 2006 ident: 2023062321170660100_c12 article-title: Neoclassical tearing modes and their control publication-title: Phys. Plasmas doi: 10.1063/1.2180747 – volume: 44 start-page: 243 year: 2004 ident: 2023062321170660100_c28 article-title: Complete suppression of the m= 2/n= 1 neoclassical tearing mode using electron cyclotron current drive in DIII-D publication-title: Nucl. Fusion doi: 10.1088/0029-5515/44/2/004 – volume: 9 start-page: 2051 year: 2002 ident: 2023062321170660100_c27 article-title: Control of neoclassical tearing modes in DIII—D publication-title: Phys. Plasmas doi: 10.1063/1.1456066 – volume: 48 start-page: 054004 year: 2008 ident: 2023062321170660100_c13 article-title: Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER publication-title: Nucl. Fusion doi: 10.1088/0029-5515/48/5/054004 – volume: 12 start-page: 012502 year: 2005 ident: 2023062321170660100_c11 article-title: Modeling of nonlinear electron cyclotron resonance heating and current drive in a tokamak publication-title: Phys. Plasmas doi: 10.1063/1.1823415 – volume: 46 start-page: 451 year: 2006 ident: 2023062321170660100_c3 article-title: Cross–machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive publication-title: Nucl. Fusion doi: 10.1088/0029-5515/46/4/006 – volume: 38 start-page: 1013 year: 1998 ident: 2023062321170660100_c50 article-title: Validation of a new mixed bohm/gyro-bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges publication-title: Nucl. Fusion doi: 10.1088/0029-5515/38/7/305 – volume: 42 start-page: L37 year: 2000 ident: 2023062321170660100_c26 article-title: Complete stabilization of a tearing mode in steady state high- ph-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/42/12/102 – volume: 85 start-page: 574 year: 2000 ident: 2023062321170660100_c23 article-title: Complete stabilization of neoclassical tearing modes with lower hybrid current drive on COMPASS-D publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.574 – volume: 38 start-page: 87 year: 1998 ident: 2023062321170660100_c10 article-title: Tearing mode stabilization in tokamaks with lower hybrid waves publication-title: Nucl. Fusion doi: 10.1088/0029-5515/38/1/307 – volume: 22 start-page: 022514 year: 2015 ident: 2023062321170660100_c44 article-title: Thermal island destabilization and the greenwald limit publication-title: Phys. Plasmas doi: 10.1063/1.4913433 – volume: 60 start-page: 096027 year: 2020 ident: 2023062321170660100_c54 article-title: Generation of localized lower-hybrid current drive by temperature perturbations publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aba3fc – volume: 48 start-page: 115005 year: 2008 ident: 2023062321170660100_c35 article-title: Heat pulse propagation studies around magnetic islands induced by the dynamic ergodic divertor in TEXTOR publication-title: Nucl. Fusion doi: 10.1088/0029-5515/48/11/115005 – volume: 41 start-page: 197 year: 2001 ident: 2023062321170660100_c25 article-title: The physics of neoclassical tearing modes and their stabilization by ECCD in ASDEX upgrade publication-title: Nucl. Fusion doi: 10.1088/0029-5515/41/2/306 – volume: 22 start-page: 112103 year: 2015 ident: 2023062321170660100_c48 article-title: Alpha channeling with high-field launch of lower hybrid waves publication-title: Phys. Plasmas doi: 10.1063/1.4935123 – volume: 85 start-page: 1242 year: 2000 ident: 2023062321170660100_c24 article-title: Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX upgrade tokamak publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.1242 – volume: 23 start-page: 052507 year: 2016 ident: 2023062321170660100_c37 article-title: Non-perturbative measurement of cross-field thermal diffusivity reduction at the o-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak publication-title: Phys. Plasmas doi: 10.1063/1.4948560 – volume: 45 start-page: 720 year: 1980 ident: 2023062321170660100_c41 article-title: Creating an asymmetric plasma resistivity with waves publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.720 – volume: 16 start-page: 102502 year: 2009 ident: 2023062321170660100_c52 article-title: Advanced techniques for neoclassical tearing mode control in DIII-D publication-title: Phys. Plasmas doi: 10.1063/1.3232325 – volume: 58 start-page: 045015 year: 2016 ident: 2023062321170660100_c18 article-title: First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD) publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/58/4/045015 – volume: 43 start-page: 1128 year: 2003 ident: 2023062321170660100_c22 article-title: Discharge improvement through control of neoclassical tearing modes by localized ECCD in DIII-D publication-title: Nucl. Fusion doi: 10.1088/0029-5515/43/10/014 – volume: 26 start-page: 092511 year: 2019 ident: 2023062321170660100_c31 article-title: Rf current condensation in magnetic islands and associated hysteresis phenomena publication-title: Phys. Plasmas doi: 10.1063/1.5118424 – ident: 2023062321170660100_c57 doi: 10.1063/5.0042479 – volume: 27 start-page: 042306 year: 2020 ident: 2023062321170660100_c32 article-title: Rf current condensation in the presence of turbulent enhanced transport publication-title: Phys. Plasmas doi: 10.1063/5.0001881 – volume: 47 start-page: 85 year: 2007 ident: 2023062321170660100_c39 article-title: Tearing mode stabilization by electron cyclotron resonance heating demonstrated in the TEXTOR tokamak and the implication for ITER publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/2/003 – volume: 41 start-page: 873 year: 1978 ident: 2023062321170660100_c40 article-title: Confining a tokamak plasma with rf-driven currents publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.41.873 – volume: 47 start-page: 228 year: 2007 ident: 2023062321170660100_c51 article-title: Control of MHD instabilities by ECCD: ASDEX upgrade results and implications for ITER publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/3/010 – volume: 109 start-page: 065001 year: 2012 ident: 2023062321170660100_c38 article-title: Reduction of ion thermal diffusivity inside a magnetic island in JT-60U tokamak plasma publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.065001 – volume: 52 start-page: 074007 year: 2012 ident: 2023062321170660100_c43 article-title: Control of neoclassical tearing modes publication-title: Nucl. Fusion doi: 10.1088/0029-5515/52/7/074007 – volume: 41 start-page: 1847 year: 2001 ident: 2023062321170660100_c9 article-title: Comparison of optimized ECCD for different launch locations in a next step tokamak reactor plasma publication-title: Nucl. Fusion doi: 10.1088/0029-5515/41/12/312 – volume: 21 start-page: 056101 year: 2014 ident: 2023062321170660100_c2 article-title: The influence of an iter-like wall on disruptions at JET publication-title: Phys. Plasmas doi: 10.1063/1.4872017 – volume: 40 start-page: 1977 year: 1998 ident: 2023062321170660100_c8 article-title: On the stabilization of neoclassical tearing modes by phased electron cyclotron waves publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/40/11/011 – volume: 54 start-page: 073001 year: 2014 ident: 2023062321170660100_c16 article-title: Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes publication-title: Nucl. Fusion doi: 10.1088/0029-5515/54/7/073001 – volume: 141 start-page: 25 year: 2019 ident: 2023062321170660100_c53 article-title: Simultaneous detection of neoclassical tearing mode and electron cyclotron current drive locations using electron cyclotron emission in DIII-D publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.02.089 |
SSID | ssj0004658 |
Score | 2.3713229 |
Snippet | The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance... |
SourceID | osti proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Balancing Cyclotrons Heat loss Islands Magnetic islands Plasma physics Stabilization Tearing Tearing modes (plasmas) Two fluid models |
Title | Two-fluid model of rf current condensation in magnetic islands |
URI | http://dx.doi.org/10.1063/5.0048506 https://www.proquest.com/docview/2522224415 https://www.osti.gov/biblio/1781878 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i-hL8Yprqwzqg7AkbjK35KWwqGUpti9toW8hM5nRQE2W3VShv75nkskk1UWqL2GZnVw4X3Lmm5nvnIPQexnnJrXeLxYxCWgS6SDNuQn4PE-MFAkvCrsOeXzCl-f06IJdDBX12uiSRobqemtcyf-gCm2Aq42S_Qdk_UWhAX4DvnAEhOF4N4x_1YG5vCqLrqCNJX5rM1Mu5RLMdMGpdGodu6zxI_9W2ZDFWbnxAb49L22FoKqVdayAT_eaISut6ZIMnIZ-a0aXbtV0Ec6Wvvmw3HRVpU7C2VE4XkyIo0G65_wfeICA8040GWrXlqSBzfkzdppxMno52FZfDOQHDGiXrKhNizcMOP0m-2_jkFcHtvvinGQsc6feRzsxzALiCdpZfD7-ejoKfGVdrKN76j51FCcf_X1vEY5JDY7z1mTiITCNTvQw4hVnj9GumxDgRYfuE3RPV0_RA4fHM3TgMcYtxrg2eG2wwxiPMcZlhXuMscP4OTo__HL2aRm4mheBIow2gZQFM0IzJWI55yYqkpSpHEaziDOhBM0l_KWplspQLYxN35aklBOphGEmJ-QFmlR1pV8izDQ1REgNJHFOTUFSKYUhklFgvEWamyn60Bsm621g65JcZn8AMEVvfddVlwVlW6c9a93MGlSr78oKtVSTRQI4oUimaL83euY-oU0WA_sHDgkkcoreeSD-dostvX7W66FHtirMq7s87R56NHwA-2jSrK_0a-CXjXzj3rIbqA11iQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-fluid+model+of+rf+current+condensation+in+magnetic+islands&rft.jtitle=Physics+of+plasmas&rft.au=Jin%2C+S.&rft.au=Reiman%2C+A.+H.&rft.au=Fisch%2C+N.+J.&rft.date=2021-05-01&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=28&rft.issue=5&rft_id=info:doi/10.1063%2F5.0048506&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0048506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon |