Microbiologically influenced corrosion: The gap in the field
Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined hydrocarbons. Often microbial colonization of man-made structures results in the reduction of their service life requiring preemptive or corrective huma...
Saved in:
Published in | Frontiers in environmental science Vol. 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
15.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined hydrocarbons. Often microbial colonization of man-made structures results in the reduction of their service life requiring preemptive or corrective human intervention. Microbiologically Influenced Corrosion (MIC) is caused by a set of intricate bioelectrochemical interactions between a diverse group of microorganisms and metallic surfaces. The complexity of MIC microbiomes and their mechanisms as well as the logistics constraints of industrial facilities are factors to consider when choosing suitable analytical methods for MIC monitoring. These generally reflect only a partial view of the phenomenon and in consequence, might lead to ineffective mitigation measures. This paper acknowledges the discrepancies between the fieldwork for MIC monitoring and the currently available technological advancements. It also highlights the most pressing issues that operators have in the field in light of the diversity of the microbial key players present in corrosive microbiomes. Finally, it compiles and outlines a strategy for the integration of novel molecular approaches aiming for a practical and accurate assessment of the microbial threat. |
---|---|
AbstractList | Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined hydrocarbons. Often microbial colonization of man-made structures results in the reduction of their service life requiring preemptive or corrective human intervention. Microbiologically Influenced Corrosion (MIC) is caused by a set of intricate bioelectrochemical interactions between a diverse group of microorganisms and metallic surfaces. The complexity of MIC microbiomes and their mechanisms as well as the logistics constraints of industrial facilities are factors to consider when choosing suitable analytical methods for MIC monitoring. These generally reflect only a partial view of the phenomenon and in consequence, might lead to ineffective mitigation measures. This paper acknowledges the discrepancies between the fieldwork for MIC monitoring and the currently available technological advancements. It also highlights the most pressing issues that operators have in the field in light of the diversity of the microbial key players present in corrosive microbiomes. Finally, it compiles and outlines a strategy for the integration of novel molecular approaches aiming for a practical and accurate assessment of the microbial threat. |
Author | Puentes-Cala, Edinson Castillo-Villamizar, Genis Reyes-Reyes, María Salazar, Henry Espinosa-Valbuena, Daniela Vasquez-Dallos, Silvia Quintero-Santander, Diego Silva-Rodríguez, Ramon Tapia-Perdomo, Valentina Santamaría-Galvis, Pedro |
Author_xml | – sequence: 1 givenname: Edinson surname: Puentes-Cala fullname: Puentes-Cala, Edinson – sequence: 2 givenname: Valentina surname: Tapia-Perdomo fullname: Tapia-Perdomo, Valentina – sequence: 3 givenname: Daniela surname: Espinosa-Valbuena fullname: Espinosa-Valbuena, Daniela – sequence: 4 givenname: María surname: Reyes-Reyes fullname: Reyes-Reyes, María – sequence: 5 givenname: Diego surname: Quintero-Santander fullname: Quintero-Santander, Diego – sequence: 6 givenname: Silvia surname: Vasquez-Dallos fullname: Vasquez-Dallos, Silvia – sequence: 7 givenname: Henry surname: Salazar fullname: Salazar, Henry – sequence: 8 givenname: Pedro surname: Santamaría-Galvis fullname: Santamaría-Galvis, Pedro – sequence: 9 givenname: Ramon surname: Silva-Rodríguez fullname: Silva-Rodríguez, Ramon – sequence: 10 givenname: Genis surname: Castillo-Villamizar fullname: Castillo-Villamizar, Genis |
BookMark | eNpNkM1KAzEUhYNUsNY-gLt5ganJzc9kxI0UfwoVNxXcheROUlPGSclUoW_vtBVxdQ_3wAfnuySjLnWekGtGZ5zr-ib47rufAQWY1SC0gDMyBqhVqZR8H_3LF2Ta9xtKKeMgBWNjcvcSMScXU5vWEW3b7ovYhfbLd-ibAlPOqY-puy1WH75Y2-3QFrshhujb5oqcB9v2fvp7J-Tt8WE1fy6Xr0-L-f2yRC7FrnSOOs5QCqW5DAIZOI5MCmq9YLUFpj06TbViHmu0UAkITDeAtRJYuYZPyOLEbZLdmG2OnzbvTbLRHB8pr43Nu4itNw0Fy7gAr4QVUkgnmwp1xVUIjjvtBxY7sYbZfZ99-OMxag42zdGmOdg0J5v8B1Jfam8 |
CitedBy_id | crossref_primary_10_1016_j_ijoes_2024_100464 crossref_primary_10_1016_j_bioelechem_2024_108679 crossref_primary_10_1039_D3SU00482A crossref_primary_10_1093_femsre_fuad041 crossref_primary_10_1515_chem_2024_0036 crossref_primary_10_3390_microorganisms11092299 crossref_primary_10_5006_4415 crossref_primary_10_3390_met13101695 crossref_primary_10_1007_s11356_024_33612_3 |
Cites_doi | 10.1007/s40735-021-00563-y 10.1016/j.gpb.2015.01.009 10.1016/j.ibiod.2018.11.007 10.1111/1751-7915.13690 10.1016/j.watres.2021.117608 10.1016/j.nbt.2018.11.006 10.3389/fmicb.2017.00143 10.3389/fmicb.2020.00928 10.1179/1743278212Y.0000000065 10.2118/204335-MS 10.31399/asm.hb.v11.a0006788 10.1111/1755-0998.13215 10.1093/jimb/kuab068 10.1038/ismej.2013.219 10.1016/j.jmst.2018.02.023 10.1021/ie50016a003 10.3389/fmicb.2021.754140 10.1080/08927014.2016.1193166 10.1007/0-306-46923-5_5 10.1016/j.corsci.2013.10.036 10.1201/9780429355479-7 10.1016/j.corsci.2015.11.024 10.1007/s00253-015-6729-4 10.3389/fgene.2019.00904 10.1080/1478422X.2018.1483221 10.1201/9781315157818 10.1016/j.mimet.2012.08.011 10.1002/bit.27650 10.1007/s11274-019-2647-4 10.1007/s00170-017-0494-8 10.1533/9781782421252.1.33 10.1016/B978-0-12-814849-5.00011-3 10.1007/s10853-021-06112-9 10.1128/microbiolspec.MB-0016-2014 10.1038/s41598-017-07354-x 10.3389/fmicb.2019.01298 10.1080/1040841X.2017.1332003 10.1016/j.corsci.2020.108641 10.3389/fmats.2020.00014 10.1016/j.ibiod.2019.104717 10.1038/s41598-021-95060-0 10.1016/j.coche.2022.100800 10.1080/08927014.2018.1526281 10.1088/1742-6596/2129/1/012066 10.1038/s41598-017-01126-3 10.1111/j.1462-2920.2010.02413.x 10.1116/1.4906744 10.3389/fmicb.2011.00253 10.1016/j.watres.2010.12.003 10.1016/j.bioelechem.2021.107920 10.1007/978-981-15-4763-8 10.1038/s41467-019-10469-6 10.1080/10916466.2015.1072559 10.3354/ame01753 10.1007/s10529-019-02789-w 10.1016/j.matpr.2020.12.301 10.1007/s00128-021-03218-3 10.2118/169603-MS 10.1088/1361-6463/aa6b83 10.3389/fmicb.2017.01737 10.1038/s41598-022-08851-4 10.1016/B978-0-12-821881-5.00001-5 10.1016/j.cej.2020.127854 10.1016/j.bioelechem.2014.01.002 10.1128/AEM.01381-19 10.3389/fmicb.2021.722259 10.1038/s41529-021-00206-0 10.1186/s40168-015-0094-5 10.1007/s12268-021-1507-7 10.1016/j.copbio.2004.05.001 10.1533/9781782421252.2.197 10.3389/fchem.2019.00824 10.1016/j.ibiod.2016.11.019 10.3389/fmats.2018.00010 10.3389/fmicb.2020.00167 10.1007/s00248-007-9233-2 10.1016/B978-0-12-409547-2.13591-7 10.1016/j.psep.2021.02.006 10.1038/s41598-020-69292-5 10.1111/1462-2920.13023 10.1515/corrrev-2015-0046 10.3389/fmicb.2017.00099 10.1016/j.conbuildmat.2020.119438 10.3389/fmats.2020.00083 10.1016/j.corsci.2018.10.004 10.1016/j.upstre.2021.100041 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenvs.2022.924842 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2296-665X |
ExternalDocumentID | oai_doaj_org_article_d02a1342e64a4545b5d7c8736ffb3b8e 10_3389_fenvs_2022_924842 |
GroupedDBID | 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFS ACXDI ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO IEA IGS KQ8 LK8 M2P M7P M~E OK1 PIMPY PQQKQ PROAC ZBA |
ID | FETCH-LOGICAL-c354t-bb0b31c546835f4c12b3c1540ae419a218ecb80861ec9ca2742f18d2c964c7bd3 |
IEDL.DBID | DOA |
ISSN | 2296-665X |
IngestDate | Tue Oct 22 15:11:51 EDT 2024 Thu Sep 26 19:08:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-bb0b31c546835f4c12b3c1540ae419a218ecb80861ec9ca2742f18d2c964c7bd3 |
OpenAccessLink | https://doaj.org/article/d02a1342e64a4545b5d7c8736ffb3b8e |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d02a1342e64a4545b5d7c8736ffb3b8e crossref_primary_10_3389_fenvs_2022_924842 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-15 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in environmental science |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Salgar-Chaparro (B82) 2020; 10 Beale (B5) 2016; 34 Lavanya (B45) 2021; 7 Larsen (B44) 2013 Liu (B52) 2019; 10 Krohn (B42) 2021; 12 (B65) 2018 Koch (B40) 2016 Okoro (B66) 2015; 33 Stamps (B92) 2020; 11 Fatah (B24) 2013; 48 Bennet (B9) 2022 Gordon (B30) 2017; 50 Harik (B34) 2022; 36 Inaba (B35) 2019; 85 Gittel (B29) 2014; 8 Li (B48) 2018; 34 Schippers (B83) 2011; 2 Zamora (B105) 2012; 32 Ma (B55) 2020; 421 Van den Berg (B99) 2021; 118 Tripathi (B98) 2021; 12 Carvalhais (B13) 2012; 91 Grottoli (B31) 2020; 7 Liduino (B49) 2019; 143 Loto (B53) 2017; 92 Dou (B17) 2020; 14 Al-Sultani (B3) 2021; 42 Enzien (B23) 2021 Zaidi (B104) 2021; 2129 Franklin (B26) 2015; 3 Li (B47) 2017; 8 Sachan (B81) 2020; 256 Seyeux (B85) 2014 Gutleben (B33) 2018; 44 Little (B51) 2020; 170 Thomsen (B96) 2018 Sooknah (B90) 2008 Kleinbub (B39) 2021 Jack (B37) 2021; 11 Koerdt (B41) 2021; 27 Rossy (B80) 2019; 10 Sowards (B91) 2014; 79 Eckert (B20) 2018; 126 Ebrahimi (B19) 2015 Pilloni (B75) 2022; 49 Parada (B72) 2016; 18 Procópio (B76) 2019; 35 Guo (B32) 2018; 5 Chatterjee (B14) 2021; 11 Albahri (B1) 2021; 56 Senthilmurugan (B84) 2021; 7 Caporaso (B12) 2018 Malik (B56) 2022; 108 Zhang (B106) 2016; 32 Maxwell (B58) 2004 Permeh (B74) 2017 Wasimuddin (B102) 2020; 20 El-Sherik (B21) 2017 Brauer (B11) 2015; 10 Apprill (B4) 2015; 75 Rapp (B78) 2018 McDaniel (B59) 2021; 205 Stevenson (B93) 2011; 13 Dou (B18) 2021; 14 Al-Shamari (B2) 2013 Papavinasam (B71) 2014 Mukherjee (B62) 2017; 7 Gaines (B27) 1910; 2 Bonifay (B10) 2017; 8 Procopio (B77) 2020; 42 Omar (B68) 2021; 3 Taleb-Berrouane (B94) 2018; 53 Wang (B101) 2021; 142 Pavanello (B73) 2011; 45 Okoro (B67) 2016; 103 Kumar (B43) 2021 Pannekens (B70) 2019; 49 Dawuda (B16) 2021; 148 (B63) 2014 Marchesi (B57) 2015; 3 Lekbach (B46) 2021 Muhammad (B61) 2020; 11 Skovhus (B89) 2017 Little (B50) 2002 Verderosa (B100) 2019; 7 Feng (B25) 2015; 13 Jia (B38) 2019; 137 Williamson (B103) 2015; 99 (B64) 2016 McKay (B60) 2017; 7 Rodrigues (B79) 2014 Beech (B6) 2004; 15 Shakya (B86) 2019; 10 Ghazy (B28) 2011; 7 Marciales (B107) 2019; 146 Telegdi (B95) 2018 Shi (B87) 2020; 7 Ben-Dov (B8) 2007; 54 Cristiani (B15) 2014; 97 Beech (B7) 2014 Pal (B69) 2019 Skipper (B88) 2022; 12 Tian (B97) 2017; 8 Ishii (B36) 2020 Emerson (B22) 2018; 34 Lou (B54) 2021; 5 |
References_xml | – start-page: 1 volume-title: TM0194—Field Monitoring of Bacterial Growth in Oil and Gas Systems year: 2014 ident: B63 – volume: 7 start-page: 125 year: 2021 ident: B45 article-title: A brief insight into microbial corrosion and its mitigation with eco-friendly inhibitors publication-title: J. Bio. Tribocorros. doi: 10.1007/s40735-021-00563-y contributor: fullname: Lavanya – volume: 13 start-page: 4 year: 2015 ident: B25 article-title: Nanopore-based fourth-generation DNA sequencing technology publication-title: Genomics Proteomics Bioinforma. doi: 10.1016/j.gpb.2015.01.009 contributor: fullname: Feng – start-page: 548 volume-title: Trends in oil and gas corrosion research and technologies: Production and transmission year: 2017 ident: B21 article-title: Corrosion in oil and gas production contributor: fullname: El-Sherik – volume: 137 start-page: 42 year: 2019 ident: B38 article-title: Microbiologically influenced corrosion and current mitigation strategies: A state of the art review publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2018.11.007 contributor: fullname: Jia – volume: 14 start-page: 803 year: 2021 ident: B18 article-title: Biocorrosion caused by microbial biofilms is ubiquitous around us publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.13690 contributor: fullname: Dou – year: 2017 ident: B74 article-title: Microbiological influenced corrosion (MIC) in Florida marine environment: A case study contributor: fullname: Permeh – volume-title: International measures of prevention , application , and economics of corrosion technologies study year: 2016 ident: B40 contributor: fullname: Koch – volume: 205 start-page: 117608 year: 2021 ident: B59 article-title: Prospects for multi-omics in the microbial ecology of water engineering publication-title: Water Res. doi: 10.1016/j.watres.2021.117608 contributor: fullname: McDaniel – volume: 49 start-page: 1 year: 2019 ident: B70 article-title: Oil reservoirs, an exceptional habitat for microorganisms publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2018.11.006 contributor: fullname: Pannekens – year: 2018 ident: B96 article-title: A combination of qPCR, RT-qPCR and NGS provides a new tool for analyzing MIC risk in pipelines contributor: fullname: Thomsen – volume: 8 start-page: 143 year: 2017 ident: B97 article-title: Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00143 contributor: fullname: Tian – volume: 3 start-page: 1 year: 2021 ident: B68 article-title: Mitigation of microbiologically induced corrosion (MIC) and preventive strategies publication-title: Res. Trends Microbiol. MedDocs Publ. contributor: fullname: Omar – volume: 11 start-page: 928 year: 2020 ident: B61 article-title: Beyond risk: Bacterial biofilms and their regulating approaches publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00928 contributor: fullname: Muhammad – volume: 48 start-page: 211 year: 2013 ident: B24 article-title: Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: a study pertaining to microbiologically influenced corrosion (MIC) publication-title: Corros. Eng. Sci. Technol. doi: 10.1179/1743278212Y.0000000065 contributor: fullname: Fatah – year: 2008 ident: B90 article-title: Validation of A predictive model for microbiologically influenced corrosion contributor: fullname: Sooknah – year: 2021 ident: B23 article-title: Metagenomics microbial characterization of production and process fluids in the powder river basin: Identification and sources of problematic microorganisms associated with SWD facilities doi: 10.2118/204335-MS contributor: fullname: Enzien – volume: 11 start-page: 615 year: 2021 ident: B37 article-title: Biological corrosion failures publication-title: Fail. Anal. Prev. doi: 10.31399/asm.hb.v11.a0006788 contributor: fullname: Jack – volume: 20 start-page: 1558 year: 2020 ident: B102 article-title: Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework publication-title: Mol. Ecol. Resour. doi: 10.1111/1755-0998.13215 contributor: fullname: Wasimuddin – volume: 49 start-page: kuab068 year: 2022 ident: B75 article-title: Proteins identified through predictive metagenomics as potential biomarkers for the detection of microbiologically influenced corrosion publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1093/jimb/kuab068 contributor: fullname: Pilloni – volume: 8 start-page: 841 year: 2014 ident: B29 article-title: Distinct microbial communities associated with buried soils in the Siberian tundra publication-title: ISME J. doi: 10.1038/ismej.2013.219 contributor: fullname: Gittel – volume: 34 start-page: 1713 year: 2018 ident: B48 article-title: Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.02.023 contributor: fullname: Li – volume: 14 start-page: 803 year: 2020 ident: B17 article-title: Biocorrosion caused by microbial biofilms is ubiquitous around us publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.13690 contributor: fullname: Dou – volume: 2 start-page: 128 year: 1910 ident: B27 article-title: Bacterial activity as a corrosive influence in the soil publication-title: J. Ind. Eng. Chem. doi: 10.1021/ie50016a003 contributor: fullname: Gaines – volume: 12 start-page: 754140 year: 2021 ident: B98 article-title: Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.754140 contributor: fullname: Tripathi – volume: 32 start-page: 725 year: 2016 ident: B106 article-title: Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface publication-title: Biofouling doi: 10.1080/08927014.2016.1193166 contributor: fullname: Zhang – start-page: 205 volume-title: modern aspects of electrochemistry year: 2002 ident: B50 article-title: Application of electrochemical techniques to the study of microbiologically influenced corrosion BT doi: 10.1007/0-306-46923-5_5 contributor: fullname: Little – volume: 79 start-page: 128 year: 2014 ident: B91 article-title: The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.10.036 contributor: fullname: Sowards – start-page: 1 volume-title: Failure analysis of microbiologically influenced corrosion year: 2021 ident: B39 article-title: Iron to gas: The mechanisms behind methanogen-induced microbiologically influenced corrosion (Mi-MIC) and their importance for the industry and infrastructure doi: 10.1201/9780429355479-7 contributor: fullname: Kleinbub – volume: 103 start-page: 242 year: 2016 ident: B67 article-title: Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis publication-title: Corros. Sci. doi: 10.1016/j.corsci.2015.11.024 contributor: fullname: Okoro – volume: 99 start-page: 6945 year: 2015 ident: B103 article-title: Microbially influenced corrosion communities associated with fuel-grade ethanol environments publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6729-4 contributor: fullname: Williamson – start-page: 1 volume-title: TM0212—Detection, Testing, and Evaluation of Microbiologically Influenced Corrosion on Internal Surfaces of Pipelines year: 2018 ident: B65 – volume: 10 start-page: 904 year: 2019 ident: B86 article-title: Advances and challenges in metatranscriptomic analysis publication-title: Front. Genet. doi: 10.3389/fgene.2019.00904 contributor: fullname: Shakya – volume: 53 start-page: 378 year: 2018 ident: B94 article-title: Model for microbiologically influenced corrosion potential assessment for the oil and gas industry publication-title: Corros. Eng. Sci. Technol. doi: 10.1080/1478422X.2018.1483221 contributor: fullname: Taleb-Berrouane – volume-title: Microbiologically influenced corrosion in the upstream oil and gas industry year: 2017 ident: B89 doi: 10.1201/9781315157818 contributor: fullname: Skovhus – volume-title: EMP 16S Illumina Amplicon Protocol. Protocols.io year: 2018 ident: B12 contributor: fullname: Caporaso – volume: 91 start-page: 246 year: 2012 ident: B13 article-title: Application of metatranscriptomics to soil environments publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2012.08.011 contributor: fullname: Carvalhais – volume: 118 start-page: 1273 year: 2021 ident: B99 article-title: How to measure diffusion coefficients in biofilms: A critical analysis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27650 contributor: fullname: Van den Berg – volume: 35 start-page: 73 year: 2019 ident: B76 article-title: The role of biofilms in the corrosion of steel in marine environments publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-019-2647-4 contributor: fullname: Procópio – volume: 92 start-page: 4241 year: 2017 ident: B53 article-title: Microbiological corrosion: mechanism, control and impact—a review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0494-8 contributor: fullname: Loto – start-page: 33 volume-title: Understanding biocorrosion: Fundamentals and applications year: 2014 ident: B7 article-title: Biofilms and biocorrosion doi: 10.1533/9781782421252.1.33 contributor: fullname: Beech – start-page: 171 volume-title: Microbial Diversity in the Genomic Era year: 2019 ident: B69 article-title: Chapter 11 - exploring microbial diversity and function in petroleum hydrocarbon associated environments through omics approaches doi: 10.1016/B978-0-12-814849-5.00011-3 contributor: fullname: Pal – volume: 56 start-page: 13337 year: 2021 ident: B1 article-title: Investigating the mechanism of microbiologically influenced corrosion of carbon steel using X-ray micro-computed tomography publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06112-9 contributor: fullname: Albahri – volume: 7 start-page: 604 year: 2011 ident: B28 article-title: Cultivation and detection of sulfate reducing bacteria (SRB) in sea water publication-title: J. Am. Sci. contributor: fullname: Ghazy – start-page: 841 year: 2014 ident: B71 article-title: Chapter 14 - management contributor: fullname: Papavinasam – volume: 3 start-page: 1 year: 2015 ident: B26 article-title: New technologies for studying biofilms publication-title: Microbiol. Spectr. doi: 10.1128/microbiolspec.MB-0016-2014 contributor: fullname: Franklin – volume: 7 start-page: 7252 year: 2017 ident: B60 article-title: Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments publication-title: Sci. Rep. doi: 10.1038/s41598-017-07354-x contributor: fullname: McKay – start-page: 317 volume-title: Advances in microbial physiology year: 2021 ident: B46 article-title: Chapter Five - microbial corrosion of metals: The corrosion microbiome contributor: fullname: Lekbach – volume: 10 start-page: 1298 year: 2019 ident: B52 article-title: Microbiologically influenced corrosion of carbon steel beneath a deposit in CO2-saturated formation water containing Desulfotomaculum nigrificans publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01298 contributor: fullname: Liu – volume: 44 start-page: 212 year: 2018 ident: B33 article-title: The multi-omics promise in context: from sequence to microbial isolate publication-title: Crit. Rev. Microbiol. doi: 10.1080/1040841X.2017.1332003 contributor: fullname: Gutleben – volume: 170 start-page: 108641 year: 2020 ident: B51 article-title: Microbially influenced corrosion—any progress? publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108641 contributor: fullname: Little – volume: 32 start-page: 121 year: 2012 ident: B105 article-title: Methodological aspects for the culture and quantification of heterotrophic sulfate-reducing bacteria publication-title: Rev. Soc. Venez. Microbiol. contributor: fullname: Zamora – volume: 7 start-page: 1 year: 2020 ident: B31 article-title: Nanopore sequencing and bioinformatics for rapidly identifying cultural heritage spoilage microorganisms publication-title: Front. Mater. doi: 10.3389/fmats.2020.00014 contributor: fullname: Grottoli – volume: 143 start-page: 104717 year: 2019 ident: B49 article-title: Comparison of flow regimes on biocorrosion of steel pipe weldments: Community composition and diversity of biofilms publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2019.104717 contributor: fullname: Liduino – volume: 11 start-page: 15458 year: 2021 ident: B14 article-title: Proteomic study of Desulfovibrio ferrophilus IS5 reveals overexpressed extracellular multi-heme cytochrome associated with severe microbiologically influenced corrosion publication-title: Sci. Rep. doi: 10.1038/s41598-021-95060-0 contributor: fullname: Chatterjee – volume: 36 start-page: 100800 year: 2022 ident: B34 article-title: Omics of oil biodegradation publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2022.100800 contributor: fullname: Harik – volume: 34 start-page: 989 year: 2018 ident: B22 article-title: The role of iron-oxidizing bacteria in biocorrosion: a review publication-title: Biofouling doi: 10.1080/08927014.2018.1526281 contributor: fullname: Emerson – volume: 2129 start-page: 12066 year: 2021 ident: B104 article-title: Microbiologically influenced corrosion of iron by nitrate reducing Bacillus sp publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2129/1/012066 contributor: fullname: Zaidi – volume: 7 start-page: 1108 year: 2017 ident: B62 article-title: Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments publication-title: Sci. Rep. doi: 10.1038/s41598-017-01126-3 contributor: fullname: Mukherjee – volume: 13 start-page: 1078 year: 2011 ident: B93 article-title: Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02413.x contributor: fullname: Stevenson – volume: 10 start-page: 019003 year: 2015 ident: B11 article-title: Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration publication-title: Biointerphases doi: 10.1116/1.4906744 contributor: fullname: Brauer – year: 2013 ident: B44 article-title: The application of molecular microbiological methods for early warning of MIC in pipelines contributor: fullname: Larsen – volume: 2 start-page: 253 year: 2011 ident: B83 article-title: Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the black sea publication-title: Front. Microbiol. doi: 10.3389/fmicb.2011.00253 contributor: fullname: Schippers – volume: 45 start-page: 1651 year: 2011 ident: B73 article-title: Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization publication-title: Water Res. doi: 10.1016/j.watres.2010.12.003 contributor: fullname: Pavanello – volume: 142 start-page: 107920 year: 2021 ident: B101 article-title: Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2021.107920 contributor: fullname: Wang – year: 2013 ident: B2 article-title: Developing a metric for microbilogically influenced corrosion (MIC) in oilfield water handling systems contributor: fullname: Al-Shamari – volume-title: Electron-based bioscience and biotechnology year: 2020 ident: B36 doi: 10.1007/978-981-15-4763-8 contributor: fullname: Ishii – volume: 10 start-page: 2471 year: 2019 ident: B80 article-title: Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity publication-title: Nat. Commun. doi: 10.1038/s41467-019-10469-6 contributor: fullname: Rossy – volume: 33 start-page: 1563 year: 2015 ident: B66 article-title: Souring and corrosion potentials of onshore and offshore oil-producing facilities in the Nigerian oil-rich Niger delta publication-title: Pet. Sci. Technol. doi: 10.1080/10916466.2015.1072559 contributor: fullname: Okoro – volume: 75 start-page: 129 year: 2015 ident: B4 article-title: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame01753 contributor: fullname: Apprill – volume: 42 start-page: 341 year: 2020 ident: B77 article-title: The era of ‘omics’ technologies in the study of microbiologically influenced corrosion publication-title: Biotechnol. Lett. doi: 10.1007/s10529-019-02789-w contributor: fullname: Procopio – volume: 42 start-page: 2169 year: 2021 ident: B3 article-title: Characterization of microbiological influence corrosion for API 5L X46 pipeline by sulphate-reducing bacteria (SRB) publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.12.301 contributor: fullname: Al-Sultani – start-page: D031S030R004 year: 2022 ident: B9 article-title: Oilfield microbiology: Case study of molecular techniques for determining the risk of microbiologically influenced corrosion MIC contributor: fullname: Bennet – volume: 108 start-page: 443 year: 2022 ident: B56 article-title: Implementation of genetic engineering and novel omics approaches to enhance bioremediation: A focused review publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-021-03218-3 contributor: fullname: Malik – year: 2014 ident: B79 article-title: Internal corrosion assessment of the otter oil production spool doi: 10.2118/169603-MS contributor: fullname: Rodrigues – volume: 50 start-page: 223002 year: 2017 ident: B30 article-title: Biofilms and mechanics: a review of experimental techniques and findings publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/aa6b83 contributor: fullname: Gordon – year: 2004 ident: B58 article-title: Monitoring and control of bacterial biofilms in oilfield water handling systems contributor: fullname: Maxwell – volume: 8 start-page: 1737 year: 2017 ident: B47 article-title: Analysis of bacterial community composition of corroded steel immersed in sanya and xiamen seawaters in China via method of illumina MiSeq sequencing publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01737 contributor: fullname: Li – volume: 12 start-page: 4877 year: 2022 ident: B88 article-title: A metagenomic analysis of the bacterial microbiome of limestone, and the role of associated biofilms in the biodeterioration of heritage stone surfaces publication-title: Sci. Rep. doi: 10.1038/s41598-022-08851-4 contributor: fullname: Skipper – start-page: 1 volume-title: Wastewater treatment year: 2021 ident: B43 article-title: Chapter 1 - application of omics technologies for microbial community structure and function analysis in contaminated environment doi: 10.1016/B978-0-12-821881-5.00001-5 contributor: fullname: Kumar – volume: 421 start-page: 127854 year: 2020 ident: B55 article-title: Self-reporting coatings for autonomous detection of coating damage and metal corrosion : A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127854 contributor: fullname: Ma – volume: 97 start-page: 120 year: 2014 ident: B15 article-title: Antifouling strategies and corrosion control in cooling circuits publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2014.01.002 contributor: fullname: Cristiani – volume: 85 start-page: e01381-19 year: 2019 ident: B35 article-title: Microbially influenced corrosion of stainless steel by Acidithiobacillus ferrooxidans supplemented with pyrite: Importance of thiosulfate publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01381-19 contributor: fullname: Inaba – volume: 12 start-page: 722259 year: 2021 ident: B42 article-title: Deep (Meta)genomics and (Meta)transcriptome analyses of fungal and bacteria consortia from aircraft tanks and kerosene identify key genes in fuel and tank corrosion publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.722259 contributor: fullname: Krohn – volume: 5 start-page: 59 year: 2021 ident: B54 article-title: Microbiologically influenced corrosion inhibition of carbon steel via biomineralization induced by Shewanella putrefaciens publication-title: npj Mater. Degrad. doi: 10.1038/s41529-021-00206-0 contributor: fullname: Lou – volume: 3 start-page: 31 year: 2015 ident: B57 article-title: The vocabulary of microbiome research: a proposal publication-title: Microbiome doi: 10.1186/s40168-015-0094-5 contributor: fullname: Marchesi – volume: 27 start-page: 100 year: 2021 ident: B41 article-title: Mikrobiell beeinflusste korrosion — die testungsart entscheidet publication-title: BIOspektrum doi: 10.1007/s12268-021-1507-7 contributor: fullname: Koerdt – volume: 15 start-page: 181 year: 2004 ident: B6 article-title: Biocorrosion: towards understanding interactions between biofilms and metals publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2004.05.001 contributor: fullname: Beech – start-page: 197 volume-title: Understanding biocorrosion: Fundamentals and applications year: 2014 ident: B85 article-title: Surface analysis techniques for investigating biocorrosion doi: 10.1533/9781782421252.2.197 contributor: fullname: Seyeux – start-page: 1 volume-title: TM0106—Detection, Testing, and Evaluation of Microbiologically Influenced Corrosion (MIC) on External Surfaces of Buried Pipelines year: 2016 ident: B64 – volume: 7 start-page: 824 year: 2019 ident: B100 article-title: Bacterial biofilm eradication agents: A current review publication-title: Front. Chem. doi: 10.3389/fchem.2019.00824 contributor: fullname: Verderosa – volume: 126 start-page: 169 year: 2018 ident: B20 article-title: Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2016.11.019 contributor: fullname: Eckert – volume: 5 year: 2018 ident: B32 article-title: Polymers for combating biocorrosion publication-title: Front. Mater. doi: 10.3389/fmats.2018.00010 contributor: fullname: Guo – volume: 11 start-page: 167 year: 2020 ident: B92 article-title: In situ linkage of fungal and bacterial proliferation to microbiologically influenced corrosion in B20 biodiesel storage tanks publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00167 contributor: fullname: Stamps – start-page: 1 volume-title: STEM-Corrosion year: 2015 ident: B19 article-title: Implementation of 50 Key Performance Indicators (KPIs) in Corrosion Control of an Oil Transmission Pipeline contributor: fullname: Ebrahimi – volume: 54 start-page: 439 year: 2007 ident: B8 article-title: Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes publication-title: Microb. Ecol. doi: 10.1007/s00248-007-9233-2 contributor: fullname: Ben-Dov – start-page: 166 volume-title: Electrochemical methods for biomass and biocorrosion monitoring year: 2018 ident: B78 contributor: fullname: Rapp – start-page: 28 volume-title: Encyclopedia of interfacial chemistry: Surface science and electrochemistry year: 2018 ident: B95 article-title: Biocorrosion—Steel doi: 10.1016/B978-0-12-409547-2.13591-7 contributor: fullname: Telegdi – volume: 148 start-page: 908 year: 2021 ident: B16 article-title: A probabilistic model to estimate microbiologically influenced corrosion rate publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.02.006 contributor: fullname: Dawuda – volume: 10 start-page: 12287 year: 2020 ident: B82 article-title: Carbon steel corrosion by bacteria from failed seal rings at an offshore facility publication-title: Sci. Rep. doi: 10.1038/s41598-020-69292-5 contributor: fullname: Salgar-Chaparro – volume: 18 start-page: 1403 year: 2016 ident: B72 article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13023 contributor: fullname: Parada – volume: 34 start-page: 1 year: 2016 ident: B5 article-title: Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals publication-title: Corros. Rev. doi: 10.1515/corrrev-2015-0046 contributor: fullname: Beale – volume: 8 start-page: 99 year: 2017 ident: B10 article-title: Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00099 contributor: fullname: Bonifay – volume: 256 start-page: 119438 year: 2020 ident: B81 article-title: Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2) publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119438 contributor: fullname: Sachan – volume: 7 year: 2020 ident: B87 article-title: Study on microbiologically influenced corrosion resistance of stainless steels with weld seams publication-title: Front. Mater. doi: 10.3389/fmats.2020.00083 contributor: fullname: Shi – volume: 146 start-page: 99 year: 2019 ident: B107 article-title: Mechanistic microbiologically influenced corrosion modeling—A review publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.10.004 contributor: fullname: Marciales – volume: 7 start-page: 100041 year: 2021 ident: B84 article-title: Assessment of microbiologically influenced corrosion in oilfield water handling systems using molecular microbiology methods publication-title: Upstream Oil Gas Technol. doi: 10.1016/j.upstre.2021.100041 contributor: fullname: Senthilmurugan |
SSID | ssj0001325411 |
Score | 2.3072577 |
Snippet | Microorganisms have evolved to inhabit virtually all environments on the planet, from oceanic hot-seeps to pipelines transporting crude and refined... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | biodeterioration biofilms corrosion microbiologically-influenced-corrosion microbiomes omics |
Title | Microbiologically influenced corrosion: The gap in the field |
URI | https://doaj.org/article/d02a1342e64a4545b5d7c8736ffb3b8e |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy_iq1hf7MGTELuPySYrXlRailBPFnoL-5SC1KJV8N87m6S1nrx4zYZk-WaT-b7s5BtCLnwMnkkoMlc6yECaItNI63EtByhRDoSme8P4UY0m8DDNpxutvlJNWGMP3ADX90wYLkEEBQYw3dvcF64spIrRSluG-u3L9IaYqr-uSBQ-nDfbmKjCdD-G-Wey5xbiCiVHCeJXItrw668Ty3CX7LSMkN42M9kjW2G-T7qDnx_QcLB9At8PyM14trZOSvi-fNHZqs-Ipygl8WYI9TXF-NNns8BRihyP1pVqh2QyHDzdj7K2A0LmZA7LzFpmJXc5KCRKERwXVjokPcwE4Npgeg7OlqhKeHDambTtGnnphdMKXGG97JLO_HUejggFwWJURnimIiDN0kZL7iPoklkeFOuRyxUc1aIxuqhQICTsqhq7KmFXNdj1yF0CbH1i8qiuD2DkqjZy1V-RO_6Pi5yQ7TSvVMHB81PSWb59hDOkCUt7Xq-Ib1NKuhU |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiologically+influenced+corrosion%3A+The+gap+in+the+field&rft.jtitle=Frontiers+in+environmental+science&rft.au=Edinson+Puentes-Cala&rft.au=Valentina+Tapia-Perdomo&rft.au=Daniela+Espinosa-Valbuena&rft.au=Mar%C3%ADa+Reyes-Reyes&rft.date=2022-09-15&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-665X&rft.volume=10&rft_id=info:doi/10.3389%2Ffenvs.2022.924842&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d02a1342e64a4545b5d7c8736ffb3b8e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-665X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-665X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-665X&client=summon |