Arbuscular mycorrhizal fungi reduce N2O emissions from degraded residue patches

Nitrous oxide (N 2 O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N 2 O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize rel...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in ecology and evolution Vol. 11
Main Authors Li, Xia, He, Guang, Li, Dandan, Bei, Shuikuan, Luan, Dongdong, Sun, Xinzhan, Yang, Gaiqiang, Huo, Lijuan, Zhen, Lina, Zhao, Ruotong
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 04.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrous oxide (N 2 O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N 2 O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize released N from the organic patches, and potentially mitigate N 2 O emissions. However, the effect of AMF on N 2 O emissions in degraded residue patches and the possible microbial mechanism remain uncertain. Here, a mesocosm experiment was conducted to investigate the impact of AMF ( Funneliformis mosseae ) inoculation on N 2 O emissions, availabilities of carbon and nitrogen, extracellular enzyme activities, and the abundance of key N-cycling genes in degraded residue patches. Our results showed that AMF hyphae significantly reduced N 2 O emissions from degraded residue patches. Quantitative PCR analysis of key functional genes involved in N 2 O production ( amoA , nirK , nirS ) and consumption ( nosZ ) showed that AMF significantly reduced the abundance of the bacterial amoA and nirS genes. NH 4 + , NO 3 − , total dissolved nitrogen (TDN), total nitrogen (TN), and dissolved organic carbon (DOC) contents decreased drastically in the presence of AMF. In addition, the activities of all tested extracellular enzymes were significantly decreased by AMF and positively correlated with DOC content. Multiple stepwise regression analysis demonstrated that the abundance of the nirS gene primarily influenced N 2 O emissions and was positively correlated with DOC content in degraded residue patches. Our findings indicate that AMF suppressed N 2 O producers, particularly nirS -type denitrifiers, by slowing down the release of C and N from degraded residues, thereby leading to a cascade effect on the decrease of N 2 O emissions. This study provides a promising approach to mitigate N 2 O emissions by enhancing AMF in the agroecosystems.
AbstractList Nitrous oxide (N2O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N2O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize released N from the organic patches, and potentially mitigate N2O emissions. However, the effect of AMF on N2O emissions in degraded residue patches and the possible microbial mechanism remain uncertain. Here, a mesocosm experiment was conducted to investigate the impact of AMF (Funneliformis mosseae) inoculation on N2O emissions, availabilities of carbon and nitrogen, extracellular enzyme activities, and the abundance of key N-cycling genes in degraded residue patches. Our results showed that AMF hyphae significantly reduced N2O emissions from degraded residue patches. Quantitative PCR analysis of key functional genes involved in N2O production (amoA, nirK, nirS) and consumption (nosZ) showed that AMF significantly reduced the abundance of the bacterial amoA and nirS genes. NH4+, NO3−, total dissolved nitrogen (TDN), total nitrogen (TN), and dissolved organic carbon (DOC) contents decreased drastically in the presence of AMF. In addition, the activities of all tested extracellular enzymes were significantly decreased by AMF and positively correlated with DOC content. Multiple stepwise regression analysis demonstrated that the abundance of the nirS gene primarily influenced N2O emissions and was positively correlated with DOC content in degraded residue patches. Our findings indicate that AMF suppressed N2O producers, particularly nirS-type denitrifiers, by slowing down the release of C and N from degraded residues, thereby leading to a cascade effect on the decrease of N2O emissions. This study provides a promising approach to mitigate N2O emissions by enhancing AMF in the agroecosystems.
Nitrous oxide (N 2 O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N 2 O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize released N from the organic patches, and potentially mitigate N 2 O emissions. However, the effect of AMF on N 2 O emissions in degraded residue patches and the possible microbial mechanism remain uncertain. Here, a mesocosm experiment was conducted to investigate the impact of AMF ( Funneliformis mosseae ) inoculation on N 2 O emissions, availabilities of carbon and nitrogen, extracellular enzyme activities, and the abundance of key N-cycling genes in degraded residue patches. Our results showed that AMF hyphae significantly reduced N 2 O emissions from degraded residue patches. Quantitative PCR analysis of key functional genes involved in N 2 O production ( amoA , nirK , nirS ) and consumption ( nosZ ) showed that AMF significantly reduced the abundance of the bacterial amoA and nirS genes. NH 4 + , NO 3 − , total dissolved nitrogen (TDN), total nitrogen (TN), and dissolved organic carbon (DOC) contents decreased drastically in the presence of AMF. In addition, the activities of all tested extracellular enzymes were significantly decreased by AMF and positively correlated with DOC content. Multiple stepwise regression analysis demonstrated that the abundance of the nirS gene primarily influenced N 2 O emissions and was positively correlated with DOC content in degraded residue patches. Our findings indicate that AMF suppressed N 2 O producers, particularly nirS -type denitrifiers, by slowing down the release of C and N from degraded residues, thereby leading to a cascade effect on the decrease of N 2 O emissions. This study provides a promising approach to mitigate N 2 O emissions by enhancing AMF in the agroecosystems.
Author Zhen, Lina
Sun, Xinzhan
Yang, Gaiqiang
He, Guang
Bei, Shuikuan
Luan, Dongdong
Zhao, Ruotong
Li, Xia
Li, Dandan
Huo, Lijuan
Author_xml – sequence: 1
  givenname: Xia
  surname: Li
  fullname: Li, Xia
– sequence: 2
  givenname: Guang
  surname: He
  fullname: He, Guang
– sequence: 3
  givenname: Dandan
  surname: Li
  fullname: Li, Dandan
– sequence: 4
  givenname: Shuikuan
  surname: Bei
  fullname: Bei, Shuikuan
– sequence: 5
  givenname: Dongdong
  surname: Luan
  fullname: Luan, Dongdong
– sequence: 6
  givenname: Xinzhan
  surname: Sun
  fullname: Sun, Xinzhan
– sequence: 7
  givenname: Gaiqiang
  surname: Yang
  fullname: Yang, Gaiqiang
– sequence: 8
  givenname: Lijuan
  surname: Huo
  fullname: Huo, Lijuan
– sequence: 9
  givenname: Lina
  surname: Zhen
  fullname: Zhen, Lina
– sequence: 10
  givenname: Ruotong
  surname: Zhao
  fullname: Zhao, Ruotong
BookMark eNp9kMtKAzEUhoNUsNY-gLu8QGsuc0mWpXgpFLtRcBdOLtOmzExKMiPUp3dqRcSFq3M4_P934LtGoza0DqFbSuacC3lXufcwZ4TxOWUsE5m8QGPGZDErCX0b_dqv0DSlPSGEsrzMRTZGm0XUfTJ9DRE3RxNi3PkPqHHVt1uPo7O9cfiZbbBrfEo-tAlXMTTYum0E6-wQSd72Dh-gMzuXbtBlBXVy0-85Qa8P9y_Lp9l687haLtYzw_Osm4F2DpiuRF6WQGwGQmonJdHCFoYaTrjICLWUa11YyHMmrWFUOpkxoitd8Alanbk2wF4dom8gHlUAr74OIW4VxM6b2ilt9QAjvDDCDHKYKEwuBKEFH1B8eDZB9MwyMaQUXfXDo0SdBKuTYHUSrL4FD53yT8f4DrpBUBfB1_80PwEILIOn
CitedBy_id crossref_primary_10_22144_ctujos_2024_450
Cites_doi 10.1111/j.1469-8137.2011.03948.x
10.1111/j.1469-8137.1990.tb00476.x
10.1016/j.soilbio.2014.03.010
10.1073/pnas.1313452110
10.1128/Aem.68.10.4751-4757.2002
10.1016/S0007-1536(70)80110-3
10.1111/j.1469-8137.2008.02630.x
10.1016/j.geoderma.2018.09.023
10.1111/j.1365-2486.2006.01280.x
10.1016/j.soilbio.2011.11.018
10.1111/j.1469-8137.2010.03483.x
10.1111/1365-2745.12496
10.1016/j.soilbio.2018.01.034
10.1111/j.1469-8137.1992.tb01077.x
10.1038/ngeo2963
10.1016/j.soilbio.2014.12.003
10.1126/science.1176985
10.1111/nph.13138
10.1111/j.1461-0248.2008.01219.x
10.2307/2258617
10.1038/ismej.2013.224
10.1016/j.tim.2017.07.003
10.1111/j.1365-3040.2005.01360.x
10.1111/j.1469-8137.2006.01750.x
10.1111/j.1469-8137.2006.01862.x
10.1016/j.scitotenv.2021.145133
10.1111/1462-2920.12081
10.3791/50961
10.1016/B978-0-12-800259-9.00002-0
10.1007/s11270-015-2493-4
10.1029/1999jd900378
10.1007/s00572-018-0825-0
10.1128/.61.4.533-616.1997
10.1038/s41586-020-2780-0
10.1016/j.still.2015.08.006
10.1016/j.tim.2012.08.001
10.1111/nph.14931
10.1111/1462-2920.15815
10.1016/j.chemosphere.2018.06.179
10.1016/j.soilbio.2014.10.016
10.1590/1678-992x-2016-0459
10.1016/j.soilbio.2019.06.003
10.1186/s40168-023-01466-5
10.1038/35095041
10.1111/j.1469-8137.1989.tb04215.x
10.1007/s11104-013-1678-0
10.1098/rstb.2013.0122
10.1016/j.soilbio.2018.01.007
10.1038/s41396-019-0369-0
10.1029/92wr00252
10.1007/s11104-011-1021-6
10.1038/nature03610
10.1016/j.geoderma.2021.115179
10.1023/a:1009740530221
10.1111/j.1574-6941.2011.01292.x
10.1017/s0953756299001240
10.2136/sssaj1987.03615995005100050019x
10.1111/j.1365-2745.2011.01863.x
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fevo.2023.1224849
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2296-701X
ExternalDocumentID oai_doaj_org_article_bdb840036c8c484286c58801630bf31c
10_3389_fevo_2023_1224849
GroupedDBID 5VS
9T4
AAFWJ
AAHBH
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
GX1
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-abeea2bf8577a0d4a89be990b8d6c1c3038401d13bb6da5529dc219e9420bfb63
IEDL.DBID DOA
ISSN 2296-701X
IngestDate Wed Aug 27 01:28:52 EDT 2025
Tue Jul 01 03:01:38 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-abeea2bf8577a0d4a89be990b8d6c1c3038401d13bb6da5529dc219e9420bfb63
OpenAccessLink https://doaj.org/article/bdb840036c8c484286c58801630bf31c
ParticipantIDs doaj_primary_oai_doaj_org_article_bdb840036c8c484286c58801630bf31c
crossref_primary_10_3389_fevo_2023_1224849
crossref_citationtrail_10_3389_fevo_2023_1224849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-04
PublicationDateYYYYMMDD 2023-08-04
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-04
  day: 04
PublicationDecade 2020
PublicationTitle Frontiers in ecology and evolution
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hattenschwiler (B16) 2011; 189
Jakobsen (B22) 1992; 120
Bender (B4) 2014; 8
Wu (B57) 2019; 135
Dai (B11) 2018; 211
Verbruggen (B54) 2016; 104
Teutscherova (B49) 2019; 338
Mcgonigle (B33) 1990; 115
Langarica-Fuentes (B28) 2018; 120
Tian (B50) 2020; 586
Kaiser (B24) 2015; 205
Koide (B25) 1989; 111
Hou (B21) 2018; 119
Cornwell (B10) 2008; 11
Peng (B38) 2013; 372
Tisserant (B52) 2013; 110
Bollmann (B5) 2002; 68
Veresoglou (B56) 2011; 99
Cavagnaro (B8) 2012; 353
Govindarajulu (B13) 2005; 435
Hodge (B18) 2014; 89
Hodge (B19) 2001; 413
Tanaka (B47) 2005; 28
Smith (B45) 2008
Chapuis-Lardy (B9) 2007; 13
Li (B32) 2023; 11
Nuccio (B36) 2013; 15
Herman (B17) 2012; 80
Tisserant (B51) 2012; 193
Hallin (B15) 2018; 26
Lazcano (B29) 2014; 74
van der Heijden (B53) 2006; 172
Ravishankara (B41) 2009; 326
Rillig (B42) 2006; 171
Zhao (B60) 2021; 23
Gui (B14) 2021; 774
Korom (B26) 1992; 28
Shen (B44) 2021; 402
Zumft (B61) 1997; 61
Kravchenko (B27) 2017; 10
Leifheit (B30) 2015; 81
Bender (B3) 2015; 80
Storer (B46) 2017; 220
Zhang (B59) 2015; 226
Joner (B23) 2000; 104
Hodge (B20) 2010; 107
Phillips (B39) 1970; 55
Roberto (B43) 2018; 75
Dobbie (B12) 1999; 104
Arias (B1) 2021
Veresoglou (B55) 2012; 46
Leigh (B31) 2009; 181
Morris (B34) 2019; 13
Butterbach-Bahl (B7) 2013; 368
Bell (B2) 2013; 81
Zhang (B58) 2016; 155
Mosier (B35) 1998; 52
Prosser (B40) 2012; 20
Tennant (B48) 1975; 6
Bukovska (B6) 2018; 28
Parkin (B37) 1987; 51
References_xml – volume: 193
  start-page: 755
  year: 2012
  ident: B51
  article-title: The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03948.x
– volume: 115
  start-page: 495
  year: 1990
  ident: B33
  article-title: A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1990.tb00476.x
– volume: 74
  start-page: 184
  year: 2014
  ident: B29
  article-title: Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.03.010
– volume: 110
  start-page: 20117
  year: 2013
  ident: B52
  article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
  publication-title: Proc. Natl. Acad. Sci. United States America
  doi: 10.1073/pnas.1313452110
– volume: 68
  start-page: 4751
  year: 2002
  ident: B5
  article-title: Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/Aem.68.10.4751-4757.2002
– volume: 55
  start-page: 158
  year: 1970
  ident: B39
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection
  publication-title: Trans. Br. Mycological Soc.
  doi: 10.1016/S0007-1536(70)80110-3
– volume: 181
  start-page: 199
  year: 2009
  ident: B31
  article-title: Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02630.x
– volume: 338
  start-page: 493
  year: 2019
  ident: B49
  article-title: Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.023
– volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: B1
– volume: 13
  start-page: 1
  year: 2007
  ident: B9
  article-title: Soils, a sink for N2O? A review
  publication-title: Global Change Biol.
  doi: 10.1111/j.1365-2486.2006.01280.x
– volume: 46
  start-page: 53
  year: 2012
  ident: B55
  article-title: Arbuscular mycorrhiza and soil nitrogen cycling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.11.018
– volume: 189
  start-page: 950
  year: 2011
  ident: B16
  article-title: Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03483.x
– volume: 104
  start-page: 261
  year: 2016
  ident: B54
  article-title: Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12496
– volume: 120
  start-page: 70
  year: 2018
  ident: B28
  article-title: Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.01.034
– volume: 120
  start-page: 371
  year: 1992
  ident: B22
  article-title: External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.: 1. Spread of hyphae and phosphorus inflow into roots
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1992.tb01077.x
– volume: 10
  start-page: 496
  year: 2017
  ident: B27
  article-title: Hotspots of soil N2O emission enhanced through water absorption by plant residue
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2963
– volume: 81
  start-page: 323
  year: 2015
  ident: B30
  article-title: Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.12.003
– volume: 326
  start-page: 123
  year: 2009
  ident: B41
  article-title: Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century
  publication-title: Science
  doi: 10.1126/science.1176985
– volume: 205
  start-page: 1537
  year: 2015
  ident: B24
  article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation
  publication-title: New Phytol.
  doi: 10.1111/nph.13138
– volume: 11
  start-page: 1065
  year: 2008
  ident: B10
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01219.x
– volume: 6
  start-page: 995
  year: 1975
  ident: B48
  article-title: A test of a modified line intersect method of estimating root length
  publication-title: J. Ecol.
  doi: 10.2307/2258617
– volume: 8
  start-page: 1336
  year: 2014
  ident: B4
  article-title: Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.224
– volume: 26
  start-page: 43
  year: 2018
  ident: B15
  article-title: Genomics and ecology of novel N2O-reducing microorganisms
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2017.07.003
– volume: 28
  start-page: 1247
  year: 2005
  ident: B47
  article-title: Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01360.x
– volume: 171
  start-page: 41
  year: 2006
  ident: B42
  article-title: Mycorrhizas and soil structure
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01750.x
– volume: 172
  start-page: 739
  year: 2006
  ident: B53
  article-title: The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01862.x
– volume: 774
  year: 2021
  ident: B14
  article-title: Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145133
– volume: 15
  start-page: 1870
  year: 2013
  ident: B36
  article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12081
– volume: 81
  year: 2013
  ident: B2
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: Jove-Journal Visualized Experiments
  doi: 10.3791/50961
– volume: 89
  start-page: 47
  year: 2014
  ident: B18
  article-title: Interactions between arbuscular mycorrhizal fungi and organic material substrates
  publication-title: Adv. Appl. Microbiol.
  doi: 10.1016/B978-0-12-800259-9.00002-0
– volume: 226
  start-page: 1
  year: 2015
  ident: B59
  article-title: Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies
  publication-title: Water Air Soil pollut.
  doi: 10.1007/s11270-015-2493-4
– volume: 104
  start-page: 26891
  year: 1999
  ident: B12
  article-title: Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors
  publication-title: J. Geophys. Research-Atmospheres
  doi: 10.1029/1999jd900378
– volume: 28
  start-page: 269
  year: 2018
  ident: B6
  article-title: Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-018-0825-0
– volume: 61
  start-page: 533
  year: 1997
  ident: B61
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/.61.4.533-616.1997
– volume: 107
  start-page: 13754
  year: 2010
  ident: B20
  article-title: Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling
  publication-title: Proc. Natl. Acad. Sci. United States America
  doi: 10.1016/B978-0-12-800259-9.00002-0
– volume: 586
  start-page: 248
  year: 2020
  ident: B50
  article-title: A comprehensive quantification of global nitrous oxide sources and sinks
  publication-title: Nature
  doi: 10.1038/s41586-020-2780-0
– volume: 155
  start-page: 85
  year: 2016
  ident: B58
  article-title: Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.08.006
– volume: 20
  start-page: 523
  year: 2012
  ident: B40
  article-title: Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.08.001
– volume: 220
  start-page: 1285
  year: 2017
  ident: B46
  article-title: Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots
  publication-title: New Phytol.
  doi: 10.1111/nph.14931
– volume: 23
  start-page: 6587
  year: 2021
  ident: B60
  article-title: Enrichment of nosZ-type denitrifiers by arbuscular mycorrhizal fungi mitigates N2O emissions from soybean stubbles
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.15815
– volume: 211
  start-page: 235
  year: 2018
  ident: B11
  article-title: Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.06.179
– volume: 80
  start-page: 283
  year: 2015
  ident: B3
  article-title: Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.10.016
– volume: 75
  start-page: 255
  year: 2018
  ident: B43
  article-title: Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review
  publication-title: Agriculture
  doi: 10.1590/1678-992x-2016-0459
– volume: 135
  start-page: 383
  year: 2019
  ident: B57
  article-title: Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.06.003
– volume: 11
  start-page: 1
  year: 2023
  ident: B32
  article-title: Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil
  publication-title: Microbiome
  doi: 10.1186/s40168-023-01466-5
– volume: 413
  start-page: 297
  year: 2001
  ident: B19
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
  doi: 10.1038/35095041
– volume: 111
  start-page: 35
  year: 1989
  ident: B25
  article-title: Appropriate controls for vesicular arbuscular mycorrhiza research
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1989.tb04215.x
– volume: 372
  start-page: 41
  year: 2013
  ident: B38
  article-title: Determination of the critical soil mineral nitrogen concentration for maximizing maize grain yield
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1678-0
– volume: 368
  start-page: 20130122
  year: 2013
  ident: B7
  article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls
  publication-title: Philos. Trans. R. Soc. B-Biological Sci.
  doi: 10.1098/rstb.2013.0122
– volume: 119
  start-page: 32
  year: 2018
  ident: B21
  article-title: Structure and assembly cues for rhizospheric nirK- and nirS-type denitrifier communities in long-term fertilized soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.01.007
– volume: 13
  start-page: 1639
  year: 2019
  ident: B34
  article-title: Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhiz
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0369-0
– volume: 28
  start-page: 1657
  year: 1992
  ident: B26
  article-title: Natural denitrification in the saturated zone - a review
  publication-title: Water Resour. Res.
  doi: 10.1029/92wr00252
– volume: 353
  start-page: 181
  year: 2012
  ident: B8
  article-title: Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1021-6
– volume: 435
  start-page: 819
  year: 2005
  ident: B13
  article-title: Nitrogen transfer in the arbuscular mycorrhizal symbiosis
  publication-title: Nature
  doi: 10.1038/nature03610
– volume: 402
  year: 2021
  ident: B44
  article-title: Arbuscular mycorrhizal fungi reduce soil nitrous oxide emission
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115179
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: B45
– volume: 52
  start-page: 225
  year: 1998
  ident: B35
  article-title: Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle
  publication-title: Nutrient Cycling Agroecosystems
  doi: 10.1023/a:1009740530221
– volume: 80
  start-page: 236
  year: 2012
  ident: B17
  article-title: Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01292.x
– volume: 104
  start-page: 81
  year: 2000
  ident: B23
  article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi
  publication-title: Mycological Res.
  doi: 10.1017/s0953756299001240
– volume: 51
  start-page: 1194
  year: 1987
  ident: B37
  article-title: Soil microsites as a source of denitrification variability
  publication-title: Soil Sci. Soc. America J.
  doi: 10.2136/sssaj1987.03615995005100050019x
– volume: 99
  start-page: 1339
  year: 2011
  ident: B56
  article-title: Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2011.01863.x
SSID ssj0001257584
Score 2.235511
Snippet Nitrous oxide (N 2 O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but...
Nitrous oxide (N2O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms crop residue
denitrification
extracellular enzyme activities
mycorrhizal fungi
nitrous oxide
Title Arbuscular mycorrhizal fungi reduce N2O emissions from degraded residue patches
URI https://doaj.org/article/bdb840036c8c484286c58801630bf31c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf7MGTEJtkN9nNsUpLEWwvFnoL-5hoQWvpQ6i_3pkklpz04jVMwuabYR67s98wdgORgTCxRWBM5gNZpC4wyqvAeQtCyqxQZbf70zAdjOXjJJk0Rn1RT1hFD1wB17HeYg2CftZpJzUmy6lL0OYwjQhtISJH3hdjXqOYqnZXMA3RsjrGxCos6xTwSXf9YnFHZ0mauDMbgajB118Glv4B268zQt6tVnLIdmB2xHZ7JZv05piNuvjfVbcof99grbh4nX6hPAaklylfEPMq8GE84jS4jba-lpyujHBPLBAePIqgwa2Bzw0paHnCxv3e88MgqKcgBE4kchUYC2BiW-hEKRN6aXRmAWOI1T51kcMQhPhEPhLWpt4kSZx5h24IMhkjQjYVp6w1-5jBGeNOaZ9F4J0RShbESatSkzoDrhBhCKLNwh9IcldThNOkirccSwVCMScUc0Ixr1Fss9vtK_OKH-M34XvCeStI1NblA1R4Xis8_0vh5__xkQu2RwsrO_nkJWutFmu4wuxiZa9LQ_oGv_TMwA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+reduce+N2O+emissions+from+degraded+residue+patches&rft.jtitle=Frontiers+in+ecology+and+evolution&rft.au=Li%2C+Xia&rft.au=He%2C+Guang&rft.au=Li%2C+Dandan&rft.au=Bei%2C+Shuikuan&rft.date=2023-08-04&rft.issn=2296-701X&rft.eissn=2296-701X&rft.volume=11&rft_id=info:doi/10.3389%2Ffevo.2023.1224849&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fevo_2023_1224849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-701X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-701X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-701X&client=summon