Nanometer refractive index sensor based on water droplet cavity structure with rectangular short rod

In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water droplet cavity with rectangular stubs (WDCRS). The WDCRS structure optimizes the sensitivity of a single water droplet cavity and makes the transmi...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 12
Main Authors Wang, Jin, Yan, Shubin, Liu, Feng, Chang, Shuwen, Cao, Yuhao, Cui, Yang, Liu, Jilai, Zhang, Yi, Ren, Yifeng
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 10.04.2024
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2024.1364998

Cover

Abstract In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water droplet cavity with rectangular stubs (WDCRS). The WDCRS structure optimizes the sensitivity of a single water droplet cavity and makes the transmission curve clearer and smoother. The transmission characteristics of WDCRS structure were simulated using finite element method (FEM). The transmission characteristics of the exported structure were analyzed in detail. In addition, the influence of structural geometric parameters on sensing performance was also studied, and it was found that the size of the water droplet cavity is a key factor in improving sensitivity. When applied to a refractive index sensor, the structure achieves a sensitivity of up to 2,300 nm/RIU with a corresponding figure of merit (FOM) of 60.5. These works provide some ideas for the design of high-performance nanostructures and multiple Fano resonance excitation structures.
AbstractList In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water droplet cavity with rectangular stubs (WDCRS). The WDCRS structure optimizes the sensitivity of a single water droplet cavity and makes the transmission curve clearer and smoother. The transmission characteristics of WDCRS structure were simulated using finite element method (FEM). The transmission characteristics of the exported structure were analyzed in detail. In addition, the influence of structural geometric parameters on sensing performance was also studied, and it was found that the size of the water droplet cavity is a key factor in improving sensitivity. When applied to a refractive index sensor, the structure achieves a sensitivity of up to 2,300 nm/RIU with a corresponding figure of merit (FOM) of 60.5. These works provide some ideas for the design of high-performance nanostructures and multiple Fano resonance excitation structures.
Author Liu, Jilai
Ren, Yifeng
Cao, Yuhao
Wang, Jin
Yan, Shubin
Liu, Feng
Zhang, Yi
Chang, Shuwen
Cui, Yang
Author_xml – sequence: 1
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
– sequence: 2
  givenname: Shubin
  surname: Yan
  fullname: Yan, Shubin
– sequence: 3
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
– sequence: 4
  givenname: Shuwen
  surname: Chang
  fullname: Chang, Shuwen
– sequence: 5
  givenname: Yuhao
  surname: Cao
  fullname: Cao, Yuhao
– sequence: 6
  givenname: Yang
  surname: Cui
  fullname: Cui, Yang
– sequence: 7
  givenname: Jilai
  surname: Liu
  fullname: Liu, Jilai
– sequence: 8
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 9
  givenname: Yifeng
  surname: Ren
  fullname: Ren, Yifeng
BookMark eNp9kMtKAzEUhoNUsGofwF1eoDW3mUmWIl4KRTcK7sJpLm3KOClJau3bO7VFxIWrczj8_wfnO0eDLnYOoStKJpxLde3Xy92EESYmlNdCKXmChoypeiyYeBv82s_QKOcVIYSySkkmhsg-QRffXXEJJ-cTmBI-HA6ddZ84uy7HhOeQncWxw1vYx2yK69YVbOAjlB3OJW1M2SSHt6Ese4gp0C02LSSclzEVnKK9RKce2uxGx3mBXu_vXm4fx7Pnh-ntzWxseCXKGIywc8stF9L4SvimZo1qgEjDa8kl9aaSRMmGNcxbLxzMlem_5rwhtfQS-AWaHrg2wkqvU3iHtNMRgv4-xLTQkEowrdOEV5YJIaiQXNSKAfeEVVQRoahTNe9Z9MAyKebcu_nhUaL31vXeut5b10frfaf50zGhQAmxKwlC-0_zC_Otisg
CitedBy_id crossref_primary_10_1364_JOSAB_549819
crossref_primary_10_1007_s11468_024_02562_4
Cites_doi 10.1038/s41598-020-63459-w
10.1109/jqe.2014.2359232
10.1063/1.2056594
10.1038/nature05350
10.1103/physreva.95.023810
10.1038/nphoton.2009.282
10.1016/j.ijleo.2012.11.025
10.1021/cr100313v
10.1016/j.nanoen.2011.09.002
10.1038/nature01937
10.1109/TNANO.2011.2147330
10.1007/s00339-018-2283-0
10.1007/s11468-015-0174-1
10.1364/OE.395696
10.1109/jqe.2016.2640220
10.1364/oe.23.019082
10.3390/s16050642
10.1109/jsen.2018.2826040
10.1007/s11468-015-0042-z
10.1364/oe.20.003408
10.1364/oe.19.007633
10.1109/jlt.2016.2546317
10.1088/0034-4885/76/1/016402
10.1109/jphot.2015.2419635
10.1007/s11468-016-0309-z
10.1007/s13320-018-0509-6
10.1016/j.optcom.2022.128429
10.1007/s11468-011-9260-1
10.1016/j.physrep.2004.11.001
10.1038/ncomms14411
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fphy.2024.1364998
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_035d244414834692a3f025190491e963
10_3389_fphy_2024_1364998
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-ac4dbd3d348cf54f762797a08c368381fc580987272fdf4eab9c202337068f8a3
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Wed Aug 27 01:34:01 EDT 2025
Tue Jul 01 01:03:12 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-ac4dbd3d348cf54f762797a08c368381fc580987272fdf4eab9c202337068f8a3
OpenAccessLink https://doaj.org/article/035d244414834692a3f025190491e963
ParticipantIDs doaj_primary_oai_doaj_org_article_035d244414834692a3f025190491e963
crossref_primary_10_3389_fphy_2024_1364998
crossref_citationtrail_10_3389_fphy_2024_1364998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-10
PublicationDateYYYYMMDD 2024-04-10
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-10
  day: 10
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Yin (B3) 2010; 1
Huang (B14) 2016; 34
Wang (B13) 2016; 11
Chen (B26) 2013; 124
Tao (B7) 2011; 6
Fang (B8) 2016; 11
Tathfif (B23) 2022; 519
Zhu (B27) 2011; 10
Yan (B16) 2017; 8
Akram (B17) 2017; 95
Nejat (B25) 2020; 10
Chen (B11) 2011; 19
Mayer (B30) 2011; 111
Wei (B18) 2017; 12
Chen (B15) 2016; 53
Zhang (B29) 2019; 125
Han (B5) 2013; 76
Veronis (B9) 2005; 87
Barnes (B1) 2003; 424
Xie (B28) 2015; 7
Kong (B24) 2015; 23
Genet (B4) 2007; 445
Zhu (B22) 2020; 28
Zafar (B20) 2018; 18
Neutens (B12) 2012; 20
Zhang (B21) 2018; 8
Zayats (B6) 2005; 408
Zhang (B19) 2016; 16
Gramotnev (B2) 2010; 4
Tian (B10) 2014; 50
References_xml – volume: 10
  start-page: 6357
  year: 2020
  ident: B25
  article-title: Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region
  publication-title: Scientific Rep
  doi: 10.1038/s41598-020-63459-w
– volume: 50
  start-page: 898
  year: 2014
  ident: B10
  article-title: Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide
  publication-title: Quan Elect IEEE J
  doi: 10.1109/jqe.2014.2359232
– volume: 87
  start-page: 131102
  year: 2005
  ident: B9
  article-title: Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2056594
– volume: 445
  start-page: 39
  year: 2007
  ident: B4
  article-title: Light in tiny holes
  publication-title: Nature
  doi: 10.1038/nature05350
– volume: 95
  start-page: 023810
  year: 2017
  ident: B17
  article-title: Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity
  publication-title: Phys Rev A
  doi: 10.1103/physreva.95.023810
– volume: 4
  start-page: 83
  year: 2010
  ident: B2
  article-title: Plasmonics beyond the diffraction limit
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2009.282
– volume: 124
  start-page: 3701
  year: 2013
  ident: B26
  article-title: A subwavelength MIM waveguide filter with single-cavity and multi-cavity structure
  publication-title: Optik
  doi: 10.1016/j.ijleo.2012.11.025
– volume: 111
  start-page: 3828
  year: 2011
  ident: B30
  article-title: Localized surface plasmon resonance sensors
  publication-title: Chem Rev
  doi: 10.1021/cr100313v
– volume: 1
  start-page: 25
  year: 2010
  ident: B3
  article-title: Plasmonic nano-lasers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.09.002
– volume: 424
  start-page: 824
  year: 2003
  ident: B1
  article-title: Surface plasmon subwavelength optics
  publication-title: Nature
  doi: 10.1038/nature01937
– volume: 10
  start-page: 1371
  year: 2011
  ident: B27
  article-title: A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide
  publication-title: IEEE Trans Nanotechnol
  doi: 10.1109/TNANO.2011.2147330
– volume: 125
  start-page: 13
  year: 2019
  ident: B29
  article-title: High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity
  publication-title: Appl Phys
  doi: 10.1007/s00339-018-2283-0
– volume: 11
  start-page: 1291
  year: 2016
  ident: B13
  article-title: A MIM filter based on a side-coupled crossbeam square-ring resonator
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-0174-1
– volume: 28
  start-page: 19978
  year: 2020
  ident: B22
  article-title: MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity
  publication-title: Opt Express
  doi: 10.1364/OE.395696
– volume: 53
  start-page: 1
  year: 2016
  ident: B15
  article-title: Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal
  publication-title: IEEE J Quan Elect
  doi: 10.1109/jqe.2016.2640220
– volume: 23
  start-page: 19082
  year: 2015
  ident: B24
  article-title: Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides
  publication-title: Opt Express
  doi: 10.1364/oe.23.019082
– volume: 16
  start-page: 642
  year: 2016
  ident: B19
  article-title: Fano resonance based on Metal-Insulator-Metal waveguide-coupled double rectangular cavities for plasmonic nanosensors
  publication-title: Sensors
  doi: 10.3390/s16050642
– volume: 18
  start-page: 4372
  year: 2018
  ident: B20
  article-title: Plasmonics-based refractive index sensor for detection of hemoglobin concentration
  publication-title: IEEE Sensors J
  doi: 10.1109/jsen.2018.2826040
– volume: 11
  start-page: 197
  year: 2016
  ident: B8
  article-title: Unidirectional all-optical absorption switch based on optical tamm state in nonlinear plasmonic waveguide
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-0042-z
– volume: 20
  start-page: 3408
  year: 2012
  ident: B12
  article-title: Plasmon filters and resonators in metal-insulator-metal waveguides
  publication-title: Opt Express
  doi: 10.1364/oe.20.003408
– volume: 19
  start-page: 7633
  year: 2011
  ident: B11
  article-title: Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure
  publication-title: Opt Express
  doi: 10.1364/oe.19.007633
– volume: 34
  start-page: 2796
  year: 2016
  ident: B14
  article-title: Design of compact mach–zehnder interferometer-based slow-light-enhanced plasmonic waveguide sensors
  publication-title: J Lightwave Tech
  doi: 10.1109/jlt.2016.2546317
– volume: 76
  start-page: 016402
  year: 2013
  ident: B5
  article-title: Radiation guiding with surface plasmon polaritons
  publication-title: Rep Prog Phyd
  doi: 10.1088/0034-4885/76/1/016402
– volume: 7
  start-page: 1
  year: 2015
  ident: B28
  article-title: A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity
  publication-title: IEEE Photon J
  doi: 10.1109/jphot.2015.2419635
– volume: 12
  start-page: 641
  year: 2017
  ident: B18
  article-title: Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device
  publication-title: Plasmonics
  doi: 10.1007/s11468-016-0309-z
– volume: 8
  start-page: 367
  year: 2018
  ident: B21
  article-title: Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-018-0509-6
– volume: 519
  start-page: 128429
  year: 2022
  ident: B23
  article-title: A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2022.128429
– volume: 6
  start-page: 753
  year: 2011
  ident: B7
  article-title: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material
  publication-title: Plasmonics
  doi: 10.1007/s11468-011-9260-1
– volume: 408
  start-page: 131
  year: 2005
  ident: B6
  article-title: Nano-optics of surface plasmon polaritons
  publication-title: Phys.Rep.
  doi: 10.1016/j.physrep.2004.11.001
– volume: 8
  start-page: 14411
  year: 2017
  ident: B16
  article-title: Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides
  publication-title: Nat Commun
  doi: 10.1038/ncomms14411
SSID ssj0001259824
Score 2.2662728
Snippet In this paper, a novel nano sensor structure is proposed, which consists of a metal-insulator-metal waveguide (MIM) with rectangular baffles and a water...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms Fano resonance
metal-insulator-metal
refractive index sensor
surface plasmon polaritons
water droplet cavity
Title Nanometer refractive index sensor based on water droplet cavity structure with rectangular short rod
URI https://doaj.org/article/035d244414834692a3f025190491e963
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIngRn1gfZQ-ehNBNdjfZPdZHKWK9aKG3sE88aCpt1b_vTBJLvejFa5gsy2SY-eaRbwi58Ep7QBUykVpkifDaJtaLIkmtcsIq49K6ez5-yEcTcTeV07VVXzgT1tADN4rrMy49hCCRYtUr15nhEWGxBmSbBrAe9L5Ms7VkqqmuIDGdaNqYkIXpfoRbQzqYCRzsApivfgSiNb7-OrAMd8lOiwjpoLnJHtkI1T7Zqicz3eKAePB_s1ccWqFwRv1P00egNckhXUAOOptTjESezir6aVDMz3EofEmdwb0QtGGIfZ8HijVXih4Oa5SQ0dLFM4BvCi70kEyGt0_Xo6RdjZA4LsUyMU5467nnQrkoRQSXVujCMOV4riAIRycV0wq7rNFHEYzVDhel84LlKirDj0inmlXhmFAjpC-MYdxiKma5MTz1qWEyKBNM5rqEfeupdC1vOK6veCkhf0DVlqjaElVbtqrtksvVK28NacZvwleo_JUg8l3XD8AKytYKyr-s4OQ_Djkl23gx7BWl7Ix04POEc4AcS9sjm4Ob8f1jr7ayL7Jw0pg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanometer+refractive+index+sensor+based+on+water+droplet+cavity+structure+with+rectangular+short+rod&rft.jtitle=Frontiers+in+physics&rft.au=Wang%2C+Jin&rft.au=Yan%2C+Shubin&rft.au=Liu%2C+Feng&rft.au=Chang%2C+Shuwen&rft.date=2024-04-10&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=12&rft_id=info:doi/10.3389%2Ffphy.2024.1364998&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphy_2024_1364998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon