Comparing Greenland Ice Sheet Melt Variability From Different Satellite Passive Microwave Remote Sensing Products Over a Common 5-year Record

Satellite microwave brightness temperature (Tb) observations over the Greenland Ice Sheet permit determination of melted/frozen snow conditions at spatial and temporal scales that are uniquely suited for climate model validation and metrics of ice sheet change. Strong microwave sensitivity to the pr...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in earth science (Lausanne) Vol. 9
Main Authors Kimball, John S., Du, Jinyang, Meierbachtol, Toby W., Kim, Youngwook, Johnson, Jesse V.
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 23.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Satellite microwave brightness temperature (Tb) observations over the Greenland Ice Sheet permit determination of melted/frozen snow conditions at spatial and temporal scales that are uniquely suited for climate model validation and metrics of ice sheet change. Strong microwave sensitivity to the presence of liquid water in the snowpack is clear. Yet, a host of unique microwave-derived melt products covering the ice sheet are available, each based on different methodology, and with unknown inter-product agreement. Here, we compared five different published microwave melt products over a common 5-year (2003–2007) record to establish compatibility between products and agreement with in situ observations from a network of on-ice weather stations (AWS) spanning the ice sheet. A sixth product, leveraging both Tb seasonal trends and diurnal variability, was also introduced and included in the comparison. We found variable agreement between products and observations, with melt estimates based on microwave emissions modeling and the newly presented Adaptive Threshold (ADT) algorithm showing the best performance for AWS sites with more than 1-day average annual melt period (e.g., 68.9% of ADT melt days consistent with AWS observations; 31.1% of ADT frozen days contrasting with AWS observed melt). Spatial patterns of melting also varied between products. The different products showed substantial spread in melt occurrence even for products with the best AWS agreement. Product differences were generally larger under higher melt conditions; whereby, the fraction of the ice sheet experiencing ≥25 days of melting each year ranged from 4 to 25% for different products. While long-term satellite records have consistently shown increasing decadal trends in melt extent, our results imply that the melt frequency at any given location, particularly in the ice sheet interior where melting is less prevalent, is still subject to significant uncertainty.
AbstractList Satellite microwave brightness temperature (Tb) observations over the Greenland Ice Sheet permit determination of melted/frozen snow conditions at spatial and temporal scales that are uniquely suited for climate model validation and metrics of ice sheet change. Strong microwave sensitivity to the presence of liquid water in the snowpack is clear. Yet, a host of unique microwave-derived melt products covering the ice sheet are available, each based on different methodology, and with unknown inter-product agreement. Here, we compared five different published microwave melt products over a common 5-year (2003–2007) record to establish compatibility between products and agreement with in situ observations from a network of on-ice weather stations (AWS) spanning the ice sheet. A sixth product, leveraging both Tb seasonal trends and diurnal variability, was also introduced and included in the comparison. We found variable agreement between products and observations, with melt estimates based on microwave emissions modeling and the newly presented Adaptive Threshold (ADT) algorithm showing the best performance for AWS sites with more than 1-day average annual melt period (e.g., 68.9% of ADT melt days consistent with AWS observations; 31.1% of ADT frozen days contrasting with AWS observed melt). Spatial patterns of melting also varied between products. The different products showed substantial spread in melt occurrence even for products with the best AWS agreement. Product differences were generally larger under higher melt conditions; whereby, the fraction of the ice sheet experiencing ≥25 days of melting each year ranged from 4 to 25% for different products. While long-term satellite records have consistently shown increasing decadal trends in melt extent, our results imply that the melt frequency at any given location, particularly in the ice sheet interior where melting is less prevalent, is still subject to significant uncertainty.
Satellite microwave brightness temperature (Tb) observations over the Greenland Ice Sheet permit determination of melted/frozen snow conditions at spatial and temporal scales that are uniquely suited for climate model validation and metrics of ice sheet change. Strong microwave sensitivity to the presence of liquid water in the snowpack is clear. Yet, a host of unique microwave-derived melt products covering the ice sheet are available, each based on different methodology, and with unknown inter-product agreement. Here, we compared five different published microwave melt products over a common 5-year (2003–2007) record to establish compatibility between products and agreement with in situ observations from a network of on-ice weather stations (AWS) spanning the ice sheet. A sixth product, leveraging both Tb seasonal trends and diurnal variability, was also introduced and included in the comparison. We found variable agreement between products and observations, with melt estimates based on microwave emissions modeling and the newly presented Adaptive Threshold (ADT) algorithm showing the best performance for AWS sites with more than 1-day average annual melt period (e.g., 68.9% of ADT melt days consistent with AWS observations; 31.1% of ADT frozen days contrasting with AWS observed melt). Spatial patterns of melting also varied between products. The different products showed substantial spread in melt occurrence even for products with the best AWS agreement. Product differences were generally larger under higher melt conditions; whereby, the fraction of the ice sheet experiencing ≥25 days of melting each year ranged from 4 to 25% for different products. While long-term satellite records have consistently shown increasing decadal trends in melt extent, our results imply that the melt frequency at any given location, particularly in the ice sheet interior where melting is less prevalent, is still subject to significant uncertainty.
Author Du, Jinyang
Kimball, John S.
Johnson, Jesse V.
Meierbachtol, Toby W.
Kim, Youngwook
Author_xml – sequence: 1
  givenname: John S.
  surname: Kimball
  fullname: Kimball, John S.
– sequence: 2
  givenname: Jinyang
  surname: Du
  fullname: Du, Jinyang
– sequence: 3
  givenname: Toby W.
  surname: Meierbachtol
  fullname: Meierbachtol, Toby W.
– sequence: 4
  givenname: Youngwook
  surname: Kim
  fullname: Kim, Youngwook
– sequence: 5
  givenname: Jesse V.
  surname: Johnson
  fullname: Johnson, Jesse V.
BookMark eNp9kU1OHDEQha2ISCGEA2TnC_TEv03PMpoEMhIIxEC2VrVdJkbdNrId0Bwid46HiSLEgpVL9fy-cvl9JAcxRSTkM2cLKYflF4-Q60IwwRe9VkKwd-RQiGXf9aqXBy_qD-S4lHvGGJdCK7Y8JH9WaX6AHOIdPcuIcYLo6Noi3fxCrPQCp0p_Nh3GMIW6pac5zfRb8B4zxko3UHFqAtIrKCU8Ir0INqcnaNU1zqkJG4xlh7_Kyf22tdDLR8wUaBs8p0h1t22vb5dtyu4Tee9hKnj87zwit6ffb1Y_uvPLs_Xq63lnpVa1G5BrjRpGy9qy0uHIFPZ8RBBu0FJy7ywIOYxechisk_YElPCsl-it1SCPyHrPdQnuzUMOM-StSRDMcyPlO9N-NNgJTcMD2N5xrpwCPi5RtIZC5FKBGHcsvme1vUvJ6P_zODO7eMxzPGYXj9nH0zwnrzw2VKghxZohTG84_wLopJtb
CitedBy_id crossref_primary_10_1038_s41467_023_37434_8
crossref_primary_10_3390_land11050593
crossref_primary_10_1016_j_jag_2023_103600
crossref_primary_10_1109_TGRS_2022_3216218
crossref_primary_10_1016_j_ecolind_2023_110403
Cites_doi 10.1029/95GL00433
10.1007/s00382-006-0150-8
10.1109/tgrs.2014.2325409
10.1029/rg022i002p00195
10.1016/j.rse.2009.12.020
10.1191/0309133305pp453ra
10.1038/nclimate3325
10.1029/2006GL028466
10.1016/S0034-4257(02)00078-0
10.1016/j.rse.2009.01.009
10.1088/1748-9326/6/1/014005
10.5194/tc-7-615-2013
10.5194/tc-10-1933-2016
10.1016/j.rse.2012.02.022
10.1002/2013GL059010
10.1016/S0022-1694(03)00257-9
10.5194/tc-14-1209-2020
10.1080/01431160500213342
10.1175/1520-0442(1997)010<0165:sotgis>2.0.co;2
10.5194/essd-9-133-2017
10.1029/2007GL031976
10.5194/tc-11-1015-2017
10.5194/tc-8-25-2014
10.1017/S0022143000017755
10.1109/36.763302
10.1007/s00382-005-0010-y
10.1038/nature11566
10.1029/2006GL028787
10.3189/172756503781830908
10.1002/2017GL074954.Mote
10.1016/j.rse.2009.08.014
10.1029/2004JF000234
10.5194/tc-5-359-2011
10.3189/172756402781817761
10.5194/tc-7-445-2013
10.1029/2009GL038110
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/feart.2021.654220
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2296-6463
ExternalDocumentID oai_doaj_org_article_03daac6d114d4a1b9e2daa4ee134a2ba
10_3389_feart_2021_654220
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-8e155e5abc02203deb04e61bea2d85331fdca238bf31a8cd3c7a42f063efcc5a3
IEDL.DBID DOA
ISSN 2296-6463
IngestDate Wed Aug 27 01:25:42 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Tue Jul 01 01:21:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-8e155e5abc02203deb04e61bea2d85331fdca238bf31a8cd3c7a42f063efcc5a3
OpenAccessLink https://doaj.org/article/03daac6d114d4a1b9e2daa4ee134a2ba
ParticipantIDs doaj_primary_oai_doaj_org_article_03daac6d114d4a1b9e2daa4ee134a2ba
crossref_primary_10_3389_feart_2021_654220
crossref_citationtrail_10_3389_feart_2021_654220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-23
PublicationDateYYYYMMDD 2021-07-23
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-23
  day: 23
PublicationDecade 2020
PublicationTitle Frontiers in earth science (Lausanne)
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Harper (B16) 2012; 491
Mote (B25) 2007; 34
Reeh (B30) 1991; 5913
Pulliainen (B27) 1999; 37
Ramage (B28) 2002; 34
Mote (B24) 1995; 41
Hock (B18) 2005; 29
Fettweis (B11) 2006; 27
Kim (B20) 2017; 9
Kim (B21) 2019
Nghiem (B26) 2005; 110
Ettema (B8) 2009; 36
Fettweis (B10) 2005; 24
Tedesco (B34) 2013; 7
Ramage (B29) 2003; 49
Verbesselt (B41) 2010; 114
Friedl (B15) 2002; 83
Ulaby (B39) 1986
Tedesco (B33) 2009; 113
Hock (B19) 2003; 282
Fettweis (B12) 2011; 5
Tedesco (B38) 2007; 34
Tedesco (B36) 2011; 6
Steiner (B32) 2014; 8
Liu (B22) 2005; 26
Du (B6) 2010; 114
Foster (B14) 1984; 22
van den Broeke (B40) 2016; 10
Verbesselt (B42) 2012; 123
Abdalati (B2) 1997; 10
Chen (B3) 2017; 7
B17
Citterio (B4) 2013; 7
Du (B5) 2014; 53
Tedesco (B35) 2020; 14
Morlighem (B23) 2017; 44
Steffen (B31) 1996
Tedesco (B37) 2014
Fettweis (B9) 2017; 11
Abdalati (B1) 1995; 22
Enderlin (B7) 2014; 41
Fettweis (B13) 2007; 34
References_xml – volume: 22
  start-page: 787
  year: 1995
  ident: B1
  article-title: Passive Microwave-Derived Snow Melt Regions on the Greenland Ice Sheet
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/95GL00433
– volume: 27
  start-page: 531
  year: 2006
  ident: B11
  article-title: The 1988-2003 Greenland Ice Sheet Melt Extent Using Passive Microwave Satellite Data and a Regional Climate Model
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-006-0150-8
– volume: 53
  start-page: 542
  year: 2014
  ident: B5
  article-title: Classification of Alaska Spring Thaw Characteristics Using Satellite L-Band Radar Remote Sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/tgrs.2014.2325409
– volume: 22
  start-page: 195
  year: 1984
  ident: B14
  article-title: An Overview of Passive Microwave Snow Research and Results
  publication-title: Rev. Geophys.
  doi: 10.1029/rg022i002p00195
– volume: 114
  start-page: 1089
  year: 2010
  ident: B6
  article-title: Comparison Between a Multi-Scattering and Multi-Layer Snow Scattering Model and its Parameterized Snow Backscattering Model
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2009.12.020
– volume: 29
  start-page: 362
  year: 2005
  ident: B18
  article-title: Glacier Melt: A Review of Processes and Their Modelling
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1191/0309133305pp453ra
– volume: 7
  start-page: 492
  year: 2017
  ident: B3
  article-title: The Increasing Rate of Global Mean Sea-Level Rise During 1993-2014
  publication-title: Nat. Clim Change.
  doi: 10.1038/nclimate3325
– volume: 34
  start-page: 1
  year: 2007
  ident: B38
  article-title: Snowmelt Detection over the Greenland Ice Sheet from SSM/I Brightness Temperature Daily Variations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL028466
– volume: 83
  start-page: 287
  year: 2002
  ident: B15
  article-title: Global Land Cover Mapping from MODIS: Algorithms and Early Results
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/S0034-4257(02)00078-0
– volume: 113
  start-page: 979
  year: 2009
  ident: B33
  article-title: Assessment and Development of Snowmelt Retrieval Algorithms over Antarctica from K-Band Spaceborne Brightness Temperature (1979-2008)
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2009.01.009
– volume-title: Microwave Remote Sensing: Active and Passive, Volume III: From Theory to Application
  year: 1986
  ident: B39
– volume: 6
  start-page: 014005
  year: 2011
  ident: B36
  article-title: The Role of Albedo and Accumulation in the 2010 Melting Record in Greenland
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/6/1/014005
– volume: 7
  start-page: 615
  year: 2013
  ident: B34
  article-title: Evidence and Analysis of 2012 Greenland Records from Spaceborne Observations, a Regional Climate Model and Reanalysis Data
  publication-title: The Cryosphere.
  doi: 10.5194/tc-7-615-2013
– volume: 10
  start-page: 1933
  year: 2016
  ident: B40
  article-title: On the Recent Contribution of the Greenland Ice Sheet to Sea Level Change
  publication-title: The Cryosphere.
  doi: 10.5194/tc-10-1933-2016
– volume: 123
  start-page: 98
  year: 2012
  ident: B42
  article-title: Near Real-Time Disturbance Detection Using Satellite Image Time Series
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2012.02.022
– volume: 41
  start-page: 866
  year: 2014
  ident: B7
  article-title: An Improved Mass Budget for the Greenland Ice Sheet
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2013GL059010
– volume: 282
  start-page: 104
  year: 2003
  ident: B19
  article-title: Temperature index Melt Modelling in Mountain Areas
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(03)00257-9
– volume: 14
  start-page: 1209
  year: 2020
  ident: B35
  article-title: Unprecedented Atmospheric Conditions (1948-2019) Drive the 2019 Exceptional Melting Season over the Greenland Ice Sheet
  publication-title: The Cryosphere.
  doi: 10.5194/tc-14-1209-2020
– volume: 26
  start-page: 4639
  year: 2005
  ident: B22
  article-title: Wavelet‐transform Based Edge Detection Approach to Derivation of Snowmelt Onset, End and Duration from Satellite Passive Microwave Measurements
  publication-title: Int. J. Remote Sensing.
  doi: 10.1080/01431160500213342
– volume: 10
  start-page: 165
  year: 1997
  ident: B2
  article-title: Snowmelt on the Greenland Ice Sheet as Derived from Passive Microwave Satellite Data
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1997)010<0165:sotgis>2.0.co;2
– volume: 9
  start-page: 133
  year: 2017
  ident: B20
  article-title: An Extended Global Earth System Data Record on Daily Landscape Freeze-Thaw Status Determined from Satellite Passive Microwave Remote Sensing
  publication-title: Earth Syst. Sci. Data.
  doi: 10.5194/essd-9-133-2017
– volume: 34
  start-page: L22507
  year: 2007
  ident: B25
  article-title: Greenland Surface Melt Trends 1973–2007: Evidence of a Large Increase in 2007
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031976
– volume: 11
  start-page: 1015
  year: 2017
  ident: B9
  article-title: Reconstructions of the 1900-2015 Greenland Ice Sheet Surface Mass Balance Using the Regional Climate MAR Model
  publication-title: The Cryosphere.
  doi: 10.5194/tc-11-1015-2017
– year: 2019
  ident: B21
  article-title: MEaSUREs Northern Hemisphere Polar EASE-Grid 2.0 Daily 6 Km Land Freeze/Thaw Status from AMSR-E and AMSR2, Version 1
– volume: 8
  start-page: 25
  year: 2014
  ident: B32
  article-title: A Wavelet Melt Detection Algorithm Applied to Enhanced-Resolution Scatterometer Data over Antarctica (2000-2009)
  publication-title: The Cryosphere.
  doi: 10.5194/tc-8-25-2014
– volume: 41
  start-page: 51
  year: 1995
  ident: B24
  article-title: Variations in Snowpack Melt on the Greenland Ice Sheet Based on Passive-Microwave Measurements
  publication-title: J. Glaciol.
  doi: 10.1017/S0022143000017755
– volume: 5913
  start-page: 113
  year: 1991
  ident: B30
  article-title: Parameterization of Melt Rate and Surface Temperature in the Greenland Ice Sheet
  publication-title: Polarforschung
– volume: 37
  start-page: 1378
  year: 1999
  ident: B27
  article-title: HUT Snow Emission Model and its Applicability to Snow Water Equivalent Retrieval
  publication-title: IEEE Trans. Geosci. Remote Sensing.
  doi: 10.1109/36.763302
– start-page: 2003
  volume-title: Greenland Daily Surface Melt 25km EASE-Grid EASE-Grid, (2001-2015)
  year: 2014
  ident: B37
– volume: 24
  start-page: 623
  year: 2005
  ident: B10
  article-title: Greenland Surface Mass Balance Simulated by a Regional Climate Model and Comparison with Satellite-Derived Data in 1990-1991
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-005-0010-y
– volume: 491
  start-page: 240
  year: 2012
  ident: B16
  article-title: Greenland Ice-Sheet Contribution to Sea-Level Rise Buffered by Meltwater Storage in Firn
  publication-title: Nature
  doi: 10.1038/nature11566
– volume: 34
  start-page: 1
  year: 2007
  ident: B13
  article-title: The 1979-2005 Greenland Ice Sheet Melt Extent from Passive Microwave Data Using an Improved Version of the Melt Retrieval XPGR Algorithm
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL028787
– volume: 49
  start-page: 102
  year: 2003
  ident: B29
  article-title: Interannual Variations of Snowmelt and Refreeze Timing on Southeast-Alaskan Icefields, U.S.A
  publication-title: J. Glaciol.
  doi: 10.3189/172756503781830908
– start-page: 98
  volume-title: CRREL 96-27 Special Report on Glaciers, Ice Sheets and Volcanoes, Trib. To M. Meier
  year: 1996
  ident: B31
  article-title: Greenland Climate Network: GC-Net
– volume: 44
  start-page: 11051
  year: 2017
  ident: B23
  article-title: BedMachine V3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland from Multibeam Echo Sounding Combined with Mass Conservation
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074954.Mote
– volume: 114
  start-page: 106
  year: 2010
  ident: B41
  article-title: Detecting Trend and Seasonal Changes in Satellite Image Time Series
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2009.08.014
– volume: 110
  start-page: F02017
  year: 2005
  ident: B26
  article-title: Mapping of Ice Layer Extent and Snow Accumulation in the Percolation Zone of the Greenland Ice Sheet
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JF000234
– volume: 5
  start-page: 359
  year: 2011
  ident: B12
  article-title: Melting Trends over the Greenland Ice Sheet (1958-2009) from Spaceborne Microwave Data and Regional Climate Models
  publication-title: The Cryosphere.
  doi: 10.5194/tc-5-359-2011
– volume: 34
  start-page: 391
  year: 2002
  ident: B28
  article-title: Determination of Melt-Onset and Refreeze Timing on Southeast Alaskan Icefields Using SSM/I Diurnal Amplitude Variations
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756402781817761
– volume: 7
  start-page: 445
  year: 2013
  ident: B4
  article-title: Brief Communication "The Aerophotogrammetric Map of Greenland Ice Masses"
  publication-title: The Cryosphere.
  doi: 10.5194/tc-7-445-2013
– ident: B17
– volume: 36
  start-page: L12501
  year: 2009
  ident: B8
  article-title: Higher Surface Mass Balance of the Greenland Ice Sheet Revealed by High-Resolution Climate Modeling
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL038110
SSID ssj0001325409
Score 2.198042
Snippet Satellite microwave brightness temperature (Tb) observations over the Greenland Ice Sheet permit determination of melted/frozen snow conditions at spatial and...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms greenland
melt extent
passive microwave
remote sensing
surface melt
Title Comparing Greenland Ice Sheet Melt Variability From Different Satellite Passive Microwave Remote Sensing Products Over a Common 5-year Record
URI https://doaj.org/article/03daac6d114d4a1b9e2daa4ee134a2ba
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQUqVeUKFFvDWHniqlJLG92RyBdgtIW1blIW6RH2M4LFkEQWh_BP-5M3ZAe6KX3iJnYjmeSWbGHn-fEF-rKq_DUKtM14XOlKw8fVJ5nVnLm0aBMehile_vwfGlOr3W1wtUX1wTluCB08Tt59Ib4wae4navTGFrLKlBIRZSmdLG0Ih83kIyFVdXJCU-eZ22MSkLq_cDGQ7XTpbFd-ZoYn7vBUe0gNcfHcvok1jpI0I4SCNZFUvYrokPvyLj7vyzeDlKTIHtDcQaGa5EhBOHcH6L2MEYpx1c0f2Etz2H0cPsDn70tCcdnJsIudkhTChMpl8bjLkE79nQ1R8kPVFHXMNO3U8S-OsjnJF5gwE-OzJrQWdzeilIeeoXcTn6eXF0nPUcCpmTWnXZEClgQG2s4yO10qPNFQ4Ki6b05KllEbwz5LZtkIUZOi9dZVQZKHDB4Jw2cl0st7MWNwQ4QyLeBR-MVCirukJXO1caynhQK9wU-euENq4HGGeei2lDiQbroIk6aFgHTdLBpvj29sh9Qtd4T_iQtfQmyMDYsYHMpenNpfmXuWz9j062xUceFy_xlnJHLHcPT7hLsUln96IZ_gXH_uXE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Greenland+Ice+Sheet+Melt+Variability+From+Different+Satellite+Passive+Microwave+Remote+Sensing+Products+Over+a+Common+5-year+Record&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=John+S.+Kimball&rft.au=Jinyang+Du&rft.au=Toby+W.+Meierbachtol&rft.au=Youngwook+Kim&rft.date=2021-07-23&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-6463&rft.volume=9&rft_id=info:doi/10.3389%2Ffeart.2021.654220&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_03daac6d114d4a1b9e2daa4ee134a2ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon