Arbuscular mycorrhizal fungi reduce N2O emissions from degraded residue patches
Nitrous oxide (N 2 O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N 2 O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize rel...
Saved in:
Published in | Frontiers in ecology and evolution Vol. 11 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
04.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrous oxide (N
2
O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N
2
O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize released N from the organic patches, and potentially mitigate N
2
O emissions. However, the effect of AMF on N
2
O emissions in degraded residue patches and the possible microbial mechanism remain uncertain. Here, a mesocosm experiment was conducted to investigate the impact of AMF (
Funneliformis mosseae
) inoculation on N
2
O emissions, availabilities of carbon and nitrogen, extracellular enzyme activities, and the abundance of key N-cycling genes in degraded residue patches. Our results showed that AMF hyphae significantly reduced N
2
O emissions from degraded residue patches. Quantitative PCR analysis of key functional genes involved in N
2
O production (
amoA
,
nirK
,
nirS
) and consumption (
nosZ
) showed that AMF significantly reduced the abundance of the bacterial
amoA
and
nirS
genes. NH
4
+
, NO
3
−
, total dissolved nitrogen (TDN), total nitrogen (TN), and dissolved organic carbon (DOC) contents decreased drastically in the presence of AMF. In addition, the activities of all tested extracellular enzymes were significantly decreased by AMF and positively correlated with DOC content. Multiple stepwise regression analysis demonstrated that the abundance of the
nirS
gene primarily influenced N
2
O emissions and was positively correlated with DOC content in degraded residue patches. Our findings indicate that AMF suppressed N
2
O producers, particularly
nirS
-type denitrifiers, by slowing down the release of C and N from degraded residues, thereby leading to a cascade effect on the decrease of N
2
O emissions. This study provides a promising approach to mitigate N
2
O emissions by enhancing AMF in the agroecosystems. |
---|---|
AbstractList | Nitrous oxide (N2O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N2O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize released N from the organic patches, and potentially mitigate N2O emissions. However, the effect of AMF on N2O emissions in degraded residue patches and the possible microbial mechanism remain uncertain. Here, a mesocosm experiment was conducted to investigate the impact of AMF (Funneliformis mosseae) inoculation on N2O emissions, availabilities of carbon and nitrogen, extracellular enzyme activities, and the abundance of key N-cycling genes in degraded residue patches. Our results showed that AMF hyphae significantly reduced N2O emissions from degraded residue patches. Quantitative PCR analysis of key functional genes involved in N2O production (amoA, nirK, nirS) and consumption (nosZ) showed that AMF significantly reduced the abundance of the bacterial amoA and nirS genes. NH4+, NO3−, total dissolved nitrogen (TDN), total nitrogen (TN), and dissolved organic carbon (DOC) contents decreased drastically in the presence of AMF. In addition, the activities of all tested extracellular enzymes were significantly decreased by AMF and positively correlated with DOC content. Multiple stepwise regression analysis demonstrated that the abundance of the nirS gene primarily influenced N2O emissions and was positively correlated with DOC content in degraded residue patches. Our findings indicate that AMF suppressed N2O producers, particularly nirS-type denitrifiers, by slowing down the release of C and N from degraded residues, thereby leading to a cascade effect on the decrease of N2O emissions. This study provides a promising approach to mitigate N2O emissions by enhancing AMF in the agroecosystems. Nitrous oxide (N 2 O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but also act as hotspots of N 2 O production. The hyphae of arbuscular mycorrhizal fungi (AMF) could proliferate in organic patches, utilize released N from the organic patches, and potentially mitigate N 2 O emissions. However, the effect of AMF on N 2 O emissions in degraded residue patches and the possible microbial mechanism remain uncertain. Here, a mesocosm experiment was conducted to investigate the impact of AMF ( Funneliformis mosseae ) inoculation on N 2 O emissions, availabilities of carbon and nitrogen, extracellular enzyme activities, and the abundance of key N-cycling genes in degraded residue patches. Our results showed that AMF hyphae significantly reduced N 2 O emissions from degraded residue patches. Quantitative PCR analysis of key functional genes involved in N 2 O production ( amoA , nirK , nirS ) and consumption ( nosZ ) showed that AMF significantly reduced the abundance of the bacterial amoA and nirS genes. NH 4 + , NO 3 − , total dissolved nitrogen (TDN), total nitrogen (TN), and dissolved organic carbon (DOC) contents decreased drastically in the presence of AMF. In addition, the activities of all tested extracellular enzymes were significantly decreased by AMF and positively correlated with DOC content. Multiple stepwise regression analysis demonstrated that the abundance of the nirS gene primarily influenced N 2 O emissions and was positively correlated with DOC content in degraded residue patches. Our findings indicate that AMF suppressed N 2 O producers, particularly nirS -type denitrifiers, by slowing down the release of C and N from degraded residues, thereby leading to a cascade effect on the decrease of N 2 O emissions. This study provides a promising approach to mitigate N 2 O emissions by enhancing AMF in the agroecosystems. |
Author | Zhen, Lina Sun, Xinzhan Yang, Gaiqiang He, Guang Bei, Shuikuan Luan, Dongdong Zhao, Ruotong Li, Xia Li, Dandan Huo, Lijuan |
Author_xml | – sequence: 1 givenname: Xia surname: Li fullname: Li, Xia – sequence: 2 givenname: Guang surname: He fullname: He, Guang – sequence: 3 givenname: Dandan surname: Li fullname: Li, Dandan – sequence: 4 givenname: Shuikuan surname: Bei fullname: Bei, Shuikuan – sequence: 5 givenname: Dongdong surname: Luan fullname: Luan, Dongdong – sequence: 6 givenname: Xinzhan surname: Sun fullname: Sun, Xinzhan – sequence: 7 givenname: Gaiqiang surname: Yang fullname: Yang, Gaiqiang – sequence: 8 givenname: Lijuan surname: Huo fullname: Huo, Lijuan – sequence: 9 givenname: Lina surname: Zhen fullname: Zhen, Lina – sequence: 10 givenname: Ruotong surname: Zhao fullname: Zhao, Ruotong |
BookMark | eNp9kMtKAzEUhoNUsNY-gLu8QGsuc0mWpXgpFLtRcBdOLtOmzExKMiPUp3dqRcSFq3M4_P934LtGoza0DqFbSuacC3lXufcwZ4TxOWUsE5m8QGPGZDErCX0b_dqv0DSlPSGEsrzMRTZGm0XUfTJ9DRE3RxNi3PkPqHHVt1uPo7O9cfiZbbBrfEo-tAlXMTTYum0E6-wQSd72Dh-gMzuXbtBlBXVy0-85Qa8P9y_Lp9l687haLtYzw_Osm4F2DpiuRF6WQGwGQmonJdHCFoYaTrjICLWUa11YyHMmrWFUOpkxoitd8Alanbk2wF4dom8gHlUAr74OIW4VxM6b2ilt9QAjvDDCDHKYKEwuBKEFH1B8eDZB9MwyMaQUXfXDo0SdBKuTYHUSrL4FD53yT8f4DrpBUBfB1_80PwEILIOn |
CitedBy_id | crossref_primary_10_22144_ctujos_2024_450 |
Cites_doi | 10.1111/j.1469-8137.2011.03948.x 10.1111/j.1469-8137.1990.tb00476.x 10.1016/j.soilbio.2014.03.010 10.1073/pnas.1313452110 10.1128/Aem.68.10.4751-4757.2002 10.1016/S0007-1536(70)80110-3 10.1111/j.1469-8137.2008.02630.x 10.1016/j.geoderma.2018.09.023 10.1111/j.1365-2486.2006.01280.x 10.1016/j.soilbio.2011.11.018 10.1111/j.1469-8137.2010.03483.x 10.1111/1365-2745.12496 10.1016/j.soilbio.2018.01.034 10.1111/j.1469-8137.1992.tb01077.x 10.1038/ngeo2963 10.1016/j.soilbio.2014.12.003 10.1126/science.1176985 10.1111/nph.13138 10.1111/j.1461-0248.2008.01219.x 10.2307/2258617 10.1038/ismej.2013.224 10.1016/j.tim.2017.07.003 10.1111/j.1365-3040.2005.01360.x 10.1111/j.1469-8137.2006.01750.x 10.1111/j.1469-8137.2006.01862.x 10.1016/j.scitotenv.2021.145133 10.1111/1462-2920.12081 10.3791/50961 10.1016/B978-0-12-800259-9.00002-0 10.1007/s11270-015-2493-4 10.1029/1999jd900378 10.1007/s00572-018-0825-0 10.1128/.61.4.533-616.1997 10.1038/s41586-020-2780-0 10.1016/j.still.2015.08.006 10.1016/j.tim.2012.08.001 10.1111/nph.14931 10.1111/1462-2920.15815 10.1016/j.chemosphere.2018.06.179 10.1016/j.soilbio.2014.10.016 10.1590/1678-992x-2016-0459 10.1016/j.soilbio.2019.06.003 10.1186/s40168-023-01466-5 10.1038/35095041 10.1111/j.1469-8137.1989.tb04215.x 10.1007/s11104-013-1678-0 10.1098/rstb.2013.0122 10.1016/j.soilbio.2018.01.007 10.1038/s41396-019-0369-0 10.1029/92wr00252 10.1007/s11104-011-1021-6 10.1038/nature03610 10.1016/j.geoderma.2021.115179 10.1023/a:1009740530221 10.1111/j.1574-6941.2011.01292.x 10.1017/s0953756299001240 10.2136/sssaj1987.03615995005100050019x 10.1111/j.1365-2745.2011.01863.x |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fevo.2023.1224849 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2296-701X |
ExternalDocumentID | oai_doaj_org_article_bdb840036c8c484286c58801630bf31c 10_3389_fevo_2023_1224849 |
GroupedDBID | 5VS 9T4 AAFWJ AAHBH AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ GX1 KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-abeea2bf8577a0d4a89be990b8d6c1c3038401d13bb6da5529dc219e9420bfb63 |
IEDL.DBID | DOA |
ISSN | 2296-701X |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Tue Jul 01 03:01:38 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-abeea2bf8577a0d4a89be990b8d6c1c3038401d13bb6da5529dc219e9420bfb63 |
OpenAccessLink | https://doaj.org/article/bdb840036c8c484286c58801630bf31c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bdb840036c8c484286c58801630bf31c crossref_primary_10_3389_fevo_2023_1224849 crossref_citationtrail_10_3389_fevo_2023_1224849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-04 |
PublicationDateYYYYMMDD | 2023-08-04 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in ecology and evolution |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Hattenschwiler (B16) 2011; 189 Jakobsen (B22) 1992; 120 Bender (B4) 2014; 8 Wu (B57) 2019; 135 Dai (B11) 2018; 211 Verbruggen (B54) 2016; 104 Teutscherova (B49) 2019; 338 Mcgonigle (B33) 1990; 115 Langarica-Fuentes (B28) 2018; 120 Tian (B50) 2020; 586 Kaiser (B24) 2015; 205 Koide (B25) 1989; 111 Hou (B21) 2018; 119 Cornwell (B10) 2008; 11 Peng (B38) 2013; 372 Tisserant (B52) 2013; 110 Bollmann (B5) 2002; 68 Veresoglou (B56) 2011; 99 Cavagnaro (B8) 2012; 353 Govindarajulu (B13) 2005; 435 Hodge (B18) 2014; 89 Hodge (B19) 2001; 413 Tanaka (B47) 2005; 28 Smith (B45) 2008 Chapuis-Lardy (B9) 2007; 13 Li (B32) 2023; 11 Nuccio (B36) 2013; 15 Herman (B17) 2012; 80 Tisserant (B51) 2012; 193 Hallin (B15) 2018; 26 Lazcano (B29) 2014; 74 van der Heijden (B53) 2006; 172 Ravishankara (B41) 2009; 326 Rillig (B42) 2006; 171 Zhao (B60) 2021; 23 Gui (B14) 2021; 774 Korom (B26) 1992; 28 Shen (B44) 2021; 402 Zumft (B61) 1997; 61 Kravchenko (B27) 2017; 10 Leifheit (B30) 2015; 81 Bender (B3) 2015; 80 Storer (B46) 2017; 220 Zhang (B59) 2015; 226 Joner (B23) 2000; 104 Hodge (B20) 2010; 107 Phillips (B39) 1970; 55 Roberto (B43) 2018; 75 Dobbie (B12) 1999; 104 Arias (B1) 2021 Veresoglou (B55) 2012; 46 Leigh (B31) 2009; 181 Morris (B34) 2019; 13 Butterbach-Bahl (B7) 2013; 368 Bell (B2) 2013; 81 Zhang (B58) 2016; 155 Mosier (B35) 1998; 52 Prosser (B40) 2012; 20 Tennant (B48) 1975; 6 Bukovska (B6) 2018; 28 Parkin (B37) 1987; 51 |
References_xml | – volume: 193 start-page: 755 year: 2012 ident: B51 article-title: The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03948.x – volume: 115 start-page: 495 year: 1990 ident: B33 article-title: A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi publication-title: New Phytol. doi: 10.1111/j.1469-8137.1990.tb00476.x – volume: 74 start-page: 184 year: 2014 ident: B29 article-title: Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.03.010 – volume: 110 start-page: 20117 year: 2013 ident: B52 article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis publication-title: Proc. Natl. Acad. Sci. United States America doi: 10.1073/pnas.1313452110 – volume: 68 start-page: 4751 year: 2002 ident: B5 article-title: Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/Aem.68.10.4751-4757.2002 – volume: 55 start-page: 158 year: 1970 ident: B39 article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection publication-title: Trans. Br. Mycological Soc. doi: 10.1016/S0007-1536(70)80110-3 – volume: 181 start-page: 199 year: 2009 ident: B31 article-title: Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02630.x – volume: 338 start-page: 493 year: 2019 ident: B49 article-title: Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.023 – volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change year: 2021 ident: B1 – volume: 13 start-page: 1 year: 2007 ident: B9 article-title: Soils, a sink for N2O? A review publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2006.01280.x – volume: 46 start-page: 53 year: 2012 ident: B55 article-title: Arbuscular mycorrhiza and soil nitrogen cycling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.11.018 – volume: 189 start-page: 950 year: 2011 ident: B16 article-title: Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03483.x – volume: 104 start-page: 261 year: 2016 ident: B54 article-title: Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil publication-title: J. Ecol. doi: 10.1111/1365-2745.12496 – volume: 120 start-page: 70 year: 2018 ident: B28 article-title: Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.01.034 – volume: 120 start-page: 371 year: 1992 ident: B22 article-title: External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.: 1. Spread of hyphae and phosphorus inflow into roots publication-title: New Phytol. doi: 10.1111/j.1469-8137.1992.tb01077.x – volume: 10 start-page: 496 year: 2017 ident: B27 article-title: Hotspots of soil N2O emission enhanced through water absorption by plant residue publication-title: Nat. Geosci. doi: 10.1038/ngeo2963 – volume: 81 start-page: 323 year: 2015 ident: B30 article-title: Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.12.003 – volume: 326 start-page: 123 year: 2009 ident: B41 article-title: Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century publication-title: Science doi: 10.1126/science.1176985 – volume: 205 start-page: 1537 year: 2015 ident: B24 article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation publication-title: New Phytol. doi: 10.1111/nph.13138 – volume: 11 start-page: 1065 year: 2008 ident: B10 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01219.x – volume: 6 start-page: 995 year: 1975 ident: B48 article-title: A test of a modified line intersect method of estimating root length publication-title: J. Ecol. doi: 10.2307/2258617 – volume: 8 start-page: 1336 year: 2014 ident: B4 article-title: Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil publication-title: ISME J. doi: 10.1038/ismej.2013.224 – volume: 26 start-page: 43 year: 2018 ident: B15 article-title: Genomics and ecology of novel N2O-reducing microorganisms publication-title: Trends Microbiol. doi: 10.1016/j.tim.2017.07.003 – volume: 28 start-page: 1247 year: 2005 ident: B47 article-title: Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01360.x – volume: 171 start-page: 41 year: 2006 ident: B42 article-title: Mycorrhizas and soil structure publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01750.x – volume: 172 start-page: 739 year: 2006 ident: B53 article-title: The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01862.x – volume: 774 year: 2021 ident: B14 article-title: Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145133 – volume: 15 start-page: 1870 year: 2013 ident: B36 article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12081 – volume: 81 year: 2013 ident: B2 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: Jove-Journal Visualized Experiments doi: 10.3791/50961 – volume: 89 start-page: 47 year: 2014 ident: B18 article-title: Interactions between arbuscular mycorrhizal fungi and organic material substrates publication-title: Adv. Appl. Microbiol. doi: 10.1016/B978-0-12-800259-9.00002-0 – volume: 226 start-page: 1 year: 2015 ident: B59 article-title: Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies publication-title: Water Air Soil pollut. doi: 10.1007/s11270-015-2493-4 – volume: 104 start-page: 26891 year: 1999 ident: B12 article-title: Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors publication-title: J. Geophys. Research-Atmospheres doi: 10.1029/1999jd900378 – volume: 28 start-page: 269 year: 2018 ident: B6 article-title: Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers publication-title: Mycorrhiza doi: 10.1007/s00572-018-0825-0 – volume: 61 start-page: 533 year: 1997 ident: B61 article-title: Cell biology and molecular basis of denitrification publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/.61.4.533-616.1997 – volume: 107 start-page: 13754 year: 2010 ident: B20 article-title: Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling publication-title: Proc. Natl. Acad. Sci. United States America doi: 10.1016/B978-0-12-800259-9.00002-0 – volume: 586 start-page: 248 year: 2020 ident: B50 article-title: A comprehensive quantification of global nitrous oxide sources and sinks publication-title: Nature doi: 10.1038/s41586-020-2780-0 – volume: 155 start-page: 85 year: 2016 ident: B58 article-title: Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.08.006 – volume: 20 start-page: 523 year: 2012 ident: B40 article-title: Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.08.001 – volume: 220 start-page: 1285 year: 2017 ident: B46 article-title: Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots publication-title: New Phytol. doi: 10.1111/nph.14931 – volume: 23 start-page: 6587 year: 2021 ident: B60 article-title: Enrichment of nosZ-type denitrifiers by arbuscular mycorrhizal fungi mitigates N2O emissions from soybean stubbles publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.15815 – volume: 211 start-page: 235 year: 2018 ident: B11 article-title: Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.06.179 – volume: 80 start-page: 283 year: 2015 ident: B3 article-title: Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.10.016 – volume: 75 start-page: 255 year: 2018 ident: B43 article-title: Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review publication-title: Agriculture doi: 10.1590/1678-992x-2016-0459 – volume: 135 start-page: 383 year: 2019 ident: B57 article-title: Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.06.003 – volume: 11 start-page: 1 year: 2023 ident: B32 article-title: Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil publication-title: Microbiome doi: 10.1186/s40168-023-01466-5 – volume: 413 start-page: 297 year: 2001 ident: B19 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature doi: 10.1038/35095041 – volume: 111 start-page: 35 year: 1989 ident: B25 article-title: Appropriate controls for vesicular arbuscular mycorrhiza research publication-title: New Phytol. doi: 10.1111/j.1469-8137.1989.tb04215.x – volume: 372 start-page: 41 year: 2013 ident: B38 article-title: Determination of the critical soil mineral nitrogen concentration for maximizing maize grain yield publication-title: Plant Soil doi: 10.1007/s11104-013-1678-0 – volume: 368 start-page: 20130122 year: 2013 ident: B7 article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls publication-title: Philos. Trans. R. Soc. B-Biological Sci. doi: 10.1098/rstb.2013.0122 – volume: 119 start-page: 32 year: 2018 ident: B21 article-title: Structure and assembly cues for rhizospheric nirK- and nirS-type denitrifier communities in long-term fertilized soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.01.007 – volume: 13 start-page: 1639 year: 2019 ident: B34 article-title: Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhiz publication-title: ISME J. doi: 10.1038/s41396-019-0369-0 – volume: 28 start-page: 1657 year: 1992 ident: B26 article-title: Natural denitrification in the saturated zone - a review publication-title: Water Resour. Res. doi: 10.1029/92wr00252 – volume: 353 start-page: 181 year: 2012 ident: B8 article-title: Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system publication-title: Plant Soil doi: 10.1007/s11104-011-1021-6 – volume: 435 start-page: 819 year: 2005 ident: B13 article-title: Nitrogen transfer in the arbuscular mycorrhizal symbiosis publication-title: Nature doi: 10.1038/nature03610 – volume: 402 year: 2021 ident: B44 article-title: Arbuscular mycorrhizal fungi reduce soil nitrous oxide emission publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115179 – volume-title: Mycorrhizal symbiosis year: 2008 ident: B45 – volume: 52 start-page: 225 year: 1998 ident: B35 article-title: Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle publication-title: Nutrient Cycling Agroecosystems doi: 10.1023/a:1009740530221 – volume: 80 start-page: 236 year: 2012 ident: B17 article-title: Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01292.x – volume: 104 start-page: 81 year: 2000 ident: B23 article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi publication-title: Mycological Res. doi: 10.1017/s0953756299001240 – volume: 51 start-page: 1194 year: 1987 ident: B37 article-title: Soil microsites as a source of denitrification variability publication-title: Soil Sci. Soc. America J. doi: 10.2136/sssaj1987.03615995005100050019x – volume: 99 start-page: 1339 year: 2011 ident: B56 article-title: Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2011.01863.x |
SSID | ssj0001257584 |
Score | 2.235511 |
Snippet | Nitrous oxide (N
2
O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but... Nitrous oxide (N2O) is a potent greenhouse gas, and agricultural soils represent a major anthropogenic source. Crop residues provide nutrients for plants but... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | crop residue denitrification extracellular enzyme activities mycorrhizal fungi nitrous oxide |
Title | Arbuscular mycorrhizal fungi reduce N2O emissions from degraded residue patches |
URI | https://doaj.org/article/bdb840036c8c484286c58801630bf31c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf7MGTEJtkN9nNsUpLEWwvFnoL-5hoQWvpQ6i_3pkklpz04jVMwuabYR67s98wdgORgTCxRWBM5gNZpC4wyqvAeQtCyqxQZbf70zAdjOXjJJk0Rn1RT1hFD1wB17HeYg2CftZpJzUmy6lL0OYwjQhtISJH3hdjXqOYqnZXMA3RsjrGxCos6xTwSXf9YnFHZ0mauDMbgajB118Glv4B268zQt6tVnLIdmB2xHZ7JZv05piNuvjfVbcof99grbh4nX6hPAaklylfEPMq8GE84jS4jba-lpyujHBPLBAePIqgwa2Bzw0paHnCxv3e88MgqKcgBE4kchUYC2BiW-hEKRN6aXRmAWOI1T51kcMQhPhEPhLWpt4kSZx5h24IMhkjQjYVp6w1-5jBGeNOaZ9F4J0RShbESatSkzoDrhBhCKLNwh9IcldThNOkirccSwVCMScUc0Ixr1Fss9vtK_OKH-M34XvCeStI1NblA1R4Xis8_0vh5__xkQu2RwsrO_nkJWutFmu4wuxiZa9LQ_oGv_TMwA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+reduce+N2O+emissions+from+degraded+residue+patches&rft.jtitle=Frontiers+in+ecology+and+evolution&rft.au=Li%2C+Xia&rft.au=He%2C+Guang&rft.au=Li%2C+Dandan&rft.au=Bei%2C+Shuikuan&rft.date=2023-08-04&rft.issn=2296-701X&rft.eissn=2296-701X&rft.volume=11&rft_id=info:doi/10.3389%2Ffevo.2023.1224849&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fevo_2023_1224849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-701X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-701X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-701X&client=summon |