Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion
This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system u t = ∇ · ( D ( u ) ∇ u ) - ∇ · ( u χ ( v ) ∇ v ) , x ∈ Ω , t > 0 , v t = Δ v - u f ( v ) , x ∈ Ω , t > 0 , under homogeneous Neumann boundary conditions in a convex smooth bounded...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Physik Vol. 65; no. 6; pp. 1137 - 1152 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
Springer Basel
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-2275 1420-9039 |
DOI | 10.1007/s00033-013-0375-4 |
Cover
Loading…
Abstract | This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system
u
t
=
∇
·
(
D
(
u
)
∇
u
)
-
∇
·
(
u
χ
(
v
)
∇
v
)
,
x
∈
Ω
,
t
>
0
,
v
t
=
Δ
v
-
u
f
(
v
)
,
x
∈
Ω
,
t
>
0
,
under homogeneous Neumann boundary conditions in a convex smooth bounded domain
Ω
⊂
R
n
, with nonnegative initial data
u
0
∈
W
1
,
θ
(
Ω
)
(for some θ >
n
) and
v
0
∈
W
1
,
∞
(
Ω
)
. The given functions
D
(
s
)
,
χ
(
s
)
and
f
(
s
) are supposed to be sufficiently smooth for all
s
≥ 0 and such that
f
(0) = 0. This model describes the motion of the cells (e.g., bacteria) under the effect of gradients of the concentration of the oxygen that is consumed by the cells. It is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in
Ω
×
(
0
,
+
∞
)
provided that some technical conditions are fulfilled. |
---|---|
AbstractList | This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system
u
t
=
∇
·
(
D
(
u
)
∇
u
)
-
∇
·
(
u
χ
(
v
)
∇
v
)
,
x
∈
Ω
,
t
>
0
,
v
t
=
Δ
v
-
u
f
(
v
)
,
x
∈
Ω
,
t
>
0
,
under homogeneous Neumann boundary conditions in a convex smooth bounded domain
Ω
⊂
R
n
, with nonnegative initial data
u
0
∈
W
1
,
θ
(
Ω
)
(for some θ >
n
) and
v
0
∈
W
1
,
∞
(
Ω
)
. The given functions
D
(
s
)
,
χ
(
s
)
and
f
(
s
) are supposed to be sufficiently smooth for all
s
≥ 0 and such that
f
(0) = 0. This model describes the motion of the cells (e.g., bacteria) under the effect of gradients of the concentration of the oxygen that is consumed by the cells. It is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in
Ω
×
(
0
,
+
∞
)
provided that some technical conditions are fulfilled. This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system $$\left\{\begin{array}{ll}u_t=\nabla \cdot (D(u) \nabla u)- \nabla \cdot (u \chi(v) \nabla v), \quad \quad x \in \Omega, \quad t > 0,\\v_t = \Delta v-u f(v), \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \Omega, \quad t > 0,\end{array}\right.$$ under homogeneous Neumann boundary conditions in a convex smooth bounded domain \({\Omega\subset \mathbb{R} Delta }\) , with nonnegative initial data \({u_0 \in W1,\theta}{(\Omega)}}\) (for some theta > n) and \({v_0 \in W1,\infty}{(\Omega)}}\) . The given functions \({D(s), \chi(s)}\) and f(s) are supposed to be sufficiently smooth for all s greater than or equal to 0 and such that f(0) = 0. This model describes the motion of the cells (e.g., bacteria) under the effect of gradients of the concentration of the oxygen that is consumed by the cells. It is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in \({\Omega \times (0, +\infty)}\) provided that some technical conditions are fulfilled. |
Author | Zhou, Shouming Wang, Liangchen Mu, Chunlai |
Author_xml | – sequence: 1 givenname: Liangchen surname: Wang fullname: Wang, Liangchen email: liangchenwang0110@126.com organization: College of Mathematics and Statistics, Chongqing University – sequence: 2 givenname: Chunlai surname: Mu fullname: Mu, Chunlai organization: College of Mathematics and Statistics, Chongqing University – sequence: 3 givenname: Shouming surname: Zhou fullname: Zhou, Shouming organization: College of Mathematics Science, Chongqing Normal University |
BookMark | eNp9kE1PwyAYgImZidv0B3jr0UuVjzLaoy5-JUt20TOh9MWxdDCBRvfvZanx4GEHAiHPQ16eGZo47wCha4JvCcbiLmKMGSsxyYsJXlZnaEoqissGs2aCphhXVUmp4BdoFuM204JgNkXrBz-4DjoHMRbWFarYq6Ba31td_p0KvYGdT-rbxiIeYoJd8WXTpsgz9NaBCkVnjRmi9e4SnRvVR7j63efo_enxbflSrtbPr8v7VakZr1LZCtJCwylRQCnFDedEkZpQTUSrjWm4MWyRbzTWLQBUGaVdBy2tGRVaGDZHN-O7--A_B4hJ7mzU0PfKgR-iJAuev18TUmdUjKgOPsYARmqbVMrDpqBsLwmWx4RyTChzQnlMKKtskn_mPtidCoeTDh2dmFn3AUFu_RBcbnFC-gEp3YY4 |
CitedBy_id | crossref_primary_10_1111_sapm_12625 crossref_primary_10_3934_dcdss_2024174 crossref_primary_10_1016_j_jmaa_2018_06_001 crossref_primary_10_1016_j_nonrwa_2018_09_020 crossref_primary_10_1016_j_jde_2025_01_062 crossref_primary_10_1016_j_nonrwa_2021_103407 crossref_primary_10_1080_00036811_2017_1286645 crossref_primary_10_1007_s00033_016_0693_4 crossref_primary_10_1016_j_nonrwa_2020_103090 crossref_primary_10_1063_1_4974245 crossref_primary_10_14232_ejqtde_2019_1_31 crossref_primary_10_1002_mma_3561 crossref_primary_10_1007_s10231_021_01115_4 crossref_primary_10_1002_mma_6971 crossref_primary_10_1017_prm_2024_54 crossref_primary_10_1186_s13661_024_01976_7 crossref_primary_10_1007_s00033_018_1025_7 crossref_primary_10_3934_mbe_2020194 crossref_primary_10_1016_j_jde_2020_12_028 crossref_primary_10_1080_00036811_2018_1478083 crossref_primary_10_1080_00036811_2019_1646421 crossref_primary_10_1515_math_2021_0074 crossref_primary_10_1137_140979708 crossref_primary_10_1186_s13661_015_0372_y crossref_primary_10_1007_s00033_014_0491_9 crossref_primary_10_1016_j_jmaa_2019_02_022 crossref_primary_10_1007_s00033_015_0557_3 crossref_primary_10_1016_j_nonrwa_2017_11_009 crossref_primary_10_3934_dcdsb_2017032 crossref_primary_10_1007_s12346_023_00873_1 crossref_primary_10_1016_j_jde_2019_10_019 crossref_primary_10_1016_j_nonrwa_2022_103758 crossref_primary_10_1016_j_jmaa_2019_03_002 crossref_primary_10_1016_j_jde_2017_11_019 crossref_primary_10_1016_j_jde_2024_04_028 crossref_primary_10_1017_prm_2019_10 crossref_primary_10_1080_00036811_2020_1721478 crossref_primary_10_3934_dcdsb_2022009 crossref_primary_10_3934_dcds_2025011 crossref_primary_10_1002_mma_4342 crossref_primary_10_1016_j_cnsns_2022_106732 crossref_primary_10_1016_j_jmaa_2022_126893 crossref_primary_10_1016_j_camwa_2017_07_023 crossref_primary_10_1016_j_matcom_2024_09_020 crossref_primary_10_1002_mma_5513 crossref_primary_10_1515_math_2020_0093 crossref_primary_10_1007_s10440_016_0089_7 crossref_primary_10_1142_S021820251550044X |
Cites_doi | 10.3934/dcds.2014.34.789 10.1016/j.anihpc.2011.04.005 10.1016/j.jde.2004.10.022 10.1002/mma.1146 10.1016/j.matpur.2013.01.020 10.1016/j.na.2012.04.038 10.1080/03605302.2010.497199 10.1007/s00285-008-0201-3 10.1016/j.jde.2010.02.008 10.1007/BF00160334 10.1016/j.anihpc.2009.11.016 10.1017/S0956792501004363 10.1016/j.na.2009.07.045 10.1016/j.jde.2011.08.019 10.1016/j.jmaa.2008.01.005 10.1016/j.jde.2011.07.010 10.1088/0951-7715/21/5/009 10.3934/dcds.2010.28.1437 10.1016/0022-5193(70)90092-5 10.1080/03605302.2011.591865 10.1063/1.2766864 10.1016/j.jde.2012.01.045 10.1002/mana.200810838 10.1090/S0002-9947-1992-1046835-6 10.1142/S0218202510004507 10.1016/j.jmaa.2011.02.041 10.1002/mma.898 10.1016/j.anihpc.2012.07.002 10.1073/pnas.0406724102 10.1016/j.na.2009.06.057 10.1016/j.jmaa.2009.08.012 10.1142/S0218202512500443 10.1080/03605300903473426 10.1093/imrn/rns270 10.1016/j.jde.2010.09.020 10.1006/aama.2001.0721 10.1007/s10440-013-9832-5 |
ContentType | Journal Article |
Copyright | Springer Basel 2013 |
Copyright_xml | – notice: Springer Basel 2013 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 KR7 L7M |
DOI | 10.1007/s00033-013-0375-4 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
EISSN | 1420-9039 |
EndPage | 1152 |
ExternalDocumentID | 10_1007_s00033_013_0375_4 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFFNX AFLOW AFQWF AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PQQKQ PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TB 7U5 8FD ABRTQ FR3 KR7 L7M |
ID | FETCH-LOGICAL-c354t-b71be9521ae22209551a1812c17bcff95ff36a18c0cbeee49522ddeb28327c7f3 |
IEDL.DBID | U2A |
ISSN | 0044-2275 |
IngestDate | Thu Sep 04 19:03:33 EDT 2025 Tue Jul 01 03:39:38 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Fri Feb 21 02:38:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Global existence 92C17 35B35 Chemotaxis 35K55 Boundedness |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-b71be9521ae22209551a1812c17bcff95ff36a18c0cbeee49522ddeb28327c7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1651428118 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1651428118 crossref_citationtrail_10_1007_s00033_013_0375_4 crossref_primary_10_1007_s00033_013_0375_4 springer_journals_10_1007_s00033_013_0375_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationSubtitle | Journal of Applied Mathematics and Physics / Journal de Mathématiques et de Physique appliquées |
PublicationTitle | Zeitschrift für angewandte Mathematik und Physik |
PublicationTitleAbbrev | Z. Angew. Math. Phys |
PublicationYear | 2014 |
Publisher | Springer Basel |
Publisher_xml | – name: Springer Basel |
References | TaoY.WinklerM.Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractantJ. Differ. Equ.20122522520254310.1016/j.jde.2011.07.0101268.350162860628 WinklerM.Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivityMath. Nachr.20102831664167310.1002/mana.2008108381205.350372759803 LiT.WangZ.A.Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxisJ. Differ. Equ.20112501310133310.1016/j.jde.2010.09.0201213.35109 KowalczykR.SzymańskaZ.On the global existence of solutions to an aggregation modelJ. Math. Anal. Appl.200834337939810.1016/j.jmaa.2008.01.0051143.353332412135 HorstmannD.WangG.Blow-up in a chemotaxis model without symmetry assumptionsEur. J. Appl. Math.20011215917710.1017/S09567925010043631017.920061931303 WinklerM.Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid dropsCommun. Partial Differ. Equ.20123731935210.1080/03605302.2011.5918651236.35192 FriedmanA.Partial Differential Equations1969New YorkHolt, Rinehart and Winston0224.35002 TaoY.WinklerM.Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusionDiscrete Contin. Dyn. Syst. Ser. A201232519011914 WinklerM.Does a ‘volume-filling effect’ always prevent chemotactic collapse?Math. Methods Appl. Sci.20103312241182.352202591220 CieślakT.StinnerC.Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensionsJ. Differ. Equ.20122525832585110.1016/j.jde.2012.01.0451252.35087 OsakiK.YagiA.Finite dimensional attractors for one-dimensional Keller-Segel equationsFunkcial. Ekvac.2001444414691145.373371893940 TaoY.Boundedness in a chemotaxis model with oxygen consumption by bacteriaJ. Math. Anal. Appl.201138152152910.1016/j.jmaa.2011.02.0411225.351182802089 WangZ.A.HillenT.Classical solutions and pattern formation for a volume filling chemotaxis modelChaos20071703710810.1063/1.27668642356982 TuvalI.CisnerosL.DombrowskiC.WolgemuthC.W.KesslerJ.O.GoldsteinR.E.Bacterial swimming and oxygen transport near contact linesProc. Natl. Acad. Sci. USA20051022277228210.1073/pnas.04067241021277.35332 HorstmannD.WinklerM.Boundedness vs. blow-up in a chemotaxis systemJ. Differ. Equ.20052155210710.1016/j.jde.2004.10.0221085.350652146345 TaoY.WinklerM.Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusionAnn. I. H. Poincaré-AN20133015717810.1016/j.anihpc.2012.07.0021283.351543011296 TaoY.WinklerM.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivityJ. Differ. Equ.201225269271510.1016/j.jde.2011.08.019059865292852223 CieślakT.LaurençotP.Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis systemAnn. I. H. Poincaré-AN20102743744610.1016/j.anihpc.2009.11.0161270.35377 NagaiT.IkedaT.Traveling waves in a chemotaxis modelJ. Math. Biol.19913016918410.1007/BF001603340742.920011138847 WinklerM.DjieK.C.Boundedness and finite-time collapse in a chemotaxis system with volume-filling effectNonlinear Anal.2010721044106410.1016/j.na.2009.07.0451183.920122579368 YagiA.Norm behavior of solutions to a parabolic system of chemotaxisMath. Japon.1997452412650910.920071441498 BurczakJ.CiéslakT.Morales-RodrigoC.Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller–Segel systemNonlinear Anal.2012755215522810.1016/j.na.2012.04.0381246.350992927584 ChoiY.S.WangZ.A.Prevention of blow-up by fast diffusion in chemotaxisJ. Math. Anal. Appl.201036255356410.1016/j.jmaa.2009.08.0121186.351002557709 WangL.C.LiY.H.MuC.L.Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic sourceDiscrete Contin. Dyn. Syst. Ser. A20143478980210.3934/dcds.2014.34.7891277.352153094606 WangZ.A.HillenT.Shock formation in a chemotaxis modelMath. Methods Appl. Sci.200831457010.1002/mma.8981147.350572373922 NirenbergL.An extended interpolation inequalityAnn. Sc. Norm. Super. Pisa Cl. Sci.19662047337370163.29905208360 JägerW.LuckhausS.On explosions of solutions to a system of partial differential equations modelling chemotaxisTrans. Am. Math. Soc.199232981982410.1090/S0002-9947-1992-1046835-60746.35002 LiuJ.-G.LorzA.A coupled chemotaxis-fluid model: global existenceAnn. I. H. Poincaré-AN20112864365210.1016/j.anihpc.2011.04.0051236.920132838394 TaoY.WangZ.A.Competing effects of attraction vs. repulsion in chemotaxisMath. Models Methods Appl. Sci.20132313610.1142/S0218202512500443061444192997466 WinklerM.Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel modelJ. Differ. Equ.20102482889290510.1016/j.jde.2010.02.0081190.92004 Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Mathematik, vol. 133, pp. 9–126. Teubner, Stuttgart, Leipzig, (1993) Duan, R.J., Xiang, Z.Y.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Notices (2012). doi:10.1093/imrn/rns270 KellerE.F.SegelL.A.Traveling bands of chemotactic bacteria: a theoretical analysisJ. Theor. Biol.197130377380 CieślakT.WinklerM.Finite-time blow-up in a quasilinear system of chemotaxisNonlinearity2008211057107610.1088/0951-7715/21/5/0091136.920062412327 KellerE.F.SegelL.A.Initiation of slime mold aggregation viewed as an instabilityJ. Theor. Biol.19702639941510.1016/0022-5193(70)90092-51170.92306 DelgadoM.GayteI.Morales-RodrigoC.SuárezA.An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundaryNonlinear Anal.20107233034710.1016/j.na.2009.06.0571254.351272574943 Di FrancescoM.LorzA.MarkowichP.A.Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behaviorDiscrete Contin. Dyn. Syst. Ser. A2010281437145310.3934/dcds.2010.28.14371276.35103 Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. (2013). doi:10.1016/j.matpur.2013.01.020 HillenT.PainterK.J.A user’s guide to PDE models for chemotaxisJ. Math. Biol.20095818321710.1007/s00285-008-0201-31161.920032448428 HerreroM.A.VelázquezJ.J.L.A blow-up mechanism for a chemotaxis modelAnn. Sc. Norm. Super. Pisa Cl. Sci.19972446336830904.35037 HillenT.PainterK.J.Global existence for a parabolic chemotaxis model with prevention of overcrowdingAdv. Appl. Math.20012628030110.1006/aama.2001.07210998.920061826309 DuanR.J.LorzA.MarkowichP.A.Global solutions to the coupled chemotaxis-fluid equations, CommPartial Differ. Equ.2010351635167310.1080/03605302.2010.4971991275.350052754058 NagaiT.SenbaT.YoshidaK.Application of the Trudinger-Moser inequality to a parabolic system of chemotaxisFunkcial. Ekvac. Ser. Int.1997404114330901.351041610709 PainterK.J.HillenT.Volume-filling and quorum-sensing in models for chemosensitive movementCan. Appl. Math. Q.2002105015431057.920132052525 LorzA.Coupled chemotaxis fluid modelMath. Models Methods Appl. Sci.201020987100410.1142/S02182025100045071191.920042659745 Cieślak T., Stinner C.:Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. (2013). doi:10.1007/s10440-013-9832-5 WinklerM.Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic sourceComm. Partial Differ. Equ.2010351516153710.1080/036053009034734261290.35139 Y. Tao (375_CR33) 2012; 252 375_CR43 W. Jäger (375_CR18) 1992; 329 T. Hillen (375_CR15) 2001; 26 M. Winkler (375_CR40) 2010; 33 M. Winkler (375_CR41) 2012; 37 T. Cieślak (375_CR5) 2008; 21 R. Kowalczyk (375_CR21) 2008; 343 Y. Tao (375_CR35) 2013; 30 Z.A. Wang (375_CR38) 2007; 17 T. Nagai (375_CR26) 1997; 40 Y. Tao (375_CR32) 2012; 252 M. Winkler (375_CR42) 2010; 248 K. Osaki (375_CR28) 2001; 44 A. Friedman (375_CR12) 1969 T. Hillen (375_CR14) 2009; 58 E.F. Keller (375_CR19) 1970; 26 K.J. Painter (375_CR29) 2002; 10 L.C. Wang (375_CR37) 2014; 34 Z.A. Wang (375_CR39) 2008; 31 A. Lorz (375_CR24) 2010; 20 T. Cieślak (375_CR7) 2010; 27 375_CR10 R.J. Duan (375_CR9) 2010; 35 T. Nagai (375_CR25) 1991; 30 375_CR34 I. Tuval (375_CR36) 2005; 102 J. Burczak (375_CR2) 2012; 75 M. Francesco Di (375_CR11) 2010; 28 E.F. Keller (375_CR20) 1971; 30 T. Li (375_CR22) 2011; 250 A. Yagi (375_CR47) 1997; 45 Y.S. Choi (375_CR3) 2010; 362 M. Winkler (375_CR46) 2010; 35 T. Cieślak (375_CR4) 2012; 252 Y. Tao (375_CR31) 2013; 23 D. Horstmann (375_CR17) 2005; 215 M.A. Herrero (375_CR13) 1997; 24 L. Nirenberg (375_CR27) 1966; 20 M. Delgado (375_CR8) 2010; 72 375_CR6 J.-G. Liu (375_CR23) 2011; 28 Y. Tao (375_CR30) 2011; 381 375_CR1 M. Winkler (375_CR44) 2010; 283 M. Winkler (375_CR45) 2010; 72 D. Horstmann (375_CR16) 2001; 12 |
References_xml | – reference: ChoiY.S.WangZ.A.Prevention of blow-up by fast diffusion in chemotaxisJ. Math. Anal. Appl.201036255356410.1016/j.jmaa.2009.08.0121186.351002557709 – reference: HillenT.PainterK.J.A user’s guide to PDE models for chemotaxisJ. Math. Biol.20095818321710.1007/s00285-008-0201-31161.920032448428 – reference: TaoY.WangZ.A.Competing effects of attraction vs. repulsion in chemotaxisMath. Models Methods Appl. Sci.20132313610.1142/S0218202512500443061444192997466 – reference: LiT.WangZ.A.Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxisJ. Differ. Equ.20112501310133310.1016/j.jde.2010.09.0201213.35109 – reference: Di FrancescoM.LorzA.MarkowichP.A.Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behaviorDiscrete Contin. Dyn. Syst. Ser. A2010281437145310.3934/dcds.2010.28.14371276.35103 – reference: KowalczykR.SzymańskaZ.On the global existence of solutions to an aggregation modelJ. Math. Anal. Appl.200834337939810.1016/j.jmaa.2008.01.0051143.353332412135 – reference: TaoY.Boundedness in a chemotaxis model with oxygen consumption by bacteriaJ. Math. Anal. Appl.201138152152910.1016/j.jmaa.2011.02.0411225.351182802089 – reference: Cieślak T., Stinner C.:Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. (2013). doi:10.1007/s10440-013-9832-5 – reference: JägerW.LuckhausS.On explosions of solutions to a system of partial differential equations modelling chemotaxisTrans. Am. Math. Soc.199232981982410.1090/S0002-9947-1992-1046835-60746.35002 – reference: WangZ.A.HillenT.Shock formation in a chemotaxis modelMath. Methods Appl. Sci.200831457010.1002/mma.8981147.350572373922 – reference: WinklerM.Does a ‘volume-filling effect’ always prevent chemotactic collapse?Math. Methods Appl. Sci.20103312241182.352202591220 – reference: YagiA.Norm behavior of solutions to a parabolic system of chemotaxisMath. Japon.1997452412650910.920071441498 – reference: NirenbergL.An extended interpolation inequalityAnn. Sc. Norm. Super. Pisa Cl. Sci.19662047337370163.29905208360 – reference: WinklerM.Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid dropsCommun. Partial Differ. Equ.20123731935210.1080/03605302.2011.5918651236.35192 – reference: WinklerM.Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivityMath. Nachr.20102831664167310.1002/mana.2008108381205.350372759803 – reference: TuvalI.CisnerosL.DombrowskiC.WolgemuthC.W.KesslerJ.O.GoldsteinR.E.Bacterial swimming and oxygen transport near contact linesProc. Natl. Acad. Sci. USA20051022277228210.1073/pnas.04067241021277.35332 – reference: OsakiK.YagiA.Finite dimensional attractors for one-dimensional Keller-Segel equationsFunkcial. Ekvac.2001444414691145.373371893940 – reference: TaoY.WinklerM.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivityJ. Differ. Equ.201225269271510.1016/j.jde.2011.08.019059865292852223 – reference: KellerE.F.SegelL.A.Traveling bands of chemotactic bacteria: a theoretical analysisJ. Theor. Biol.197130377380 – reference: WangZ.A.HillenT.Classical solutions and pattern formation for a volume filling chemotaxis modelChaos20071703710810.1063/1.27668642356982 – reference: WinklerM.Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic sourceComm. Partial Differ. Equ.2010351516153710.1080/036053009034734261290.35139 – reference: HorstmannD.WinklerM.Boundedness vs. blow-up in a chemotaxis systemJ. Differ. Equ.20052155210710.1016/j.jde.2004.10.0221085.350652146345 – reference: PainterK.J.HillenT.Volume-filling and quorum-sensing in models for chemosensitive movementCan. Appl. Math. Q.2002105015431057.920132052525 – reference: WinklerM.DjieK.C.Boundedness and finite-time collapse in a chemotaxis system with volume-filling effectNonlinear Anal.2010721044106410.1016/j.na.2009.07.0451183.920122579368 – reference: KellerE.F.SegelL.A.Initiation of slime mold aggregation viewed as an instabilityJ. Theor. Biol.19702639941510.1016/0022-5193(70)90092-51170.92306 – reference: WangL.C.LiY.H.MuC.L.Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic sourceDiscrete Contin. Dyn. Syst. Ser. A20143478980210.3934/dcds.2014.34.7891277.352153094606 – reference: CieślakT.StinnerC.Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensionsJ. Differ. Equ.20122525832585110.1016/j.jde.2012.01.0451252.35087 – reference: CieślakT.WinklerM.Finite-time blow-up in a quasilinear system of chemotaxisNonlinearity2008211057107610.1088/0951-7715/21/5/0091136.920062412327 – reference: Duan, R.J., Xiang, Z.Y.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Notices (2012). doi:10.1093/imrn/rns270 – reference: LiuJ.-G.LorzA.A coupled chemotaxis-fluid model: global existenceAnn. I. H. Poincaré-AN20112864365210.1016/j.anihpc.2011.04.0051236.920132838394 – reference: Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. (2013). doi:10.1016/j.matpur.2013.01.020 – reference: HorstmannD.WangG.Blow-up in a chemotaxis model without symmetry assumptionsEur. J. Appl. Math.20011215917710.1017/S09567925010043631017.920061931303 – reference: HerreroM.A.VelázquezJ.J.L.A blow-up mechanism for a chemotaxis modelAnn. Sc. Norm. Super. Pisa Cl. Sci.19972446336830904.35037 – reference: DelgadoM.GayteI.Morales-RodrigoC.SuárezA.An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundaryNonlinear Anal.20107233034710.1016/j.na.2009.06.0571254.351272574943 – reference: FriedmanA.Partial Differential Equations1969New YorkHolt, Rinehart and Winston0224.35002 – reference: WinklerM.Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel modelJ. Differ. Equ.20102482889290510.1016/j.jde.2010.02.0081190.92004 – reference: NagaiT.SenbaT.YoshidaK.Application of the Trudinger-Moser inequality to a parabolic system of chemotaxisFunkcial. Ekvac. Ser. Int.1997404114330901.351041610709 – reference: TaoY.WinklerM.Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusionAnn. I. H. Poincaré-AN20133015717810.1016/j.anihpc.2012.07.0021283.351543011296 – reference: DuanR.J.LorzA.MarkowichP.A.Global solutions to the coupled chemotaxis-fluid equations, CommPartial Differ. Equ.2010351635167310.1080/03605302.2010.4971991275.350052754058 – reference: NagaiT.IkedaT.Traveling waves in a chemotaxis modelJ. Math. Biol.19913016918410.1007/BF001603340742.920011138847 – reference: BurczakJ.CiéslakT.Morales-RodrigoC.Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller–Segel systemNonlinear Anal.2012755215522810.1016/j.na.2012.04.0381246.350992927584 – reference: LorzA.Coupled chemotaxis fluid modelMath. Models Methods Appl. Sci.201020987100410.1142/S02182025100045071191.920042659745 – reference: TaoY.WinklerM.Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractantJ. Differ. Equ.20122522520254310.1016/j.jde.2011.07.0101268.350162860628 – reference: TaoY.WinklerM.Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusionDiscrete Contin. Dyn. Syst. Ser. A201232519011914 – reference: Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Mathematik, vol. 133, pp. 9–126. Teubner, Stuttgart, Leipzig, (1993) – reference: CieślakT.LaurençotP.Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis systemAnn. I. H. Poincaré-AN20102743744610.1016/j.anihpc.2009.11.0161270.35377 – reference: HillenT.PainterK.J.Global existence for a parabolic chemotaxis model with prevention of overcrowdingAdv. Appl. Math.20012628030110.1006/aama.2001.07210998.920061826309 – volume: 34 start-page: 789 year: 2014 ident: 375_CR37 publication-title: Discrete Contin. Dyn. Syst. Ser. A doi: 10.3934/dcds.2014.34.789 – volume: 28 start-page: 643 year: 2011 ident: 375_CR23 publication-title: Ann. I. H. Poincaré-AN doi: 10.1016/j.anihpc.2011.04.005 – volume: 215 start-page: 52 year: 2005 ident: 375_CR17 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2004.10.022 – volume: 33 start-page: 12 year: 2010 ident: 375_CR40 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.1146 – ident: 375_CR43 doi: 10.1016/j.matpur.2013.01.020 – volume: 75 start-page: 5215 year: 2012 ident: 375_CR2 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2012.04.038 – volume-title: Partial Differential Equations year: 1969 ident: 375_CR12 – volume: 35 start-page: 1635 year: 2010 ident: 375_CR9 publication-title: Partial Differ. Equ. doi: 10.1080/03605302.2010.497199 – volume: 58 start-page: 183 year: 2009 ident: 375_CR14 publication-title: J. Math. Biol. doi: 10.1007/s00285-008-0201-3 – volume: 248 start-page: 2889 year: 2010 ident: 375_CR42 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.02.008 – volume: 44 start-page: 441 year: 2001 ident: 375_CR28 publication-title: Funkcial. Ekvac. – volume: 30 start-page: 169 year: 1991 ident: 375_CR25 publication-title: J. Math. Biol. doi: 10.1007/BF00160334 – volume: 27 start-page: 437 year: 2010 ident: 375_CR7 publication-title: Ann. I. H. Poincaré-AN doi: 10.1016/j.anihpc.2009.11.016 – volume: 12 start-page: 159 year: 2001 ident: 375_CR16 publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792501004363 – volume: 40 start-page: 411 year: 1997 ident: 375_CR26 publication-title: Funkcial. Ekvac. Ser. Int. – volume: 72 start-page: 1044 year: 2010 ident: 375_CR45 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.07.045 – volume: 20 start-page: 733 issue: 4 year: 1966 ident: 375_CR27 publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. – volume: 252 start-page: 692 year: 2012 ident: 375_CR33 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.08.019 – volume: 343 start-page: 379 year: 2008 ident: 375_CR21 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.01.005 – volume: 252 start-page: 2520 year: 2012 ident: 375_CR32 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.07.010 – volume: 45 start-page: 241 year: 1997 ident: 375_CR47 publication-title: Math. Japon. – ident: 375_CR34 – volume: 21 start-page: 1057 year: 2008 ident: 375_CR5 publication-title: Nonlinearity doi: 10.1088/0951-7715/21/5/009 – volume: 28 start-page: 1437 year: 2010 ident: 375_CR11 publication-title: Discrete Contin. Dyn. Syst. Ser. A doi: 10.3934/dcds.2010.28.1437 – volume: 26 start-page: 399 year: 1970 ident: 375_CR19 publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(70)90092-5 – volume: 37 start-page: 319 year: 2012 ident: 375_CR41 publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2011.591865 – volume: 17 start-page: 037108 year: 2007 ident: 375_CR38 publication-title: Chaos doi: 10.1063/1.2766864 – volume: 30 start-page: 377 year: 1971 ident: 375_CR20 publication-title: J. Theor. Biol. – volume: 252 start-page: 5832 year: 2012 ident: 375_CR4 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2012.01.045 – volume: 283 start-page: 1664 year: 2010 ident: 375_CR44 publication-title: Math. Nachr. doi: 10.1002/mana.200810838 – volume: 329 start-page: 819 year: 1992 ident: 375_CR18 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1992-1046835-6 – volume: 20 start-page: 987 year: 2010 ident: 375_CR24 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202510004507 – volume: 381 start-page: 521 year: 2011 ident: 375_CR30 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.02.041 – volume: 31 start-page: 45 year: 2008 ident: 375_CR39 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.898 – volume: 30 start-page: 157 year: 2013 ident: 375_CR35 publication-title: Ann. I. H. Poincaré-AN doi: 10.1016/j.anihpc.2012.07.002 – volume: 102 start-page: 2277 year: 2005 ident: 375_CR36 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406724102 – volume: 72 start-page: 330 year: 2010 ident: 375_CR8 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.06.057 – volume: 362 start-page: 553 year: 2010 ident: 375_CR3 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.08.012 – volume: 23 start-page: 1 year: 2013 ident: 375_CR31 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202512500443 – volume: 35 start-page: 1516 year: 2010 ident: 375_CR46 publication-title: Comm. Partial Differ. Equ. doi: 10.1080/03605300903473426 – ident: 375_CR10 doi: 10.1093/imrn/rns270 – volume: 250 start-page: 1310 year: 2011 ident: 375_CR22 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.09.020 – volume: 10 start-page: 501 year: 2002 ident: 375_CR29 publication-title: Can. Appl. Math. Q. – ident: 375_CR1 – volume: 26 start-page: 280 year: 2001 ident: 375_CR15 publication-title: Adv. Appl. Math. doi: 10.1006/aama.2001.0721 – ident: 375_CR6 doi: 10.1007/s10440-013-9832-5 – volume: 24 start-page: 633 issue: 4 year: 1997 ident: 375_CR13 publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. |
SSID | ssj0007103 |
Score | 2.2562797 |
Snippet | This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system
u
t
=
∇
·
(
D
(
u
)
∇
u
)
-
∇
·
(
u
χ
(
v
)
∇... This paper deals with the global existence and boundedness of the solutions for the quasilinear chemotaxis system $$\left\{\begin{array}{ll}u_t=\nabla \cdot... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1137 |
SubjectTerms | Bacteria Boundary conditions Boundary value problems Concentration gradient Diffusion Engineering Mathematical analysis Mathematical Methods in Physics Mathematical models Nonlinearity Theoretical and Applied Mechanics |
Title | Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion |
URI | https://link.springer.com/article/10.1007/s00033-013-0375-4 https://www.proquest.com/docview/1651428118 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Q9AH0ak4P0YEn5TA1ibN-jhlcyjTFwfzqSRpCgOpsm7gn-9dv_xABd_akqZwl95H7vL7AZw7o7ou8S132mguTCx4qJKQB0RskUipwpwMZnIfjKfidiZn5TnurOp2r0qSuaWuD7t1c96xnI3AV5KLdWhKTN2pj2_qDWrziy6zLCsL7nlKVqXMn6b46ow-IsxvRdHc14x2YLsMEtmg0OourLm0BVufoAPxblLjrWYt2MgbOW22Bw9XxJPkYrJgbJ4yzQjc2xD6L6-vGGoKVaTf5hkroJwZ7ceytMDN0AtGvCkr2kjbh-lo-Hg95iVpAre-FEtuVM-4EJ2yduj6CWCup8mL254yNklCmSR-gE9s1xrnHOZHnocmzhBlkbIq8Q-ggV9zh8B85QVaSKslwZn3jYkDNAdxP5Cek9Z4behW0otsiShOxBbPUY2FnAs8QoFHJPBItOGifuW1gNP4a_BZpZIIFz1VMnTqXlZZ1AskIcVhctSGy0pXUfn3Zb_PePSv0cewieGRKJpXTqCxXKzcKYYgS9OB5uDm6W7YyZfeO2-W0z8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RdSDj6pYnxE8KSntbrJxj1Wq9VG9VKinkGSzUJQqbgvir3eyLx-o0Nvuks1mM8nMJDP5PoBDq0XTxr6hVmlFmY4YDUUc0sARW8ScizAlg-ndBt17djXgg_wcd1JkuxchyVRTl4fdminvWMpG4AtO2SxUGS7BWQWq7YuH606pgNFo5oFlRj1P8CKY-Vsl383Rp4_5IyyaWpvzZegX7cySTB4bk7FumPcfEI5T_sgKLOXeJ2lnw2UVZuyoBotfMAnxrlcCuSY1mEszRE2yBnenjoDJRk41kuGIKOJQw7WDFablFcEhgLJXb8OEZBjRxG30klEGyKFeiSNkmbgdunW4P-_0z7o0Z2OgxudsTLVoaRuitVcWfQqHXNdSzj0wLaFNHIc8jv0An5im0dZaXHh5HupO7biQhBGxvwEV_JrdBOILL1CMG8UdTvqJ1lGAeiY6CbhnudFeHZqFUKTJocodY8aTLEGW0z6U2IfS9aFkdTgqX3nJcDr-K3xQSFribHIhEjWyz5NEtgLuIOhw1VWH40J6Mp_Wyd81bk1Veh_mu_3ejby5vL3ehgX0wViWIbMDlfHrxO6inzPWe_m4_gAXTvFS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFD7RJRh4AEGJi6I14UlSdi7tdOdxEdbVFfQBEniqbadNNppxszObEH69PXMTiJIY32YmnVt7evq15_T7APatFoF1saFWaUWZzhhNhUtpgsIWjnORVmIwp2fJ5IJ9uuSXjc5p0Wa7tyHJek8DsjTl5WCeuUG38S2oNMgqZYJYcMoewwpDbvYerIw-XE1POmfsB9AmyMxoFAneBjb_9JC7Q9NvvHkvRFqNPONN-NZ-c51w8v1wWepDc3OPzvE_fuopbDSolIxqM9qCRzbfhvVbXIX-7LQjeC22YbXKHDXFM_hyhMJMNkOXSWY5UQTZxDXSDdPuiHjT8DahrmcFqbmjCS4Ak7wm6lALgkItS1y5ew4X45Pz9xPaqDRQE3NWUi1CbVOPApT1WAMZ7UKFsMGEQhvnUu5cnPgrJjDaWusnZFHkfapGjSRhhIt3oOffZl8AiUWUKMaN4sifPtQ6S7z_yYYJjyw3OupD0DaQNA2FOSpp_JAd-XJVh9LXocQ6lKwP77pb5jV_x0OF37atLn0vw9CJyu3PZSHDhCM1nZ-N9eGgbUnZdPfi70_c_afSb-DJ1-Ox_PzxbPoS1jw0Y3XizCvolYul3fPwp9SvGxP_BT-s-jY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundedness+in+a+parabolic-parabolic+chemotaxis+system+with+nonlinear+diffusion&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Wang%2C+Liangchen&rft.au=Mu%2C+Chunlai&rft.au=Zhou%2C+Shouming&rft.date=2014-12-01&rft.pub=Springer+Basel&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=65&rft.issue=6&rft.spage=1137&rft.epage=1152&rft_id=info:doi/10.1007%2Fs00033-013-0375-4&rft.externalDocID=10_1007_s00033_013_0375_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon |