A practical guide for model-based reconstruction in optoacoustic imaging

Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly reli...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 10
Main Authors Deán-Ben, Xosé Luís, Razansky, Daniel
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 01.11.2022
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2022.1028258

Cover

Abstract Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly relies on acoustic inversion of time-resolved tomographic data. The excitation of OA responses and subsequent propagation of ultrasound waves can be mathematically described as a forward model enabling image reconstruction via algebraic inversion. These model-based reconstruction methods have been shown to outperform alternative inversion approaches and can further render OA images from incomplete datasets, strongly distorted signals or other suboptimally recorded data. Herein, we provide a general perspective on model-based OA reconstruction methods, review recent progress, and discuss the performance of the different algorithms under practical imaging scenarios.
AbstractList Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly relies on acoustic inversion of time-resolved tomographic data. The excitation of OA responses and subsequent propagation of ultrasound waves can be mathematically described as a forward model enabling image reconstruction via algebraic inversion. These model-based reconstruction methods have been shown to outperform alternative inversion approaches and can further render OA images from incomplete datasets, strongly distorted signals or other suboptimally recorded data. Herein, we provide a general perspective on model-based OA reconstruction methods, review recent progress, and discuss the performance of the different algorithms under practical imaging scenarios.
Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast with high resolution at depths not reachable with optical microscopy. For deep tissue imaging applications, OA image formation commonly relies on acoustic inversion of time-resolved tomographic data. The excitation of OA responses and subsequent propagation of ultrasound waves can be mathematically described as a forward model enabling image reconstruction via algebraic inversion. These model-based reconstruction methods have been shown to outperform alternative inversion approaches and can further render OA images from incomplete datasets, strongly distorted signals or other suboptimally recorded data. Herein, we provide a general perspective on model-based OA reconstruction methods, review recent progress, and discuss the performance of the different algorithms under practical imaging scenarios.
Author Deán-Ben, Xosé Luís
Razansky, Daniel
Author_xml – sequence: 1
  givenname: Xosé Luís
  surname: Deán-Ben
  fullname: Deán-Ben, Xosé Luís
– sequence: 2
  givenname: Daniel
  surname: Razansky
  fullname: Razansky, Daniel
BookMark eNp9kM9KxDAQh4Mo-G8fwFtfoGsyadrkuCzqCoIXBW9hmkzWLt2mpN3Dvr2tiogHTzMM8_1m-C7ZaRc7YuxG8KWU2tyG_v24BA6wFBw0KH3CLgBMmRdQvJ3-6s_ZYhh2nHMBymgoLthmlfUJ3dg4bLPtofGUhZiyffTU5jUO5LNELnbDmA7TVuyypstiP0Z08TBMWNbscdt022t2FrAdaPFdr9jr_d3LepM_PT88rldPuZOqGHNDSitvQFFNqiopENXKkVFUABcKyWBw4LU0jpu6lGWlyyAQS0XBgw_yij1-5fqIO9un6Xw62oiN_RzEtLWYpr9asugLEkJLWfmqACqw0jVwB6qUBqCupyzxleVSHIZE4SdPcDubtbNZO5u132YnpvrDuGbE2cyYsGn_IT8AWUKB3g
CitedBy_id crossref_primary_10_1117_1_APN_2_5_054001
crossref_primary_10_1088_2515_7647_ad9b83
crossref_primary_10_1038_s41467_024_54947_y
crossref_primary_10_1103_RevModPhys_97_015005
crossref_primary_10_1364_JOSAA_518768
crossref_primary_10_1063_5_0151882
crossref_primary_10_1109_LSENS_2024_3423453
crossref_primary_10_1016_j_pacs_2024_100659
crossref_primary_10_1016_j_pacs_2023_100561
crossref_primary_10_1016_j_pacs_2024_100665
crossref_primary_10_3390_s24092670
crossref_primary_10_1016_j_pacs_2023_100521
crossref_primary_10_1088_1361_6560_adb368
crossref_primary_10_1016_j_addr_2023_115177
crossref_primary_10_1038_s44303_024_00048_w
crossref_primary_10_1109_TUFFC_2024_3451986
Cites_doi 10.1021/acsami.1c15509
10.1109/tmi.2010.2081683
10.1109/tuffc.2017.2758173
10.1073/pnas.2103979118
10.1088/0266-5611/23/6/s06
10.1016/j.pacs.2018.07.001
10.1364/boe.379941
10.1109/tit.1960.1057571
10.1016/j.pacs.2021.100271
10.1021/acsami.1c17661
10.1109/tmi.2017.2704019
10.1364/optica.5.000857
10.1063/5.0065966
10.1118/1.1644531
10.1364/oe.20.014117
10.1142/s1793545820300074
10.1117/1.3381187
10.3390/mi11070692
10.1063/1.3579156
10.1117/1.jbo.17.11.110504
10.1364/ol.42.000979
10.1201/9780203749098
10.1098/rspa.2018.0369
10.1088/0266-5611/28/8/084009
10.1039/c6cc09421j
10.1155/2018/1727582
10.1038/s41467-020-16565-2
10.1038/s41377-018-0036-7
10.1088/0266-5611/31/9/095005
10.1016/j.pacs.2021.100275
10.1109/jproc.2019.2936204
10.1109/tmi.2021.3068181
10.1111/exd.14386
10.1088/1361-6560/61/24/8908
10.1364/ao.39.005872
10.1016/j.pacs.2020.100218
10.1088/0031-9155/56/18/021
10.1017/CBO9780511794308
10.1038/s41551-021-00735-8
10.1561/2000000101
10.1118/1.2409234
10.1364/prj.418591
10.1088/2040-8978/18/11/114004
10.1364/ol.424571
10.1016/j.pacs.2020.100191
10.1007/978-3-642-05368-9
10.1103/physreve.71.016706
10.1117/1.jbo.26.4.040901
10.1148/radiol.2019181325
10.1137/17m1153649
10.1016/j.pacs.2019.100142
10.1103/physrevlett.123.174301
10.1117/1.jbo.24.3.031015
10.1038/s41566-019-0576-2
10.1121/1.1501898
10.1063/1.4928123
10.1038/nmeth.3929
10.1007/s10444-014-9364-1
10.1016/j.pacs.2021.100291
10.1088/0266-5611/23/6/s07
10.1117/1.jbo.18.7.076014
10.1109/tmi.2008.2007825
10.1364/oe.20.016510
10.1109/tuffc.2013.2687
10.1364/oe.18.026285
10.1158/0008-5472.can-18-3769
10.1364/ol.435360
10.1109/tmi.2020.2998509
10.1364/ao.378466
10.1364/optica.6.000821
10.1109/TMI.2013.2286546
10.1109/tmi.2018.2820382
10.1103/physrevapplied.14.034026
10.1038/s41566-019-0417-3
10.1118/1.4875691
10.1016/j.neuroimage.2021.118111
10.1016/j.ultras.2020.106097
10.1109/tmi.2020.3001750
10.1002/jbio.202000325
10.1016/j.pacs.2013.11.001
10.1109/tmi.2013.2272079
10.1117/1.jbo.17.6.061202
10.1038/s41551-019-0377-4
10.1038/s41591-019-0669-y
10.1109/jphot.2018.2869815
10.1364/ol.42.000827
10.1016/j.ultrasmedbio.2018.05.019
10.1038/nphoton.2015.29
10.1117/1.jbo.21.6.061007
10.1088/0266-5611/32/11/115012
10.1016/j.pacs.2020.100215
10.1007/s13534-018-0067-2
10.1088/1361-6560/ab3522
10.1016/j.pacs.2014.06.002
10.1016/j.pacs.2015.09.001
10.1016/j.pacs.2018.04.002
10.1109/tmi.2013.2254496
10.1109/tmi.2016.2536779
10.1109/tmi.2018.2829662
10.1038/nmeth.3925
10.1002/lpor.202100381
10.1121/1.2717409
10.1109/TBME.2012.2187649
10.1177/016173468100300407
10.1117/1.jbo.25.11.112903
10.1088/1361-6560/ab6b46
10.1016/j.pacs.2021.100258
10.1038/lsa.2018.4
10.1038/s42256-019-0095-3
10.1137/16m1104822
10.1109/tmi.2010.2044584
10.1080/17415977.2018.1518444
10.1364/boe.4.002813
10.1088/0031-9155/57/17/5399
10.1038/lsa.2016.201
10.1109/tuffc.2020.3022324
10.2174/15734056113096660006
10.1088/1361-6420/aaa0ac
10.1088/0031-9155/60/17/6733
10.1016/j.ultras.2012.08.012
10.1364/ol.40.004691
10.1016/j.pacs.2016.10.001
10.1088/1361-6463/abc37d
10.1364/ao.50.005031
10.1016/j.pacs.2018.05.001
10.1063/1.3564905
10.1088/0031-9155/51/13/r09
10.1002/jbio.202100334
10.1109/TBME.2003.816081
10.1016/j.pacs.2021.100241
10.1016/j.tranon.2018.07.001
10.1016/j.jmaa.2015.03.079
10.1201/9781420059922
10.1039/c6cs00765a
10.1016/j.pacs.2021.100270
10.1038/s41377-020-00390-9
10.1063/1.4983462
10.1109/tmi.2017.2686006
10.1117/1.3360308
10.1109/tuffc.2020.3022937
10.1088/0031-9155/61/5/1932
10.1002/jbio.202000191
10.1117/1.jbo.18.3.036008
10.1118/1.4846055
10.1109/tmi.2020.2981835
10.1016/j.neo.2020.10.008
10.1088/1361-6560/ab2017
10.1118/1.3589141
10.1070/qel17538
10.1109/tmi.2012.2208471
10.1186/s12938-016-0292-9
10.1007/s00330-018-5810-7
10.1016/j.cbpa.2018.03.016
10.1109/tmi.2012.2187460
10.1063/5.0078053
10.1088/0031-9155/58/16/5555
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fphy.2022.1028258
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_ad4e118337d742e4a78b20c2563922bb
10_3389_fphy_2022_1028258
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-9e585d925ebe576efeeb5ce95e42015ae9afc2d839c09b636786f1aa65efd2df3
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Wed Aug 27 01:26:28 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Thu Apr 24 22:51:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-9e585d925ebe576efeeb5ce95e42015ae9afc2d839c09b636786f1aa65efd2df3
OpenAccessLink https://doaj.org/article/ad4e118337d742e4a78b20c2563922bb
ParticipantIDs doaj_primary_oai_doaj_org_article_ad4e118337d742e4a78b20c2563922bb
crossref_primary_10_3389_fphy_2022_1028258
crossref_citationtrail_10_3389_fphy_2022_1028258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-1
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-1
  day: 01
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Dean-Ben (B39) 2012; 31
Hirsch (B65) 2021; 92
Ntziachristos (B147) 2015
Nozdriukhin (B115) 2021; 13
Luo (B105) 2021
Basak (B158) 2019; 8
Kalva (B21) 2021; 9
Bates (B154) 1981; 3
Cox (B156) 2012; 17
Regensburger (B87) 2019; 25
Gao (B149) 2020; 59
Omar (B7) 2019; 3
Deán-Ben (B165) 2020
Olefir (B173) 2020; 39
Zheng (B22) 2022
Mohajerani (B64) 2014; 2
Dehner (B179) 2022
Merčep (B25) 2018; 10
Mitsuhashi (B106) 2014; 2
Daoudi (B163) 2012; 20
Merčep (B134) 2019; 8
Rosenthal (B72) 2011; 38
Huang (B124) 2013; 32
Haltmeier (B125) 2017; 10
Davoudi (B177) 2021; 46
Paltauf (B38) 2007; 23
Yang (B167) 2021; 21
Singh (B63) 2020; 10
Aguirre (B77) 2013; 4
Ding (B74) 2017; 36
Andreev (B81) 2001
Guo (B145) 2010; 15
Wang (B152) 2017
Ding (B91) 2015
Ding (B55) 2020; 39
Hu (B89) 2020; 39
Godefroy (B170) 2021; 21
Seeger (B111) 2020; 11
Tarvainen (B97) 2012; 28
Deán-Ben (B137) 2011; 98
Estrada (B140) 2018; 44
Kurnikov (B15) 2021; 51
Yao (B95) 2011; 50
Deán-Ben (B59) 2017; 42
Li (B103) 2010; 18
Özsoy (B100) 2021; 118
Matthews (B129) 2018; 11
Gusev (B153) 1993
Treeby (B30) 2010; 15
Luís Dean-Ben (B114) 2018; 7
Muhammad (B138) 2022; 15
Na (B19) 2022; 6
Zhang (B96) 2012; 52
Deán‐Ben (B16) 2021; 30
Queirós (B73) 2013; 18
Ding (B160) 2017; 36
Deng (B169) 2021; 26
Dean-Ben (B49) 2012; 31
Xu (B82) 2003; 50
Dean-Ben (B136) 2010; 30
Deán-Ben (B4) 2017; 46
Paltauf (B46) 2002; 112
Lafci (B27) 2020; 22
Deán-Ben (B121) 2012; 17
Antholzer (B168) 2019; 27
Antholzer (B180) 2019
Egolf (B93) 2021; 22
Deán-Ben (B13) 2016; 5
Arridge (B78) 2016; 32
McCann (B3) 2019; 13
Xu (B35) 2004; 31
Wang (B33) 2020; 13
Ni (B8) 2022
Deán-Ben (B132) 2015; 107
Ivankovic (B88) 2019; 291
Deán-Ben (B123) 2011; 56
Deán-Ben (B164) 2015; 40
Lutzweiler (B75) 2014; 41
Degtyaruk (B116) 2021; 46
Cho (B10) 2021; 24
Ding (B69) 2016; 35
Li (B76) 2022; 16
Bu (B161) 2012; 59
Moon (B40) 2018; 2018
Jetzfellner (B86) 2011; 98
Liu (B24) 2018; 8
Dong (B52) 2015; 41
Poudel (B58) 2019; 64
Özsoy (B133) 2022; 12
Provost (B144) 2008; 28
Zeng (B1) 2010
Arridge (B50) 2016; 61
Willemink (B80) 2019; 29
Lu (B37) 2021; 14
Deán-Ben (B71) 2019; 123
Deán-Ben (B32) 2019; 64
Hsu (B176) 2021; 23
Shang (B108) 2018; 24
Weber (B23) 2016; 13
Vilov (B110) 2020; 10
Dean-Ben (B142) 2021
Lu (B112) 2020; 14
Ding (B57) 2015; 60
Singh (B119) 2015; 3
Eldar (B143) 2012
Yao (B5) 2018; 45
Özbek (B83) 2022
Li (B150) 2020; 14
Lafci (B172) 2020; 68
Wang (B48) 2012; 57
Perez-Liva (B130) 2020; 103
Defrise (B45) 2006; 51
Li (B20) 2021
Wang (B29) 2016; 13
Bredies (B56) 2020; 11
Han (B60) 2017; 42
Shen (B90) 2020; 54
Allman (B120) 2018; 37
Meng (B148) 2012; 20
Hu (B174) 2021
Ding (B127) 2015; 31
Balasundaram (B26) 2018; 11
Manohar (B6) 2020
Burgholzer (B42) 2007; 23
Schoeder (B62) 2018; 474
Al. (B113)
Cox (B67) 2007; 121
Li (B155) 2018; 10
Zhou (B66) 2016; 21
Guggenheim (B14) 2017; 64
Burgholzer (B92) 2020; 19
Steinberg (B107) 2021; 40
Yuan (B126) 2007; 34
Ravishankar (B2) 2019; 108
Manwar (B11) 2020; 11
Ozbek (B43) 2013
Lan (B178) 2021; 22
Wang (B94) 2017; 16
Pattyn (B162) 2021; 23
Taruttis (B84) 2015; 9
Deán-Ben (B85) 2017; 110
Prakash (B109) 2020; 68
Deán-Ben (B135) 2013; 58
Estrada (B139) 2016; 61
Özbek (B99) 2018; 5
Schellenberg (B17) 2018; 11
Rosenthal (B31) 2013; 9
Hauptmann (B175) 2020; 25
Hauptmann (B101) 2018; 37
Yalavarthy (B98) 2021; 14
Xu (B41) 2005; 71
Haltmeier (B146) 2016; 18
Chen (B12) 2020; 9
Brown (B151) 2019; 6
Biton (B53) 2019; 16
Turin (B79) 1960; 6
Poudel (B141) 2020; 65
Deán-Ben (B44) 2013; 32
Gröhl (B166) 2021; 22
Kong (B54) 2018; 10
Yang (B131)
Wissmeyer (B9) 2018; 7
Frikel (B61) 2018; 34
Hoelen (B104) 2000; 39
Deán-Ben (B36) 2016; 4
Cai (B128) 2019
Ron (B18) 2019; 79
Caballero (B47) 2013; 33
Caballero (B102) 2013; 60
Gujrati (B157) 2017; 53
Szabo (B117) 2004
Robin (B159) 2021; 237
Rosenthal (B68) 2010; 29
Kalva (B28) 2021; 14
Scruby (B70) 2019
Bohndiek (B34) 2019; 13
Treeby (B122) 2013; 18
Deán‐Ben (B118) 2014; 41
Gong (B181) 2021
De Cezaro (B51) 2015; 429
Davoudi (B171) 2019; 1
References_xml – volume: 13
  start-page: 48423
  year: 2021
  ident: B115
  article-title: Rapid volumetric optoacoustic tracking of individual microparticles in vivo enabled by a NIR-absorbing gold–carbon shell
  publication-title: ACS Appl Mater Inter
  doi: 10.1021/acsami.1c15509
– volume: 30
  start-page: 401
  year: 2010
  ident: B136
  article-title: Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2010.2081683
– ident: B131
– volume: 64
  start-page: 1857
  year: 2017
  ident: B14
  article-title: A method for measuring the directional response of ultrasound receivers in the range 0.3–80 MHz using a laser-generated ultrasound source
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/tuffc.2017.2758173
– volume: 118
  start-page: e2103979118
  year: 2021
  ident: B100
  article-title: Ultrafast four-dimensional imaging of cardiac mechanical wave propagation with sparse optoacoustic sensing
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2103979118
– volume: 23
  start-page: S65
  year: 2007
  ident: B42
  article-title: Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/23/6/s06
– volume: 11
  start-page: 14
  year: 2018
  ident: B17
  article-title: Hand-held optoacoustic imaging: A review
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2018.07.001
– volume: 10
  start-page: 1
  year: 2020
  ident: B110
  publication-title: reports
– volume: 11
  start-page: 994
  year: 2020
  ident: B56
  article-title: TGV-regularized inversion of the Radon transform for photoacoustic tomography
  publication-title: Biomed Opt Express
  doi: 10.1364/boe.379941
– start-page: 119
  volume-title: Inverse Radon transform for optoacoustic imaging
  year: 2001
  ident: B81
– volume: 6
  start-page: 311
  year: 1960
  ident: B79
  article-title: An introduction to matched filters
  publication-title: IEEE Trans Inf Theor
  doi: 10.1109/tit.1960.1057571
– volume: 23
  start-page: 100271
  year: 2021
  ident: B176
  article-title: Comparing deep learning frameworks for photoacoustic tomography image reconstruction
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2021.100271
– volume: 14
  start-page: 172
  year: 2021
  ident: B28
  article-title: Rapid volumetric optoacoustic tracking of nanoparticle kinetics across murine organs
  publication-title: ACS Appl Mater Inter
  doi: 10.1021/acsami.1c17661
– volume: 36
  start-page: 1858
  year: 2017
  ident: B74
  article-title: Efficient 3-D model-based reconstruction scheme for arbitrary optoacoustic acquisition geometries
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2017.2704019
– volume: 5
  start-page: 857
  year: 2018
  ident: B99
  article-title: Optoacoustic imaging at kilohertz volumetric frame rates
  publication-title: Optica
  doi: 10.1364/optica.5.000857
– volume: 92
  start-page: 114901
  year: 2021
  ident: B65
  article-title: On the robustness of model-based algorithms for photoacoustic tomography: Comparison between time and frequency domains
  publication-title: Rev Scientific Instr
  doi: 10.1063/5.0065966
– start-page: 1228
  volume-title: IEEE 12th international symposium on biomedical imaging
  year: 2015
  ident: B147
  article-title: Compressed system models in multispectral optoacoustic tomography
– volume: 31
  start-page: 724
  year: 2004
  ident: B35
  article-title: Reconstructions in limited-view thermoacoustic tomography
  publication-title: Med Phys
  doi: 10.1118/1.1644531
– volume: 20
  start-page: 14117
  year: 2012
  ident: B163
  article-title: Correcting photoacoustic signals for fluence variations using acousto-optic modulation
  publication-title: Opt Express
  doi: 10.1364/oe.20.014117
– volume: 13
  start-page: 2030007
  year: 2020
  ident: B33
  article-title: Combating acoustic heterogeneity in photoacoustic computed tomography: A review
  publication-title: J Innov Opt Health Sci
  doi: 10.1142/s1793545820300074
– volume: 15
  start-page: 021311
  year: 2010
  ident: B145
  article-title: Compressed sensing in photoacoustic tomography in vivo
  publication-title: J Biomed Opt
  doi: 10.1117/1.3381187
– volume: 11
  start-page: 692
  year: 2020
  ident: B11
  article-title: Overview of ultrasound detection technologies for photoacoustic imaging
  publication-title: Micromachines
  doi: 10.3390/mi11070692
– volume: 98
  start-page: 163701
  year: 2011
  ident: B86
  article-title: Interpolated model-matrix optoacoustic tomography of the mouse brain
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3579156
– volume: 17
  start-page: 110504
  year: 2012
  ident: B121
  article-title: Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.17.11.110504
– volume: 42
  start-page: 979
  year: 2017
  ident: B60
  article-title: Three-dimensional optoacoustic reconstruction using fast sparse representation
  publication-title: Opt Lett
  doi: 10.1364/ol.42.000979
– volume-title: Laser ultrasonics: Techniques and applications
  year: 2019
  ident: B70
  doi: 10.1201/9780203749098
– volume: 474
  start-page: 20180369
  year: 2018
  ident: B62
  article-title: Optoacoustic image reconstruction: The full inverse problem with variable bases
  publication-title: Proc R Soc A
  doi: 10.1098/rspa.2018.0369
– volume: 28
  start-page: 084009
  year: 2012
  ident: B97
  article-title: Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/28/8/084009
– volume-title: Diagnostic ultrasound imaging: Inside out
  year: 2004
  ident: B117
– volume: 53
  start-page: 4653
  year: 2017
  ident: B157
  article-title: Molecular imaging probes for multi-spectral optoacoustic tomography
  publication-title: Chem Commun
  doi: 10.1039/c6cc09421j
– volume: 2018
  start-page: 1
  year: 2018
  ident: B40
  article-title: Inversion formula for a radon-type transform arising in photoacoustic tomography with circular integrating detectors
  publication-title: Adv Math Phys
  doi: 10.1155/2018/1727582
– volume: 11
  start-page: 2910
  year: 2020
  ident: B111
  article-title: Pushing the boundaries of optoacoustic microscopy by total impulse response characterization
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16565-2
– start-page: 281
  volume-title: Photonics
  year: 2021
  ident: B20
  article-title: Advances in endoscopic photoacoustic imaging
– volume: 7
  start-page: 1
  year: 2018
  ident: B9
  publication-title: Light: Sci Appl
  doi: 10.1038/s41377-018-0036-7
– volume: 31
  start-page: 095005
  year: 2015
  ident: B127
  article-title: A one-step reconstruction algorithm for quantitative photoacoustic imaging
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/31/9/095005
– volume: 23
  start-page: 100275
  year: 2021
  ident: B162
  article-title: Model-based optical and acoustical compensation for photoacoustic tomography of heterogeneous mediums
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2021.100275
– year: 2021
  ident: B174
  publication-title: arXiv preprint
– volume: 108
  start-page: 86
  year: 2019
  ident: B2
  article-title: Image reconstruction: From sparsity to data-adaptive methods and machine learning
  publication-title: Proc IEEE
  doi: 10.1109/jproc.2019.2936204
– volume: 40
  start-page: 1888
  year: 2021
  ident: B107
  article-title: Superiorized photo-acoustic non-NEgative reconstruction (SPANNER) for clinical photoacoustic imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2021.3068181
– volume: 30
  start-page: 1598
  year: 2021
  ident: B16
  article-title: Optoacoustic imaging of the skin
  publication-title: Exp Dermatol
  doi: 10.1111/exd.14386
– volume: 61
  start-page: 8908
  year: 2016
  ident: B50
  article-title: Accelerated high-resolution photoacoustic tomography via compressed sensing
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/61/24/8908
– volume: 39
  start-page: 5872
  year: 2000
  ident: B104
  article-title: Image reconstruction for photoacoustic scanning of tissue structures
  publication-title: Appl Opt
  doi: 10.1364/ao.39.005872
– volume: 21
  start-page: 100218
  year: 2021
  ident: B170
  article-title: Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2020.100218
– volume: 56
  start-page: 6129
  year: 2011
  ident: B123
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/18/021
– volume-title: Compressed sensing: Theory and applications
  year: 2012
  ident: B143
  doi: 10.1017/CBO9780511794308
– year: 2020
  ident: B165
  publication-title: arXiv preprint arXiv
– volume: 6
  start-page: 584
  year: 2022
  ident: B19
  article-title: Massively parallel functional photoacoustic computed tomography of the human brain
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-021-00735-8
– volume: 13
  start-page: 283
  year: 2019
  ident: B3
  article-title: Biomedical image reconstruction: From the foundations to deep neural networks
  publication-title: FNT Signal Process.
  doi: 10.1561/2000000101
– volume: 34
  start-page: 538
  year: 2007
  ident: B126
  article-title: Three-dimensional finite-element-based photoacoustic tomography: Reconstruction algorithm and simulations
  publication-title: Med Phys
  doi: 10.1118/1.2409234
– volume: 9
  start-page: 899
  year: 2021
  ident: B21
  article-title: Single-sweep volumetric optoacoustic tomography of whole mice
  publication-title: Photon Res
  doi: 10.1364/prj.418591
– volume: 18
  start-page: 114004
  year: 2016
  ident: B146
  article-title: Compressed sensing and sparsity in photoacoustic tomography
  publication-title: J Opt
  doi: 10.1088/2040-8978/18/11/114004
– volume: 46
  start-page: 3029
  year: 2021
  ident: B177
  article-title: Deep learning of image- and time-domain data enhances the visibility of structures in optoacoustic tomography
  publication-title: Opt Lett
  doi: 10.1364/ol.424571
– start-page: 1
  volume-title: Deep learning regularized acceleration for photoacoustic image reconstruction2021 IEEE international ultrasonics symposium (IUS)
  year: 2021
  ident: B181
– volume: 19
  start-page: 100191
  year: 2020
  ident: B92
  article-title: Breaking the resolution limit in photoacoustic imaging using non-negativity and sparsity
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2020.100191
– volume-title: Medical image reconstruction: A conceptual tutorial
  year: 2010
  ident: B1
  doi: 10.1007/978-3-642-05368-9
– volume: 71
  start-page: 016706
  year: 2005
  ident: B41
  article-title: Universal back-projection algorithm for photoacoustic computed tomography
  publication-title: Phys Rev E
  doi: 10.1103/physreve.71.016706
– volume: 26
  start-page: 040901
  year: 2021
  ident: B169
  article-title: Deep learning in photoacoustic imaging: A review
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.26.4.040901
– volume: 291
  start-page: 45
  year: 2019
  ident: B88
  article-title: Real-time volumetric assessment of the human carotid artery: Handheld multispectral optoacoustic tomography
  publication-title: Radiology
  doi: 10.1148/radiol.2019181325
– volume: 11
  start-page: 1560
  year: 2018
  ident: B129
  article-title: Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/17m1153649
– volume: 16
  start-page: 100142
  year: 2019
  ident: B53
  article-title: Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2019.100142
– volume: 123
  start-page: 174301
  year: 2019
  ident: B71
  article-title: Acoustic scattering mediated single detector optoacoustic tomography
  publication-title: Phys Rev Lett
  doi: 10.1103/physrevlett.123.174301
– start-page: 356
  volume-title: Photonics
  year: 2021
  ident: B105
  article-title: Fast correction of “finite aperture effect” in photoacoustic tomography based on spatial impulse response
– volume: 24
  start-page: 1
  year: 2018
  ident: B108
  article-title: Sparsity-based photoacoustic image reconstruction with a linear array transducer and direct measurement of the forward model
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.24.3.031015
– volume: 14
  start-page: 164
  year: 2020
  ident: B150
  article-title: Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption
  publication-title: Nat Photon
  doi: 10.1038/s41566-019-0576-2
– volume: 112
  start-page: 1536
  year: 2002
  ident: B46
  article-title: Iterative reconstruction algorithm for optoacoustic imaging
  publication-title: The J Acoust Soc America
  doi: 10.1121/1.1501898
– volume: 107
  start-page: 051105
  year: 2015
  ident: B132
  article-title: Non-contact optoacoustic imaging with focused air-coupled transducers
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4928123
– volume: 13
  start-page: 639
  year: 2016
  ident: B23
  article-title: Contrast agents for molecular photoacoustic imaging
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3929
– volume: 41
  start-page: 423
  year: 2015
  ident: B52
  article-title: An algorithm for total variation regularized photoacoustic imaging
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-014-9364-1
– volume: 24
  start-page: 100291
  year: 2021
  ident: B10
  article-title: High-speed photoacoustic microscopy: A review dedicated on light sources
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2021.100291
– volume: 23
  start-page: S81
  year: 2007
  ident: B38
  article-title: Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/23/6/s07
– volume: 18
  start-page: 076014
  year: 2013
  ident: B73
  article-title: Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.18.7.076014
– volume: 28
  start-page: 585
  year: 2008
  ident: B144
  article-title: The application of compressed sensing for photo-acoustic tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2008.2007825
– volume: 20
  start-page: 16510
  year: 2012
  ident: B148
  article-title: Compressed-sensing photoacoustic computed tomography in vivo with partially known support
  publication-title: Opt Express
  doi: 10.1364/oe.20.016510
– volume: 60
  start-page: 1234
  year: 2013
  ident: B102
  article-title: Optoacoustic determination of spatio- temporal responses of ultrasound sensors
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/tuffc.2013.2687
– volume: 18
  start-page: 26285
  year: 2010
  ident: B103
  article-title: Model-based correction of finite aperture effect in photoacoustic tomography
  publication-title: Opt Express
  doi: 10.1364/oe.18.026285
– volume: 79
  start-page: 4767
  year: 2019
  ident: B18
  article-title: Volumetric optoacoustic imaging unveils high-resolution patterns of acute and cyclic hypoxia in a murine model of breast cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.can-18-3769
– volume: 46
  start-page: 4350
  year: 2021
  ident: B116
  article-title: In situ characterization of microparticulate optoacoustic contrast agents in an intracardiac perfusion mouse model
  publication-title: Opt Lett
  doi: 10.1364/ol.435360
– start-page: 1
  year: 2022
  ident: B8
  publication-title: Nat Biomed Eng
– volume: 39
  start-page: 3535
  year: 2020
  ident: B89
  article-title: Spatiotemporal antialiasing in photoacoustic computed tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2020.2998509
– volume: 59
  start-page: 712
  year: 2020
  ident: B149
  article-title: Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation
  publication-title: Appl Opt
  doi: 10.1364/ao.378466
– volume: 6
  start-page: 821
  year: 2019
  ident: B151
  article-title: Reverberant cavity photoacoustic imaging
  publication-title: Optica
  doi: 10.1364/optica.6.000821
– volume: 33
  start-page: 433
  year: 2013
  ident: B47
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2286546
– volume: 37
  start-page: 1382
  year: 2018
  ident: B101
  article-title: Model-based learning for accelerated, limited-view 3-D photoacoustic tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2018.2820382
– volume: 8
  start-page: 1
  year: 2019
  ident: B158
  publication-title: Sci Appl
– volume: 14
  start-page: 034026
  year: 2020
  ident: B112
  article-title: Probing the spatial impulse response of ultrahigh-frequency ultrasonic transducers with photoacoustic waves
  publication-title: Phys Rev Appl
  doi: 10.1103/physrevapplied.14.034026
– volume: 13
  start-page: 298
  year: 2019
  ident: B34
  article-title: Addressing photoacoustics standards
  publication-title: Nat Photon
  doi: 10.1038/s41566-019-0417-3
– volume: 41
  start-page: 073301
  year: 2014
  ident: B118
  article-title: Effects of small variations of speed of sound in optoacoustic tomographic imaging
  publication-title: Med Phys
  doi: 10.1118/1.4875691
– volume: 237
  start-page: 118111
  year: 2021
  ident: B159
  article-title: Hemodynamic response to sensory stimulation in mice: Comparison between functional ultrasound and optoacoustic imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118111
– volume: 103
  start-page: 106097
  year: 2020
  ident: B130
  article-title: Speed of sound ultrasound transmission tomography image reconstruction based on Bézier curves
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106097
– volume: 39
  start-page: 3643
  year: 2020
  ident: B173
  article-title: Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2020.3001750
– volume: 14
  start-page: e202000325
  year: 2021
  ident: B37
  article-title: LV-GAN: A deep learning approach for limited-view optoacoustic imaging based on hybrid datasets
  publication-title: J Biophotonics
  doi: 10.1002/jbio.202000325
– volume: 2
  start-page: 21
  year: 2014
  ident: B106
  article-title: Investigation of the far-field approximation for modeling a transducer's spatial impulse response in photoacoustic computed tomography
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2013.11.001
– start-page: 1
  year: 2022
  ident: B22
  publication-title: Biomed Eng Lett
– volume: 32
  start-page: 2050
  year: 2013
  ident: B44
  article-title: Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2013.2272079
– volume: 17
  start-page: 061202
  year: 2012
  ident: B156
  article-title: Quantitative spectroscopic photoacoustic imaging: A review
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.17.6.061202
– year: 2022
  ident: B83
  publication-title: IEEE Trans Med Imaging
– volume: 3
  start-page: 354
  year: 2019
  ident: B7
  article-title: Optoacoustic mesoscopy for biomedicine
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-019-0377-4
– start-page: 272
  volume-title: Photons plus ultrasound: Imaging and sensing
  year: 2019
  ident: B180
  article-title: NETT regularization for compressed sensing photoacoustic tomography
– volume: 25
  start-page: 1905
  year: 2019
  ident: B87
  article-title: Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0669-y
– volume: 10
  start-page: 1
  year: 2018
  ident: B54
  article-title: Investigation on reconstruction for frequency domain photoacoustic imaging via TVAL3 regularization algorithm
  publication-title: IEEE Photon J
  doi: 10.1109/jphot.2018.2869815
– volume: 42
  start-page: 827
  year: 2017
  ident: B59
  article-title: Dynamic particle enhancement in limited-view optoacoustic tomography
  publication-title: Opt Lett
  doi: 10.1364/ol.42.000827
– volume: 44
  start-page: 2388
  year: 2018
  ident: B140
  article-title: Observation of guided acoustic waves in a human skull
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2018.05.019
– volume: 9
  start-page: 219
  year: 2015
  ident: B84
  article-title: Advances in real-time multispectral optoacoustic imaging and its applications
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2015.29
– volume: 10
  start-page: 978
  year: 2020
  ident: B63
  publication-title: Springer
– start-page: 953919
  year: 2015
  ident: B91
  article-title: Image reconstruction in cross-sectional optoacoustic tomography based on non-negative constrained model-based inversion
– volume: 21
  start-page: 061007
  year: 2016
  ident: B66
  article-title: Tutorial on photoacoustic tomography
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.21.6.061007
– volume: 32
  start-page: 115012
  year: 2016
  ident: B78
  article-title: On the adjoint operator in photoacoustic tomography
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/32/11/115012
– volume: 21
  start-page: 100215
  year: 2021
  ident: B167
  article-title: Review of deep learning for photoacoustic imaging
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2020.100215
– volume: 8
  start-page: 203
  year: 2018
  ident: B24
  article-title: Photoacoustic microscopy: Principles and biomedical applications
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-018-0067-2
– volume: 64
  start-page: 18TR01
  year: 2019
  ident: B32
  article-title: Optoacoustic image formation approaches—A clinical perspective
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab3522
– volume: 2
  start-page: 111
  year: 2014
  ident: B64
  article-title: Frequency domain optoacoustic tomography using amplitude and phase
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2014.06.002
– volume: 3
  start-page: 123
  year: 2015
  ident: B119
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2015.09.001
– volume: 10
  start-page: 48
  year: 2018
  ident: B25
  article-title: Imaging of blood flow and oxygen state with a multi-segment optoacoustic ultrasound array
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2018.04.002
– volume: 32
  start-page: 1097
  year: 2013
  ident: B124
  article-title: Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2013.2254496
– volume: 35
  start-page: 1883
  year: 2016
  ident: B69
  article-title: Real-time model-based inversion in cross-sectional optoacoustic tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2016.2536779
– volume: 37
  start-page: 1464
  year: 2018
  ident: B120
  article-title: Photoacoustic source detection and reflection artifact removal enabled by deep learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2018.2829662
– volume-title: Under review
  ident: B113
– volume: 13
  start-page: 627
  year: 2016
  ident: B29
  article-title: A practical guide to photoacoustic tomography in the life sciences
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3925
– volume: 16
  start-page: 2100381
  year: 2022
  ident: B76
  article-title: Broadband model‐based optoacoustic mesoscopy enables deep‐tissue imaging beyond the acoustic diffraction limit
  publication-title: Laser Photon Rev
  doi: 10.1002/lpor.202100381
– volume: 121
  start-page: 3453
  year: 2007
  ident: B67
  article-title: k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2717409
– volume: 59
  start-page: 1354
  year: 2012
  ident: B161
  article-title: Model-based reconstruction integrated with fluence compensation for photoacoustic tomography
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2187649
– volume: 3
  start-page: 378
  year: 1981
  ident: B154
  article-title: Ultrasonic transmission speckle imaging
  publication-title: Ultrason Imaging
  doi: 10.1177/016173468100300407
– volume: 25
  start-page: 112903
  year: 2020
  ident: B175
  article-title: Deep learning in photoacoustic tomography: Current approaches and future directions
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.25.11.112903
– volume: 65
  start-page: 055009
  year: 2020
  ident: B141
  article-title: Iterative image reconstruction in transcranial photoacoustic tomography based on the elastic wave equation
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab6b46
– volume: 22
  start-page: 100258
  year: 2021
  ident: B93
  article-title: Single laser-shot super-resolution photoacoustic tomography with fast sparsity-based reconstruction
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2021.100258
– volume: 7
  start-page: 18004
  year: 2018
  ident: B114
  article-title: Localization optoacoustic tomography
  publication-title: Light Sci Appl
  doi: 10.1038/lsa.2018.4
– start-page: 19
  year: 2020
  ident: B6
  publication-title: Photoacoustics
– volume: 1
  start-page: 453
  year: 2019
  ident: B171
  article-title: Deep learning optoacoustic tomography with sparse data
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0095-3
– volume-title: Laser optoacoustics
  year: 1993
  ident: B153
– volume: 10
  start-page: 751
  year: 2017
  ident: B125
  article-title: Analysis of iterative methods in photoacoustic tomography with variable sound speed
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/16m1104822
– volume: 29
  start-page: 1275
  year: 2010
  ident: B68
  article-title: Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2010.2044584
– volume: 27
  start-page: 987
  year: 2019
  ident: B168
  article-title: Deep learning for photoacoustic tomography from sparse data
  publication-title: Inverse Probl Sci Eng
  doi: 10.1080/17415977.2018.1518444
– volume: 4
  start-page: 2813
  year: 2013
  ident: B77
  article-title: A low memory cost model based reconstruction algorithm exploiting translational symmetry for photoacustic microscopy
  publication-title: Biomed Opt Express
  doi: 10.1364/boe.4.002813
– volume: 57
  start-page: 5399
  year: 2012
  ident: B48
  article-title: Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/17/5399
– volume: 5
  start-page: e16201
  year: 2016
  ident: B13
  article-title: Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators
  publication-title: Light Sci Appl
  doi: 10.1038/lsa.2016.201
– volume: 68
  start-page: 688
  year: 2020
  ident: B172
  article-title: Deep learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/tuffc.2020.3022324
– volume: 9
  start-page: 318
  year: 2013
  ident: B31
  article-title: Acoustic inversion in optoacoustic tomography: A review
  publication-title: Curr Med Imaging Rev
  doi: 10.2174/15734056113096660006
– volume: 34
  start-page: 024006
  year: 2018
  ident: B61
  article-title: Efficient regularization with wavelet sparsity constraints in photoacoustic tomography
  publication-title: Inverse Probl
  doi: 10.1088/1361-6420/aaa0ac
– volume: 60
  start-page: 6733
  year: 2015
  ident: B57
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/17/6733
– volume: 52
  start-page: 1046
  year: 2012
  ident: B96
  article-title: Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2012.08.012
– volume: 40
  start-page: 4691
  year: 2015
  ident: B164
  article-title: Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography
  publication-title: Opt Lett
  doi: 10.1364/ol.40.004691
– volume: 4
  start-page: 133
  year: 2016
  ident: B36
  article-title: On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2016.10.001
– volume: 54
  start-page: 074001
  year: 2020
  ident: B90
  article-title: Negativity artifacts in back-projection based photoacoustic tomography
  publication-title: J Phys D Appl Phys
  doi: 10.1088/1361-6463/abc37d
– volume: 50
  start-page: 5031
  year: 2011
  ident: B95
  article-title: Enhancing finite element-based photoacoustic tomography using total variation minimization
  publication-title: Appl Opt
  doi: 10.1364/ao.50.005031
– volume-title: arXiv:2206.14485
  year: 2022
  ident: B179
– volume: 10
  start-page: 65
  year: 2018
  ident: B155
  article-title: Photoacoustic tomography of blood oxygenation: A mini review
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2018.05.001
– volume: 98
  start-page: 171110
  year: 2011
  ident: B137
  article-title: Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3564905
– volume: 51
  start-page: R139
  year: 2006
  ident: B45
  article-title: Image reconstruction
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/51/13/r09
– year: 2021
  ident: B142
  publication-title: arXiv preprint
– volume: 15
  start-page: e202100334
  year: 2022
  ident: B138
  article-title: Weighted model-based optoacoustic reconstruction for partial-view geometries
  publication-title: J Biophotonics
  doi: 10.1002/jbio.202100334
– volume: 50
  start-page: 1086
  year: 2003
  ident: B82
  article-title: Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2003.816081
– volume: 22
  start-page: 100241
  year: 2021
  ident: B166
  article-title: Deep learning for biomedical photoacoustic imaging: A review
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2021.100241
– volume: 11
  start-page: 1251
  year: 2018
  ident: B26
  article-title: Noninvasive anatomical and functional imaging of orthotopic glioblastoma development and therapy using multispectral optoacoustic tomography
  publication-title: Translational Oncol
  doi: 10.1016/j.tranon.2018.07.001
– start-page: 88000I
  year: 2013
  ident: B43
  article-title: Realtime parallel back-projection algorithm for three-dimensional optoacoustic imaging devices
– volume: 429
  start-page: 415
  year: 2015
  ident: B51
  article-title: Regularization approaches for quantitative Photoacoustic tomography using the radiative transfer equation
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2015.03.079
– volume: 8
  start-page: 1
  year: 2019
  ident: B134
  publication-title: Sci Appl
– volume-title: Photoacoustic imaging and spectroscopy
  year: 2017
  ident: B152
  doi: 10.1201/9781420059922
– volume: 46
  start-page: 2158
  year: 2017
  ident: B4
  article-title: Advanced optoacoustic methods for multiscale imaging of in vivo dynamics
  publication-title: Chem Soc Rev
  doi: 10.1039/c6cs00765a
– volume: 22
  start-page: 100270
  year: 2021
  ident: B178
  article-title: Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2021.100270
– volume: 9
  start-page: 152
  year: 2020
  ident: B12
  article-title: Multifocal structured illumination optoacoustic microscopy
  publication-title: Light Sci Appl
  doi: 10.1038/s41377-020-00390-9
– volume: 110
  start-page: 203703
  year: 2017
  ident: B85
  article-title: Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4983462
– volume: 36
  start-page: 1676
  year: 2017
  ident: B160
  article-title: Constrained inversion and spectral unmixing in multispectral optoacoustic tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2017.2686006
– volume: 15
  start-page: 021314
  year: 2010
  ident: B30
  article-title: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields
  publication-title: J Biomed Opt
  doi: 10.1117/1.3360308
– volume: 68
  start-page: 707
  year: 2020
  ident: B109
  article-title: Photoacoustic signal simulation using discrete particle approach and its application in tomography
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/tuffc.2020.3022937
– volume: 61
  start-page: 1932
  year: 2016
  ident: B139
  article-title: Broadband acoustic properties of a murine skull
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/5/1932
– volume: 14
  start-page: e202000191
  year: 2021
  ident: B98
  article-title: Non‐local means improves total‐variation constrained photoacoustic image reconstruction
  publication-title: J Biophotonics
  doi: 10.1002/jbio.202000191
– volume: 18
  start-page: 036008
  year: 2013
  ident: B122
  article-title: Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering
  publication-title: J Biomed Opt
  doi: 10.1117/1.jbo.18.3.036008
– volume: 41
  start-page: 013302
  year: 2014
  ident: B75
  article-title: Expediting model-based optoacoustic reconstructions with tomographic symmetries
  publication-title: Med Phys
  doi: 10.1118/1.4846055
– start-page: 11077_12
  year: 2019
  ident: B128
  article-title: Photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo using a feature coupling method
– volume: 39
  start-page: 2931
  year: 2020
  ident: B55
  article-title: Model-based reconstruction of large three-dimensional optoacoustic datasets
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2020.2981835
– volume: 22
  start-page: 770
  year: 2020
  ident: B27
  article-title: Noninvasive multiparametric characterization of mammary tumors with transmission-reflection optoacoustic ultrasound
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2020.10.008
– volume: 64
  start-page: 14TR01
  year: 2019
  ident: B58
  article-title: A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab2017
– volume: 38
  start-page: 4285
  year: 2011
  ident: B72
  article-title: Model-based optoacoustic inversion with arbitrary-shape detectors
  publication-title: Med Phys
  doi: 10.1118/1.3589141
– volume: 51
  start-page: 383
  year: 2021
  ident: B15
  article-title: Broadband (100 kHz – 100 MHz) ultrasound PVDF detectors for raster-scan optoacoustic angiography with acoustic resolution
  publication-title: Quan Elec (Woodbury)
  doi: 10.1070/qel17538
– volume: 31
  start-page: 1922
  year: 2012
  ident: B39
  article-title: Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2012.2208471
– volume: 16
  start-page: 1
  year: 2017
  ident: B94
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-016-0292-9
– volume: 29
  start-page: 2185
  year: 2019
  ident: B80
  article-title: The evolution of image reconstruction for CT—From filtered back projection to artificial intelligence
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5810-7
– volume: 45
  start-page: 104
  year: 2018
  ident: B5
  article-title: Recent progress in photoacoustic molecular imaging
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2018.03.016
– volume: 31
  start-page: 1154
  year: 2012
  ident: B49
  article-title: Acceleration of optoacoustic model-based reconstruction using angular image discretization
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2012.2187460
– volume: 12
  start-page: 035043
  year: 2022
  ident: B133
  article-title: Optoacoustic imaging with an air-coupled transducer using coaxially aligned focused illumination
  publication-title: AIP Adv
  doi: 10.1063/5.0078053
– volume: 58
  start-page: 5555
  year: 2013
  ident: B135
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/16/5555
SSID ssj0001259824
Score 2.3860617
SecondaryResourceType review_article
Snippet Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of ultrasound within biological tissues to provide optical absorption-based contrast...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms compressed-sensing
high-frame-rate imaging
model-based reconstruction
optoacoustic imaging
partial data acquisition
photoacoustic imaging
Title A practical guide for model-based reconstruction in optoacoustic imaging
URI https://doaj.org/article/ad4e118337d742e4a78b20c2563922bb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SEbyIT6yPkoMnYXGbTbLNsT5KEfWihd5CHhMp6LZg_f9OkrXUi168LtklfLPJfN_u5BtCLryAvkcaXYDC5cYBV7oNCsWKq42srQx1rrZ4kuMJv5-K6Vqrr1gTlu2BM3DR5BaQBFdV7VHFATf1wLLSYabGzM6sjbtvqco1MZW_rkRjOp5_Y6IKU1cBZ41ykLFoVoCyaPAjEa359afEMtolOy0jpMM8kz2yAc0-2UqVme7jgIyHtD3JhINeP2ceKPJMmjrYFDEHeZpE7coIls4aOl8s57jVpU5ddPaeOhEdksno7uVmXLTtDwpXCb4sFCCV94oJxBlVAQQAKxwoARyztjCgTHDMI8NxpbKywrQjQ98YKSB45kN1RDrNvIFjQo1XSDS4lCWzyEAQQedRx1RScO6qOnRJ-Y2Fdq03eGxR8aZRI0T4dIRPR_h0C1-XXK5uWWRjjN8GX0eAVwOjp3W6gJHWbaT1X5E--Y-HnJLtOLF8mvCMdDA2cI60Yml7ZHN4-_jw3Etv0he7Nsqn
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+guide+for+model-based+reconstruction+in+optoacoustic+imaging&rft.jtitle=Frontiers+in+physics&rft.au=Xos%C3%A9+Lu%C3%ADs+De%C3%A1n-Ben&rft.au=Xos%C3%A9+Lu%C3%ADs+De%C3%A1n-Ben&rft.au=Daniel+Razansky&rft.au=Daniel+Razansky&rft.date=2022-11-01&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphy.2022.1028258&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ad4e118337d742e4a78b20c2563922bb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon