Two-fluid model of rf current condensation in magnetic islands

The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures...

Full description

Saved in:
Bibliographic Details
Published inPhysics of plasmas Vol. 28; no. 5
Main Authors Jin, S., Reiman, A. H., Fisch, N. J.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures the balance of diffusive and thermal equilibration processes within the island. We show that the effective power and resulting strength of the condensation effect can be greatly enhanced by avoiding collisional heat loss to the ions. The relative impact of collisions on the overall power balance within the island depends on the ratio of the characteristic diffusion timescale and the electron–ion equilibration time, rather than the latter alone. Although relative heat loss to ions increases with island size, the heating efficiency does as well. In particular, we show that the latter safely dominates for large deposition profiles, as is typically the case for lower hybrid current drive. This supports the possibility of passive stabilization of neoclassical tearing modes without the precise aiming of the rf waves required for electron cyclotron current drive stabilization.
AbstractList The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures the balance of diffusive and thermal equilibration processes within the island. We show that the effective power and resulting strength of the condensation effect can be greatly enhanced by avoiding collisional heat loss to the ions. The relative impact of collisions on the overall power balance within the island depends on the ratio of the characteristic diffusion timescale and the electron–ion equilibration time, rather than the latter alone. Although relative heat loss to ions increases with island size, the heating efficiency does as well. In particular, we show that the latter safely dominates for large deposition profiles, as is typically the case for lower hybrid current drive. This supports the possibility of passive stabilization of neoclassical tearing modes without the precise aiming of the rf waves required for electron cyclotron current drive stabilization.
Author Jin, S.
Fisch, N. J.
Reiman, A. H.
Author_xml – sequence: 1
  givenname: S.
  surname: Jin
  fullname: Jin, S.
  organization: 2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
– sequence: 2
  givenname: A. H.
  surname: Reiman
  fullname: Reiman, A. H.
  email: areiman@pppl.gov
  organization: 2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
– sequence: 3
  givenname: N. J.
  surname: Fisch
  fullname: Fisch, N. J.
  email: fisch@pppl.gov
  organization: 2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
BackLink https://www.osti.gov/biblio/1781878$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoNUsK0e_AeLnhTWJrv52F4EKX5BwUsFbyGbTTRlm9Qkq_jvTd2qoOJcZmCeeeflHYGBdVYBcIjgGYK0nJAzCHFFIN0BQwSrac4ow4PNzGBOKX7YA6MQljBRlFRDcL54dbluO9NkK9eoNnM68zqTnffKxkw62ygbRDTOZsZmK_FoVTQyM6EVtgn7YFeLNqiDbR-D-6vLxewmn99d384u5rksCY55XTdEM0UkK2pINWqqKZECU4YoYZJhUaeVwqqWGiumi6pM1jEta8k00aIsx-Co13UhGh6kiUo-JXNWycgRq1DFqgQd99Dau-dOhciXrvM2-eIFKVJhjEiiTnpKeheCV5qvvVkJ_8YR5JsMOeHbDBM7-cGmzx9hRC9M--fFaX8RPskv-Rfnv0G-bvR_8G_ld670j-s
CODEN PHPAEN
CitedBy_id crossref_primary_10_1063_5_0191439
crossref_primary_10_1088_1741_4326_ad1c94
crossref_primary_10_1088_1741_4326_adb442
crossref_primary_10_1063_5_0060589
crossref_primary_10_1088_1741_4326_ac95ac
Cites_doi 10.1063/1.4928903
10.1103/PhysRevLett.115.175002
10.1063/5.0007861
10.1063/5.0013573
10.1063/1.872426
10.1103/RevModPhys.59.175
10.1103/PhysRevLett.121.225001
10.1088/0029-5515/49/4/045005
10.1088/0029-5515/39/5/101
10.1088/0029-5515/51/5/053018
10.1017/S0022377816001045
10.1063/1.4996021
10.1063/1.864258
10.1103/PhysRevA.32.2554
10.1063/1.1787791
10.1088/0741-3335/52/2/025002
10.1088/0029-5515/49/7/075002
10.1063/1.4811383
10.1088/0029-5515/56/3/036016
10.1103/PhysRevLett.92.055002
10.1063/1.872487
10.1063/1.4885635
10.1088/0029-5515/51/10/103007
10.1063/1.2180747
10.1088/0029-5515/44/2/004
10.1063/1.1456066
10.1088/0029-5515/48/5/054004
10.1063/1.1823415
10.1088/0029-5515/46/4/006
10.1088/0029-5515/38/7/305
10.1088/0741-3335/42/12/102
10.1103/PhysRevLett.85.574
10.1088/0029-5515/38/1/307
10.1063/1.4913433
10.1088/1741-4326/aba3fc
10.1088/0029-5515/48/11/115005
10.1088/0029-5515/41/2/306
10.1063/1.4935123
10.1103/PhysRevLett.85.1242
10.1063/1.4948560
10.1103/PhysRevLett.45.720
10.1063/1.3232325
10.1088/0741-3335/58/4/045015
10.1088/0029-5515/43/10/014
10.1063/1.5118424
10.1063/5.0042479
10.1063/5.0001881
10.1088/0029-5515/47/2/003
10.1103/PhysRevLett.41.873
10.1088/0029-5515/47/3/010
10.1103/PhysRevLett.109.065001
10.1088/0029-5515/52/7/074007
10.1088/0029-5515/41/12/312
10.1063/1.4872017
10.1088/0741-3335/40/11/011
10.1088/0029-5515/54/7/073001
10.1016/j.fusengdes.2019.02.089
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/5.0048506
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1089-7674
ExternalDocumentID 1781878
10_1063_5_0048506
pop
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-AC02-09CH11466
  funderid: https://doi.org/10.13039/100000015
– fundername: U.S. Department of Energy
  grantid: DE-SC0016072
  funderid: https://doi.org/10.13039/100000015
GroupedDBID -~X
0ZJ
123
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABEFF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACXMS
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
N9A
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
T9H
TN5
WH7
XFK
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ABPTK
AGIHO
AQWKA
OTOTI
UE8
ID FETCH-LOGICAL-c354t-bbd5f7e5c72b06f1d895ca4671657c74ab5c7e4ebcf4e7f283089463bc7f5fa33
ISSN 1070-664X
IngestDate Thu May 18 22:26:57 EDT 2023
Sun Jun 29 15:34:25 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Tue Jul 01 01:15:15 EDT 2025
Fri Jun 21 00:13:47 EDT 2024
Thu Jun 23 13:44:58 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c354t-bbd5f7e5c72b06f1d895ca4671657c74ab5c7e4ebcf4e7f283089463bc7f5fa33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-09CH11466; SC0016072
USDOE
ORCID 0000-0001-7972-7226
0000-0002-9876-7351
0000-0002-0301-7380
0000000179727226
0000000298767351
0000000203017380
PQID 2522224415
PQPubID 2050668
PageCount 9
ParticipantIDs crossref_primary_10_1063_5_0048506
scitation_primary_10_1063_5_0048506
osti_scitechconnect_1781878
proquest_journals_2522224415
crossref_citationtrail_10_1063_5_0048506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210500
2021-05-01
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Physics of plasmas
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Fisch (c47) 1987
Zohm, Gantenbein, Giruzzi, Günter, Leuterer, Maraschek, Meskat, Peeters, Suttrop, Wagner, Zabiégo (c21) 1999
Bertelli, Lazzari, Westerhof (c46) 2011
Nies, Reiman, Rodriguez, Bertelli, Fisch (c34) 2020
Borgogno, Comisso, Grasso, Lazzaro (c17) 2014
Westerhof, de Blank, Pratt (c55) 2016
Reiman, Fisch (c30) 2018
Yu, Günter (c8) 1998
Sauter, Henderson, Ramponi, Zohm, Zucca (c14) 2010
Prater, Haye, Lohr, Luce, Petty, Ferron, Humphreys, Strait, Perkins, Harvey (c22) 2003
Hegna, Callen (c6) 1997
La Haye (c12) 2006
Lazzari, Westerhof (c45) 2009
Li, Xiao, Lin, Wang (c19) 2017
Fisch, Boozer (c41) 1980
Reiman (c5) 1983
Frank, Reiman, Fisch, Bonoli (c54) 2020
Maraschek (c43) 2012
Fisch (c40) 1978
Ochs, Bertelli, Fisch (c48) 2015
Westerhof, Lazaros, Farshi, de Baar, de Bock, Classen, Jaspers, Hogeweij, Koslowski, Krämer-Flecken, Liang, Cardozo, Zimmermann (c39) 2007
Février, Maget, Lütjens, Luciani, Decker, Giruzzi, Reich, Beyer, Lazzaro, Nowak (c18) 2016
Ochs, Bertelli, Fisch (c49) 2015
Rodríguez, Reiman, Fisch (c31) 2019
de Vries, Johnson, Alper, Buratti, Hender, Koslowski, Riccardo (c1) 2011
Grasso, Lazzaro, Borgogno, Comisso (c20) 2016
Haye, Prater, Buttery, Hayashi, Isayama, Maraschek, Urso, Zohm (c3) 2006
Warrick, Buttery, Cunningham, Fielding, Hender, Lloyd, Morris, O'Brien, Pinfold, Stammers, Valovic, Walsh, Wilson (c23) 2000
Ayten, Westerhof (c16) 2014
Sauter (c56) 2004
Karney, Fisch, Jobes (c42) 1985
Harvey, Perkins (c9) 2001
Ida, Kamiya, Isayama (c38) 2012
Kamendje, Kasilov, Kernbichler, Pavlenko, Poli, Heyn (c11) 2005
Haye, Isayama, Maraschek (c4) 2009
Inagaki, Tamura, Ida, Nagayama, Kawahata, Sudo, Morisaki, Tanaka (c36) 2004
Nelson, Haye, Austin, Welander, Kolemen (c53) 2019
Volpe, Austin, La Haye, Lohr, Prater, Strait, Welander (c52) 2009
Bernabei, Cardinali, Giruzzi, Zabiégo (c10) 1998
Zohm (c7) 1997
Gantenbein, Zohm, Giruzzi, Günter, Leuterer, Maraschek, Meskat, Yu (c24) 2000
White, Gates, Brennan (c44) 2015
Erba, Aniel, Basiuk, Becoulet, Litaudon (c50) 1998
La Haye, Günter, Humphreys, Lohr, Luce, Maraschek, Petty, Prater, Scoville, Strait (c27) 2002
Volpe, Hyatt, La Haye, Lanctot, Lohr, Prater, Strait, Welander (c29) 2015
Zohm, Gantenbein, Gude, Günter, Leuterer, Maraschek, Meskat, Suttrop, Yu (c25) 2001
de Vries, Baruzzo, Hogeweij, Jachmich, Joffrin, Lomas, Matthews, Murari, Nunes, Pütterich, Reux, Vega (c2) 2014
Jin, Fisch, Reiman (c33) 2020
Isayama, Kamada, Ide, Hamamatsu, Oikawa, Suzuki, Neyatani, Ozeki, Ikeda, Kajiwara (c26) 2000
Zohm, Gantenbein, Leuterer, Manini, Maraschek, Yu (c51) 2007
Bardóczi, Rhodes, Carter, Crocker, Peebles, Grierson (c37) 2016
Smolyakov, Poye, Agullo, Benkadda, Garbet (c15) 2013
Haye, Ferron, Humphreys, Luce, Petty, Prater, Strait, Welander (c13) 2008
Spakman, Hogeweij, Jaspers, Schüller, Westerhof, Boom, Classen, Delabie, Domier, Donné, Kantor, Krämer-Flecken, Liang, Luhmann, Park, van de Pol, Schmitz, Oosterbeek (c35) 2008
Rodríguez, Reiman, Fisch (c32) 2020
Petty, Haye, Luce, Humphreys, Hyatt, Lohr, Prater, Strait, Wade (c28) 2004
(2023062321170660100_c21) 1999; 39
(2023062321170660100_c34) 2020; 27
(2023062321170660100_c25) 2001; 41
(2023062321170660100_c41) 1980; 45
(2023062321170660100_c42) 1985; 32
(2023062321170660100_c44) 2015; 22
(2023062321170660100_c36) 2004; 92
(2023062321170660100_c45) 2009; 49
(2023062321170660100_c10) 1998; 38
(2023062321170660100_c29) 2015; 115
(2023062321170660100_c38) 2012; 109
(2023062321170660100_c14) 2010; 52
(2023062321170660100_c28) 2004; 44
(2023062321170660100_c47) 1987; 59
(2023062321170660100_c15) 2013; 20
(2023062321170660100_c53) 2019; 141
(2023062321170660100_c48) 2015; 22
(2023062321170660100_c56) 2004; 11
(2023062321170660100_c3) 2006; 46
(2023062321170660100_c20) 2016; 82
(2023062321170660100_c8) 1998; 40
(2023062321170660100_c2) 2014; 21
(2023062321170660100_c11) 2005; 12
(2023062321170660100_c16) 2014; 54
(2023062321170660100_c43) 2012; 52
(2023062321170660100_c40) 1978; 41
(2023062321170660100_c1) 2011; 51
(2023062321170660100_c37) 2016; 23
(2023062321170660100_c24) 2000; 85
(2023062321170660100_c7) 1997; 4
(2023062321170660100_c4) 2009; 49
(2023062321170660100_c27) 2002; 9
(2023062321170660100_c32) 2020; 27
(2023062321170660100_c50) 1998; 38
(2023062321170660100_c13) 2008; 48
(2023062321170660100_c46) 2011; 51
(2023062321170660100_c30) 2018; 121
(2023062321170660100_c52) 2009; 16
(2023062321170660100_c54) 2020; 60
(2023062321170660100_c23) 2000; 85
2023062321170660100_c57
(2023062321170660100_c22) 2003; 43
(2023062321170660100_c18) 2016; 58
(2023062321170660100_c33) 2020; 27
(2023062321170660100_c35) 2008; 48
(2023062321170660100_c12) 2006; 13
(2023062321170660100_c19) 2017; 24
(2023062321170660100_c55) 2016; 56
(2023062321170660100_c6) 1997; 4
(2023062321170660100_c9) 2001; 41
(2023062321170660100_c26) 2000; 42
(2023062321170660100_c51) 2007; 47
(2023062321170660100_c17) 2014; 21
(2023062321170660100_c31) 2019; 26
(2023062321170660100_c49) 2015; 22
(2023062321170660100_c39) 2007; 47
(2023062321170660100_c5) 1983; 26
References_xml – start-page: 082508
  year: 2017
  ident: c19
  article-title: Effects of electron cyclotron current drive on magnetic islands in tokamak plasmas
  publication-title: Phys. Plasmas
– start-page: 054004
  year: 2008
  ident: c13
  article-title: Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER
  publication-title: Nucl. Fusion
– start-page: 075002
  year: 2009
  ident: c45
  article-title: On the merits of heating and current drive for tearing mode stabilization
  publication-title: Nucl. Fusion
– start-page: 225001
  year: 2018
  ident: c30
  article-title: Suppression of tearing modes by radio frequency current condensation
  publication-title: Phys. Rev. Lett.
– start-page: 062508
  year: 2020
  ident: c33
  article-title: Pulsed rf schemes for tearing mode stabilization
  publication-title: Phys. Plasmas
– start-page: 577
  year: 1999
  ident: c21
  article-title: Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX upgrade
  publication-title: Nucl. Fusion
– start-page: 056101
  year: 2014
  ident: c2
  article-title: The influence of an iter-like wall on disruptions at JET
  publication-title: Phys. Plasmas
– start-page: 2051
  year: 2002
  ident: c27
  article-title: Control of neoclassical tearing modes in DIII—D
  publication-title: Phys. Plasmas
– start-page: 1977
  year: 1998
  ident: c8
  article-title: On the stabilization of neoclassical tearing modes by phased electron cyclotron waves
  publication-title: Plasma Phys. Controlled Fusion
– start-page: 060704
  year: 2014
  ident: c17
  article-title: Nonlinear response of magnetic islands to localized electron cyclotron current injection
  publication-title: Phys. Plasmas
– start-page: 052507
  year: 2016
  ident: c37
  article-title: Non-perturbative measurement of cross-field thermal diffusivity reduction at the o-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak
  publication-title: Phys. Plasmas
– start-page: 074007
  year: 2012
  ident: c43
  article-title: Control of neoclassical tearing modes
  publication-title: Nucl. Fusion
– start-page: 243
  year: 2004
  ident: c28
  article-title: Complete suppression of the m= 2/n= 1 neoclassical tearing mode using electron cyclotron current drive in DIII-D
  publication-title: Nucl. Fusion
– start-page: 175002
  year: 2015
  ident: c29
  article-title: Avoiding tokamak disruptions by applying static magnetic fields that align locked modes with stabilizing wave-driven currents
  publication-title: Phys. Rev. Lett.
– start-page: 112103
  year: 2015
  ident: c48
  article-title: Alpha channeling with high-field launch of lower hybrid waves
  publication-title: Phys. Plasmas
– start-page: 045015
  year: 2016
  ident: c18
  article-title: First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD)
  publication-title: Plasma Phys. Controlled Fusion
– start-page: 055002
  year: 2004
  ident: c36
  article-title: Observation of reduced heat transport inside the magnetic island o point in the large helical device
  publication-title: Phys. Rev. Lett.
– start-page: 1013
  year: 1998
  ident: c50
  article-title: Validation of a new mixed bohm/gyro-bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges
  publication-title: Nucl. Fusion
– start-page: 595820603
  year: 2016
  ident: c20
  article-title: Open problems of magnetic island control by electron cyclotron current drive
  publication-title: J. Plasma Phys.
– start-page: L37
  year: 2000
  ident: c26
  article-title: Complete stabilization of a tearing mode in steady state high- ph-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U
  publication-title: Plasma Phys. Controlled Fusion
– start-page: 2554
  year: 1985
  ident: c42
  article-title: Comparison of the theory and the practice of lower-hybrid current drive
  publication-title: Phys. Rev. A
– start-page: 228
  year: 2007
  ident: c51
  article-title: Control of MHD instabilities by ECCD: ASDEX upgrade results and implications for ITER
  publication-title: Nucl. Fusion
– start-page: 092503
  year: 2020
  ident: c34
  article-title: Calculating rf current condensation with consistent ray-tracing and island heating
  publication-title: Phys. Plasmas
– start-page: 451
  year: 2006
  ident: c3
  article-title: Cross–machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive
  publication-title: Nucl. Fusion
– start-page: 25
  year: 2019
  ident: c53
  article-title: Simultaneous detection of neoclassical tearing mode and electron cyclotron current drive locations using electron cyclotron emission in DIII-D
  publication-title: Fusion Eng. Des.
– start-page: 092511
  year: 2019
  ident: c31
  article-title: Rf current condensation in magnetic islands and associated hysteresis phenomena
  publication-title: Phys. Plasmas
– start-page: 87
  year: 1998
  ident: c10
  article-title: Tearing mode stabilization in tokamaks with lower hybrid waves
  publication-title: Nucl. Fusion
– start-page: 025002
  year: 2010
  ident: c14
  article-title: On the requirements to control neoclassical tearing modes in burning plasmas
  publication-title: Plasma Phys. Controlled Fusion
– start-page: 175
  year: 1987
  ident: c47
  article-title: Theory of current drive in plasmas
  publication-title: Rev. Mod. Phys.
– start-page: 055501
  year: 2006
  ident: c12
  article-title: Neoclassical tearing modes and their control
  publication-title: Phys. Plasmas
– start-page: 1242
  year: 2000
  ident: c24
  article-title: Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX upgrade tokamak
  publication-title: Phys. Rev. Lett.
– start-page: 065001
  year: 2012
  ident: c38
  article-title: Reduction of ion thermal diffusivity inside a magnetic island in JT-60U tokamak plasma
  publication-title: Phys. Rev. Lett.
– start-page: 053018
  year: 2011
  ident: c1
  article-title: Survey of disruption causes at JET
  publication-title: Nucl. Fusion
– start-page: 1847
  year: 2001
  ident: c9
  article-title: Comparison of optimized ECCD for different launch locations in a next step tokamak reactor plasma
  publication-title: Nucl. Fusion
– start-page: 720
  year: 1980
  ident: c41
  article-title: Creating an asymmetric plasma resistivity with waves
  publication-title: Phys. Rev. Lett.
– start-page: 197
  year: 2001
  ident: c25
  article-title: The physics of neoclassical tearing modes and their stabilization by ECCD in ASDEX upgrade
  publication-title: Nucl. Fusion
– start-page: 4808
  year: 2004
  ident: c56
  article-title: On the contribution of local current density to neoclassical tearing mode stabilization
  publication-title: Phys. Plasmas
– start-page: 042306
  year: 2020
  ident: c32
  article-title: Rf current condensation in the presence of turbulent enhanced transport
  publication-title: Phys. Plasmas
– start-page: 022514
  year: 2015
  ident: c44
  article-title: Thermal island destabilization and the greenwald limit
  publication-title: Phys. Plasmas
– start-page: 2940
  year: 1997
  ident: c6
  article-title: On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating
  publication-title: Phys. Plasmas
– start-page: 115005
  year: 2008
  ident: c35
  article-title: Heat pulse propagation studies around magnetic islands induced by the dynamic ergodic divertor in TEXTOR
  publication-title: Nucl. Fusion
– start-page: 102502
  year: 2009
  ident: c52
  article-title: Advanced techniques for neoclassical tearing mode control in DIII-D
  publication-title: Phys. Plasmas
– start-page: 045005
  year: 2009
  ident: c4
  article-title: Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER
  publication-title: Nucl. Fusion
– start-page: 1128
  year: 2003
  ident: c22
  article-title: Discharge improvement through control of neoclassical tearing modes by localized ECCD in DIII-D
  publication-title: Nucl. Fusion
– start-page: 036016
  year: 2016
  ident: c55
  article-title: New insights into the generalized rutherford equation for nonlinear neoclassical tearing mode growth from 2D reduced MHD simulations
  publication-title: Nucl. Fusion
– start-page: 082119
  year: 2015
  ident: c49
  article-title: Coupling of alpha channeling to parallel wavenumber upshift in lower hybrid current drive
  publication-title: Phys. Plasmas
– start-page: 073001
  year: 2014
  ident: c16
  article-title: Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes
  publication-title: Nucl. Fusion
– start-page: 85
  year: 2007
  ident: c39
  article-title: Tearing mode stabilization by electron cyclotron resonance heating demonstrated in the TEXTOR tokamak and the implication for ITER
  publication-title: Nucl. Fusion
– start-page: 012502
  year: 2005
  ident: c11
  article-title: Modeling of nonlinear electron cyclotron resonance heating and current drive in a tokamak
  publication-title: Phys. Plasmas
– start-page: 574
  year: 2000
  ident: c23
  article-title: Complete stabilization of neoclassical tearing modes with lower hybrid current drive on COMPASS-D
  publication-title: Phys. Rev. Lett.
– start-page: 096027
  year: 2020
  ident: c54
  article-title: Generation of localized lower-hybrid current drive by temperature perturbations
  publication-title: Nucl. Fusion
– start-page: 1338
  year: 1983
  ident: c5
  article-title: Suppression of magnetic islands by rf driven currents
  publication-title: Phys. Fluids
– start-page: 3433
  year: 1997
  ident: c7
  article-title: Stabilization of neoclassical tearing modes by electron cyclotron current drive
  publication-title: Phys. Plasmas
– start-page: 062506
  year: 2013
  ident: c15
  article-title: Higher order and asymmetry effects on saturation of magnetic islands
  publication-title: Phys. Plasmas
– start-page: 873
  year: 1978
  ident: c40
  article-title: Confining a tokamak plasma with rf-driven currents
  publication-title: Phys. Rev. Lett.
– start-page: 103007
  year: 2011
  ident: c46
  article-title: Requirements on localized current drive for the suppression of neoclassical tearing modes
  publication-title: Nucl. Fusion
– volume: 22
  start-page: 082119
  year: 2015
  ident: 2023062321170660100_c49
  article-title: Coupling of alpha channeling to parallel wavenumber upshift in lower hybrid current drive
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4928903
– volume: 115
  start-page: 175002
  year: 2015
  ident: 2023062321170660100_c29
  article-title: Avoiding tokamak disruptions by applying static magnetic fields that align locked modes with stabilizing wave-driven currents
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.175002
– volume: 27
  start-page: 062508
  year: 2020
  ident: 2023062321170660100_c33
  article-title: Pulsed rf schemes for tearing mode stabilization
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0007861
– volume: 27
  start-page: 092503
  year: 2020
  ident: 2023062321170660100_c34
  article-title: Calculating rf current condensation with consistent ray-tracing and island heating
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0013573
– volume: 4
  start-page: 2940
  year: 1997
  ident: 2023062321170660100_c6
  article-title: On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872426
– volume: 59
  start-page: 175
  year: 1987
  ident: 2023062321170660100_c47
  article-title: Theory of current drive in plasmas
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.59.175
– volume: 121
  start-page: 225001
  year: 2018
  ident: 2023062321170660100_c30
  article-title: Suppression of tearing modes by radio frequency current condensation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.225001
– volume: 49
  start-page: 045005
  year: 2009
  ident: 2023062321170660100_c4
  article-title: Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/49/4/045005
– volume: 39
  start-page: 577
  year: 1999
  ident: 2023062321170660100_c21
  article-title: Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX upgrade
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/5/101
– volume: 51
  start-page: 053018
  year: 2011
  ident: 2023062321170660100_c1
  article-title: Survey of disruption causes at JET
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/5/053018
– volume: 82
  start-page: 595820603
  year: 2016
  ident: 2023062321170660100_c20
  article-title: Open problems of magnetic island control by electron cyclotron current drive
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377816001045
– volume: 24
  start-page: 082508
  year: 2017
  ident: 2023062321170660100_c19
  article-title: Effects of electron cyclotron current drive on magnetic islands in tokamak plasmas
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4996021
– volume: 26
  start-page: 1338
  year: 1983
  ident: 2023062321170660100_c5
  article-title: Suppression of magnetic islands by rf driven currents
  publication-title: Phys. Fluids
  doi: 10.1063/1.864258
– volume: 32
  start-page: 2554
  year: 1985
  ident: 2023062321170660100_c42
  article-title: Comparison of the theory and the practice of lower-hybrid current drive
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.32.2554
– volume: 11
  start-page: 4808
  year: 2004
  ident: 2023062321170660100_c56
  article-title: On the contribution of local current density to neoclassical tearing mode stabilization
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1787791
– volume: 52
  start-page: 025002
  year: 2010
  ident: 2023062321170660100_c14
  article-title: On the requirements to control neoclassical tearing modes in burning plasmas
  publication-title: Plasma Phys. Controlled Fusion
  doi: 10.1088/0741-3335/52/2/025002
– volume: 49
  start-page: 075002
  year: 2009
  ident: 2023062321170660100_c45
  article-title: On the merits of heating and current drive for tearing mode stabilization
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/49/7/075002
– volume: 20
  start-page: 062506
  year: 2013
  ident: 2023062321170660100_c15
  article-title: Higher order and asymmetry effects on saturation of magnetic islands
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4811383
– volume: 56
  start-page: 036016
  year: 2016
  ident: 2023062321170660100_c55
  article-title: New insights into the generalized rutherford equation for nonlinear neoclassical tearing mode growth from 2D reduced MHD simulations
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/3/036016
– volume: 92
  start-page: 055002
  year: 2004
  ident: 2023062321170660100_c36
  article-title: Observation of reduced heat transport inside the magnetic island o point in the large helical device
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.055002
– volume: 4
  start-page: 3433
  year: 1997
  ident: 2023062321170660100_c7
  article-title: Stabilization of neoclassical tearing modes by electron cyclotron current drive
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872487
– volume: 21
  start-page: 060704
  year: 2014
  ident: 2023062321170660100_c17
  article-title: Nonlinear response of magnetic islands to localized electron cyclotron current injection
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4885635
– volume: 51
  start-page: 103007
  year: 2011
  ident: 2023062321170660100_c46
  article-title: Requirements on localized current drive for the suppression of neoclassical tearing modes
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/10/103007
– volume: 13
  start-page: 055501
  year: 2006
  ident: 2023062321170660100_c12
  article-title: Neoclassical tearing modes and their control
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2180747
– volume: 44
  start-page: 243
  year: 2004
  ident: 2023062321170660100_c28
  article-title: Complete suppression of the m= 2/n= 1 neoclassical tearing mode using electron cyclotron current drive in DIII-D
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/44/2/004
– volume: 9
  start-page: 2051
  year: 2002
  ident: 2023062321170660100_c27
  article-title: Control of neoclassical tearing modes in DIII—D
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1456066
– volume: 48
  start-page: 054004
  year: 2008
  ident: 2023062321170660100_c13
  article-title: Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/48/5/054004
– volume: 12
  start-page: 012502
  year: 2005
  ident: 2023062321170660100_c11
  article-title: Modeling of nonlinear electron cyclotron resonance heating and current drive in a tokamak
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1823415
– volume: 46
  start-page: 451
  year: 2006
  ident: 2023062321170660100_c3
  article-title: Cross–machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/46/4/006
– volume: 38
  start-page: 1013
  year: 1998
  ident: 2023062321170660100_c50
  article-title: Validation of a new mixed bohm/gyro-bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/38/7/305
– volume: 42
  start-page: L37
  year: 2000
  ident: 2023062321170660100_c26
  article-title: Complete stabilization of a tearing mode in steady state high- ph-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U
  publication-title: Plasma Phys. Controlled Fusion
  doi: 10.1088/0741-3335/42/12/102
– volume: 85
  start-page: 574
  year: 2000
  ident: 2023062321170660100_c23
  article-title: Complete stabilization of neoclassical tearing modes with lower hybrid current drive on COMPASS-D
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.574
– volume: 38
  start-page: 87
  year: 1998
  ident: 2023062321170660100_c10
  article-title: Tearing mode stabilization in tokamaks with lower hybrid waves
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/38/1/307
– volume: 22
  start-page: 022514
  year: 2015
  ident: 2023062321170660100_c44
  article-title: Thermal island destabilization and the greenwald limit
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4913433
– volume: 60
  start-page: 096027
  year: 2020
  ident: 2023062321170660100_c54
  article-title: Generation of localized lower-hybrid current drive by temperature perturbations
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/aba3fc
– volume: 48
  start-page: 115005
  year: 2008
  ident: 2023062321170660100_c35
  article-title: Heat pulse propagation studies around magnetic islands induced by the dynamic ergodic divertor in TEXTOR
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/48/11/115005
– volume: 41
  start-page: 197
  year: 2001
  ident: 2023062321170660100_c25
  article-title: The physics of neoclassical tearing modes and their stabilization by ECCD in ASDEX upgrade
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/41/2/306
– volume: 22
  start-page: 112103
  year: 2015
  ident: 2023062321170660100_c48
  article-title: Alpha channeling with high-field launch of lower hybrid waves
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4935123
– volume: 85
  start-page: 1242
  year: 2000
  ident: 2023062321170660100_c24
  article-title: Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX upgrade tokamak
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1242
– volume: 23
  start-page: 052507
  year: 2016
  ident: 2023062321170660100_c37
  article-title: Non-perturbative measurement of cross-field thermal diffusivity reduction at the o-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4948560
– volume: 45
  start-page: 720
  year: 1980
  ident: 2023062321170660100_c41
  article-title: Creating an asymmetric plasma resistivity with waves
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.720
– volume: 16
  start-page: 102502
  year: 2009
  ident: 2023062321170660100_c52
  article-title: Advanced techniques for neoclassical tearing mode control in DIII-D
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3232325
– volume: 58
  start-page: 045015
  year: 2016
  ident: 2023062321170660100_c18
  article-title: First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD)
  publication-title: Plasma Phys. Controlled Fusion
  doi: 10.1088/0741-3335/58/4/045015
– volume: 43
  start-page: 1128
  year: 2003
  ident: 2023062321170660100_c22
  article-title: Discharge improvement through control of neoclassical tearing modes by localized ECCD in DIII-D
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/43/10/014
– volume: 26
  start-page: 092511
  year: 2019
  ident: 2023062321170660100_c31
  article-title: Rf current condensation in magnetic islands and associated hysteresis phenomena
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5118424
– ident: 2023062321170660100_c57
  doi: 10.1063/5.0042479
– volume: 27
  start-page: 042306
  year: 2020
  ident: 2023062321170660100_c32
  article-title: Rf current condensation in the presence of turbulent enhanced transport
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0001881
– volume: 47
  start-page: 85
  year: 2007
  ident: 2023062321170660100_c39
  article-title: Tearing mode stabilization by electron cyclotron resonance heating demonstrated in the TEXTOR tokamak and the implication for ITER
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/47/2/003
– volume: 41
  start-page: 873
  year: 1978
  ident: 2023062321170660100_c40
  article-title: Confining a tokamak plasma with rf-driven currents
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.41.873
– volume: 47
  start-page: 228
  year: 2007
  ident: 2023062321170660100_c51
  article-title: Control of MHD instabilities by ECCD: ASDEX upgrade results and implications for ITER
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/47/3/010
– volume: 109
  start-page: 065001
  year: 2012
  ident: 2023062321170660100_c38
  article-title: Reduction of ion thermal diffusivity inside a magnetic island in JT-60U tokamak plasma
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.065001
– volume: 52
  start-page: 074007
  year: 2012
  ident: 2023062321170660100_c43
  article-title: Control of neoclassical tearing modes
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/52/7/074007
– volume: 41
  start-page: 1847
  year: 2001
  ident: 2023062321170660100_c9
  article-title: Comparison of optimized ECCD for different launch locations in a next step tokamak reactor plasma
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/41/12/312
– volume: 21
  start-page: 056101
  year: 2014
  ident: 2023062321170660100_c2
  article-title: The influence of an iter-like wall on disruptions at JET
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4872017
– volume: 40
  start-page: 1977
  year: 1998
  ident: 2023062321170660100_c8
  article-title: On the stabilization of neoclassical tearing modes by phased electron cyclotron waves
  publication-title: Plasma Phys. Controlled Fusion
  doi: 10.1088/0741-3335/40/11/011
– volume: 54
  start-page: 073001
  year: 2014
  ident: 2023062321170660100_c16
  article-title: Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/7/073001
– volume: 141
  start-page: 25
  year: 2019
  ident: 2023062321170660100_c53
  article-title: Simultaneous detection of neoclassical tearing mode and electron cyclotron current drive locations using electron cyclotron emission in DIII-D
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2019.02.089
SSID ssj0004658
Score 2.3713229
Snippet The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance...
SourceID osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Balancing
Cyclotrons
Heat loss
Islands
Magnetic islands
Plasma physics
Stabilization
Tearing
Tearing modes (plasmas)
Two fluid models
Title Two-fluid model of rf current condensation in magnetic islands
URI http://dx.doi.org/10.1063/5.0048506
https://www.proquest.com/docview/2522224415
https://www.osti.gov/biblio/1781878
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i-hL8Yprqwzqg7AkbjK35KWwqGUpti9toW8hM5nRQE2W3VShv75nkskk1UWqL2GZnVw4X3Lmm5nvnIPQexnnJrXeLxYxCWgS6SDNuQn4PE-MFAkvCrsOeXzCl-f06IJdDBX12uiSRobqemtcyf-gCm2Aq42S_Qdk_UWhAX4DvnAEhOF4N4x_1YG5vCqLrqCNJX5rM1Mu5RLMdMGpdGodu6zxI_9W2ZDFWbnxAb49L22FoKqVdayAT_eaISut6ZIMnIZ-a0aXbtV0Ec6Wvvmw3HRVpU7C2VE4XkyIo0G65_wfeICA8040GWrXlqSBzfkzdppxMno52FZfDOQHDGiXrKhNizcMOP0m-2_jkFcHtvvinGQsc6feRzsxzALiCdpZfD7-ejoKfGVdrKN76j51FCcf_X1vEY5JDY7z1mTiITCNTvQw4hVnj9GumxDgRYfuE3RPV0_RA4fHM3TgMcYtxrg2eG2wwxiPMcZlhXuMscP4OTo__HL2aRm4mheBIow2gZQFM0IzJWI55yYqkpSpHEaziDOhBM0l_KWplspQLYxN35aklBOphGEmJ-QFmlR1pV8izDQ1REgNJHFOTUFSKYUhklFgvEWamyn60Bsm621g65JcZn8AMEVvfddVlwVlW6c9a93MGlSr78oKtVSTRQI4oUimaL83euY-oU0WA_sHDgkkcoreeSD-dostvX7W66FHtirMq7s87R56NHwA-2jSrK_0a-CXjXzj3rIbqA11iQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-fluid+model+of+rf+current+condensation+in+magnetic+islands&rft.jtitle=Physics+of+plasmas&rft.au=Jin%2C+S.&rft.au=Reiman%2C+A.+H.&rft.au=Fisch%2C+N.+J.&rft.date=2021-05-01&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=28&rft.issue=5&rft_id=info:doi/10.1063%2F5.0048506&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0048506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon