High-performance large-area perovskite photovoltaic modules

Perovskite solar cells (Pero-SCs) exhibited a bright future for the next generation of photovoltaic technology because of their high power conversion efficiency (PCE), low cost, and simple solution process. The certified laboratory-scale PCE has reached 25.7% referred to small scale (2) of Pero-SCs....

Full description

Saved in:
Bibliographic Details
Published inNano Research Energy Vol. 1; no. 2; p. e9120024
Main Authors Chu, Liang, Zhai, Shuaibo, Ahmad, Waqar, Zhang, Jing, Zang, Yue, Yan, Wensheng, Li, Yongfang
Format Journal Article
LanguageEnglish
Published Tsinghua University Press 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite solar cells (Pero-SCs) exhibited a bright future for the next generation of photovoltaic technology because of their high power conversion efficiency (PCE), low cost, and simple solution process. The certified laboratory-scale PCE has reached 25.7% referred to small scale (2) of Pero-SCs. However, with the increase of the area to module scale, the PCE drops dramatically mainly due to the inadequate regulation of growing large-area perovskite films. Therefore, there is a dire need to produce high-quality perovskite films for large-area photovoltaic modules. Herein, we summarize the recent advances in perovskite photovoltaic modules (PPMs) with particular attention paid to the coating methods, as well as the growth regulation of the high-quality and large-area perovskite films. Furthermore, this study encompasses future development directions and prospects for PPMs.
AbstractList Perovskite solar cells (Pero-SCs) exhibited a bright future for the next generation of photovoltaic technology because of their high power conversion efficiency (PCE), low cost, and simple solution process. The certified laboratory-scale PCE has reached 25.7% referred to small scale (2) of Pero-SCs. However, with the increase of the area to module scale, the PCE drops dramatically mainly due to the inadequate regulation of growing large-area perovskite films. Therefore, there is a dire need to produce high-quality perovskite films for large-area photovoltaic modules. Herein, we summarize the recent advances in perovskite photovoltaic modules (PPMs) with particular attention paid to the coating methods, as well as the growth regulation of the high-quality and large-area perovskite films. Furthermore, this study encompasses future development directions and prospects for PPMs.
Author Li, Yongfang
Zhang, Jing
Chu, Liang
Yan, Wensheng
Zang, Yue
Ahmad, Waqar
Zhai, Shuaibo
Author_xml – sequence: 1
  givenname: Liang
  surname: Chu
  fullname: Chu, Liang
– sequence: 2
  givenname: Shuaibo
  surname: Zhai
  fullname: Zhai, Shuaibo
– sequence: 3
  givenname: Waqar
  surname: Ahmad
  fullname: Ahmad, Waqar
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 5
  givenname: Yue
  surname: Zang
  fullname: Zang, Yue
– sequence: 6
  givenname: Wensheng
  surname: Yan
  fullname: Yan, Wensheng
– sequence: 7
  givenname: Yongfang
  surname: Li
  fullname: Li, Yongfang
BookMark eNp9kE1LAzEQhoNUsNb-AG_7B7ZOPnY3wZOUagtFQfQcZrNJm7ptSjYW_PeubfHgwdMML_M-DM81GezCzhJyS2HCykKpu-fX2YQBYxNFGQATF2TIKgW5pFQNjjvNARS9IuOu20B_IhWvVDUk93O_Wud7G12IW9wZm7UYVzbHaDHr43DoPnyy2X4dUjiENqE32TY0n63tbsilw7az4_MckffH2dt0ni9fnhbTh2VueCFSjg4aQCm5kQIsCMZswUAWlNuifx6p5MiorF3Dy5q7kqmyFqXgVVVzWhjFR2Rx4jYBN3of_Rbjlw7o9TEIcaUxJm9aq-vSSWeYKxtphOBcKmVqKyhyAY2UTc-iJ5aJoeuidb88CvooU_cy9Y9MfZbZd6o_HeMTJh92KaJv_2l-A0OIeb4
CitedBy_id crossref_primary_10_1016_j_mtchem_2024_102026
crossref_primary_10_1039_D4CS00838C
crossref_primary_10_1016_j_colsurfa_2023_132406
crossref_primary_10_3390_nano13020309
crossref_primary_10_1002_adfm_202208199
crossref_primary_10_3390_electronics12040992
crossref_primary_10_1016_j_mtsust_2023_100603
crossref_primary_10_1021_acsami_2c23234
crossref_primary_10_1002_adom_202300795
crossref_primary_10_1021_acsaelm_3c01283
crossref_primary_10_1002_solr_202300575
crossref_primary_10_26599_NRE_2023_9120091
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1002_admt_202302082
crossref_primary_10_1016_j_materresbull_2024_112980
crossref_primary_10_1021_acsnano_4c12107
crossref_primary_10_1002_adsu_202300135
crossref_primary_10_1002_pip_3860
crossref_primary_10_1002_advs_202303992
crossref_primary_10_1007_s40820_022_00981_8
crossref_primary_10_1016_j_apsadv_2023_100495
crossref_primary_10_1002_smll_202204524
crossref_primary_10_1039_D4RA08323G
crossref_primary_10_1002_advs_202402635
crossref_primary_10_3390_jmse11112064
crossref_primary_10_1021_acsami_3c02953
crossref_primary_10_1002_adom_202300617
crossref_primary_10_1002_solr_202200694
crossref_primary_10_1016_j_mattod_2023_02_006
crossref_primary_10_1039_D4TA02248C
crossref_primary_10_1016_j_xcrp_2024_101796
crossref_primary_10_1002_adom_202300216
crossref_primary_10_1088_1361_6528_acee06
crossref_primary_10_1002_adma_202307161
crossref_primary_10_1039_D3QI00283G
crossref_primary_10_1016_j_matlet_2022_133469
crossref_primary_10_1002_solr_202300620
crossref_primary_10_3390_en16083519
crossref_primary_10_3390_en17246344
crossref_primary_10_1002_smll_202205095
crossref_primary_10_1007_s12274_022_4929_7
crossref_primary_10_1016_j_jpcs_2024_112096
crossref_primary_10_1021_acsanm_2c05360
crossref_primary_10_1002_smll_202206852
crossref_primary_10_1016_j_nanoen_2023_109182
crossref_primary_10_1016_j_jscs_2024_101829
crossref_primary_10_1007_s10854_024_12190_7
crossref_primary_10_1016_j_jallcom_2023_173026
crossref_primary_10_3390_nano15050327
crossref_primary_10_1016_j_nantod_2023_102133
crossref_primary_10_1080_08927022_2024_2332461
crossref_primary_10_1016_j_cej_2023_142170
crossref_primary_10_1039_D4MA00351A
crossref_primary_10_1002_smll_202307758
crossref_primary_10_1039_D3NH00119A
crossref_primary_10_1007_s12613_023_2742_2
crossref_primary_10_1360_nso_20220065
crossref_primary_10_1002_aenm_202302654
crossref_primary_10_1002_smll_202309218
crossref_primary_10_1002_admt_202300327
crossref_primary_10_1007_s42765_022_00230_y
crossref_primary_10_1021_acsaem_3c02055
crossref_primary_10_1016_j_jpcs_2024_111890
crossref_primary_10_1007_s12598_024_02736_3
crossref_primary_10_1016_j_cej_2023_143019
crossref_primary_10_1002_solr_202300957
crossref_primary_10_1002_adma_202312041
crossref_primary_10_1016_j_jallcom_2023_169104
crossref_primary_10_1021_acsanm_3c04951
crossref_primary_10_1002_aenm_202400021
crossref_primary_10_1002_solr_202300438
crossref_primary_10_1016_j_surfin_2023_103738
crossref_primary_10_1039_D2TA09627G
crossref_primary_10_1016_j_apenergy_2023_121122
crossref_primary_10_1016_j_nxmate_2023_100103
crossref_primary_10_15541_jim20230045
crossref_primary_10_1002_smll_202406032
crossref_primary_10_1016_j_jallcom_2025_179814
crossref_primary_10_1088_1361_6463_acad11
crossref_primary_10_1016_j_jpcs_2024_112300
crossref_primary_10_3390_en17112561
crossref_primary_10_1021_acsaem_3c00085
Cites_doi 10.1002/solr.202000148
10.1002/adma.202200705
10.1038/nenergy.2017.38
10.1021/acsami.0c15428
10.1039/D1EE00634G
10.1021/acsenergylett.9b00953
10.1002/aenm.201802139
10.1002/admt.201901009
10.1016/j.solmat.2017.08.010
10.1038/nmat4014
10.1016/j.joule.2019.07.030
10.1016/j.solmat.2017.11.010
10.1016/j.jechem.2020.12.003
10.1088/1674-4926/38/1/014006
10.1038/nature23877
10.1039/D0MA00077A
10.1039/D0EE02575E
10.1038/nature12509
10.1039/C9TA00239A
10.1007/s40820-020-00457-7
10.1039/C6TA06718B
10.1038/s41467-021-26754-2
10.1016/j.joule.2020.01.008
10.1002/solr.201900226
10.1126/science.aat3583
10.1126/sciadv.aax7537
10.1016/j.joule.2020.11.001
10.1039/C6EE01411A
10.1021/acsaem.9b00531
10.1063/1.4891275
10.1038/s41467-020-18940-5
10.1021/jacs.9b01305
10.1002/aenm.201401229
10.31635/ccschem.022.202101583
10.1021/acsami.9b15520
10.1126/science.1228604
10.1002/solr.202000733
10.1038/s41467-022-32047-z
10.1016/S0927-7757(99)00366-0
10.1002/aenm.201401539
10.1126/science.abl5676
10.1002/solr.202000292
10.1002/adfm.201807047
10.1021/acsenergylett.0c01297
10.1002/ente.201901284
10.1002/admt.202000271
10.1016/j.jpowsour.2021.229586
10.1002/aenm.202200632
10.1002/aenm.201602121
10.1021/acsami.8b02624
10.1007/s12274-021-3408-x
10.26599/NRE.2022.9120004
10.1039/C4EE01546K
10.1002/adfm.201806779
10.1126/science.aaf8060
10.1126/science.abi6323
10.1016/j.nanoen.2020.104842
10.1038/s41560-018-0153-9
10.1002/aenm.201903108
10.1002/adma.201802763
10.1016/j.matt.2021.05.007
10.1126/science.abm8566
10.1016/j.solmat.2018.09.005
10.1039/C5MH00126A
10.1038/s41586-019-1868-x
10.1038/ncomms15684
10.1126/science.abh1035
10.1016/j.solener.2022.03.060
10.1021/cr400544s
10.1002/aenm.201500615
10.1016/j.jpowsour.2021.229970
10.1039/D0TA09007G
10.1016/j.cej.2021.133713
10.1002/solr.202100815
10.1002/admi.201500849
10.1016/j.nanoen.2021.106658
10.1002/adma.201701440
10.1088/1674-4926/42/11/110203
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.26599/NRE.2022.9120024
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2790-8119
ExternalDocumentID oai_doaj_org_article_b6f8fc2f6d8c4433899cbe41a340d88d
10_26599_NRE_2022_9120024
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c354t-af0d0a883c840e0422e5208513e5599a183a218bfd36b3f6296b464377b315c93
IEDL.DBID DOA
ISSN 2791-0091
IngestDate Wed Aug 27 01:26:26 EDT 2025
Tue Jul 01 01:07:20 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-af0d0a883c840e0422e5208513e5599a183a218bfd36b3f6296b464377b315c93
OpenAccessLink https://doaj.org/article/b6f8fc2f6d8c4433899cbe41a340d88d
ParticipantIDs doaj_primary_oai_doaj_org_article_b6f8fc2f6d8c4433899cbe41a340d88d
crossref_primary_10_26599_NRE_2022_9120024
crossref_citationtrail_10_26599_NRE_2022_9120024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-9-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-9-00
PublicationDecade 2020
PublicationTitle Nano Research Energy
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References L. Ding (ref17) 2021; 42
U. W. Paetzold (ref56) 2021; 6
J. Seo (ref15) 2020; 11
S. Mahiddine (ref18) 2014; 114
M. C. Wu (ref24) 2017; 172
R. H. Dauskardt (ref53) 2020; 4
S. I. Seok (ref20) 2014; 13
L. Y. Han (ref57) 2016; 9
M. Daenen (ref79) 2019; 3
J. S. Huang (ref40) 2015; 2
J. Cao (ref10) 2019; 141
W. Choi (ref72) 2020; 577
Y. B. Qi (ref66) 2020; 8
J. S. Huang (ref82) 2015; 5
F. F. Abraham (ref23) 1974
Y. Hu (ref44) 2020; 74
B. Fan (ref42) 2017; 38
F. Guo (ref27) 2022; 91
J. N. Ding (ref25) 2021; 5
Y. B. Qi (ref65) 2019; 7
J. Zhou (ref4) 2022; 608
S. H. Im (ref52) 2016; 4
M. Grätzel (ref7) 2016; 353
H. J. Snaith (ref60) 2013; 501
L. Chu (ref2) 2021; 4
J. S. Huang (ref39) 2021; 373
N. Y. Chai (ref46) 2021; 372
ref9
Y. B. Qi (ref76) 2019; 29
A. K. Y. Jen (ref33) 2015; 5
J. Zhong (ref30) 2020; 4
D. H. Kim (ref14) 2022; 12
J. S. Huang (ref36) 2019; 5
H. J. Bolink (ref64) 2017; 7
Z. L. Zhu (ref5) 2022; 376
N. G. Park (ref28) 2014; 2
Y. H. Kim (ref11) 2022; 431
X. A. Li (ref6) 2021; 14
X. A. Li (ref13) 2021; 499
Y. L. Song (ref54) 2022; 4
M. Graetzel (ref68) 2017; 8
M. Powalla (ref26) 2020; 12
F. Brunetti (ref50) 2020; 8
H. S. Jung (ref31) 2018; 30
J. F. Fang (ref71) 2022; 375
M. Grätzel (ref59) 2017; 550
J. S. Huang (ref37) 2020; 10
A. K. Y. Jen (ref70) 2022; 1
ref1
M. K. Nazeeruddin (ref74) 2021; 59
S. De Wolf (ref48) 2020; 5
X. A. Li (ref12) 2018; 178
R. H. Dauskardt (ref73) 2018; 8
P. D. Lund (ref77) 2022; 237
S. F. Liu (ref62) 2021; 14
O. J. Usiobo (ref32) 2021; 12
H. Itoh (ref19) 2000; 164
Y. S. Liu (ref75) 2022; 34
X. Q. Zeng (ref81) 2019; 3
H. J. Snaith (ref3) 2012; 338
C. L. Liu (ref49) 2021; 491
M. F. A. M. van Hes (ref34) 2017; 2
J. S. Huang (ref35) 2018; 3
W. Huang (ref69) 2020; 12
G. J. Yang (ref67) 2019; 2
M. F. A. M. Van Hest (ref47) 2018; 1
M. Topič (ref80) 2022; 6
P. Chen (ref61) 2016; 3
T. Merckx (ref43) 2018; 181
L. Y. Han (ref58) 2017; 29
X. Sun (ref8) 2022; 13
S. Zhumagali (ref45) 2020; 5
C. Ducati (ref78) 2019; 11
F. Guo (ref22) 2020; 13
F. Nüesch (ref55) 2020; 1
Y. Peng (ref83) 2018; 10
H. S. Jung (ref29) 2019; 4
Z. C. Holman (ref38) 2020; 4
S. E. Watkins (ref41) 2015; 5
M. Saliba (ref16) 2018; 362
L. M. Ding (ref63) 2020; 4
N. G. Park (ref21) 2019; 29
D. G. Lidzey (ref51) 2014; 7
References_xml – volume: 4
  start-page: 1900263
  year: 2020
  ident: ref30
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000148
– volume: 34
  start-page: 2200705
  year: 2022
  ident: ref75
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200705
– volume: 2
  start-page: 17038
  year: 2017
  ident: ref34
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.38
– volume: 12
  start-page: 52678
  year: 2020
  ident: ref26
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15428
– volume: 14
  start-page: 3035
  year: 2021
  ident: ref62
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00634G
– volume: 4
  start-page: 1845
  year: 2019
  ident: ref29
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00953
– volume: 8
  start-page: 1802139
  year: 2018
  ident: ref73
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802139
– volume: 5
  start-page: 1901009
  year: 2020
  ident: ref48
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201901009
– volume: 172
  start-page: 368
  year: 2017
  ident: ref24
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.08.010
– volume: 13
  start-page: 897
  year: 2014
  ident: ref20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 3
  start-page: 2748
  year: 2019
  ident: ref81
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.030
– volume: 181
  start-page: 53
  year: 2018
  ident: ref43
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.11.010
– volume: 59
  start-page: 581
  year: 2021
  ident: ref74
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.12.003
– volume: 38
  start-page: 014006
  year: 2017
  ident: ref42
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/38/1/014006
– volume: 550
  start-page: 92
  year: 2017
  ident: ref59
  publication-title: Nature
  doi: 10.1038/nature23877
– ident: ref9
  publication-title: null
– volume: 1
  start-page: 153
  year: 2020
  ident: ref55
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00077A
– volume: 13
  start-page: 4666
  year: 2020
  ident: ref22
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02575E
– volume: 501
  start-page: 395
  year: 2013
  ident: ref60
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 7
  start-page: 6920
  year: 2019
  ident: ref65
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00239A
– volume: 12
  start-page: 119
  year: 2020
  ident: ref69
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00457-7
– volume: 4
  start-page: 17636
  year: 2016
  ident: ref52
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06718B
– volume: 12
  start-page: 6394
  year: 2021
  ident: ref32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26754-2
– volume: 4
  start-page: 850
  year: 2020
  ident: ref38
  publication-title: Joule
  doi: 10.1016/j.joule.2020.01.008
– volume: 608
  start-page: 317323
  year: 2022
  ident: ref4
  publication-title: Nature
– volume: 3
  start-page: 1900226
  year: 2019
  ident: ref79
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900226
– volume: 362
  start-page: 449
  year: 2018
  ident: ref16
  publication-title: Science
  doi: 10.1126/science.aat3583
– volume: 5
  start-page: aax7537
  year: 2019
  ident: ref36
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax7537
– volume: 4
  start-page: 2675
  year: 2020
  ident: ref53
  publication-title: Joule
  doi: 10.1016/j.joule.2020.11.001
– volume: 1
  start-page: 1853
  year: 2018
  ident: ref47
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 2295
  year: 2016
  ident: ref57
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01411A
– volume: 2
  start-page: 3851
  year: 2019
  ident: ref67
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00531
– volume: 2
  start-page: 081510
  year: 2014
  ident: ref28
  publication-title: APL Mater.
  doi: 10.1063/1.4891275
– volume: 11
  start-page: 5146
  year: 2020
  ident: ref15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18940-5
– volume: 141
  start-page: 6345
  year: 2019
  ident: ref10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01305
– ident: ref1
  publication-title: null
– volume: 5
  start-page: 1401229
  year: 2015
  ident: ref33
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401229
– volume: 4
  start-page: 1465
  year: 2022
  ident: ref54
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.022.202101583
– volume: 11
  start-page: 45646
  year: 2019
  ident: ref78
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15520
– volume: 338
  start-page: 643
  year: 2012
  ident: ref3
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 5
  start-page: 2000733
  year: 2021
  ident: ref25
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000733
– volume: 13
  start-page: 4417
  year: 2022
  ident: ref8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32047-z
– volume: 164
  start-page: 183
  year: 2000
  ident: ref19
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
  doi: 10.1016/S0927-7757(99)00366-0
– volume: 5
  start-page: 1401539
  year: 2015
  ident: ref41
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401539
– volume: 375
  start-page: 434
  year: 2022
  ident: ref71
  publication-title: Science
  doi: 10.1126/science.abl5676
– volume: 4
  start-page: 2000292
  year: 2020
  ident: ref63
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000292
– volume: 29
  start-page: 1807047
  year: 2019
  ident: ref21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807047
– volume: 5
  start-page: 3034
  year: 2020
  ident: ref45
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01297
– volume: 8
  start-page: 1901284
  year: 2020
  ident: ref50
  publication-title: Energy Technol.
  doi: 10.1002/ente.201901284
– volume: 6
  start-page: 2000271
  year: 2021
  ident: ref56
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000271
– volume: 491
  start-page: 229586
  year: 2021
  ident: ref49
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229586
– volume: 12
  start-page: 2200632
  year: 2022
  ident: ref14
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.202200632
– volume: 7
  start-page: 1602121
  year: 2017
  ident: ref64
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602121
– volume: 10
  start-page: 14922
  year: 2018
  ident: ref83
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02624
– volume: 14
  start-page: 2139
  year: 2021
  ident: ref6
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3408-x
– volume: 1
  start-page: e9120004
  year: 2022
  ident: ref70
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120004
– year: 1974
  ident: ref23
  publication-title: Homogeneous Nucleation Theory
– volume: 7
  start-page: 2944
  year: 2014
  ident: ref51
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01546K
– volume: 29
  start-page: 1806779
  year: 2019
  ident: ref76
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806779
– volume: 353
  start-page: 58
  year: 2016
  ident: ref7
  publication-title: Science
  doi: 10.1126/science.aaf8060
– volume: 373
  start-page: 902
  year: 2021
  ident: ref39
  publication-title: Science
  doi: 10.1126/science.abi6323
– volume: 74
  start-page: 104842
  year: 2020
  ident: ref44
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104842
– volume: 3
  start-page: 560
  year: 2018
  ident: ref35
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0153-9
– volume: 10
  start-page: 1903108
  year: 2020
  ident: ref37
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903108
– volume: 30
  start-page: 1802763
  year: 2018
  ident: ref31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802763
– volume: 4
  start-page: 1762
  year: 2021
  ident: ref2
  publication-title: Matter
  doi: 10.1016/j.matt.2021.05.007
– volume: 376
  start-page: 416
  year: 2022
  ident: ref5
  publication-title: Science
  doi: 10.1126/science.abm8566
– volume: 178
  start-page: 164
  year: 2018
  ident: ref12
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.09.005
– volume: 2
  start-page: 578
  year: 2015
  ident: ref40
  publication-title: Mater. Horiz.
  doi: 10.1039/C5MH00126A
– volume: 577
  start-page: 209
  year: 2020
  ident: ref72
  publication-title: Nature
  doi: 10.1038/s41586-019-1868-x
– volume: 8
  start-page: 15684
  year: 2017
  ident: ref68
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15684
– volume: 372
  start-page: 1327
  year: 2021
  ident: ref46
  publication-title: Science
  doi: 10.1126/science.abh1035
– volume: 237
  start-page: 264
  year: 2022
  ident: ref77
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.03.060
– volume: 114
  start-page: 7610
  year: 2014
  ident: ref18
  publication-title: Chem. Rev.
  doi: 10.1021/cr400544s
– volume: 5
  start-page: 1500615
  year: 2015
  ident: ref82
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500615
– volume: 499
  start-page: 229970
  year: 2021
  ident: ref13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229970
– volume: 8
  start-page: 23404
  year: 2020
  ident: ref66
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09007G
– volume: 431
  start-page: 133713
  year: 2022
  ident: ref11
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133713
– volume: 6
  start-page: 2100815
  year: 2022
  ident: ref80
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100815
– volume: 3
  start-page: 1500849
  year: 2016
  ident: ref61
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500849
– volume: 91
  start-page: 106658
  year: 2022
  ident: ref27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106658
– volume: 29
  start-page: 1701440
  year: 2017
  ident: ref58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701440
– volume: 42
  start-page: 090202
  year: 2021
  ident: ref17
  publication-title: J. Semiconductors
  doi: 10.1088/1674-4926/42/11/110203
SSID ssj0002893797
Score 2.5047896
SecondaryResourceType review_article
Snippet Perovskite solar cells (Pero-SCs) exhibited a bright future for the next generation of photovoltaic technology because of their high power conversion...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage e9120024
SubjectTerms large area
perovskite films
perovskite photovoltaic modules
perovskite solar cells
Title High-performance large-area perovskite photovoltaic modules
URI https://doaj.org/article/b6f8fc2f6d8c4433899cbe41a340d88d
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5UgYmpNAk_qgtJkCtKiQ6ICp1i86OLYRKU9GUkd_OXRJKWWBhyRA5kXMX--75nt4xdoE5q5aJhRis1whQEoh1MICoFQADlFfW12yLsRpNxP1UTjdafREnrJEHbgzXsyro4LKgCu2E4CQH56wXKXCRFFoXtPtizNsAUy9N-Yz3684qWZ-oPTiiKWlmShrTGz8OEBpm2ZVJiaQgfgSlDe3-OsgMd9lOmx1GN82s9tiWn--za-JixItvhn80I_p2DJjvRaTz_b6kI9ho8VxWJe42CPZd9FoWq5lfHrDJcPB0N4rbngex41JUMYSkSEBr7hB5eRLo8pLaaKbckzYY4AoEjMo2FFxZHlRmlBVUfOtbnkpn-CHrzMu5P2JR6kCZIK033gtcXSAUh1QGrZLCCZV2WfL10blrBcGpL8UsR2BQ2ylHO-Vkp7y1U5ddrh9ZNGoYvw2-JUuuB5KQdX0D3Zu37s3_cu_xf7zkhG3TxBpq2CnrVG8rf4a5RGXP698Grw8fg0-Mn8PA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+large-area+perovskite+photovoltaic+modules&rft.jtitle=Nano+Research+Energy&rft.au=Liang+Chu&rft.au=Shuaibo+Zhai&rft.au=Waqar+Ahmad&rft.au=Jing+Zhang&rft.date=2022-09-01&rft.pub=Tsinghua+University+Press&rft.issn=2791-0091&rft.eissn=2790-8119&rft.volume=1&rft.issue=2&rft.spage=e9120024&rft_id=info:doi/10.26599%2FNRE.2022.9120024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6f8fc2f6d8c4433899cbe41a340d88d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2791-0091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2791-0091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2791-0091&client=summon