A practical guide for model-based reconstruction in optoacoustic imaging
Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly reli...
Saved in:
Published in | Frontiers in physics Vol. 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-424X 2296-424X |
DOI | 10.3389/fphy.2022.1028258 |
Cover
Abstract | Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly relies on acoustic inversion of time-resolved tomographic data. The excitation of OA responses and subsequent propagation of ultrasound waves can be mathematically described as a forward model enabling image reconstruction
via
algebraic inversion. These model-based reconstruction methods have been shown to outperform alternative inversion approaches and can further render OA images from incomplete datasets, strongly distorted signals or other suboptimally recorded data. Herein, we provide a general perspective on model-based OA reconstruction methods, review recent progress, and discuss the performance of the different algorithms under practical imaging scenarios. |
---|---|
AbstractList | Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly relies on acoustic inversion of time-resolved tomographic data. The excitation of OA responses and subsequent propagation of ultrasound waves can be mathematically described as a forward model enabling image reconstruction via algebraic inversion. These model-based reconstruction methods have been shown to outperform alternative inversion approaches and can further render OA images from incomplete datasets, strongly distorted signals or other suboptimally recorded data. Herein, we provide a general perspective on model-based OA reconstruction methods, review recent progress, and discuss the performance of the different algorithms under practical imaging scenarios. Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly relies on acoustic inversion of time-resolved tomographic data. The excitation of OA responses and subsequent propagation of ultrasound waves can be mathematically described as a forward model enabling image reconstruction via algebraic inversion. These model-based reconstruction methods have been shown to outperform alternative inversion approaches and can further render OA images from incomplete datasets, strongly distorted signals or other suboptimally recorded data. Herein, we provide a general perspective on model-based OA reconstruction methods, review recent progress, and discuss the performance of the different algorithms under practical imaging scenarios. |
Author | Deán-Ben, Xosé Luís Razansky, Daniel |
Author_xml | – sequence: 1 givenname: Xosé Luís surname: Deán-Ben fullname: Deán-Ben, Xosé Luís – sequence: 2 givenname: Daniel surname: Razansky fullname: Razansky, Daniel |
BookMark | eNp9kM9KxDAQh4Mo-G8fwFtfoGsyadrkuCzqCoIXBW9hmkzWLt2mpN3Dvr2tiogHTzMM8_1m-C7ZaRc7YuxG8KWU2tyG_v24BA6wFBw0KH3CLgBMmRdQvJ3-6s_ZYhh2nHMBymgoLthmlfUJ3dg4bLPtofGUhZiyffTU5jUO5LNELnbDmA7TVuyypstiP0Z08TBMWNbscdt022t2FrAdaPFdr9jr_d3LepM_PT88rldPuZOqGHNDSitvQFFNqiopENXKkVFUABcKyWBw4LU0jpu6lGWlyyAQS0XBgw_yij1-5fqIO9un6Xw62oiN_RzEtLWYpr9asugLEkJLWfmqACqw0jVwB6qUBqCupyzxleVSHIZE4SdPcDubtbNZO5u132YnpvrDuGbE2cyYsGn_IT8AWUKB3g |
CitedBy_id | crossref_primary_10_1117_1_APN_2_5_054001 crossref_primary_10_1088_2515_7647_ad9b83 crossref_primary_10_1038_s41467_024_54947_y crossref_primary_10_1103_RevModPhys_97_015005 crossref_primary_10_1364_JOSAA_518768 crossref_primary_10_1063_5_0151882 crossref_primary_10_1109_LSENS_2024_3423453 crossref_primary_10_1016_j_pacs_2024_100659 crossref_primary_10_1016_j_pacs_2023_100561 crossref_primary_10_1016_j_pacs_2024_100665 crossref_primary_10_3390_s24092670 crossref_primary_10_1016_j_pacs_2023_100521 crossref_primary_10_1088_1361_6560_adb368 crossref_primary_10_1016_j_addr_2023_115177 crossref_primary_10_1038_s44303_024_00048_w crossref_primary_10_1109_TUFFC_2024_3451986 |
Cites_doi | 10.1021/acsami.1c15509 10.1109/tmi.2010.2081683 10.1109/tuffc.2017.2758173 10.1073/pnas.2103979118 10.1088/0266-5611/23/6/s06 10.1016/j.pacs.2018.07.001 10.1364/boe.379941 10.1109/tit.1960.1057571 10.1016/j.pacs.2021.100271 10.1021/acsami.1c17661 10.1109/tmi.2017.2704019 10.1364/optica.5.000857 10.1063/5.0065966 10.1118/1.1644531 10.1364/oe.20.014117 10.1142/s1793545820300074 10.1117/1.3381187 10.3390/mi11070692 10.1063/1.3579156 10.1117/1.jbo.17.11.110504 10.1364/ol.42.000979 10.1201/9780203749098 10.1098/rspa.2018.0369 10.1088/0266-5611/28/8/084009 10.1039/c6cc09421j 10.1155/2018/1727582 10.1038/s41467-020-16565-2 10.1038/s41377-018-0036-7 10.1088/0266-5611/31/9/095005 10.1016/j.pacs.2021.100275 10.1109/jproc.2019.2936204 10.1109/tmi.2021.3068181 10.1111/exd.14386 10.1088/1361-6560/61/24/8908 10.1364/ao.39.005872 10.1016/j.pacs.2020.100218 10.1088/0031-9155/56/18/021 10.1017/CBO9780511794308 10.1038/s41551-021-00735-8 10.1561/2000000101 10.1118/1.2409234 10.1364/prj.418591 10.1088/2040-8978/18/11/114004 10.1364/ol.424571 10.1016/j.pacs.2020.100191 10.1007/978-3-642-05368-9 10.1103/physreve.71.016706 10.1117/1.jbo.26.4.040901 10.1148/radiol.2019181325 10.1137/17m1153649 10.1016/j.pacs.2019.100142 10.1103/physrevlett.123.174301 10.1117/1.jbo.24.3.031015 10.1038/s41566-019-0576-2 10.1121/1.1501898 10.1063/1.4928123 10.1038/nmeth.3929 10.1007/s10444-014-9364-1 10.1016/j.pacs.2021.100291 10.1088/0266-5611/23/6/s07 10.1117/1.jbo.18.7.076014 10.1109/tmi.2008.2007825 10.1364/oe.20.016510 10.1109/tuffc.2013.2687 10.1364/oe.18.026285 10.1158/0008-5472.can-18-3769 10.1364/ol.435360 10.1109/tmi.2020.2998509 10.1364/ao.378466 10.1364/optica.6.000821 10.1109/TMI.2013.2286546 10.1109/tmi.2018.2820382 10.1103/physrevapplied.14.034026 10.1038/s41566-019-0417-3 10.1118/1.4875691 10.1016/j.neuroimage.2021.118111 10.1016/j.ultras.2020.106097 10.1109/tmi.2020.3001750 10.1002/jbio.202000325 10.1016/j.pacs.2013.11.001 10.1109/tmi.2013.2272079 10.1117/1.jbo.17.6.061202 10.1038/s41551-019-0377-4 10.1038/s41591-019-0669-y 10.1109/jphot.2018.2869815 10.1364/ol.42.000827 10.1016/j.ultrasmedbio.2018.05.019 10.1038/nphoton.2015.29 10.1117/1.jbo.21.6.061007 10.1088/0266-5611/32/11/115012 10.1016/j.pacs.2020.100215 10.1007/s13534-018-0067-2 10.1088/1361-6560/ab3522 10.1016/j.pacs.2014.06.002 10.1016/j.pacs.2015.09.001 10.1016/j.pacs.2018.04.002 10.1109/tmi.2013.2254496 10.1109/tmi.2016.2536779 10.1109/tmi.2018.2829662 10.1038/nmeth.3925 10.1002/lpor.202100381 10.1121/1.2717409 10.1109/TBME.2012.2187649 10.1177/016173468100300407 10.1117/1.jbo.25.11.112903 10.1088/1361-6560/ab6b46 10.1016/j.pacs.2021.100258 10.1038/lsa.2018.4 10.1038/s42256-019-0095-3 10.1137/16m1104822 10.1109/tmi.2010.2044584 10.1080/17415977.2018.1518444 10.1364/boe.4.002813 10.1088/0031-9155/57/17/5399 10.1038/lsa.2016.201 10.1109/tuffc.2020.3022324 10.2174/15734056113096660006 10.1088/1361-6420/aaa0ac 10.1088/0031-9155/60/17/6733 10.1016/j.ultras.2012.08.012 10.1364/ol.40.004691 10.1016/j.pacs.2016.10.001 10.1088/1361-6463/abc37d 10.1364/ao.50.005031 10.1016/j.pacs.2018.05.001 10.1063/1.3564905 10.1088/0031-9155/51/13/r09 10.1002/jbio.202100334 10.1109/TBME.2003.816081 10.1016/j.pacs.2021.100241 10.1016/j.tranon.2018.07.001 10.1016/j.jmaa.2015.03.079 10.1201/9781420059922 10.1039/c6cs00765a 10.1016/j.pacs.2021.100270 10.1038/s41377-020-00390-9 10.1063/1.4983462 10.1109/tmi.2017.2686006 10.1117/1.3360308 10.1109/tuffc.2020.3022937 10.1088/0031-9155/61/5/1932 10.1002/jbio.202000191 10.1117/1.jbo.18.3.036008 10.1118/1.4846055 10.1109/tmi.2020.2981835 10.1016/j.neo.2020.10.008 10.1088/1361-6560/ab2017 10.1118/1.3589141 10.1070/qel17538 10.1109/tmi.2012.2208471 10.1186/s12938-016-0292-9 10.1007/s00330-018-5810-7 10.1016/j.cbpa.2018.03.016 10.1109/tmi.2012.2187460 10.1063/5.0078053 10.1088/0031-9155/58/16/5555 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fphy.2022.1028258 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2296-424X |
ExternalDocumentID | oai_doaj_org_article_ad4e118337d742e4a78b20c2563922bb 10_3389_fphy_2022_1028258 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-9e585d925ebe576efeeb5ce95e42015ae9afc2d839c09b636786f1aa65efd2df3 |
IEDL.DBID | DOA |
ISSN | 2296-424X |
IngestDate | Wed Aug 27 01:26:28 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Thu Apr 24 22:51:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-9e585d925ebe576efeeb5ce95e42015ae9afc2d839c09b636786f1aa65efd2df3 |
OpenAccessLink | https://doaj.org/article/ad4e118337d742e4a78b20c2563922bb |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad4e118337d742e4a78b20c2563922bb crossref_primary_10_3389_fphy_2022_1028258 crossref_citationtrail_10_3389_fphy_2022_1028258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-1 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in physics |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Dean-Ben (B39) 2012; 31 Hirsch (B65) 2021; 92 Ntziachristos (B147) 2015 Nozdriukhin (B115) 2021; 13 Luo (B105) 2021 Basak (B158) 2019; 8 Kalva (B21) 2021; 9 Bates (B154) 1981; 3 Cox (B156) 2012; 17 Regensburger (B87) 2019; 25 Gao (B149) 2020; 59 Omar (B7) 2019; 3 Deán-Ben (B165) 2020 Olefir (B173) 2020; 39 Zheng (B22) 2022 Mohajerani (B64) 2014; 2 Dehner (B179) 2022 Merčep (B25) 2018; 10 Mitsuhashi (B106) 2014; 2 Daoudi (B163) 2012; 20 Merčep (B134) 2019; 8 Rosenthal (B72) 2011; 38 Huang (B124) 2013; 32 Haltmeier (B125) 2017; 10 Davoudi (B177) 2021; 46 Paltauf (B38) 2007; 23 Yang (B167) 2021; 21 Singh (B63) 2020; 10 Aguirre (B77) 2013; 4 Ding (B74) 2017; 36 Andreev (B81) 2001 Guo (B145) 2010; 15 Wang (B152) 2017 Ding (B91) 2015 Ding (B55) 2020; 39 Hu (B89) 2020; 39 Godefroy (B170) 2021; 21 Seeger (B111) 2020; 11 Tarvainen (B97) 2012; 28 Deán-Ben (B137) 2011; 98 Estrada (B140) 2018; 44 Kurnikov (B15) 2021; 51 Yao (B95) 2011; 50 Deán-Ben (B59) 2017; 42 Li (B103) 2010; 18 Özsoy (B100) 2021; 118 Matthews (B129) 2018; 11 Gusev (B153) 1993 Treeby (B30) 2010; 15 Luís Dean-Ben (B114) 2018; 7 Muhammad (B138) 2022; 15 Na (B19) 2022; 6 Zhang (B96) 2012; 52 Deán‐Ben (B16) 2021; 30 Queirós (B73) 2013; 18 Ding (B160) 2017; 36 Deng (B169) 2021; 26 Dean-Ben (B49) 2012; 31 Xu (B82) 2003; 50 Dean-Ben (B136) 2010; 30 Deán-Ben (B4) 2017; 46 Paltauf (B46) 2002; 112 Lafci (B27) 2020; 22 Deán-Ben (B121) 2012; 17 Antholzer (B168) 2019; 27 Antholzer (B180) 2019 Egolf (B93) 2021; 22 Deán-Ben (B13) 2016; 5 Arridge (B78) 2016; 32 McCann (B3) 2019; 13 Xu (B35) 2004; 31 Wang (B33) 2020; 13 Ni (B8) 2022 Deán-Ben (B132) 2015; 107 Ivankovic (B88) 2019; 291 Deán-Ben (B123) 2011; 56 Deán-Ben (B164) 2015; 40 Lutzweiler (B75) 2014; 41 Degtyaruk (B116) 2021; 46 Cho (B10) 2021; 24 Ding (B69) 2016; 35 Li (B76) 2022; 16 Bu (B161) 2012; 59 Moon (B40) 2018; 2018 Jetzfellner (B86) 2011; 98 Liu (B24) 2018; 8 Dong (B52) 2015; 41 Poudel (B58) 2019; 64 Özsoy (B133) 2022; 12 Provost (B144) 2008; 28 Zeng (B1) 2010 Arridge (B50) 2016; 61 Willemink (B80) 2019; 29 Lu (B37) 2021; 14 Deán-Ben (B71) 2019; 123 Deán-Ben (B32) 2019; 64 Hsu (B176) 2021; 23 Shang (B108) 2018; 24 Weber (B23) 2016; 13 Vilov (B110) 2020; 10 Dean-Ben (B142) 2021 Lu (B112) 2020; 14 Ding (B57) 2015; 60 Singh (B119) 2015; 3 Eldar (B143) 2012 Yao (B5) 2018; 45 Özbek (B83) 2022 Li (B150) 2020; 14 Lafci (B172) 2020; 68 Wang (B48) 2012; 57 Perez-Liva (B130) 2020; 103 Defrise (B45) 2006; 51 Li (B20) 2021 Wang (B29) 2016; 13 Bredies (B56) 2020; 11 Han (B60) 2017; 42 Shen (B90) 2020; 54 Allman (B120) 2018; 37 Meng (B148) 2012; 20 Hu (B174) 2021 Ding (B127) 2015; 31 Balasundaram (B26) 2018; 11 Manohar (B6) 2020 Burgholzer (B42) 2007; 23 Schoeder (B62) 2018; 474 Al. (B113) Cox (B67) 2007; 121 Li (B155) 2018; 10 Zhou (B66) 2016; 21 Guggenheim (B14) 2017; 64 Burgholzer (B92) 2020; 19 Steinberg (B107) 2021; 40 Yuan (B126) 2007; 34 Ravishankar (B2) 2019; 108 Manwar (B11) 2020; 11 Ozbek (B43) 2013 Lan (B178) 2021; 22 Wang (B94) 2017; 16 Pattyn (B162) 2021; 23 Taruttis (B84) 2015; 9 Deán-Ben (B85) 2017; 110 Prakash (B109) 2020; 68 Deán-Ben (B135) 2013; 58 Estrada (B139) 2016; 61 Özbek (B99) 2018; 5 Schellenberg (B17) 2018; 11 Rosenthal (B31) 2013; 9 Hauptmann (B175) 2020; 25 Hauptmann (B101) 2018; 37 Yalavarthy (B98) 2021; 14 Xu (B41) 2005; 71 Haltmeier (B146) 2016; 18 Chen (B12) 2020; 9 Brown (B151) 2019; 6 Biton (B53) 2019; 16 Turin (B79) 1960; 6 Poudel (B141) 2020; 65 Deán-Ben (B44) 2013; 32 Gröhl (B166) 2021; 22 Kong (B54) 2018; 10 Yang (B131) Wissmeyer (B9) 2018; 7 Frikel (B61) 2018; 34 Hoelen (B104) 2000; 39 Deán-Ben (B36) 2016; 4 Cai (B128) 2019 Ron (B18) 2019; 79 Caballero (B47) 2013; 33 Caballero (B102) 2013; 60 Gujrati (B157) 2017; 53 Szabo (B117) 2004 Robin (B159) 2021; 237 Rosenthal (B68) 2010; 29 Kalva (B28) 2021; 14 Scruby (B70) 2019 Bohndiek (B34) 2019; 13 Treeby (B122) 2013; 18 Deán‐Ben (B118) 2014; 41 Gong (B181) 2021 De Cezaro (B51) 2015; 429 Davoudi (B171) 2019; 1 |
References_xml | – volume: 13 start-page: 48423 year: 2021 ident: B115 article-title: Rapid volumetric optoacoustic tracking of individual microparticles in vivo enabled by a NIR-absorbing gold–carbon shell publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.1c15509 – volume: 30 start-page: 401 year: 2010 ident: B136 article-title: Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2010.2081683 – ident: B131 – volume: 64 start-page: 1857 year: 2017 ident: B14 article-title: A method for measuring the directional response of ultrasound receivers in the range 0.3–80 MHz using a laser-generated ultrasound source publication-title: IEEE Trans Ultrason Ferroelectr Freq Control doi: 10.1109/tuffc.2017.2758173 – volume: 118 start-page: e2103979118 year: 2021 ident: B100 article-title: Ultrafast four-dimensional imaging of cardiac mechanical wave propagation with sparse optoacoustic sensing publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2103979118 – volume: 23 start-page: S65 year: 2007 ident: B42 article-title: Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors publication-title: Inverse Probl doi: 10.1088/0266-5611/23/6/s06 – volume: 11 start-page: 14 year: 2018 ident: B17 article-title: Hand-held optoacoustic imaging: A review publication-title: Photoacoustics doi: 10.1016/j.pacs.2018.07.001 – volume: 10 start-page: 1 year: 2020 ident: B110 publication-title: reports – volume: 11 start-page: 994 year: 2020 ident: B56 article-title: TGV-regularized inversion of the Radon transform for photoacoustic tomography publication-title: Biomed Opt Express doi: 10.1364/boe.379941 – start-page: 119 volume-title: Inverse Radon transform for optoacoustic imaging year: 2001 ident: B81 – volume: 6 start-page: 311 year: 1960 ident: B79 article-title: An introduction to matched filters publication-title: IEEE Trans Inf Theor doi: 10.1109/tit.1960.1057571 – volume: 23 start-page: 100271 year: 2021 ident: B176 article-title: Comparing deep learning frameworks for photoacoustic tomography image reconstruction publication-title: Photoacoustics doi: 10.1016/j.pacs.2021.100271 – volume: 14 start-page: 172 year: 2021 ident: B28 article-title: Rapid volumetric optoacoustic tracking of nanoparticle kinetics across murine organs publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.1c17661 – volume: 36 start-page: 1858 year: 2017 ident: B74 article-title: Efficient 3-D model-based reconstruction scheme for arbitrary optoacoustic acquisition geometries publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2017.2704019 – volume: 5 start-page: 857 year: 2018 ident: B99 article-title: Optoacoustic imaging at kilohertz volumetric frame rates publication-title: Optica doi: 10.1364/optica.5.000857 – volume: 92 start-page: 114901 year: 2021 ident: B65 article-title: On the robustness of model-based algorithms for photoacoustic tomography: Comparison between time and frequency domains publication-title: Rev Scientific Instr doi: 10.1063/5.0065966 – start-page: 1228 volume-title: IEEE 12th international symposium on biomedical imaging year: 2015 ident: B147 article-title: Compressed system models in multispectral optoacoustic tomography – volume: 31 start-page: 724 year: 2004 ident: B35 article-title: Reconstructions in limited-view thermoacoustic tomography publication-title: Med Phys doi: 10.1118/1.1644531 – volume: 20 start-page: 14117 year: 2012 ident: B163 article-title: Correcting photoacoustic signals for fluence variations using acousto-optic modulation publication-title: Opt Express doi: 10.1364/oe.20.014117 – volume: 13 start-page: 2030007 year: 2020 ident: B33 article-title: Combating acoustic heterogeneity in photoacoustic computed tomography: A review publication-title: J Innov Opt Health Sci doi: 10.1142/s1793545820300074 – volume: 15 start-page: 021311 year: 2010 ident: B145 article-title: Compressed sensing in photoacoustic tomography in vivo publication-title: J Biomed Opt doi: 10.1117/1.3381187 – volume: 11 start-page: 692 year: 2020 ident: B11 article-title: Overview of ultrasound detection technologies for photoacoustic imaging publication-title: Micromachines doi: 10.3390/mi11070692 – volume: 98 start-page: 163701 year: 2011 ident: B86 article-title: Interpolated model-matrix optoacoustic tomography of the mouse brain publication-title: Appl Phys Lett doi: 10.1063/1.3579156 – volume: 17 start-page: 110504 year: 2012 ident: B121 article-title: Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers publication-title: J Biomed Opt doi: 10.1117/1.jbo.17.11.110504 – volume: 42 start-page: 979 year: 2017 ident: B60 article-title: Three-dimensional optoacoustic reconstruction using fast sparse representation publication-title: Opt Lett doi: 10.1364/ol.42.000979 – volume-title: Laser ultrasonics: Techniques and applications year: 2019 ident: B70 doi: 10.1201/9780203749098 – volume: 474 start-page: 20180369 year: 2018 ident: B62 article-title: Optoacoustic image reconstruction: The full inverse problem with variable bases publication-title: Proc R Soc A doi: 10.1098/rspa.2018.0369 – volume: 28 start-page: 084009 year: 2012 ident: B97 article-title: Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography publication-title: Inverse Probl doi: 10.1088/0266-5611/28/8/084009 – volume-title: Diagnostic ultrasound imaging: Inside out year: 2004 ident: B117 – volume: 53 start-page: 4653 year: 2017 ident: B157 article-title: Molecular imaging probes for multi-spectral optoacoustic tomography publication-title: Chem Commun doi: 10.1039/c6cc09421j – volume: 2018 start-page: 1 year: 2018 ident: B40 article-title: Inversion formula for a radon-type transform arising in photoacoustic tomography with circular integrating detectors publication-title: Adv Math Phys doi: 10.1155/2018/1727582 – volume: 11 start-page: 2910 year: 2020 ident: B111 article-title: Pushing the boundaries of optoacoustic microscopy by total impulse response characterization publication-title: Nat Commun doi: 10.1038/s41467-020-16565-2 – start-page: 281 volume-title: Photonics year: 2021 ident: B20 article-title: Advances in endoscopic photoacoustic imaging – volume: 7 start-page: 1 year: 2018 ident: B9 publication-title: Light: Sci Appl doi: 10.1038/s41377-018-0036-7 – volume: 31 start-page: 095005 year: 2015 ident: B127 article-title: A one-step reconstruction algorithm for quantitative photoacoustic imaging publication-title: Inverse Probl doi: 10.1088/0266-5611/31/9/095005 – volume: 23 start-page: 100275 year: 2021 ident: B162 article-title: Model-based optical and acoustical compensation for photoacoustic tomography of heterogeneous mediums publication-title: Photoacoustics doi: 10.1016/j.pacs.2021.100275 – year: 2021 ident: B174 publication-title: arXiv preprint – volume: 108 start-page: 86 year: 2019 ident: B2 article-title: Image reconstruction: From sparsity to data-adaptive methods and machine learning publication-title: Proc IEEE doi: 10.1109/jproc.2019.2936204 – volume: 40 start-page: 1888 year: 2021 ident: B107 article-title: Superiorized photo-acoustic non-NEgative reconstruction (SPANNER) for clinical photoacoustic imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2021.3068181 – volume: 30 start-page: 1598 year: 2021 ident: B16 article-title: Optoacoustic imaging of the skin publication-title: Exp Dermatol doi: 10.1111/exd.14386 – volume: 61 start-page: 8908 year: 2016 ident: B50 article-title: Accelerated high-resolution photoacoustic tomography via compressed sensing publication-title: Phys Med Biol doi: 10.1088/1361-6560/61/24/8908 – volume: 39 start-page: 5872 year: 2000 ident: B104 article-title: Image reconstruction for photoacoustic scanning of tissue structures publication-title: Appl Opt doi: 10.1364/ao.39.005872 – volume: 21 start-page: 100218 year: 2021 ident: B170 article-title: Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties publication-title: Photoacoustics doi: 10.1016/j.pacs.2020.100218 – volume: 56 start-page: 6129 year: 2011 ident: B123 publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/18/021 – volume-title: Compressed sensing: Theory and applications year: 2012 ident: B143 doi: 10.1017/CBO9780511794308 – year: 2020 ident: B165 publication-title: arXiv preprint arXiv – volume: 6 start-page: 584 year: 2022 ident: B19 article-title: Massively parallel functional photoacoustic computed tomography of the human brain publication-title: Nat Biomed Eng doi: 10.1038/s41551-021-00735-8 – volume: 13 start-page: 283 year: 2019 ident: B3 article-title: Biomedical image reconstruction: From the foundations to deep neural networks publication-title: FNT Signal Process. doi: 10.1561/2000000101 – volume: 34 start-page: 538 year: 2007 ident: B126 article-title: Three-dimensional finite-element-based photoacoustic tomography: Reconstruction algorithm and simulations publication-title: Med Phys doi: 10.1118/1.2409234 – volume: 9 start-page: 899 year: 2021 ident: B21 article-title: Single-sweep volumetric optoacoustic tomography of whole mice publication-title: Photon Res doi: 10.1364/prj.418591 – volume: 18 start-page: 114004 year: 2016 ident: B146 article-title: Compressed sensing and sparsity in photoacoustic tomography publication-title: J Opt doi: 10.1088/2040-8978/18/11/114004 – volume: 46 start-page: 3029 year: 2021 ident: B177 article-title: Deep learning of image- and time-domain data enhances the visibility of structures in optoacoustic tomography publication-title: Opt Lett doi: 10.1364/ol.424571 – start-page: 1 volume-title: Deep learning regularized acceleration for photoacoustic image reconstruction2021 IEEE international ultrasonics symposium (IUS) year: 2021 ident: B181 – volume: 19 start-page: 100191 year: 2020 ident: B92 article-title: Breaking the resolution limit in photoacoustic imaging using non-negativity and sparsity publication-title: Photoacoustics doi: 10.1016/j.pacs.2020.100191 – volume-title: Medical image reconstruction: A conceptual tutorial year: 2010 ident: B1 doi: 10.1007/978-3-642-05368-9 – volume: 71 start-page: 016706 year: 2005 ident: B41 article-title: Universal back-projection algorithm for photoacoustic computed tomography publication-title: Phys Rev E doi: 10.1103/physreve.71.016706 – volume: 26 start-page: 040901 year: 2021 ident: B169 article-title: Deep learning in photoacoustic imaging: A review publication-title: J Biomed Opt doi: 10.1117/1.jbo.26.4.040901 – volume: 291 start-page: 45 year: 2019 ident: B88 article-title: Real-time volumetric assessment of the human carotid artery: Handheld multispectral optoacoustic tomography publication-title: Radiology doi: 10.1148/radiol.2019181325 – volume: 11 start-page: 1560 year: 2018 ident: B129 article-title: Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography publication-title: SIAM J Imaging Sci doi: 10.1137/17m1153649 – volume: 16 start-page: 100142 year: 2019 ident: B53 article-title: Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization publication-title: Photoacoustics doi: 10.1016/j.pacs.2019.100142 – volume: 123 start-page: 174301 year: 2019 ident: B71 article-title: Acoustic scattering mediated single detector optoacoustic tomography publication-title: Phys Rev Lett doi: 10.1103/physrevlett.123.174301 – start-page: 356 volume-title: Photonics year: 2021 ident: B105 article-title: Fast correction of “finite aperture effect” in photoacoustic tomography based on spatial impulse response – volume: 24 start-page: 1 year: 2018 ident: B108 article-title: Sparsity-based photoacoustic image reconstruction with a linear array transducer and direct measurement of the forward model publication-title: J Biomed Opt doi: 10.1117/1.jbo.24.3.031015 – volume: 14 start-page: 164 year: 2020 ident: B150 article-title: Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption publication-title: Nat Photon doi: 10.1038/s41566-019-0576-2 – volume: 112 start-page: 1536 year: 2002 ident: B46 article-title: Iterative reconstruction algorithm for optoacoustic imaging publication-title: The J Acoust Soc America doi: 10.1121/1.1501898 – volume: 107 start-page: 051105 year: 2015 ident: B132 article-title: Non-contact optoacoustic imaging with focused air-coupled transducers publication-title: Appl Phys Lett doi: 10.1063/1.4928123 – volume: 13 start-page: 639 year: 2016 ident: B23 article-title: Contrast agents for molecular photoacoustic imaging publication-title: Nat Methods doi: 10.1038/nmeth.3929 – volume: 41 start-page: 423 year: 2015 ident: B52 article-title: An algorithm for total variation regularized photoacoustic imaging publication-title: Adv Comput Math doi: 10.1007/s10444-014-9364-1 – volume: 24 start-page: 100291 year: 2021 ident: B10 article-title: High-speed photoacoustic microscopy: A review dedicated on light sources publication-title: Photoacoustics doi: 10.1016/j.pacs.2021.100291 – volume: 23 start-page: S81 year: 2007 ident: B38 article-title: Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors publication-title: Inverse Probl doi: 10.1088/0266-5611/23/6/s07 – volume: 18 start-page: 076014 year: 2013 ident: B73 article-title: Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography publication-title: J Biomed Opt doi: 10.1117/1.jbo.18.7.076014 – volume: 28 start-page: 585 year: 2008 ident: B144 article-title: The application of compressed sensing for photo-acoustic tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2008.2007825 – volume: 20 start-page: 16510 year: 2012 ident: B148 article-title: Compressed-sensing photoacoustic computed tomography in vivo with partially known support publication-title: Opt Express doi: 10.1364/oe.20.016510 – volume: 60 start-page: 1234 year: 2013 ident: B102 article-title: Optoacoustic determination of spatio- temporal responses of ultrasound sensors publication-title: IEEE Trans Ultrason Ferroelectr Freq Control doi: 10.1109/tuffc.2013.2687 – volume: 18 start-page: 26285 year: 2010 ident: B103 article-title: Model-based correction of finite aperture effect in photoacoustic tomography publication-title: Opt Express doi: 10.1364/oe.18.026285 – volume: 79 start-page: 4767 year: 2019 ident: B18 article-title: Volumetric optoacoustic imaging unveils high-resolution patterns of acute and cyclic hypoxia in a murine model of breast cancer publication-title: Cancer Res doi: 10.1158/0008-5472.can-18-3769 – volume: 46 start-page: 4350 year: 2021 ident: B116 article-title: In situ characterization of microparticulate optoacoustic contrast agents in an intracardiac perfusion mouse model publication-title: Opt Lett doi: 10.1364/ol.435360 – start-page: 1 year: 2022 ident: B8 publication-title: Nat Biomed Eng – volume: 39 start-page: 3535 year: 2020 ident: B89 article-title: Spatiotemporal antialiasing in photoacoustic computed tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2020.2998509 – volume: 59 start-page: 712 year: 2020 ident: B149 article-title: Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation publication-title: Appl Opt doi: 10.1364/ao.378466 – volume: 6 start-page: 821 year: 2019 ident: B151 article-title: Reverberant cavity photoacoustic imaging publication-title: Optica doi: 10.1364/optica.6.000821 – volume: 33 start-page: 433 year: 2013 ident: B47 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2286546 – volume: 37 start-page: 1382 year: 2018 ident: B101 article-title: Model-based learning for accelerated, limited-view 3-D photoacoustic tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2018.2820382 – volume: 8 start-page: 1 year: 2019 ident: B158 publication-title: Sci Appl – volume: 14 start-page: 034026 year: 2020 ident: B112 article-title: Probing the spatial impulse response of ultrahigh-frequency ultrasonic transducers with photoacoustic waves publication-title: Phys Rev Appl doi: 10.1103/physrevapplied.14.034026 – volume: 13 start-page: 298 year: 2019 ident: B34 article-title: Addressing photoacoustics standards publication-title: Nat Photon doi: 10.1038/s41566-019-0417-3 – volume: 41 start-page: 073301 year: 2014 ident: B118 article-title: Effects of small variations of speed of sound in optoacoustic tomographic imaging publication-title: Med Phys doi: 10.1118/1.4875691 – volume: 237 start-page: 118111 year: 2021 ident: B159 article-title: Hemodynamic response to sensory stimulation in mice: Comparison between functional ultrasound and optoacoustic imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118111 – volume: 103 start-page: 106097 year: 2020 ident: B130 article-title: Speed of sound ultrasound transmission tomography image reconstruction based on Bézier curves publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106097 – volume: 39 start-page: 3643 year: 2020 ident: B173 article-title: Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2020.3001750 – volume: 14 start-page: e202000325 year: 2021 ident: B37 article-title: LV-GAN: A deep learning approach for limited-view optoacoustic imaging based on hybrid datasets publication-title: J Biophotonics doi: 10.1002/jbio.202000325 – volume: 2 start-page: 21 year: 2014 ident: B106 article-title: Investigation of the far-field approximation for modeling a transducer's spatial impulse response in photoacoustic computed tomography publication-title: Photoacoustics doi: 10.1016/j.pacs.2013.11.001 – start-page: 1 year: 2022 ident: B22 publication-title: Biomed Eng Lett – volume: 32 start-page: 2050 year: 2013 ident: B44 article-title: Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2013.2272079 – volume: 17 start-page: 061202 year: 2012 ident: B156 article-title: Quantitative spectroscopic photoacoustic imaging: A review publication-title: J Biomed Opt doi: 10.1117/1.jbo.17.6.061202 – year: 2022 ident: B83 publication-title: IEEE Trans Med Imaging – volume: 3 start-page: 354 year: 2019 ident: B7 article-title: Optoacoustic mesoscopy for biomedicine publication-title: Nat Biomed Eng doi: 10.1038/s41551-019-0377-4 – start-page: 272 volume-title: Photons plus ultrasound: Imaging and sensing year: 2019 ident: B180 article-title: NETT regularization for compressed sensing photoacoustic tomography – volume: 25 start-page: 1905 year: 2019 ident: B87 article-title: Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy publication-title: Nat Med doi: 10.1038/s41591-019-0669-y – volume: 10 start-page: 1 year: 2018 ident: B54 article-title: Investigation on reconstruction for frequency domain photoacoustic imaging via TVAL3 regularization algorithm publication-title: IEEE Photon J doi: 10.1109/jphot.2018.2869815 – volume: 42 start-page: 827 year: 2017 ident: B59 article-title: Dynamic particle enhancement in limited-view optoacoustic tomography publication-title: Opt Lett doi: 10.1364/ol.42.000827 – volume: 44 start-page: 2388 year: 2018 ident: B140 article-title: Observation of guided acoustic waves in a human skull publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2018.05.019 – volume: 9 start-page: 219 year: 2015 ident: B84 article-title: Advances in real-time multispectral optoacoustic imaging and its applications publication-title: Nat Photon doi: 10.1038/nphoton.2015.29 – volume: 10 start-page: 978 year: 2020 ident: B63 publication-title: Springer – start-page: 953919 year: 2015 ident: B91 article-title: Image reconstruction in cross-sectional optoacoustic tomography based on non-negative constrained model-based inversion – volume: 21 start-page: 061007 year: 2016 ident: B66 article-title: Tutorial on photoacoustic tomography publication-title: J Biomed Opt doi: 10.1117/1.jbo.21.6.061007 – volume: 32 start-page: 115012 year: 2016 ident: B78 article-title: On the adjoint operator in photoacoustic tomography publication-title: Inverse Probl doi: 10.1088/0266-5611/32/11/115012 – volume: 21 start-page: 100215 year: 2021 ident: B167 article-title: Review of deep learning for photoacoustic imaging publication-title: Photoacoustics doi: 10.1016/j.pacs.2020.100215 – volume: 8 start-page: 203 year: 2018 ident: B24 article-title: Photoacoustic microscopy: Principles and biomedical applications publication-title: Biomed Eng Lett doi: 10.1007/s13534-018-0067-2 – volume: 64 start-page: 18TR01 year: 2019 ident: B32 article-title: Optoacoustic image formation approaches—A clinical perspective publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab3522 – volume: 2 start-page: 111 year: 2014 ident: B64 article-title: Frequency domain optoacoustic tomography using amplitude and phase publication-title: Photoacoustics doi: 10.1016/j.pacs.2014.06.002 – volume: 3 start-page: 123 year: 2015 ident: B119 publication-title: Photoacoustics doi: 10.1016/j.pacs.2015.09.001 – volume: 10 start-page: 48 year: 2018 ident: B25 article-title: Imaging of blood flow and oxygen state with a multi-segment optoacoustic ultrasound array publication-title: Photoacoustics doi: 10.1016/j.pacs.2018.04.002 – volume: 32 start-page: 1097 year: 2013 ident: B124 article-title: Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2013.2254496 – volume: 35 start-page: 1883 year: 2016 ident: B69 article-title: Real-time model-based inversion in cross-sectional optoacoustic tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2016.2536779 – volume: 37 start-page: 1464 year: 2018 ident: B120 article-title: Photoacoustic source detection and reflection artifact removal enabled by deep learning publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2018.2829662 – volume-title: Under review ident: B113 – volume: 13 start-page: 627 year: 2016 ident: B29 article-title: A practical guide to photoacoustic tomography in the life sciences publication-title: Nat Methods doi: 10.1038/nmeth.3925 – volume: 16 start-page: 2100381 year: 2022 ident: B76 article-title: Broadband model‐based optoacoustic mesoscopy enables deep‐tissue imaging beyond the acoustic diffraction limit publication-title: Laser Photon Rev doi: 10.1002/lpor.202100381 – volume: 121 start-page: 3453 year: 2007 ident: B67 article-title: k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics publication-title: J Acoust Soc Am doi: 10.1121/1.2717409 – volume: 59 start-page: 1354 year: 2012 ident: B161 article-title: Model-based reconstruction integrated with fluence compensation for photoacoustic tomography publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2187649 – volume: 3 start-page: 378 year: 1981 ident: B154 article-title: Ultrasonic transmission speckle imaging publication-title: Ultrason Imaging doi: 10.1177/016173468100300407 – volume: 25 start-page: 112903 year: 2020 ident: B175 article-title: Deep learning in photoacoustic tomography: Current approaches and future directions publication-title: J Biomed Opt doi: 10.1117/1.jbo.25.11.112903 – volume: 65 start-page: 055009 year: 2020 ident: B141 article-title: Iterative image reconstruction in transcranial photoacoustic tomography based on the elastic wave equation publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab6b46 – volume: 22 start-page: 100258 year: 2021 ident: B93 article-title: Single laser-shot super-resolution photoacoustic tomography with fast sparsity-based reconstruction publication-title: Photoacoustics doi: 10.1016/j.pacs.2021.100258 – volume: 7 start-page: 18004 year: 2018 ident: B114 article-title: Localization optoacoustic tomography publication-title: Light Sci Appl doi: 10.1038/lsa.2018.4 – start-page: 19 year: 2020 ident: B6 publication-title: Photoacoustics – volume: 1 start-page: 453 year: 2019 ident: B171 article-title: Deep learning optoacoustic tomography with sparse data publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0095-3 – volume-title: Laser optoacoustics year: 1993 ident: B153 – volume: 10 start-page: 751 year: 2017 ident: B125 article-title: Analysis of iterative methods in photoacoustic tomography with variable sound speed publication-title: SIAM J Imaging Sci doi: 10.1137/16m1104822 – volume: 29 start-page: 1275 year: 2010 ident: B68 article-title: Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2010.2044584 – volume: 27 start-page: 987 year: 2019 ident: B168 article-title: Deep learning for photoacoustic tomography from sparse data publication-title: Inverse Probl Sci Eng doi: 10.1080/17415977.2018.1518444 – volume: 4 start-page: 2813 year: 2013 ident: B77 article-title: A low memory cost model based reconstruction algorithm exploiting translational symmetry for photoacustic microscopy publication-title: Biomed Opt Express doi: 10.1364/boe.4.002813 – volume: 57 start-page: 5399 year: 2012 ident: B48 article-title: Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography publication-title: Phys Med Biol doi: 10.1088/0031-9155/57/17/5399 – volume: 5 start-page: e16201 year: 2016 ident: B13 article-title: Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators publication-title: Light Sci Appl doi: 10.1038/lsa.2016.201 – volume: 68 start-page: 688 year: 2020 ident: B172 article-title: Deep learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images publication-title: IEEE Trans Ultrason Ferroelectr Freq Control doi: 10.1109/tuffc.2020.3022324 – volume: 9 start-page: 318 year: 2013 ident: B31 article-title: Acoustic inversion in optoacoustic tomography: A review publication-title: Curr Med Imaging Rev doi: 10.2174/15734056113096660006 – volume: 34 start-page: 024006 year: 2018 ident: B61 article-title: Efficient regularization with wavelet sparsity constraints in photoacoustic tomography publication-title: Inverse Probl doi: 10.1088/1361-6420/aaa0ac – volume: 60 start-page: 6733 year: 2015 ident: B57 publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/17/6733 – volume: 52 start-page: 1046 year: 2012 ident: B96 article-title: Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction publication-title: Ultrasonics doi: 10.1016/j.ultras.2012.08.012 – volume: 40 start-page: 4691 year: 2015 ident: B164 article-title: Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography publication-title: Opt Lett doi: 10.1364/ol.40.004691 – volume: 4 start-page: 133 year: 2016 ident: B36 article-title: On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography publication-title: Photoacoustics doi: 10.1016/j.pacs.2016.10.001 – volume: 54 start-page: 074001 year: 2020 ident: B90 article-title: Negativity artifacts in back-projection based photoacoustic tomography publication-title: J Phys D Appl Phys doi: 10.1088/1361-6463/abc37d – volume: 50 start-page: 5031 year: 2011 ident: B95 article-title: Enhancing finite element-based photoacoustic tomography using total variation minimization publication-title: Appl Opt doi: 10.1364/ao.50.005031 – volume-title: arXiv:2206.14485 year: 2022 ident: B179 – volume: 10 start-page: 65 year: 2018 ident: B155 article-title: Photoacoustic tomography of blood oxygenation: A mini review publication-title: Photoacoustics doi: 10.1016/j.pacs.2018.05.001 – volume: 98 start-page: 171110 year: 2011 ident: B137 article-title: Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions publication-title: Appl Phys Lett doi: 10.1063/1.3564905 – volume: 51 start-page: R139 year: 2006 ident: B45 article-title: Image reconstruction publication-title: Phys Med Biol doi: 10.1088/0031-9155/51/13/r09 – year: 2021 ident: B142 publication-title: arXiv preprint – volume: 15 start-page: e202100334 year: 2022 ident: B138 article-title: Weighted model-based optoacoustic reconstruction for partial-view geometries publication-title: J Biophotonics doi: 10.1002/jbio.202100334 – volume: 50 start-page: 1086 year: 2003 ident: B82 article-title: Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2003.816081 – volume: 22 start-page: 100241 year: 2021 ident: B166 article-title: Deep learning for biomedical photoacoustic imaging: A review publication-title: Photoacoustics doi: 10.1016/j.pacs.2021.100241 – volume: 11 start-page: 1251 year: 2018 ident: B26 article-title: Noninvasive anatomical and functional imaging of orthotopic glioblastoma development and therapy using multispectral optoacoustic tomography publication-title: Translational Oncol doi: 10.1016/j.tranon.2018.07.001 – start-page: 88000I year: 2013 ident: B43 article-title: Realtime parallel back-projection algorithm for three-dimensional optoacoustic imaging devices – volume: 429 start-page: 415 year: 2015 ident: B51 article-title: Regularization approaches for quantitative Photoacoustic tomography using the radiative transfer equation publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2015.03.079 – volume: 8 start-page: 1 year: 2019 ident: B134 publication-title: Sci Appl – volume-title: Photoacoustic imaging and spectroscopy year: 2017 ident: B152 doi: 10.1201/9781420059922 – volume: 46 start-page: 2158 year: 2017 ident: B4 article-title: Advanced optoacoustic methods for multiscale imaging of in vivo dynamics publication-title: Chem Soc Rev doi: 10.1039/c6cs00765a – volume: 22 start-page: 100270 year: 2021 ident: B178 article-title: Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel publication-title: Photoacoustics doi: 10.1016/j.pacs.2021.100270 – volume: 9 start-page: 152 year: 2020 ident: B12 article-title: Multifocal structured illumination optoacoustic microscopy publication-title: Light Sci Appl doi: 10.1038/s41377-020-00390-9 – volume: 110 start-page: 203703 year: 2017 ident: B85 article-title: Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues publication-title: Appl Phys Lett doi: 10.1063/1.4983462 – volume: 36 start-page: 1676 year: 2017 ident: B160 article-title: Constrained inversion and spectral unmixing in multispectral optoacoustic tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2017.2686006 – volume: 15 start-page: 021314 year: 2010 ident: B30 article-title: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields publication-title: J Biomed Opt doi: 10.1117/1.3360308 – volume: 68 start-page: 707 year: 2020 ident: B109 article-title: Photoacoustic signal simulation using discrete particle approach and its application in tomography publication-title: IEEE Trans Ultrason Ferroelectr Freq Control doi: 10.1109/tuffc.2020.3022937 – volume: 61 start-page: 1932 year: 2016 ident: B139 article-title: Broadband acoustic properties of a murine skull publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/5/1932 – volume: 14 start-page: e202000191 year: 2021 ident: B98 article-title: Non‐local means improves total‐variation constrained photoacoustic image reconstruction publication-title: J Biophotonics doi: 10.1002/jbio.202000191 – volume: 18 start-page: 036008 year: 2013 ident: B122 article-title: Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering publication-title: J Biomed Opt doi: 10.1117/1.jbo.18.3.036008 – volume: 41 start-page: 013302 year: 2014 ident: B75 article-title: Expediting model-based optoacoustic reconstructions with tomographic symmetries publication-title: Med Phys doi: 10.1118/1.4846055 – start-page: 11077_12 year: 2019 ident: B128 article-title: Photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo using a feature coupling method – volume: 39 start-page: 2931 year: 2020 ident: B55 article-title: Model-based reconstruction of large three-dimensional optoacoustic datasets publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2020.2981835 – volume: 22 start-page: 770 year: 2020 ident: B27 article-title: Noninvasive multiparametric characterization of mammary tumors with transmission-reflection optoacoustic ultrasound publication-title: Neoplasia doi: 10.1016/j.neo.2020.10.008 – volume: 64 start-page: 14TR01 year: 2019 ident: B58 article-title: A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab2017 – volume: 38 start-page: 4285 year: 2011 ident: B72 article-title: Model-based optoacoustic inversion with arbitrary-shape detectors publication-title: Med Phys doi: 10.1118/1.3589141 – volume: 51 start-page: 383 year: 2021 ident: B15 article-title: Broadband (100 kHz – 100 MHz) ultrasound PVDF detectors for raster-scan optoacoustic angiography with acoustic resolution publication-title: Quan Elec (Woodbury) doi: 10.1070/qel17538 – volume: 31 start-page: 1922 year: 2012 ident: B39 article-title: Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2012.2208471 – volume: 16 start-page: 1 year: 2017 ident: B94 publication-title: Biomed Eng Online doi: 10.1186/s12938-016-0292-9 – volume: 29 start-page: 2185 year: 2019 ident: B80 article-title: The evolution of image reconstruction for CT—From filtered back projection to artificial intelligence publication-title: Eur Radiol doi: 10.1007/s00330-018-5810-7 – volume: 45 start-page: 104 year: 2018 ident: B5 article-title: Recent progress in photoacoustic molecular imaging publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2018.03.016 – volume: 31 start-page: 1154 year: 2012 ident: B49 article-title: Acceleration of optoacoustic model-based reconstruction using angular image discretization publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2012.2187460 – volume: 12 start-page: 035043 year: 2022 ident: B133 article-title: Optoacoustic imaging with an air-coupled transducer using coaxially aligned focused illumination publication-title: AIP Adv doi: 10.1063/5.0078053 – volume: 58 start-page: 5555 year: 2013 ident: B135 publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/16/5555 |
SSID | ssj0001259824 |
Score | 2.3860617 |
SecondaryResourceType | review_article |
Snippet | Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | compressed-sensing high-frame-rate imaging model-based reconstruction optoacoustic imaging partial data acquisition photoacoustic imaging |
Title | A practical guide for model-based reconstruction in optoacoustic imaging |
URI | https://doaj.org/article/ad4e118337d742e4a78b20c2563922bb |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SEbyIT6yPkoMnYXGbTbLNsT5KEfWihd5CHhMp6LZg_f9OkrXUi168LtklfLPJfN_u5BtCLryAvkcaXYDC5cYBV7oNCsWKq42srQx1rrZ4kuMJv5-K6Vqrr1gTlu2BM3DR5BaQBFdV7VHFATf1wLLSYabGzM6sjbtvqco1MZW_rkRjOp5_Y6IKU1cBZ41ykLFoVoCyaPAjEa359afEMtolOy0jpMM8kz2yAc0-2UqVme7jgIyHtD3JhINeP2ceKPJMmjrYFDEHeZpE7coIls4aOl8s57jVpU5ddPaeOhEdksno7uVmXLTtDwpXCb4sFCCV94oJxBlVAQQAKxwoARyztjCgTHDMI8NxpbKywrQjQ98YKSB45kN1RDrNvIFjQo1XSDS4lCWzyEAQQedRx1RScO6qOnRJ-Y2Fdq03eGxR8aZRI0T4dIRPR_h0C1-XXK5uWWRjjN8GX0eAVwOjp3W6gJHWbaT1X5E--Y-HnJLtOLF8mvCMdDA2cI60Yml7ZHN4-_jw3Etv0he7Nsqn |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+guide+for+model-based+reconstruction+in+optoacoustic+imaging&rft.jtitle=Frontiers+in+physics&rft.au=Xos%C3%A9+Lu%C3%ADs+De%C3%A1n-Ben&rft.au=Xos%C3%A9+Lu%C3%ADs+De%C3%A1n-Ben&rft.au=Daniel+Razansky&rft.au=Daniel+Razansky&rft.date=2022-11-01&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphy.2022.1028258&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ad4e118337d742e4a78b20c2563922bb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |