Microbiologically influenced corrosion: The gap in the field

Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined hydrocarbons. Often microbial colonization of man-made structures results in the reduction of their service life requiring preemptive or corrective huma...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in environmental science Vol. 10
Main Authors Puentes-Cala, Edinson, Tapia-Perdomo, Valentina, Espinosa-Valbuena, Daniela, Reyes-Reyes, María, Quintero-Santander, Diego, Vasquez-Dallos, Silvia, Salazar, Henry, Santamaría-Galvis, Pedro, Silva-Rodríguez, Ramon, Castillo-Villamizar, Genis
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 15.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined hydrocarbons. Often microbial colonization of man-made structures results in the reduction of their service life requiring preemptive or corrective human intervention. Microbiologically Influenced Corrosion (MIC) is caused by a set of intricate bioelectrochemical interactions between a diverse group of microorganisms and metallic surfaces. The complexity of MIC microbiomes and their mechanisms as well as the logistics constraints of industrial facilities are factors to consider when choosing suitable analytical methods for MIC monitoring. These generally reflect only a partial view of the phenomenon and in consequence, might lead to ineffective mitigation measures. This paper acknowledges the discrepancies between the fieldwork for MIC monitoring and the currently available technological advancements. It also highlights the most pressing issues that operators have in the field in light of the diversity of the microbial key players present in corrosive microbiomes. Finally, it compiles and outlines a strategy for the integration of novel molecular approaches aiming for a practical and accurate assessment of the microbial threat.
AbstractList Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined hydrocarbons. Often microbial colonization of man-made structures results in the reduction of their service life requiring preemptive or corrective human intervention. Microbiologically Influenced Corrosion (MIC) is caused by a set of intricate bioelectrochemical interactions between a diverse group of microorganisms and metallic surfaces. The complexity of MIC microbiomes and their mechanisms as well as the logistics constraints of industrial facilities are factors to consider when choosing suitable analytical methods for MIC monitoring. These generally reflect only a partial view of the phenomenon and in consequence, might lead to ineffective mitigation measures. This paper acknowledges the discrepancies between the fieldwork for MIC monitoring and the currently available technological advancements. It also highlights the most pressing issues that operators have in the field in light of the diversity of the microbial key players present in corrosive microbiomes. Finally, it compiles and outlines a strategy for the integration of novel molecular approaches aiming for a practical and accurate assessment of the microbial threat.
Author Puentes-Cala, Edinson
Castillo-Villamizar, Genis
Reyes-Reyes, María
Salazar, Henry
Espinosa-Valbuena, Daniela
Vasquez-Dallos, Silvia
Quintero-Santander, Diego
Silva-Rodríguez, Ramon
Tapia-Perdomo, Valentina
Santamaría-Galvis, Pedro
Author_xml – sequence: 1
  givenname: Edinson
  surname: Puentes-Cala
  fullname: Puentes-Cala, Edinson
– sequence: 2
  givenname: Valentina
  surname: Tapia-Perdomo
  fullname: Tapia-Perdomo, Valentina
– sequence: 3
  givenname: Daniela
  surname: Espinosa-Valbuena
  fullname: Espinosa-Valbuena, Daniela
– sequence: 4
  givenname: María
  surname: Reyes-Reyes
  fullname: Reyes-Reyes, María
– sequence: 5
  givenname: Diego
  surname: Quintero-Santander
  fullname: Quintero-Santander, Diego
– sequence: 6
  givenname: Silvia
  surname: Vasquez-Dallos
  fullname: Vasquez-Dallos, Silvia
– sequence: 7
  givenname: Henry
  surname: Salazar
  fullname: Salazar, Henry
– sequence: 8
  givenname: Pedro
  surname: Santamaría-Galvis
  fullname: Santamaría-Galvis, Pedro
– sequence: 9
  givenname: Ramon
  surname: Silva-Rodríguez
  fullname: Silva-Rodríguez, Ramon
– sequence: 10
  givenname: Genis
  surname: Castillo-Villamizar
  fullname: Castillo-Villamizar, Genis
BookMark eNpNkM1KAzEUhYNUsNY-gLt5ganJzc9kxI0UfwoVNxXcheROUlPGSclUoW_vtBVxdQ_3wAfnuySjLnWekGtGZ5zr-ib47rufAQWY1SC0gDMyBqhVqZR8H_3LF2Ta9xtKKeMgBWNjcvcSMScXU5vWEW3b7ovYhfbLd-ibAlPOqY-puy1WH75Y2-3QFrshhujb5oqcB9v2fvp7J-Tt8WE1fy6Xr0-L-f2yRC7FrnSOOs5QCqW5DAIZOI5MCmq9YLUFpj06TbViHmu0UAkITDeAtRJYuYZPyOLEbZLdmG2OnzbvTbLRHB8pr43Nu4itNw0Fy7gAr4QVUkgnmwp1xVUIjjvtBxY7sYbZfZ99-OMxag42zdGmOdg0J5v8B1Jfam8
CitedBy_id crossref_primary_10_1016_j_ijoes_2024_100464
crossref_primary_10_1016_j_bioelechem_2024_108679
crossref_primary_10_1039_D3SU00482A
crossref_primary_10_1093_femsre_fuad041
crossref_primary_10_1515_chem_2024_0036
crossref_primary_10_3390_microorganisms11092299
crossref_primary_10_5006_4415
crossref_primary_10_3390_met13101695
crossref_primary_10_1007_s11356_024_33612_3
Cites_doi 10.1007/s40735-021-00563-y
10.1016/j.gpb.2015.01.009
10.1016/j.ibiod.2018.11.007
10.1111/1751-7915.13690
10.1016/j.watres.2021.117608
10.1016/j.nbt.2018.11.006
10.3389/fmicb.2017.00143
10.3389/fmicb.2020.00928
10.1179/1743278212Y.0000000065
10.2118/204335-MS
10.31399/asm.hb.v11.a0006788
10.1111/1755-0998.13215
10.1093/jimb/kuab068
10.1038/ismej.2013.219
10.1016/j.jmst.2018.02.023
10.1021/ie50016a003
10.3389/fmicb.2021.754140
10.1080/08927014.2016.1193166
10.1007/0-306-46923-5_5
10.1016/j.corsci.2013.10.036
10.1201/9780429355479-7
10.1016/j.corsci.2015.11.024
10.1007/s00253-015-6729-4
10.3389/fgene.2019.00904
10.1080/1478422X.2018.1483221
10.1201/9781315157818
10.1016/j.mimet.2012.08.011
10.1002/bit.27650
10.1007/s11274-019-2647-4
10.1007/s00170-017-0494-8
10.1533/9781782421252.1.33
10.1016/B978-0-12-814849-5.00011-3
10.1007/s10853-021-06112-9
10.1128/microbiolspec.MB-0016-2014
10.1038/s41598-017-07354-x
10.3389/fmicb.2019.01298
10.1080/1040841X.2017.1332003
10.1016/j.corsci.2020.108641
10.3389/fmats.2020.00014
10.1016/j.ibiod.2019.104717
10.1038/s41598-021-95060-0
10.1016/j.coche.2022.100800
10.1080/08927014.2018.1526281
10.1088/1742-6596/2129/1/012066
10.1038/s41598-017-01126-3
10.1111/j.1462-2920.2010.02413.x
10.1116/1.4906744
10.3389/fmicb.2011.00253
10.1016/j.watres.2010.12.003
10.1016/j.bioelechem.2021.107920
10.1007/978-981-15-4763-8
10.1038/s41467-019-10469-6
10.1080/10916466.2015.1072559
10.3354/ame01753
10.1007/s10529-019-02789-w
10.1016/j.matpr.2020.12.301
10.1007/s00128-021-03218-3
10.2118/169603-MS
10.1088/1361-6463/aa6b83
10.3389/fmicb.2017.01737
10.1038/s41598-022-08851-4
10.1016/B978-0-12-821881-5.00001-5
10.1016/j.cej.2020.127854
10.1016/j.bioelechem.2014.01.002
10.1128/AEM.01381-19
10.3389/fmicb.2021.722259
10.1038/s41529-021-00206-0
10.1186/s40168-015-0094-5
10.1007/s12268-021-1507-7
10.1016/j.copbio.2004.05.001
10.1533/9781782421252.2.197
10.3389/fchem.2019.00824
10.1016/j.ibiod.2016.11.019
10.3389/fmats.2018.00010
10.3389/fmicb.2020.00167
10.1007/s00248-007-9233-2
10.1016/B978-0-12-409547-2.13591-7
10.1016/j.psep.2021.02.006
10.1038/s41598-020-69292-5
10.1111/1462-2920.13023
10.1515/corrrev-2015-0046
10.3389/fmicb.2017.00099
10.1016/j.conbuildmat.2020.119438
10.3389/fmats.2020.00083
10.1016/j.corsci.2018.10.004
10.1016/j.upstre.2021.100041
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenvs.2022.924842
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2296-665X
ExternalDocumentID oai_doaj_org_article_d02a1342e64a4545b5d7c8736ffb3b8e
10_3389_fenvs_2022_924842
GroupedDBID 5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFS
ACXDI
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IEA
IGS
KQ8
LK8
M2P
M7P
M~E
OK1
PIMPY
PQQKQ
PROAC
ZBA
ID FETCH-LOGICAL-c354t-bb0b31c546835f4c12b3c1540ae419a218ecb80861ec9ca2742f18d2c964c7bd3
IEDL.DBID DOA
ISSN 2296-665X
IngestDate Tue Oct 22 15:11:51 EDT 2024
Thu Sep 26 19:08:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-bb0b31c546835f4c12b3c1540ae419a218ecb80861ec9ca2742f18d2c964c7bd3
OpenAccessLink https://doaj.org/article/d02a1342e64a4545b5d7c8736ffb3b8e
ParticipantIDs doaj_primary_oai_doaj_org_article_d02a1342e64a4545b5d7c8736ffb3b8e
crossref_primary_10_3389_fenvs_2022_924842
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Frontiers in environmental science
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Salgar-Chaparro (B82) 2020; 10
Beale (B5) 2016; 34
Lavanya (B45) 2021; 7
Larsen (B44) 2013
Liu (B52) 2019; 10
Krohn (B42) 2021; 12
(B65) 2018
Koch (B40) 2016
Okoro (B66) 2015; 33
Stamps (B92) 2020; 11
Fatah (B24) 2013; 48
Bennet (B9) 2022
Gordon (B30) 2017; 50
Harik (B34) 2022; 36
Inaba (B35) 2019; 85
Gittel (B29) 2014; 8
Li (B48) 2018; 34
Schippers (B83) 2011; 2
Zamora (B105) 2012; 32
Ma (B55) 2020; 421
Van den Berg (B99) 2021; 118
Tripathi (B98) 2021; 12
Carvalhais (B13) 2012; 91
Grottoli (B31) 2020; 7
Liduino (B49) 2019; 143
Loto (B53) 2017; 92
Dou (B17) 2020; 14
Al-Sultani (B3) 2021; 42
Enzien (B23) 2021
Zaidi (B104) 2021; 2129
Franklin (B26) 2015; 3
Li (B47) 2017; 8
Sachan (B81) 2020; 256
Seyeux (B85) 2014
Gutleben (B33) 2018; 44
Little (B51) 2020; 170
Thomsen (B96) 2018
Sooknah (B90) 2008
Kleinbub (B39) 2021
Jack (B37) 2021; 11
Koerdt (B41) 2021; 27
Rossy (B80) 2019; 10
Sowards (B91) 2014; 79
Eckert (B20) 2018; 126
Ebrahimi (B19) 2015
Pilloni (B75) 2022; 49
Parada (B72) 2016; 18
Procópio (B76) 2019; 35
Guo (B32) 2018; 5
Chatterjee (B14) 2021; 11
Albahri (B1) 2021; 56
Senthilmurugan (B84) 2021; 7
Caporaso (B12) 2018
Malik (B56) 2022; 108
Zhang (B106) 2016; 32
Maxwell (B58) 2004
Permeh (B74) 2017
Wasimuddin (B102) 2020; 20
El-Sherik (B21) 2017
Brauer (B11) 2015; 10
Apprill (B4) 2015; 75
Rapp (B78) 2018
McDaniel (B59) 2021; 205
Stevenson (B93) 2011; 13
Dou (B18) 2021; 14
Al-Shamari (B2) 2013
Papavinasam (B71) 2014
Mukherjee (B62) 2017; 7
Gaines (B27) 1910; 2
Bonifay (B10) 2017; 8
Procopio (B77) 2020; 42
Omar (B68) 2021; 3
Taleb-Berrouane (B94) 2018; 53
Wang (B101) 2021; 142
Pavanello (B73) 2011; 45
Okoro (B67) 2016; 103
Kumar (B43) 2021
Pannekens (B70) 2019; 49
Dawuda (B16) 2021; 148
(B63) 2014
Marchesi (B57) 2015; 3
Lekbach (B46) 2021
Muhammad (B61) 2020; 11
Skovhus (B89) 2017
Little (B50) 2002
Verderosa (B100) 2019; 7
Feng (B25) 2015; 13
Jia (B38) 2019; 137
Williamson (B103) 2015; 99
(B64) 2016
McKay (B60) 2017; 7
Rodrigues (B79) 2014
Beech (B6) 2004; 15
Shakya (B86) 2019; 10
Ghazy (B28) 2011; 7
Marciales (B107) 2019; 146
Telegdi (B95) 2018
Shi (B87) 2020; 7
Ben-Dov (B8) 2007; 54
Cristiani (B15) 2014; 97
Beech (B7) 2014
Pal (B69) 2019
Skipper (B88) 2022; 12
Tian (B97) 2017; 8
Ishii (B36) 2020
Emerson (B22) 2018; 34
Lou (B54) 2021; 5
References_xml – start-page: 1
  volume-title: TM0194—Field Monitoring of Bacterial Growth in Oil and Gas Systems
  year: 2014
  ident: B63
– volume: 7
  start-page: 125
  year: 2021
  ident: B45
  article-title: A brief insight into microbial corrosion and its mitigation with eco-friendly inhibitors
  publication-title: J. Bio. Tribocorros.
  doi: 10.1007/s40735-021-00563-y
  contributor:
    fullname: Lavanya
– volume: 13
  start-page: 4
  year: 2015
  ident: B25
  article-title: Nanopore-based fourth-generation DNA sequencing technology
  publication-title: Genomics Proteomics Bioinforma.
  doi: 10.1016/j.gpb.2015.01.009
  contributor:
    fullname: Feng
– start-page: 548
  volume-title: Trends in oil and gas corrosion research and technologies: Production and transmission
  year: 2017
  ident: B21
  article-title: Corrosion in oil and gas production
  contributor:
    fullname: El-Sherik
– volume: 137
  start-page: 42
  year: 2019
  ident: B38
  article-title: Microbiologically influenced corrosion and current mitigation strategies: A state of the art review
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2018.11.007
  contributor:
    fullname: Jia
– volume: 14
  start-page: 803
  year: 2021
  ident: B18
  article-title: Biocorrosion caused by microbial biofilms is ubiquitous around us
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.13690
  contributor:
    fullname: Dou
– year: 2017
  ident: B74
  article-title: Microbiological influenced corrosion (MIC) in Florida marine environment: A case study
  contributor:
    fullname: Permeh
– volume-title: International measures of prevention , application , and economics of corrosion technologies study
  year: 2016
  ident: B40
  contributor:
    fullname: Koch
– volume: 205
  start-page: 117608
  year: 2021
  ident: B59
  article-title: Prospects for multi-omics in the microbial ecology of water engineering
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117608
  contributor:
    fullname: McDaniel
– volume: 49
  start-page: 1
  year: 2019
  ident: B70
  article-title: Oil reservoirs, an exceptional habitat for microorganisms
  publication-title: N. Biotechnol.
  doi: 10.1016/j.nbt.2018.11.006
  contributor:
    fullname: Pannekens
– year: 2018
  ident: B96
  article-title: A combination of qPCR, RT-qPCR and NGS provides a new tool for analyzing MIC risk in pipelines
  contributor:
    fullname: Thomsen
– volume: 8
  start-page: 143
  year: 2017
  ident: B97
  article-title: Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00143
  contributor:
    fullname: Tian
– volume: 3
  start-page: 1
  year: 2021
  ident: B68
  article-title: Mitigation of microbiologically induced corrosion (MIC) and preventive strategies
  publication-title: Res. Trends Microbiol. MedDocs Publ.
  contributor:
    fullname: Omar
– volume: 11
  start-page: 928
  year: 2020
  ident: B61
  article-title: Beyond risk: Bacterial biofilms and their regulating approaches
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00928
  contributor:
    fullname: Muhammad
– volume: 48
  start-page: 211
  year: 2013
  ident: B24
  article-title: Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: a study pertaining to microbiologically influenced corrosion (MIC)
  publication-title: Corros. Eng. Sci. Technol.
  doi: 10.1179/1743278212Y.0000000065
  contributor:
    fullname: Fatah
– year: 2008
  ident: B90
  article-title: Validation of A predictive model for microbiologically influenced corrosion
  contributor:
    fullname: Sooknah
– year: 2021
  ident: B23
  article-title: Metagenomics microbial characterization of production and process fluids in the powder river basin: Identification and sources of problematic microorganisms associated with SWD facilities
  doi: 10.2118/204335-MS
  contributor:
    fullname: Enzien
– volume: 11
  start-page: 615
  year: 2021
  ident: B37
  article-title: Biological corrosion failures
  publication-title: Fail. Anal. Prev.
  doi: 10.31399/asm.hb.v11.a0006788
  contributor:
    fullname: Jack
– volume: 20
  start-page: 1558
  year: 2020
  ident: B102
  article-title: Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework
  publication-title: Mol. Ecol. Resour.
  doi: 10.1111/1755-0998.13215
  contributor:
    fullname: Wasimuddin
– volume: 49
  start-page: kuab068
  year: 2022
  ident: B75
  article-title: Proteins identified through predictive metagenomics as potential biomarkers for the detection of microbiologically influenced corrosion
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1093/jimb/kuab068
  contributor:
    fullname: Pilloni
– volume: 8
  start-page: 841
  year: 2014
  ident: B29
  article-title: Distinct microbial communities associated with buried soils in the Siberian tundra
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.219
  contributor:
    fullname: Gittel
– volume: 34
  start-page: 1713
  year: 2018
  ident: B48
  article-title: Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.02.023
  contributor:
    fullname: Li
– volume: 14
  start-page: 803
  year: 2020
  ident: B17
  article-title: Biocorrosion caused by microbial biofilms is ubiquitous around us
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.13690
  contributor:
    fullname: Dou
– volume: 2
  start-page: 128
  year: 1910
  ident: B27
  article-title: Bacterial activity as a corrosive influence in the soil
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1021/ie50016a003
  contributor:
    fullname: Gaines
– volume: 12
  start-page: 754140
  year: 2021
  ident: B98
  article-title: Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.754140
  contributor:
    fullname: Tripathi
– volume: 32
  start-page: 725
  year: 2016
  ident: B106
  article-title: Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface
  publication-title: Biofouling
  doi: 10.1080/08927014.2016.1193166
  contributor:
    fullname: Zhang
– start-page: 205
  volume-title: modern aspects of electrochemistry
  year: 2002
  ident: B50
  article-title: Application of electrochemical techniques to the study of microbiologically influenced corrosion BT
  doi: 10.1007/0-306-46923-5_5
  contributor:
    fullname: Little
– volume: 79
  start-page: 128
  year: 2014
  ident: B91
  article-title: The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2013.10.036
  contributor:
    fullname: Sowards
– start-page: 1
  volume-title: Failure analysis of microbiologically influenced corrosion
  year: 2021
  ident: B39
  article-title: Iron to gas: The mechanisms behind methanogen-induced microbiologically influenced corrosion (Mi-MIC) and their importance for the industry and infrastructure
  doi: 10.1201/9780429355479-7
  contributor:
    fullname: Kleinbub
– volume: 103
  start-page: 242
  year: 2016
  ident: B67
  article-title: Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.11.024
  contributor:
    fullname: Okoro
– volume: 99
  start-page: 6945
  year: 2015
  ident: B103
  article-title: Microbially influenced corrosion communities associated with fuel-grade ethanol environments
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-6729-4
  contributor:
    fullname: Williamson
– start-page: 1
  volume-title: TM0212—Detection, Testing, and Evaluation of Microbiologically Influenced Corrosion on Internal Surfaces of Pipelines
  year: 2018
  ident: B65
– volume: 10
  start-page: 904
  year: 2019
  ident: B86
  article-title: Advances and challenges in metatranscriptomic analysis
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00904
  contributor:
    fullname: Shakya
– volume: 53
  start-page: 378
  year: 2018
  ident: B94
  article-title: Model for microbiologically influenced corrosion potential assessment for the oil and gas industry
  publication-title: Corros. Eng. Sci. Technol.
  doi: 10.1080/1478422X.2018.1483221
  contributor:
    fullname: Taleb-Berrouane
– volume-title: Microbiologically influenced corrosion in the upstream oil and gas industry
  year: 2017
  ident: B89
  doi: 10.1201/9781315157818
  contributor:
    fullname: Skovhus
– volume-title: EMP 16S Illumina Amplicon Protocol. Protocols.io
  year: 2018
  ident: B12
  contributor:
    fullname: Caporaso
– volume: 91
  start-page: 246
  year: 2012
  ident: B13
  article-title: Application of metatranscriptomics to soil environments
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2012.08.011
  contributor:
    fullname: Carvalhais
– volume: 118
  start-page: 1273
  year: 2021
  ident: B99
  article-title: How to measure diffusion coefficients in biofilms: A critical analysis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27650
  contributor:
    fullname: Van den Berg
– volume: 35
  start-page: 73
  year: 2019
  ident: B76
  article-title: The role of biofilms in the corrosion of steel in marine environments
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-019-2647-4
  contributor:
    fullname: Procópio
– volume: 92
  start-page: 4241
  year: 2017
  ident: B53
  article-title: Microbiological corrosion: mechanism, control and impact—a review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0494-8
  contributor:
    fullname: Loto
– start-page: 33
  volume-title: Understanding biocorrosion: Fundamentals and applications
  year: 2014
  ident: B7
  article-title: Biofilms and biocorrosion
  doi: 10.1533/9781782421252.1.33
  contributor:
    fullname: Beech
– start-page: 171
  volume-title: Microbial Diversity in the Genomic Era
  year: 2019
  ident: B69
  article-title: Chapter 11 - exploring microbial diversity and function in petroleum hydrocarbon associated environments through omics approaches
  doi: 10.1016/B978-0-12-814849-5.00011-3
  contributor:
    fullname: Pal
– volume: 56
  start-page: 13337
  year: 2021
  ident: B1
  article-title: Investigating the mechanism of microbiologically influenced corrosion of carbon steel using X-ray micro-computed tomography
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06112-9
  contributor:
    fullname: Albahri
– volume: 7
  start-page: 604
  year: 2011
  ident: B28
  article-title: Cultivation and detection of sulfate reducing bacteria (SRB) in sea water
  publication-title: J. Am. Sci.
  contributor:
    fullname: Ghazy
– start-page: 841
  year: 2014
  ident: B71
  article-title: Chapter 14 - management
  contributor:
    fullname: Papavinasam
– volume: 3
  start-page: 1
  year: 2015
  ident: B26
  article-title: New technologies for studying biofilms
  publication-title: Microbiol. Spectr.
  doi: 10.1128/microbiolspec.MB-0016-2014
  contributor:
    fullname: Franklin
– volume: 7
  start-page: 7252
  year: 2017
  ident: B60
  article-title: Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07354-x
  contributor:
    fullname: McKay
– start-page: 317
  volume-title: Advances in microbial physiology
  year: 2021
  ident: B46
  article-title: Chapter Five - microbial corrosion of metals: The corrosion microbiome
  contributor:
    fullname: Lekbach
– volume: 10
  start-page: 1298
  year: 2019
  ident: B52
  article-title: Microbiologically influenced corrosion of carbon steel beneath a deposit in CO2-saturated formation water containing Desulfotomaculum nigrificans
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01298
  contributor:
    fullname: Liu
– volume: 44
  start-page: 212
  year: 2018
  ident: B33
  article-title: The multi-omics promise in context: from sequence to microbial isolate
  publication-title: Crit. Rev. Microbiol.
  doi: 10.1080/1040841X.2017.1332003
  contributor:
    fullname: Gutleben
– volume: 170
  start-page: 108641
  year: 2020
  ident: B51
  article-title: Microbially influenced corrosion—any progress?
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108641
  contributor:
    fullname: Little
– volume: 32
  start-page: 121
  year: 2012
  ident: B105
  article-title: Methodological aspects for the culture and quantification of heterotrophic sulfate-reducing bacteria
  publication-title: Rev. Soc. Venez. Microbiol.
  contributor:
    fullname: Zamora
– volume: 7
  start-page: 1
  year: 2020
  ident: B31
  article-title: Nanopore sequencing and bioinformatics for rapidly identifying cultural heritage spoilage microorganisms
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2020.00014
  contributor:
    fullname: Grottoli
– volume: 143
  start-page: 104717
  year: 2019
  ident: B49
  article-title: Comparison of flow regimes on biocorrosion of steel pipe weldments: Community composition and diversity of biofilms
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2019.104717
  contributor:
    fullname: Liduino
– volume: 11
  start-page: 15458
  year: 2021
  ident: B14
  article-title: Proteomic study of Desulfovibrio ferrophilus IS5 reveals overexpressed extracellular multi-heme cytochrome associated with severe microbiologically influenced corrosion
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95060-0
  contributor:
    fullname: Chatterjee
– volume: 36
  start-page: 100800
  year: 2022
  ident: B34
  article-title: Omics of oil biodegradation
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2022.100800
  contributor:
    fullname: Harik
– volume: 34
  start-page: 989
  year: 2018
  ident: B22
  article-title: The role of iron-oxidizing bacteria in biocorrosion: a review
  publication-title: Biofouling
  doi: 10.1080/08927014.2018.1526281
  contributor:
    fullname: Emerson
– volume: 2129
  start-page: 12066
  year: 2021
  ident: B104
  article-title: Microbiologically influenced corrosion of iron by nitrate reducing Bacillus sp
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2129/1/012066
  contributor:
    fullname: Zaidi
– volume: 7
  start-page: 1108
  year: 2017
  ident: B62
  article-title: Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01126-3
  contributor:
    fullname: Mukherjee
– volume: 13
  start-page: 1078
  year: 2011
  ident: B93
  article-title: Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2010.02413.x
  contributor:
    fullname: Stevenson
– volume: 10
  start-page: 019003
  year: 2015
  ident: B11
  article-title: Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration
  publication-title: Biointerphases
  doi: 10.1116/1.4906744
  contributor:
    fullname: Brauer
– year: 2013
  ident: B44
  article-title: The application of molecular microbiological methods for early warning of MIC in pipelines
  contributor:
    fullname: Larsen
– volume: 2
  start-page: 253
  year: 2011
  ident: B83
  article-title: Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the black sea
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2011.00253
  contributor:
    fullname: Schippers
– volume: 45
  start-page: 1651
  year: 2011
  ident: B73
  article-title: Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.12.003
  contributor:
    fullname: Pavanello
– volume: 142
  start-page: 107920
  year: 2021
  ident: B101
  article-title: Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2021.107920
  contributor:
    fullname: Wang
– year: 2013
  ident: B2
  article-title: Developing a metric for microbilogically influenced corrosion (MIC) in oilfield water handling systems
  contributor:
    fullname: Al-Shamari
– volume-title: Electron-based bioscience and biotechnology
  year: 2020
  ident: B36
  doi: 10.1007/978-981-15-4763-8
  contributor:
    fullname: Ishii
– volume: 10
  start-page: 2471
  year: 2019
  ident: B80
  article-title: Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10469-6
  contributor:
    fullname: Rossy
– volume: 33
  start-page: 1563
  year: 2015
  ident: B66
  article-title: Souring and corrosion potentials of onshore and offshore oil-producing facilities in the Nigerian oil-rich Niger delta
  publication-title: Pet. Sci. Technol.
  doi: 10.1080/10916466.2015.1072559
  contributor:
    fullname: Okoro
– volume: 75
  start-page: 129
  year: 2015
  ident: B4
  article-title: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01753
  contributor:
    fullname: Apprill
– volume: 42
  start-page: 341
  year: 2020
  ident: B77
  article-title: The era of ‘omics’ technologies in the study of microbiologically influenced corrosion
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-019-02789-w
  contributor:
    fullname: Procopio
– volume: 42
  start-page: 2169
  year: 2021
  ident: B3
  article-title: Characterization of microbiological influence corrosion for API 5L X46 pipeline by sulphate-reducing bacteria (SRB)
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.12.301
  contributor:
    fullname: Al-Sultani
– start-page: D031S030R004
  year: 2022
  ident: B9
  article-title: Oilfield microbiology: Case study of molecular techniques for determining the risk of microbiologically influenced corrosion MIC
  contributor:
    fullname: Bennet
– volume: 108
  start-page: 443
  year: 2022
  ident: B56
  article-title: Implementation of genetic engineering and novel omics approaches to enhance bioremediation: A focused review
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-021-03218-3
  contributor:
    fullname: Malik
– year: 2014
  ident: B79
  article-title: Internal corrosion assessment of the otter oil production spool
  doi: 10.2118/169603-MS
  contributor:
    fullname: Rodrigues
– volume: 50
  start-page: 223002
  year: 2017
  ident: B30
  article-title: Biofilms and mechanics: a review of experimental techniques and findings
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aa6b83
  contributor:
    fullname: Gordon
– year: 2004
  ident: B58
  article-title: Monitoring and control of bacterial biofilms in oilfield water handling systems
  contributor:
    fullname: Maxwell
– volume: 8
  start-page: 1737
  year: 2017
  ident: B47
  article-title: Analysis of bacterial community composition of corroded steel immersed in sanya and xiamen seawaters in China via method of illumina MiSeq sequencing
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01737
  contributor:
    fullname: Li
– volume: 12
  start-page: 4877
  year: 2022
  ident: B88
  article-title: A metagenomic analysis of the bacterial microbiome of limestone, and the role of associated biofilms in the biodeterioration of heritage stone surfaces
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-08851-4
  contributor:
    fullname: Skipper
– start-page: 1
  volume-title: Wastewater treatment
  year: 2021
  ident: B43
  article-title: Chapter 1 - application of omics technologies for microbial community structure and function analysis in contaminated environment
  doi: 10.1016/B978-0-12-821881-5.00001-5
  contributor:
    fullname: Kumar
– volume: 421
  start-page: 127854
  year: 2020
  ident: B55
  article-title: Self-reporting coatings for autonomous detection of coating damage and metal corrosion : A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127854
  contributor:
    fullname: Ma
– volume: 97
  start-page: 120
  year: 2014
  ident: B15
  article-title: Antifouling strategies and corrosion control in cooling circuits
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2014.01.002
  contributor:
    fullname: Cristiani
– volume: 85
  start-page: e01381-19
  year: 2019
  ident: B35
  article-title: Microbially influenced corrosion of stainless steel by Acidithiobacillus ferrooxidans supplemented with pyrite: Importance of thiosulfate
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01381-19
  contributor:
    fullname: Inaba
– volume: 12
  start-page: 722259
  year: 2021
  ident: B42
  article-title: Deep (Meta)genomics and (Meta)transcriptome analyses of fungal and bacteria consortia from aircraft tanks and kerosene identify key genes in fuel and tank corrosion
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.722259
  contributor:
    fullname: Krohn
– volume: 5
  start-page: 59
  year: 2021
  ident: B54
  article-title: Microbiologically influenced corrosion inhibition of carbon steel via biomineralization induced by Shewanella putrefaciens
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-021-00206-0
  contributor:
    fullname: Lou
– volume: 3
  start-page: 31
  year: 2015
  ident: B57
  article-title: The vocabulary of microbiome research: a proposal
  publication-title: Microbiome
  doi: 10.1186/s40168-015-0094-5
  contributor:
    fullname: Marchesi
– volume: 27
  start-page: 100
  year: 2021
  ident: B41
  article-title: Mikrobiell beeinflusste korrosion — die testungsart entscheidet
  publication-title: BIOspektrum
  doi: 10.1007/s12268-021-1507-7
  contributor:
    fullname: Koerdt
– volume: 15
  start-page: 181
  year: 2004
  ident: B6
  article-title: Biocorrosion: towards understanding interactions between biofilms and metals
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.05.001
  contributor:
    fullname: Beech
– start-page: 197
  volume-title: Understanding biocorrosion: Fundamentals and applications
  year: 2014
  ident: B85
  article-title: Surface analysis techniques for investigating biocorrosion
  doi: 10.1533/9781782421252.2.197
  contributor:
    fullname: Seyeux
– start-page: 1
  volume-title: TM0106—Detection, Testing, and Evaluation of Microbiologically Influenced Corrosion (MIC) on External Surfaces of Buried Pipelines
  year: 2016
  ident: B64
– volume: 7
  start-page: 824
  year: 2019
  ident: B100
  article-title: Bacterial biofilm eradication agents: A current review
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00824
  contributor:
    fullname: Verderosa
– volume: 126
  start-page: 169
  year: 2018
  ident: B20
  article-title: Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2016.11.019
  contributor:
    fullname: Eckert
– volume: 5
  year: 2018
  ident: B32
  article-title: Polymers for combating biocorrosion
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2018.00010
  contributor:
    fullname: Guo
– volume: 11
  start-page: 167
  year: 2020
  ident: B92
  article-title: In situ linkage of fungal and bacterial proliferation to microbiologically influenced corrosion in B20 biodiesel storage tanks
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00167
  contributor:
    fullname: Stamps
– start-page: 1
  volume-title: STEM-Corrosion
  year: 2015
  ident: B19
  article-title: Implementation of 50 Key Performance Indicators (KPIs) in Corrosion Control of an Oil Transmission Pipeline
  contributor:
    fullname: Ebrahimi
– volume: 54
  start-page: 439
  year: 2007
  ident: B8
  article-title: Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-007-9233-2
  contributor:
    fullname: Ben-Dov
– start-page: 166
  volume-title: Electrochemical methods for biomass and biocorrosion monitoring
  year: 2018
  ident: B78
  contributor:
    fullname: Rapp
– start-page: 28
  volume-title: Encyclopedia of interfacial chemistry: Surface science and electrochemistry
  year: 2018
  ident: B95
  article-title: Biocorrosion—Steel
  doi: 10.1016/B978-0-12-409547-2.13591-7
  contributor:
    fullname: Telegdi
– volume: 148
  start-page: 908
  year: 2021
  ident: B16
  article-title: A probabilistic model to estimate microbiologically influenced corrosion rate
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.02.006
  contributor:
    fullname: Dawuda
– volume: 10
  start-page: 12287
  year: 2020
  ident: B82
  article-title: Carbon steel corrosion by bacteria from failed seal rings at an offshore facility
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69292-5
  contributor:
    fullname: Salgar-Chaparro
– volume: 18
  start-page: 1403
  year: 2016
  ident: B72
  article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13023
  contributor:
    fullname: Parada
– volume: 34
  start-page: 1
  year: 2016
  ident: B5
  article-title: Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals
  publication-title: Corros. Rev.
  doi: 10.1515/corrrev-2015-0046
  contributor:
    fullname: Beale
– volume: 8
  start-page: 99
  year: 2017
  ident: B10
  article-title: Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00099
  contributor:
    fullname: Bonifay
– volume: 256
  start-page: 119438
  year: 2020
  ident: B81
  article-title: Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2)
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119438
  contributor:
    fullname: Sachan
– volume: 7
  year: 2020
  ident: B87
  article-title: Study on microbiologically influenced corrosion resistance of stainless steels with weld seams
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2020.00083
  contributor:
    fullname: Shi
– volume: 146
  start-page: 99
  year: 2019
  ident: B107
  article-title: Mechanistic microbiologically influenced corrosion modeling—A review
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.10.004
  contributor:
    fullname: Marciales
– volume: 7
  start-page: 100041
  year: 2021
  ident: B84
  article-title: Assessment of microbiologically influenced corrosion in oilfield water handling systems using molecular microbiology methods
  publication-title: Upstream Oil Gas Technol.
  doi: 10.1016/j.upstre.2021.100041
  contributor:
    fullname: Senthilmurugan
SSID ssj0001325411
Score 2.3072577
Snippet Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
SubjectTerms biodeterioration
biofilms
corrosion
microbiologically-influenced-corrosion
microbiomes
omics
Title Microbiologically influenced corrosion: The gap in the field
URI https://doaj.org/article/d02a1342e64a4545b5d7c8736ffb3b8e
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy_iq1hf7MGTELuPySYrXlRailBPFnoL-5SC1KJV8N87m6S1nrx4zYZk-WaT-b7s5BtCLnwMnkkoMlc6yECaItNI63EtByhRDoSme8P4UY0m8DDNpxutvlJNWGMP3ADX90wYLkEEBQYw3dvcF64spIrRSluG-u3L9IaYqr-uSBQ-nDfbmKjCdD-G-Wey5xbiCiVHCeJXItrw668Ty3CX7LSMkN42M9kjW2G-T7qDnx_QcLB9At8PyM14trZOSvi-fNHZqs-Ipygl8WYI9TXF-NNns8BRihyP1pVqh2QyHDzdj7K2A0LmZA7LzFpmJXc5KCRKERwXVjokPcwE4Npgeg7OlqhKeHDambTtGnnphdMKXGG97JLO_HUejggFwWJURnimIiDN0kZL7iPoklkeFOuRyxUc1aIxuqhQICTsqhq7KmFXNdj1yF0CbH1i8qiuD2DkqjZy1V-RO_6Pi5yQ7TSvVMHB81PSWb59hDOkCUt7Xq-Ib1NKuhU
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiologically+influenced+corrosion%3A+The+gap+in+the+field&rft.jtitle=Frontiers+in+environmental+science&rft.au=Edinson+Puentes-Cala&rft.au=Valentina+Tapia-Perdomo&rft.au=Daniela+Espinosa-Valbuena&rft.au=Mar%C3%ADa+Reyes-Reyes&rft.date=2022-09-15&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-665X&rft.volume=10&rft_id=info:doi/10.3389%2Ffenvs.2022.924842&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d02a1342e64a4545b5d7c8736ffb3b8e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-665X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-665X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-665X&client=summon