Nanometer refractive index sensor based on water droplet cavity structure with rectangular short rod
In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water droplet cavity with rectangular stubs (WDCRS). The WDCRS structure optimizes the sensitivity of a single water droplet cavity and makes the transmi...
Saved in:
Published in | Frontiers in physics Vol. 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
10.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-424X 2296-424X |
DOI | 10.3389/fphy.2024.1364998 |
Cover
Abstract | In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water droplet cavity with rectangular stubs (WDCRS). The WDCRS structure optimizes the sensitivity of a single water droplet cavity and makes the transmission curve clearer and smoother. The transmission characteristics of WDCRS structure were simulated using finite element method (FEM). The transmission characteristics of the exported structure were analyzed in detail. In addition, the influence of structural geometric parameters on sensing performance was also studied, and it was found that the size of the water droplet cavity is a key factor in improving sensitivity. When applied to a refractive index sensor, the structure achieves a sensitivity of up to 2,300 nm/RIU with a corresponding figure of merit (FOM) of 60.5. These works provide some ideas for the design of high-performance nanostructures and multiple Fano resonance excitation structures. |
---|---|
AbstractList | In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water droplet cavity with rectangular stubs (WDCRS). The WDCRS structure optimizes the sensitivity of a single water droplet cavity and makes the transmission curve clearer and smoother. The transmission characteristics of WDCRS structure were simulated using finite element method (FEM). The transmission characteristics of the exported structure were analyzed in detail. In addition, the influence of structural geometric parameters on sensing performance was also studied, and it was found that the size of the water droplet cavity is a key factor in improving sensitivity. When applied to a refractive index sensor, the structure achieves a sensitivity of up to 2,300 nm/RIU with a corresponding figure of merit (FOM) of 60.5. These works provide some ideas for the design of high-performance nanostructures and multiple Fano resonance excitation structures. |
Author | Liu, Jilai Ren, Yifeng Cao, Yuhao Wang, Jin Yan, Shubin Liu, Feng Zhang, Yi Chang, Shuwen Cui, Yang |
Author_xml | – sequence: 1 givenname: Jin surname: Wang fullname: Wang, Jin – sequence: 2 givenname: Shubin surname: Yan fullname: Yan, Shubin – sequence: 3 givenname: Feng surname: Liu fullname: Liu, Feng – sequence: 4 givenname: Shuwen surname: Chang fullname: Chang, Shuwen – sequence: 5 givenname: Yuhao surname: Cao fullname: Cao, Yuhao – sequence: 6 givenname: Yang surname: Cui fullname: Cui, Yang – sequence: 7 givenname: Jilai surname: Liu fullname: Liu, Jilai – sequence: 8 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 9 givenname: Yifeng surname: Ren fullname: Ren, Yifeng |
BookMark | eNp9kMtKAzEUhoNUsGofwF1eoDW3mUmWIl4KRTcK7sJpLm3KOClJau3bO7VFxIWrczj8_wfnO0eDLnYOoStKJpxLde3Xy92EESYmlNdCKXmChoypeiyYeBv82s_QKOcVIYSySkkmhsg-QRffXXEJJ-cTmBI-HA6ddZ84uy7HhOeQncWxw1vYx2yK69YVbOAjlB3OJW1M2SSHt6Ese4gp0C02LSSclzEVnKK9RKce2uxGx3mBXu_vXm4fx7Pnh-ntzWxseCXKGIywc8stF9L4SvimZo1qgEjDa8kl9aaSRMmGNcxbLxzMlem_5rwhtfQS-AWaHrg2wkqvU3iHtNMRgv4-xLTQkEowrdOEV5YJIaiQXNSKAfeEVVQRoahTNe9Z9MAyKebcu_nhUaL31vXeut5b10frfaf50zGhQAmxKwlC-0_zC_Otisg |
CitedBy_id | crossref_primary_10_1364_JOSAB_549819 crossref_primary_10_1007_s11468_024_02562_4 |
Cites_doi | 10.1038/s41598-020-63459-w 10.1109/jqe.2014.2359232 10.1063/1.2056594 10.1038/nature05350 10.1103/physreva.95.023810 10.1038/nphoton.2009.282 10.1016/j.ijleo.2012.11.025 10.1021/cr100313v 10.1016/j.nanoen.2011.09.002 10.1038/nature01937 10.1109/TNANO.2011.2147330 10.1007/s00339-018-2283-0 10.1007/s11468-015-0174-1 10.1364/OE.395696 10.1109/jqe.2016.2640220 10.1364/oe.23.019082 10.3390/s16050642 10.1109/jsen.2018.2826040 10.1007/s11468-015-0042-z 10.1364/oe.20.003408 10.1364/oe.19.007633 10.1109/jlt.2016.2546317 10.1088/0034-4885/76/1/016402 10.1109/jphot.2015.2419635 10.1007/s11468-016-0309-z 10.1007/s13320-018-0509-6 10.1016/j.optcom.2022.128429 10.1007/s11468-011-9260-1 10.1016/j.physrep.2004.11.001 10.1038/ncomms14411 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fphy.2024.1364998 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2296-424X |
ExternalDocumentID | oai_doaj_org_article_035d244414834692a3f025190491e963 10_3389_fphy_2024_1364998 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-ac4dbd3d348cf54f762797a08c368381fc580987272fdf4eab9c202337068f8a3 |
IEDL.DBID | DOA |
ISSN | 2296-424X |
IngestDate | Wed Aug 27 01:34:01 EDT 2025 Tue Jul 01 01:03:12 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-ac4dbd3d348cf54f762797a08c368381fc580987272fdf4eab9c202337068f8a3 |
OpenAccessLink | https://doaj.org/article/035d244414834692a3f025190491e963 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_035d244414834692a3f025190491e963 crossref_primary_10_3389_fphy_2024_1364998 crossref_citationtrail_10_3389_fphy_2024_1364998 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-10 |
PublicationDateYYYYMMDD | 2024-04-10 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in physics |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Yin (B3) 2010; 1 Huang (B14) 2016; 34 Wang (B13) 2016; 11 Chen (B26) 2013; 124 Tao (B7) 2011; 6 Fang (B8) 2016; 11 Tathfif (B23) 2022; 519 Zhu (B27) 2011; 10 Yan (B16) 2017; 8 Akram (B17) 2017; 95 Nejat (B25) 2020; 10 Chen (B11) 2011; 19 Mayer (B30) 2011; 111 Wei (B18) 2017; 12 Chen (B15) 2016; 53 Zhang (B29) 2019; 125 Han (B5) 2013; 76 Veronis (B9) 2005; 87 Barnes (B1) 2003; 424 Xie (B28) 2015; 7 Kong (B24) 2015; 23 Genet (B4) 2007; 445 Zhu (B22) 2020; 28 Zafar (B20) 2018; 18 Neutens (B12) 2012; 20 Zhang (B21) 2018; 8 Zayats (B6) 2005; 408 Zhang (B19) 2016; 16 Gramotnev (B2) 2010; 4 Tian (B10) 2014; 50 |
References_xml | – volume: 10 start-page: 6357 year: 2020 ident: B25 article-title: Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region publication-title: Scientific Rep doi: 10.1038/s41598-020-63459-w – volume: 50 start-page: 898 year: 2014 ident: B10 article-title: Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide publication-title: Quan Elect IEEE J doi: 10.1109/jqe.2014.2359232 – volume: 87 start-page: 131102 year: 2005 ident: B9 article-title: Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides publication-title: Appl Phys Lett doi: 10.1063/1.2056594 – volume: 445 start-page: 39 year: 2007 ident: B4 article-title: Light in tiny holes publication-title: Nature doi: 10.1038/nature05350 – volume: 95 start-page: 023810 year: 2017 ident: B17 article-title: Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity publication-title: Phys Rev A doi: 10.1103/physreva.95.023810 – volume: 4 start-page: 83 year: 2010 ident: B2 article-title: Plasmonics beyond the diffraction limit publication-title: Nat Photon doi: 10.1038/nphoton.2009.282 – volume: 124 start-page: 3701 year: 2013 ident: B26 article-title: A subwavelength MIM waveguide filter with single-cavity and multi-cavity structure publication-title: Optik doi: 10.1016/j.ijleo.2012.11.025 – volume: 111 start-page: 3828 year: 2011 ident: B30 article-title: Localized surface plasmon resonance sensors publication-title: Chem Rev doi: 10.1021/cr100313v – volume: 1 start-page: 25 year: 2010 ident: B3 article-title: Plasmonic nano-lasers publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.09.002 – volume: 424 start-page: 824 year: 2003 ident: B1 article-title: Surface plasmon subwavelength optics publication-title: Nature doi: 10.1038/nature01937 – volume: 10 start-page: 1371 year: 2011 ident: B27 article-title: A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide publication-title: IEEE Trans Nanotechnol doi: 10.1109/TNANO.2011.2147330 – volume: 125 start-page: 13 year: 2019 ident: B29 article-title: High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity publication-title: Appl Phys doi: 10.1007/s00339-018-2283-0 – volume: 11 start-page: 1291 year: 2016 ident: B13 article-title: A MIM filter based on a side-coupled crossbeam square-ring resonator publication-title: Plasmonics doi: 10.1007/s11468-015-0174-1 – volume: 28 start-page: 19978 year: 2020 ident: B22 article-title: MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity publication-title: Opt Express doi: 10.1364/OE.395696 – volume: 53 start-page: 1 year: 2016 ident: B15 article-title: Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal publication-title: IEEE J Quan Elect doi: 10.1109/jqe.2016.2640220 – volume: 23 start-page: 19082 year: 2015 ident: B24 article-title: Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides publication-title: Opt Express doi: 10.1364/oe.23.019082 – volume: 16 start-page: 642 year: 2016 ident: B19 article-title: Fano resonance based on Metal-Insulator-Metal waveguide-coupled double rectangular cavities for plasmonic nanosensors publication-title: Sensors doi: 10.3390/s16050642 – volume: 18 start-page: 4372 year: 2018 ident: B20 article-title: Plasmonics-based refractive index sensor for detection of hemoglobin concentration publication-title: IEEE Sensors J doi: 10.1109/jsen.2018.2826040 – volume: 11 start-page: 197 year: 2016 ident: B8 article-title: Unidirectional all-optical absorption switch based on optical tamm state in nonlinear plasmonic waveguide publication-title: Plasmonics doi: 10.1007/s11468-015-0042-z – volume: 20 start-page: 3408 year: 2012 ident: B12 article-title: Plasmon filters and resonators in metal-insulator-metal waveguides publication-title: Opt Express doi: 10.1364/oe.20.003408 – volume: 19 start-page: 7633 year: 2011 ident: B11 article-title: Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure publication-title: Opt Express doi: 10.1364/oe.19.007633 – volume: 34 start-page: 2796 year: 2016 ident: B14 article-title: Design of compact mach–zehnder interferometer-based slow-light-enhanced plasmonic waveguide sensors publication-title: J Lightwave Tech doi: 10.1109/jlt.2016.2546317 – volume: 76 start-page: 016402 year: 2013 ident: B5 article-title: Radiation guiding with surface plasmon polaritons publication-title: Rep Prog Phyd doi: 10.1088/0034-4885/76/1/016402 – volume: 7 start-page: 1 year: 2015 ident: B28 article-title: A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity publication-title: IEEE Photon J doi: 10.1109/jphot.2015.2419635 – volume: 12 start-page: 641 year: 2017 ident: B18 article-title: Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device publication-title: Plasmonics doi: 10.1007/s11468-016-0309-z – volume: 8 start-page: 367 year: 2018 ident: B21 article-title: Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators publication-title: Photonic Sens. doi: 10.1007/s13320-018-0509-6 – volume: 519 start-page: 128429 year: 2022 ident: B23 article-title: A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection publication-title: Opt Commun doi: 10.1016/j.optcom.2022.128429 – volume: 6 start-page: 753 year: 2011 ident: B7 article-title: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material publication-title: Plasmonics doi: 10.1007/s11468-011-9260-1 – volume: 408 start-page: 131 year: 2005 ident: B6 article-title: Nano-optics of surface plasmon polaritons publication-title: Phys.Rep. doi: 10.1016/j.physrep.2004.11.001 – volume: 8 start-page: 14411 year: 2017 ident: B16 article-title: Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides publication-title: Nat Commun doi: 10.1038/ncomms14411 |
SSID | ssj0001259824 |
Score | 2.2662728 |
Snippet | In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | Fano resonance metal-insulator-metal refractive index sensor surface plasmon polaritons water droplet cavity |
Title | Nanometer refractive index sensor based on water droplet cavity structure with rectangular short rod |
URI | https://doaj.org/article/035d244414834692a3f025190491e963 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIngRn1gfZQ-ehNBNdjfZPdZHKWK9aKG3sE88aCpt1b_vTBJLvejFa5gsy2SY-eaRbwi58Ep7QBUykVpkifDaJtaLIkmtcsIq49K6ez5-yEcTcTeV07VVXzgT1tADN4rrMy49hCCRYtUr15nhEWGxBmSbBrAe9L5Ms7VkqqmuIDGdaNqYkIXpfoRbQzqYCRzsApivfgSiNb7-OrAMd8lOiwjpoLnJHtkI1T7Zqicz3eKAePB_s1ccWqFwRv1P00egNckhXUAOOptTjESezir6aVDMz3EofEmdwb0QtGGIfZ8HijVXih4Oa5SQ0dLFM4BvCi70kEyGt0_Xo6RdjZA4LsUyMU5467nnQrkoRQSXVujCMOV4riAIRycV0wq7rNFHEYzVDhel84LlKirDj0inmlXhmFAjpC-MYdxiKma5MTz1qWEyKBNM5rqEfeupdC1vOK6veCkhf0DVlqjaElVbtqrtksvVK28NacZvwleo_JUg8l3XD8AKytYKyr-s4OQ_Djkl23gx7BWl7Ix04POEc4AcS9sjm4Ob8f1jr7ayL7Jw0pg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanometer+refractive+index+sensor+based+on+water+droplet+cavity+structure+with+rectangular+short+rod&rft.jtitle=Frontiers+in+physics&rft.au=Wang%2C+Jin&rft.au=Yan%2C+Shubin&rft.au=Liu%2C+Feng&rft.au=Chang%2C+Shuwen&rft.date=2024-04-10&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=12&rft_id=info:doi/10.3389%2Ffphy.2024.1364998&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphy_2024_1364998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |