Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion

This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system u t = ∇ · ( D ( u ) ∇ u ) - ∇ · ( u χ ( v ) ∇ v ) , x ∈ Ω , t > 0 , v t = Δ v - u f ( v ) , x ∈ Ω , t > 0 , under homogeneous Neumann boundary conditions in a convex smooth bounded...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Physik Vol. 65; no. 6; pp. 1137 - 1152
Main Authors Wang, Liangchen, Mu, Chunlai, Zhou, Shouming
Format Journal Article
LanguageEnglish
Published Basel Springer Basel 01.12.2014
Subjects
Online AccessGet full text
ISSN0044-2275
1420-9039
DOI10.1007/s00033-013-0375-4

Cover

Loading…
Abstract This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system u t = ∇ · ( D ( u ) ∇ u ) - ∇ · ( u χ ( v ) ∇ v ) , x ∈ Ω , t > 0 , v t = Δ v - u f ( v ) , x ∈ Ω , t > 0 , under homogeneous Neumann boundary conditions in a convex smooth bounded domain Ω ⊂ R n , with nonnegative initial data u 0 ∈ W 1 , θ ( Ω ) (for some θ >  n ) and v 0 ∈ W 1 , ∞ ( Ω ) . The given functions D ( s ) , χ ( s ) and f ( s ) are supposed to be sufficiently smooth for all s  ≥ 0 and such that f (0) = 0. This model describes the motion of the cells (e.g., bacteria) under the effect of gradients of the concentration of the oxygen that is consumed by the cells. It is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in Ω × ( 0 , + ∞ ) provided that some technical conditions are fulfilled.
AbstractList This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system u t = ∇ · ( D ( u ) ∇ u ) - ∇ · ( u χ ( v ) ∇ v ) , x ∈ Ω , t > 0 , v t = Δ v - u f ( v ) , x ∈ Ω , t > 0 , under homogeneous Neumann boundary conditions in a convex smooth bounded domain Ω ⊂ R n , with nonnegative initial data u 0 ∈ W 1 , θ ( Ω ) (for some θ >  n ) and v 0 ∈ W 1 , ∞ ( Ω ) . The given functions D ( s ) , χ ( s ) and f ( s ) are supposed to be sufficiently smooth for all s  ≥ 0 and such that f (0) = 0. This model describes the motion of the cells (e.g., bacteria) under the effect of gradients of the concentration of the oxygen that is consumed by the cells. It is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in Ω × ( 0 , + ∞ ) provided that some technical conditions are fulfilled.
This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system $$\left\{\begin{array}{ll}u_t=\nabla \cdot (D(u) \nabla u)- \nabla \cdot (u \chi(v) \nabla v), \quad \quad x \in \Omega, \quad t > 0,\\v_t = \Delta v-u f(v), \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \Omega, \quad t > 0,\end{array}\right.$$ under homogeneous Neumann boundary conditions in a convex smooth bounded domain \({\Omega\subset \mathbb{R} Delta }\) , with nonnegative initial data \({u_0 \in W1,\theta}{(\Omega)}}\) (for some theta > n) and \({v_0 \in W1,\infty}{(\Omega)}}\) . The given functions \({D(s), \chi(s)}\) and f(s) are supposed to be sufficiently smooth for all s greater than or equal to 0 and such that f(0) = 0. This model describes the motion of the cells (e.g., bacteria) under the effect of gradients of the concentration of the oxygen that is consumed by the cells. It is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in \({\Omega \times (0, +\infty)}\) provided that some technical conditions are fulfilled.
Author Zhou, Shouming
Wang, Liangchen
Mu, Chunlai
Author_xml – sequence: 1
  givenname: Liangchen
  surname: Wang
  fullname: Wang, Liangchen
  email: liangchenwang0110@126.com
  organization: College of Mathematics and Statistics, Chongqing University
– sequence: 2
  givenname: Chunlai
  surname: Mu
  fullname: Mu, Chunlai
  organization: College of Mathematics and Statistics, Chongqing University
– sequence: 3
  givenname: Shouming
  surname: Zhou
  fullname: Zhou, Shouming
  organization: College of Mathematics Science, Chongqing Normal University
BookMark eNp9kE1PwyAYgImZidv0B3jr0UuVjzLaoy5-JUt20TOh9MWxdDCBRvfvZanx4GEHAiHPQ16eGZo47wCha4JvCcbiLmKMGSsxyYsJXlZnaEoqissGs2aCphhXVUmp4BdoFuM204JgNkXrBz-4DjoHMRbWFarYq6Ba31td_p0KvYGdT-rbxiIeYoJd8WXTpsgz9NaBCkVnjRmi9e4SnRvVR7j63efo_enxbflSrtbPr8v7VakZr1LZCtJCwylRQCnFDedEkZpQTUSrjWm4MWyRbzTWLQBUGaVdBy2tGRVaGDZHN-O7--A_B4hJ7mzU0PfKgR-iJAuev18TUmdUjKgOPsYARmqbVMrDpqBsLwmWx4RyTChzQnlMKKtskn_mPtidCoeTDh2dmFn3AUFu_RBcbnFC-gEp3YY4
CitedBy_id crossref_primary_10_1111_sapm_12625
crossref_primary_10_3934_dcdss_2024174
crossref_primary_10_1016_j_jmaa_2018_06_001
crossref_primary_10_1016_j_nonrwa_2018_09_020
crossref_primary_10_1016_j_jde_2025_01_062
crossref_primary_10_1016_j_nonrwa_2021_103407
crossref_primary_10_1080_00036811_2017_1286645
crossref_primary_10_1007_s00033_016_0693_4
crossref_primary_10_1016_j_nonrwa_2020_103090
crossref_primary_10_1063_1_4974245
crossref_primary_10_14232_ejqtde_2019_1_31
crossref_primary_10_1002_mma_3561
crossref_primary_10_1007_s10231_021_01115_4
crossref_primary_10_1002_mma_6971
crossref_primary_10_1017_prm_2024_54
crossref_primary_10_1186_s13661_024_01976_7
crossref_primary_10_1007_s00033_018_1025_7
crossref_primary_10_3934_mbe_2020194
crossref_primary_10_1016_j_jde_2020_12_028
crossref_primary_10_1080_00036811_2018_1478083
crossref_primary_10_1080_00036811_2019_1646421
crossref_primary_10_1515_math_2021_0074
crossref_primary_10_1137_140979708
crossref_primary_10_1186_s13661_015_0372_y
crossref_primary_10_1007_s00033_014_0491_9
crossref_primary_10_1016_j_jmaa_2019_02_022
crossref_primary_10_1007_s00033_015_0557_3
crossref_primary_10_1016_j_nonrwa_2017_11_009
crossref_primary_10_3934_dcdsb_2017032
crossref_primary_10_1007_s12346_023_00873_1
crossref_primary_10_1016_j_jde_2019_10_019
crossref_primary_10_1016_j_nonrwa_2022_103758
crossref_primary_10_1016_j_jmaa_2019_03_002
crossref_primary_10_1016_j_jde_2017_11_019
crossref_primary_10_1016_j_jde_2024_04_028
crossref_primary_10_1017_prm_2019_10
crossref_primary_10_1080_00036811_2020_1721478
crossref_primary_10_3934_dcdsb_2022009
crossref_primary_10_3934_dcds_2025011
crossref_primary_10_1002_mma_4342
crossref_primary_10_1016_j_cnsns_2022_106732
crossref_primary_10_1016_j_jmaa_2022_126893
crossref_primary_10_1016_j_camwa_2017_07_023
crossref_primary_10_1016_j_matcom_2024_09_020
crossref_primary_10_1002_mma_5513
crossref_primary_10_1515_math_2020_0093
crossref_primary_10_1007_s10440_016_0089_7
crossref_primary_10_1142_S021820251550044X
Cites_doi 10.3934/dcds.2014.34.789
10.1016/j.anihpc.2011.04.005
10.1016/j.jde.2004.10.022
10.1002/mma.1146
10.1016/j.matpur.2013.01.020
10.1016/j.na.2012.04.038
10.1080/03605302.2010.497199
10.1007/s00285-008-0201-3
10.1016/j.jde.2010.02.008
10.1007/BF00160334
10.1016/j.anihpc.2009.11.016
10.1017/S0956792501004363
10.1016/j.na.2009.07.045
10.1016/j.jde.2011.08.019
10.1016/j.jmaa.2008.01.005
10.1016/j.jde.2011.07.010
10.1088/0951-7715/21/5/009
10.3934/dcds.2010.28.1437
10.1016/0022-5193(70)90092-5
10.1080/03605302.2011.591865
10.1063/1.2766864
10.1016/j.jde.2012.01.045
10.1002/mana.200810838
10.1090/S0002-9947-1992-1046835-6
10.1142/S0218202510004507
10.1016/j.jmaa.2011.02.041
10.1002/mma.898
10.1016/j.anihpc.2012.07.002
10.1073/pnas.0406724102
10.1016/j.na.2009.06.057
10.1016/j.jmaa.2009.08.012
10.1142/S0218202512500443
10.1080/03605300903473426
10.1093/imrn/rns270
10.1016/j.jde.2010.09.020
10.1006/aama.2001.0721
10.1007/s10440-013-9832-5
ContentType Journal Article
Copyright Springer Basel 2013
Copyright_xml – notice: Springer Basel 2013
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
KR7
L7M
DOI 10.1007/s00033-013-0375-4
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1420-9039
EndPage 1152
ExternalDocumentID 10_1007_s00033_013_0375_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PQQKQ
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TB
7U5
8FD
ABRTQ
FR3
KR7
L7M
ID FETCH-LOGICAL-c354t-b71be9521ae22209551a1812c17bcff95ff36a18c0cbeee49522ddeb28327c7f3
IEDL.DBID U2A
ISSN 0044-2275
IngestDate Thu Sep 04 19:03:33 EDT 2025
Tue Jul 01 03:39:38 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Global existence
92C17
35B35
Chemotaxis
35K55
Boundedness
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-b71be9521ae22209551a1812c17bcff95ff36a18c0cbeee49522ddeb28327c7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651428118
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1651428118
crossref_citationtrail_10_1007_s00033_013_0375_4
crossref_primary_10_1007_s00033_013_0375_4
springer_journals_10_1007_s00033_013_0375_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationSubtitle Journal of Applied Mathematics and Physics / Journal de Mathématiques et de Physique appliquées
PublicationTitle Zeitschrift für angewandte Mathematik und Physik
PublicationTitleAbbrev Z. Angew. Math. Phys
PublicationYear 2014
Publisher Springer Basel
Publisher_xml – name: Springer Basel
References TaoY.WinklerM.Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractantJ. Differ. Equ.20122522520254310.1016/j.jde.2011.07.0101268.350162860628
WinklerM.Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivityMath. Nachr.20102831664167310.1002/mana.2008108381205.350372759803
LiT.WangZ.A.Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxisJ. Differ. Equ.20112501310133310.1016/j.jde.2010.09.0201213.35109
KowalczykR.SzymańskaZ.On the global existence of solutions to an aggregation modelJ. Math. Anal. Appl.200834337939810.1016/j.jmaa.2008.01.0051143.353332412135
HorstmannD.WangG.Blow-up in a chemotaxis model without symmetry assumptionsEur. J. Appl. Math.20011215917710.1017/S09567925010043631017.920061931303
WinklerM.Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid dropsCommun. Partial Differ. Equ.20123731935210.1080/03605302.2011.5918651236.35192
FriedmanA.Partial Differential Equations1969New YorkHolt, Rinehart and Winston0224.35002
TaoY.WinklerM.Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusionDiscrete Contin. Dyn. Syst. Ser. A201232519011914
WinklerM.Does a ‘volume-filling effect’ always prevent chemotactic collapse?Math. Methods Appl. Sci.20103312241182.352202591220
CieślakT.StinnerC.Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensionsJ. Differ. Equ.20122525832585110.1016/j.jde.2012.01.0451252.35087
OsakiK.YagiA.Finite dimensional attractors for one-dimensional Keller-Segel equationsFunkcial. Ekvac.2001444414691145.373371893940
TaoY.Boundedness in a chemotaxis model with oxygen consumption by bacteriaJ. Math. Anal. Appl.201138152152910.1016/j.jmaa.2011.02.0411225.351182802089
WangZ.A.HillenT.Classical solutions and pattern formation for a volume filling chemotaxis modelChaos20071703710810.1063/1.27668642356982
TuvalI.CisnerosL.DombrowskiC.WolgemuthC.W.KesslerJ.O.GoldsteinR.E.Bacterial swimming and oxygen transport near contact linesProc. Natl. Acad. Sci. USA20051022277228210.1073/pnas.04067241021277.35332
HorstmannD.WinklerM.Boundedness vs. blow-up in a chemotaxis systemJ. Differ. Equ.20052155210710.1016/j.jde.2004.10.0221085.350652146345
TaoY.WinklerM.Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusionAnn. I. H. Poincaré-AN20133015717810.1016/j.anihpc.2012.07.0021283.351543011296
TaoY.WinklerM.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivityJ. Differ. Equ.201225269271510.1016/j.jde.2011.08.019059865292852223
CieślakT.LaurençotP.Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis systemAnn. I. H. Poincaré-AN20102743744610.1016/j.anihpc.2009.11.0161270.35377
NagaiT.IkedaT.Traveling waves in a chemotaxis modelJ. Math. Biol.19913016918410.1007/BF001603340742.920011138847
WinklerM.DjieK.C.Boundedness and finite-time collapse in a chemotaxis system with volume-filling effectNonlinear Anal.2010721044106410.1016/j.na.2009.07.0451183.920122579368
YagiA.Norm behavior of solutions to a parabolic system of chemotaxisMath. Japon.1997452412650910.920071441498
BurczakJ.CiéslakT.Morales-RodrigoC.Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller–Segel systemNonlinear Anal.2012755215522810.1016/j.na.2012.04.0381246.350992927584
ChoiY.S.WangZ.A.Prevention of blow-up by fast diffusion in chemotaxisJ. Math. Anal. Appl.201036255356410.1016/j.jmaa.2009.08.0121186.351002557709
WangL.C.LiY.H.MuC.L.Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic sourceDiscrete Contin. Dyn. Syst. Ser. A20143478980210.3934/dcds.2014.34.7891277.352153094606
WangZ.A.HillenT.Shock formation in a chemotaxis modelMath. Methods Appl. Sci.200831457010.1002/mma.8981147.350572373922
NirenbergL.An extended interpolation inequalityAnn. Sc. Norm. Super. Pisa Cl. Sci.19662047337370163.29905208360
JägerW.LuckhausS.On explosions of solutions to a system of partial differential equations modelling chemotaxisTrans. Am. Math. Soc.199232981982410.1090/S0002-9947-1992-1046835-60746.35002
LiuJ.-G.LorzA.A coupled chemotaxis-fluid model: global existenceAnn. I. H. Poincaré-AN20112864365210.1016/j.anihpc.2011.04.0051236.920132838394
TaoY.WangZ.A.Competing effects of attraction vs. repulsion in chemotaxisMath. Models Methods Appl. Sci.20132313610.1142/S0218202512500443061444192997466
WinklerM.Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel modelJ. Differ. Equ.20102482889290510.1016/j.jde.2010.02.0081190.92004
Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Mathematik, vol. 133, pp. 9–126. Teubner, Stuttgart, Leipzig, (1993)
Duan, R.J., Xiang, Z.Y.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Notices (2012). doi:10.1093/imrn/rns270
KellerE.F.SegelL.A.Traveling bands of chemotactic bacteria: a theoretical analysisJ. Theor. Biol.197130377380
CieślakT.WinklerM.Finite-time blow-up in a quasilinear system of chemotaxisNonlinearity2008211057107610.1088/0951-7715/21/5/0091136.920062412327
KellerE.F.SegelL.A.Initiation of slime mold aggregation viewed as an instabilityJ. Theor. Biol.19702639941510.1016/0022-5193(70)90092-51170.92306
DelgadoM.GayteI.Morales-RodrigoC.SuárezA.An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundaryNonlinear Anal.20107233034710.1016/j.na.2009.06.0571254.351272574943
Di FrancescoM.LorzA.MarkowichP.A.Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behaviorDiscrete Contin. Dyn. Syst. Ser. A2010281437145310.3934/dcds.2010.28.14371276.35103
Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. (2013). doi:10.1016/j.matpur.2013.01.020
HillenT.PainterK.J.A user’s guide to PDE models for chemotaxisJ. Math. Biol.20095818321710.1007/s00285-008-0201-31161.920032448428
HerreroM.A.VelázquezJ.J.L.A blow-up mechanism for a chemotaxis modelAnn. Sc. Norm. Super. Pisa Cl. Sci.19972446336830904.35037
HillenT.PainterK.J.Global existence for a parabolic chemotaxis model with prevention of overcrowdingAdv. Appl. Math.20012628030110.1006/aama.2001.07210998.920061826309
DuanR.J.LorzA.MarkowichP.A.Global solutions to the coupled chemotaxis-fluid equations, CommPartial Differ. Equ.2010351635167310.1080/03605302.2010.4971991275.350052754058
NagaiT.SenbaT.YoshidaK.Application of the Trudinger-Moser inequality to a parabolic system of chemotaxisFunkcial. Ekvac. Ser. Int.1997404114330901.351041610709
PainterK.J.HillenT.Volume-filling and quorum-sensing in models for chemosensitive movementCan. Appl. Math. Q.2002105015431057.920132052525
LorzA.Coupled chemotaxis fluid modelMath. Models Methods Appl. Sci.201020987100410.1142/S02182025100045071191.920042659745
Cieślak T., Stinner C.:Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. (2013). doi:10.1007/s10440-013-9832-5
WinklerM.Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic sourceComm. Partial Differ. Equ.2010351516153710.1080/036053009034734261290.35139
Y. Tao (375_CR33) 2012; 252
375_CR43
W. Jäger (375_CR18) 1992; 329
T. Hillen (375_CR15) 2001; 26
M. Winkler (375_CR40) 2010; 33
M. Winkler (375_CR41) 2012; 37
T. Cieślak (375_CR5) 2008; 21
R. Kowalczyk (375_CR21) 2008; 343
Y. Tao (375_CR35) 2013; 30
Z.A. Wang (375_CR38) 2007; 17
T. Nagai (375_CR26) 1997; 40
Y. Tao (375_CR32) 2012; 252
M. Winkler (375_CR42) 2010; 248
K. Osaki (375_CR28) 2001; 44
A. Friedman (375_CR12) 1969
T. Hillen (375_CR14) 2009; 58
E.F. Keller (375_CR19) 1970; 26
K.J. Painter (375_CR29) 2002; 10
L.C. Wang (375_CR37) 2014; 34
Z.A. Wang (375_CR39) 2008; 31
A. Lorz (375_CR24) 2010; 20
T. Cieślak (375_CR7) 2010; 27
375_CR10
R.J. Duan (375_CR9) 2010; 35
T. Nagai (375_CR25) 1991; 30
375_CR34
I. Tuval (375_CR36) 2005; 102
J. Burczak (375_CR2) 2012; 75
M. Francesco Di (375_CR11) 2010; 28
E.F. Keller (375_CR20) 1971; 30
T. Li (375_CR22) 2011; 250
A. Yagi (375_CR47) 1997; 45
Y.S. Choi (375_CR3) 2010; 362
M. Winkler (375_CR46) 2010; 35
T. Cieślak (375_CR4) 2012; 252
Y. Tao (375_CR31) 2013; 23
D. Horstmann (375_CR17) 2005; 215
M.A. Herrero (375_CR13) 1997; 24
L. Nirenberg (375_CR27) 1966; 20
M. Delgado (375_CR8) 2010; 72
375_CR6
J.-G. Liu (375_CR23) 2011; 28
Y. Tao (375_CR30) 2011; 381
375_CR1
M. Winkler (375_CR44) 2010; 283
M. Winkler (375_CR45) 2010; 72
D. Horstmann (375_CR16) 2001; 12
References_xml – reference: ChoiY.S.WangZ.A.Prevention of blow-up by fast diffusion in chemotaxisJ. Math. Anal. Appl.201036255356410.1016/j.jmaa.2009.08.0121186.351002557709
– reference: HillenT.PainterK.J.A user’s guide to PDE models for chemotaxisJ. Math. Biol.20095818321710.1007/s00285-008-0201-31161.920032448428
– reference: TaoY.WangZ.A.Competing effects of attraction vs. repulsion in chemotaxisMath. Models Methods Appl. Sci.20132313610.1142/S0218202512500443061444192997466
– reference: LiT.WangZ.A.Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxisJ. Differ. Equ.20112501310133310.1016/j.jde.2010.09.0201213.35109
– reference: Di FrancescoM.LorzA.MarkowichP.A.Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behaviorDiscrete Contin. Dyn. Syst. Ser. A2010281437145310.3934/dcds.2010.28.14371276.35103
– reference: KowalczykR.SzymańskaZ.On the global existence of solutions to an aggregation modelJ. Math. Anal. Appl.200834337939810.1016/j.jmaa.2008.01.0051143.353332412135
– reference: TaoY.Boundedness in a chemotaxis model with oxygen consumption by bacteriaJ. Math. Anal. Appl.201138152152910.1016/j.jmaa.2011.02.0411225.351182802089
– reference: Cieślak T., Stinner C.:Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. (2013). doi:10.1007/s10440-013-9832-5
– reference: JägerW.LuckhausS.On explosions of solutions to a system of partial differential equations modelling chemotaxisTrans. Am. Math. Soc.199232981982410.1090/S0002-9947-1992-1046835-60746.35002
– reference: WangZ.A.HillenT.Shock formation in a chemotaxis modelMath. Methods Appl. Sci.200831457010.1002/mma.8981147.350572373922
– reference: WinklerM.Does a ‘volume-filling effect’ always prevent chemotactic collapse?Math. Methods Appl. Sci.20103312241182.352202591220
– reference: YagiA.Norm behavior of solutions to a parabolic system of chemotaxisMath. Japon.1997452412650910.920071441498
– reference: NirenbergL.An extended interpolation inequalityAnn. Sc. Norm. Super. Pisa Cl. Sci.19662047337370163.29905208360
– reference: WinklerM.Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid dropsCommun. Partial Differ. Equ.20123731935210.1080/03605302.2011.5918651236.35192
– reference: WinklerM.Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivityMath. Nachr.20102831664167310.1002/mana.2008108381205.350372759803
– reference: TuvalI.CisnerosL.DombrowskiC.WolgemuthC.W.KesslerJ.O.GoldsteinR.E.Bacterial swimming and oxygen transport near contact linesProc. Natl. Acad. Sci. USA20051022277228210.1073/pnas.04067241021277.35332
– reference: OsakiK.YagiA.Finite dimensional attractors for one-dimensional Keller-Segel equationsFunkcial. Ekvac.2001444414691145.373371893940
– reference: TaoY.WinklerM.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivityJ. Differ. Equ.201225269271510.1016/j.jde.2011.08.019059865292852223
– reference: KellerE.F.SegelL.A.Traveling bands of chemotactic bacteria: a theoretical analysisJ. Theor. Biol.197130377380
– reference: WangZ.A.HillenT.Classical solutions and pattern formation for a volume filling chemotaxis modelChaos20071703710810.1063/1.27668642356982
– reference: WinklerM.Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic sourceComm. Partial Differ. Equ.2010351516153710.1080/036053009034734261290.35139
– reference: HorstmannD.WinklerM.Boundedness vs. blow-up in a chemotaxis systemJ. Differ. Equ.20052155210710.1016/j.jde.2004.10.0221085.350652146345
– reference: PainterK.J.HillenT.Volume-filling and quorum-sensing in models for chemosensitive movementCan. Appl. Math. Q.2002105015431057.920132052525
– reference: WinklerM.DjieK.C.Boundedness and finite-time collapse in a chemotaxis system with volume-filling effectNonlinear Anal.2010721044106410.1016/j.na.2009.07.0451183.920122579368
– reference: KellerE.F.SegelL.A.Initiation of slime mold aggregation viewed as an instabilityJ. Theor. Biol.19702639941510.1016/0022-5193(70)90092-51170.92306
– reference: WangL.C.LiY.H.MuC.L.Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic sourceDiscrete Contin. Dyn. Syst. Ser. A20143478980210.3934/dcds.2014.34.7891277.352153094606
– reference: CieślakT.StinnerC.Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensionsJ. Differ. Equ.20122525832585110.1016/j.jde.2012.01.0451252.35087
– reference: CieślakT.WinklerM.Finite-time blow-up in a quasilinear system of chemotaxisNonlinearity2008211057107610.1088/0951-7715/21/5/0091136.920062412327
– reference: Duan, R.J., Xiang, Z.Y.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Notices (2012). doi:10.1093/imrn/rns270
– reference: LiuJ.-G.LorzA.A coupled chemotaxis-fluid model: global existenceAnn. I. H. Poincaré-AN20112864365210.1016/j.anihpc.2011.04.0051236.920132838394
– reference: Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. (2013). doi:10.1016/j.matpur.2013.01.020
– reference: HorstmannD.WangG.Blow-up in a chemotaxis model without symmetry assumptionsEur. J. Appl. Math.20011215917710.1017/S09567925010043631017.920061931303
– reference: HerreroM.A.VelázquezJ.J.L.A blow-up mechanism for a chemotaxis modelAnn. Sc. Norm. Super. Pisa Cl. Sci.19972446336830904.35037
– reference: DelgadoM.GayteI.Morales-RodrigoC.SuárezA.An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundaryNonlinear Anal.20107233034710.1016/j.na.2009.06.0571254.351272574943
– reference: FriedmanA.Partial Differential Equations1969New YorkHolt, Rinehart and Winston0224.35002
– reference: WinklerM.Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel modelJ. Differ. Equ.20102482889290510.1016/j.jde.2010.02.0081190.92004
– reference: NagaiT.SenbaT.YoshidaK.Application of the Trudinger-Moser inequality to a parabolic system of chemotaxisFunkcial. Ekvac. Ser. Int.1997404114330901.351041610709
– reference: TaoY.WinklerM.Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusionAnn. I. H. Poincaré-AN20133015717810.1016/j.anihpc.2012.07.0021283.351543011296
– reference: DuanR.J.LorzA.MarkowichP.A.Global solutions to the coupled chemotaxis-fluid equations, CommPartial Differ. Equ.2010351635167310.1080/03605302.2010.4971991275.350052754058
– reference: NagaiT.IkedaT.Traveling waves in a chemotaxis modelJ. Math. Biol.19913016918410.1007/BF001603340742.920011138847
– reference: BurczakJ.CiéslakT.Morales-RodrigoC.Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller–Segel systemNonlinear Anal.2012755215522810.1016/j.na.2012.04.0381246.350992927584
– reference: LorzA.Coupled chemotaxis fluid modelMath. Models Methods Appl. Sci.201020987100410.1142/S02182025100045071191.920042659745
– reference: TaoY.WinklerM.Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractantJ. Differ. Equ.20122522520254310.1016/j.jde.2011.07.0101268.350162860628
– reference: TaoY.WinklerM.Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusionDiscrete Contin. Dyn. Syst. Ser. A201232519011914
– reference: Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Mathematik, vol. 133, pp. 9–126. Teubner, Stuttgart, Leipzig, (1993)
– reference: CieślakT.LaurençotP.Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis systemAnn. I. H. Poincaré-AN20102743744610.1016/j.anihpc.2009.11.0161270.35377
– reference: HillenT.PainterK.J.Global existence for a parabolic chemotaxis model with prevention of overcrowdingAdv. Appl. Math.20012628030110.1006/aama.2001.07210998.920061826309
– volume: 34
  start-page: 789
  year: 2014
  ident: 375_CR37
  publication-title: Discrete Contin. Dyn. Syst. Ser. A
  doi: 10.3934/dcds.2014.34.789
– volume: 28
  start-page: 643
  year: 2011
  ident: 375_CR23
  publication-title: Ann. I. H. Poincaré-AN
  doi: 10.1016/j.anihpc.2011.04.005
– volume: 215
  start-page: 52
  year: 2005
  ident: 375_CR17
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2004.10.022
– volume: 33
  start-page: 12
  year: 2010
  ident: 375_CR40
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1146
– ident: 375_CR43
  doi: 10.1016/j.matpur.2013.01.020
– volume: 75
  start-page: 5215
  year: 2012
  ident: 375_CR2
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2012.04.038
– volume-title: Partial Differential Equations
  year: 1969
  ident: 375_CR12
– volume: 35
  start-page: 1635
  year: 2010
  ident: 375_CR9
  publication-title: Partial Differ. Equ.
  doi: 10.1080/03605302.2010.497199
– volume: 58
  start-page: 183
  year: 2009
  ident: 375_CR14
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-008-0201-3
– volume: 248
  start-page: 2889
  year: 2010
  ident: 375_CR42
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.02.008
– volume: 44
  start-page: 441
  year: 2001
  ident: 375_CR28
  publication-title: Funkcial. Ekvac.
– volume: 30
  start-page: 169
  year: 1991
  ident: 375_CR25
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00160334
– volume: 27
  start-page: 437
  year: 2010
  ident: 375_CR7
  publication-title: Ann. I. H. Poincaré-AN
  doi: 10.1016/j.anihpc.2009.11.016
– volume: 12
  start-page: 159
  year: 2001
  ident: 375_CR16
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792501004363
– volume: 40
  start-page: 411
  year: 1997
  ident: 375_CR26
  publication-title: Funkcial. Ekvac. Ser. Int.
– volume: 72
  start-page: 1044
  year: 2010
  ident: 375_CR45
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.07.045
– volume: 20
  start-page: 733
  issue: 4
  year: 1966
  ident: 375_CR27
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci.
– volume: 252
  start-page: 692
  year: 2012
  ident: 375_CR33
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.08.019
– volume: 343
  start-page: 379
  year: 2008
  ident: 375_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.01.005
– volume: 252
  start-page: 2520
  year: 2012
  ident: 375_CR32
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.07.010
– volume: 45
  start-page: 241
  year: 1997
  ident: 375_CR47
  publication-title: Math. Japon.
– ident: 375_CR34
– volume: 21
  start-page: 1057
  year: 2008
  ident: 375_CR5
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/5/009
– volume: 28
  start-page: 1437
  year: 2010
  ident: 375_CR11
  publication-title: Discrete Contin. Dyn. Syst. Ser. A
  doi: 10.3934/dcds.2010.28.1437
– volume: 26
  start-page: 399
  year: 1970
  ident: 375_CR19
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(70)90092-5
– volume: 37
  start-page: 319
  year: 2012
  ident: 375_CR41
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2011.591865
– volume: 17
  start-page: 037108
  year: 2007
  ident: 375_CR38
  publication-title: Chaos
  doi: 10.1063/1.2766864
– volume: 30
  start-page: 377
  year: 1971
  ident: 375_CR20
  publication-title: J. Theor. Biol.
– volume: 252
  start-page: 5832
  year: 2012
  ident: 375_CR4
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.01.045
– volume: 283
  start-page: 1664
  year: 2010
  ident: 375_CR44
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200810838
– volume: 329
  start-page: 819
  year: 1992
  ident: 375_CR18
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1992-1046835-6
– volume: 20
  start-page: 987
  year: 2010
  ident: 375_CR24
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202510004507
– volume: 381
  start-page: 521
  year: 2011
  ident: 375_CR30
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.02.041
– volume: 31
  start-page: 45
  year: 2008
  ident: 375_CR39
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.898
– volume: 30
  start-page: 157
  year: 2013
  ident: 375_CR35
  publication-title: Ann. I. H. Poincaré-AN
  doi: 10.1016/j.anihpc.2012.07.002
– volume: 102
  start-page: 2277
  year: 2005
  ident: 375_CR36
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0406724102
– volume: 72
  start-page: 330
  year: 2010
  ident: 375_CR8
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.06.057
– volume: 362
  start-page: 553
  year: 2010
  ident: 375_CR3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.08.012
– volume: 23
  start-page: 1
  year: 2013
  ident: 375_CR31
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202512500443
– volume: 35
  start-page: 1516
  year: 2010
  ident: 375_CR46
  publication-title: Comm. Partial Differ. Equ.
  doi: 10.1080/03605300903473426
– ident: 375_CR10
  doi: 10.1093/imrn/rns270
– volume: 250
  start-page: 1310
  year: 2011
  ident: 375_CR22
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.09.020
– volume: 10
  start-page: 501
  year: 2002
  ident: 375_CR29
  publication-title: Can. Appl. Math. Q.
– ident: 375_CR1
– volume: 26
  start-page: 280
  year: 2001
  ident: 375_CR15
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.2001.0721
– ident: 375_CR6
  doi: 10.1007/s10440-013-9832-5
– volume: 24
  start-page: 633
  issue: 4
  year: 1997
  ident: 375_CR13
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci.
SSID ssj0007103
Score 2.2562797
Snippet This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system u t = ∇ · ( D ( u ) ∇ u ) - ∇ · ( u χ ( v ) ∇...
This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system $$\left\{\begin{array}{ll}u_t=\nabla \cdot...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1137
SubjectTerms Bacteria
Boundary conditions
Boundary value problems
Concentration gradient
Diffusion
Engineering
Mathematical analysis
Mathematical Methods in Physics
Mathematical models
Nonlinearity
Theoretical and Applied Mechanics
Title Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion
URI https://link.springer.com/article/10.1007/s00033-013-0375-4
https://www.proquest.com/docview/1651428118
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Q9AH0ak4P0YEn5TA1ibN-jhlcyjTFwfzqSRpCgOpsm7gn-9dv_xABd_akqZwl95H7vL7AZw7o7ou8S132mguTCx4qJKQB0RskUipwpwMZnIfjKfidiZn5TnurOp2r0qSuaWuD7t1c96xnI3AV5KLdWhKTN2pj2_qDWrziy6zLCsL7nlKVqXMn6b46ow-IsxvRdHc14x2YLsMEtmg0OourLm0BVufoAPxblLjrWYt2MgbOW22Bw9XxJPkYrJgbJ4yzQjc2xD6L6-vGGoKVaTf5hkroJwZ7ceytMDN0AtGvCkr2kjbh-lo-Hg95iVpAre-FEtuVM-4EJ2yduj6CWCup8mL254yNklCmSR-gE9s1xrnHOZHnocmzhBlkbIq8Q-ggV9zh8B85QVaSKslwZn3jYkDNAdxP5Cek9Z4behW0otsiShOxBbPUY2FnAs8QoFHJPBItOGifuW1gNP4a_BZpZIIFz1VMnTqXlZZ1AskIcVhctSGy0pXUfn3Zb_PePSv0cewieGRKJpXTqCxXKzcKYYgS9OB5uDm6W7YyZfeO2-W0z8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RdSDj6pYnxE8KSntbrJxj1Wq9VG9VKinkGSzUJQqbgvir3eyLx-o0Nvuks1mM8nMJDP5PoBDq0XTxr6hVmlFmY4YDUUc0sARW8ScizAlg-ndBt17djXgg_wcd1JkuxchyVRTl4fdminvWMpG4AtO2SxUGS7BWQWq7YuH606pgNFo5oFlRj1P8CKY-Vsl383Rp4_5IyyaWpvzZegX7cySTB4bk7FumPcfEI5T_sgKLOXeJ2lnw2UVZuyoBotfMAnxrlcCuSY1mEszRE2yBnenjoDJRk41kuGIKOJQw7WDFablFcEhgLJXb8OEZBjRxG30klEGyKFeiSNkmbgdunW4P-_0z7o0Z2OgxudsTLVoaRuitVcWfQqHXNdSzj0wLaFNHIc8jv0An5im0dZaXHh5HupO7biQhBGxvwEV_JrdBOILL1CMG8UdTvqJ1lGAeiY6CbhnudFeHZqFUKTJocodY8aTLEGW0z6U2IfS9aFkdTgqX3nJcDr-K3xQSFribHIhEjWyz5NEtgLuIOhw1VWH40J6Mp_Wyd81bk1Veh_mu_3ejby5vL3ehgX0wViWIbMDlfHrxO6inzPWe_m4_gAXTvFS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFD7RJRh4AEGJi6I14UlSdi7tdOdxEdbVFfQBEniqbadNNppxszObEH69PXMTiJIY32YmnVt7evq15_T7APatFoF1saFWaUWZzhhNhUtpgsIWjnORVmIwp2fJ5IJ9uuSXjc5p0Wa7tyHJek8DsjTl5WCeuUG38S2oNMgqZYJYcMoewwpDbvYerIw-XE1POmfsB9AmyMxoFAneBjb_9JC7Q9NvvHkvRFqNPONN-NZ-c51w8v1wWepDc3OPzvE_fuopbDSolIxqM9qCRzbfhvVbXIX-7LQjeC22YbXKHDXFM_hyhMJMNkOXSWY5UQTZxDXSDdPuiHjT8DahrmcFqbmjCS4Ak7wm6lALgkItS1y5ew4X45Pz9xPaqDRQE3NWUi1CbVOPApT1WAMZ7UKFsMGEQhvnUu5cnPgrJjDaWusnZFHkfapGjSRhhIt3oOffZl8AiUWUKMaN4sifPtQ6S7z_yYYJjyw3OupD0DaQNA2FOSpp_JAd-XJVh9LXocQ6lKwP77pb5jV_x0OF37atLn0vw9CJyu3PZSHDhCM1nZ-N9eGgbUnZdPfi70_c_afSb-DJ1-Ox_PzxbPoS1jw0Y3XizCvolYul3fPwp9SvGxP_BT-s-jY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundedness+in+a+parabolic-parabolic+chemotaxis+system+with+nonlinear+diffusion&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Wang%2C+Liangchen&rft.au=Mu%2C+Chunlai&rft.au=Zhou%2C+Shouming&rft.date=2014-12-01&rft.pub=Springer+Basel&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=65&rft.issue=6&rft.spage=1137&rft.epage=1152&rft_id=info:doi/10.1007%2Fs00033-013-0375-4&rft.externalDocID=10_1007_s00033_013_0375_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon