Graph-Guided Bayesian Factor Model for Integrative Analysis of Multi-modal Data with Noisy Network Information
There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that ca...
Saved in:
Published in | Statistics in biosciences |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
11.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease. |
---|---|
AbstractList | There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer’s disease. There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease.There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease. |
Author | Qu, Kewen Long, Qi Li, Wenrui Zhang, Qiyiwen |
AuthorAffiliation | 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, 19104, Pennsylvania, U.S.A |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, 19104, Pennsylvania, U.S.A |
Author_xml | – sequence: 1 givenname: Wenrui orcidid: 0000-0002-6471-7911 surname: Li fullname: Li, Wenrui – sequence: 2 givenname: Qiyiwen surname: Zhang fullname: Zhang, Qiyiwen – sequence: 3 givenname: Kewen surname: Qu fullname: Qu, Kewen – sequence: 4 givenname: Qi surname: Long fullname: Long, Qi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40693697$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUcluFDEQtVAQWeAHOCAfuRi8td0-oZCQIVKWC5yt6m53xtBtD7Y70fw9DpOMwqmeVG9R1TtGByEGh9B7Rj8xSvXnzHijGKFcEmpkw4l-hY5YqzRhWvODPVbyEB3n_ItSpbQxb9ChpMoIZfQRCqsEmzVZLX5wA_4KW5c9BHwBfYkJX8fBTXis6DIUd5eg-HuHTwNM2-wzjiO-XqbiyRwHmPA5FMAPvqzxTfR5i29ceYjpd9VWh7lqY3iLXo8wZffuaZ6gnxfffpx9J1e3q8uz0yvSi0YW0hoA14wtsEGNWtfrpIGKJOXa9UZ0net7Jk3XNp2mQEUrGdNS8NbQVolRnKAvO9_N0s1u6F0oCSa7SX6GtLURvP1_E_za3sV7yzjnjKumOnx8ckjxz-JysbPPvZsmCC4u2QouuGwbqVSlfngZtk95_nIl8B2hTzHn5MY9hVH7WKXdVWlrlfZflVaLv2pckew |
Cites_doi | 10.1111/rssb.12033 10.1038/s41598-017-12931-1 10.3233/JAD-210461 10.1093/nar/28.1.27 10.1111/biom.12882 10.1200/PO.19.00018 10.1093/biostatistics/kxy081 10.1093/bib/bbad073 10.3233/JAD-2006-9S331 10.1109/TNNLS.2014.2376974 10.3233/JAD-180400 10.1186/s13041-019-0528-2 10.1093/bioinformatics/btn081 10.1007/978-0-387-88146-1 10.1093/nar/gkp427 10.1109/DSAA.2018.00021 10.1093/bioinformatics/btq690 10.1093/comnet/cnaa046 10.1111/j.1467-9868.2008.00674.x 10.1093/brain/awq258 10.1371/journal.pcbi.1003123 10.1214/13-BA846 10.1145/2601438 10.1111/rssb.12554 10.1198/jasa.2010.tm08177 10.1053/apnr.2000.9231 10.1080/01621459.2016.1164051 10.1080/01621459.2020.1778482 10.1109/TNNLS.2015.2487364 10.1007/s12561-011-9049-y 10.1093/nar/gkab382 10.1093/biostatistics/kxm045 10.1111/j.1541-0420.2010.01519.x 10.1007/s10994-022-06174-z 10.1016/j.nic.2005.09.008 10.1214/14-AOS1272 10.1214/20-AOAS1382 10.1111/biom.13108 10.1201/b16018 10.1111/1467-9868.00353 10.1214/12-AOAS597 10.15252/msb.20178124 10.1080/10618600.2014.951049 10.1186/s13195-021-00814-7 10.3389/fnagi.2013.00033 10.1093/bioinformatics/btv544 10.1088/0034-4885/77/2/026601 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s12561-024-09452-7 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1867-1772 |
ExternalDocumentID | PMC12221265 40693697 10_1007_s12561_024_09452_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG063481 – fundername: NIA NIH HHS grantid: R01 AG071174 |
GroupedDBID | --- 06D 0R~ 0VY 1N0 203 29Q 2JY 2KG 2~H 30V 4.4 406 408 409 40D 40E 6NX 8UJ 96X AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ATHPR AUKKA AXYYD AYFIA AYJHY BA0 BAPOH BGNMA CITATION CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 GXS HLICF HMJXF HQYDN HRMNR IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J OAM P9R PT4 QOS R89 RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 ABRTQ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c354t-89aae5f8a1d6f7709449a6f74027ec93bbecc149b85b70a0384117432890863f3 |
ISSN | 1867-1764 |
IngestDate | Thu Aug 21 18:29:20 EDT 2025 Thu Jul 24 01:48:46 EDT 2025 Wed Aug 13 02:12:50 EDT 2025 Tue Jul 08 02:36:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | factor analysis MCMC algorithm Bayesian shrinkage latent scale network model noisy graph |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c354t-89aae5f8a1d6f7709449a6f74027ec93bbecc149b85b70a0384117432890863f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6471-7911 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/12221265 |
PMID | 40693697 |
PQID | 3232485466 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12221265 proquest_miscellaneous_3232485466 pubmed_primary_40693697 crossref_primary_10_1007_s12561_024_09452_7 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-11 |
PublicationDateYYYYMMDD | 2024-08-11 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Statistics in biosciences |
PublicationTitleAlternate | Stat Biosci |
PublicationYear | 2024 |
References | J Fan (9452_CR41) 2008; 70 J Chang (9452_CR27) 2022; 117 DJ Spiegelhalter (9452_CR39) 2002; 64 J-W Liang (9452_CR50) 2018; 65 S Zhao (9452_CR37) 2016; 17 P Balachandran (9452_CR26) 2017; 18 Z Li (9452_CR35) 2020; 21 B Szewczyk (9452_CR46) 2013; 5 CE Priebe (9452_CR23) 2015; 24 S Li (9452_CR42) 2013; 9 9452_CR34 SG Mueller (9452_CR1) 2005; 15 C Clark (9452_CR2) 2021; 13 9452_CR36 A Gelman (9452_CR38) 2013 R Argelaguet (9452_CR7) 2018; 14 J Bao (9452_CR18) 2023; 24 X Jiang (9452_CR21) 2012; 4 FC Stingo (9452_CR12) 2011; 27 Z Pang (9452_CR44) 2021; 49 NK Ahmed (9452_CR29) 2014; 8 Y Zhao (9452_CR16) 2019; 3 J Friedman (9452_CR33) 2008; 9 M Kanehisa (9452_CR9) 2000; 28 Z Yang (9452_CR6) 2016; 32 CM Le (9452_CR24) 2022; 84 C Chang (9452_CR15) 2018; 74 ED Kolaczyk (9452_CR28) 2009 9452_CR43 EF Lock (9452_CR3) 2013; 7 I Gaynanova (9452_CR8) 2019; 75 VC Pangman (9452_CR40) 2000; 13 X Ma (9452_CR30) 2022; 111 A Klami (9452_CR4) 2014; 26 X Jiang (9452_CR20) 2011; 67 K Bossers (9452_CR51) 2010; 133 RA Nixon (9452_CR48) 2006; 9 S Chatterjee (9452_CR22) 2015; 43 Y Xu (9452_CR45) 2019; 12 C Li (9452_CR10) 2008; 24 P Danaher (9452_CR31) 2014; 76 F Li (9452_CR11) 2010; 105 G Zhou (9452_CR5) 2015; 27 SC Larsson (9452_CR49) 2017; 7 9452_CR17 LS Tsimring (9452_CR19) 2014; 77 S Xie (9452_CR32) 2021; 15 Y Zhao (9452_CR14) 2016; 111 X Quan (9452_CR52) 2020; 26 V Rockova (9452_CR13) 2014; 9 P Liu (9452_CR47) 2021; 83 J-G Young (9452_CR25) 2020; 8 |
References_xml | – volume: 76 start-page: 373 issue: 2 year: 2014 ident: 9452_CR31 publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/rssb.12033 – volume: 7 start-page: 13604 year: 2017 ident: 9452_CR49 publication-title: Sci Rep doi: 10.1038/s41598-017-12931-1 – volume: 83 start-page: 609 issue: 2 year: 2021 ident: 9452_CR47 publication-title: J Alzheimers Dis doi: 10.3233/JAD-210461 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 9452_CR9 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 74 start-page: 1372 issue: 4 year: 2018 ident: 9452_CR15 publication-title: Biometrics doi: 10.1111/biom.12882 – volume: 3 start-page: 1 year: 2019 ident: 9452_CR16 publication-title: JCO Precis Oncol doi: 10.1200/PO.19.00018 – volume: 21 start-page: 610 issue: 3 year: 2020 ident: 9452_CR35 publication-title: Biostatistics doi: 10.1093/biostatistics/kxy081 – volume: 24 start-page: bbad073 issue: 2 year: 2023 ident: 9452_CR18 publication-title: Brief Bioinform doi: 10.1093/bib/bbad073 – volume: 9 start-page: 277 issue: s3 year: 2006 ident: 9452_CR48 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2006-9S331 – volume: 26 start-page: 2136 issue: 9 year: 2014 ident: 9452_CR4 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2376974 – volume: 65 start-page: 1353 issue: 4 year: 2018 ident: 9452_CR50 publication-title: J Alzheimers Dis doi: 10.3233/JAD-180400 – volume: 12 start-page: 1 issue: 1 year: 2019 ident: 9452_CR45 publication-title: Mol Brain doi: 10.1186/s13041-019-0528-2 – volume: 24 start-page: 1175 issue: 9 year: 2008 ident: 9452_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn081 – volume: 17 start-page: 1 issue: 196 year: 2016 ident: 9452_CR37 publication-title: J Mach Learn Res – volume-title: Statistical analysis of network data: methods and models year: 2009 ident: 9452_CR28 doi: 10.1007/978-0-387-88146-1 – ident: 9452_CR34 – ident: 9452_CR43 doi: 10.1093/nar/gkp427 – ident: 9452_CR17 doi: 10.1109/DSAA.2018.00021 – volume: 27 start-page: 495 issue: 4 year: 2011 ident: 9452_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq690 – volume: 18 start-page: 2025 issue: 1 year: 2017 ident: 9452_CR26 publication-title: J Mach Learn Res – volume: 8 start-page: cnaa046 issue: 6 year: 2020 ident: 9452_CR25 publication-title: J Complex Netw doi: 10.1093/comnet/cnaa046 – volume: 70 start-page: 849 issue: 5 year: 2008 ident: 9452_CR41 publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2008.00674.x – volume: 133 start-page: 3699 issue: 12 year: 2010 ident: 9452_CR51 publication-title: Brain doi: 10.1093/brain/awq258 – volume: 9 start-page: e1003123 issue: 7 year: 2013 ident: 9452_CR42 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003123 – volume: 9 start-page: 221 issue: 1 year: 2014 ident: 9452_CR13 publication-title: Bayesian Anal doi: 10.1214/13-BA846 – volume: 8 start-page: 7 issue: 2 year: 2014 ident: 9452_CR29 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2601438 – volume: 26 start-page: e919311 year: 2020 ident: 9452_CR52 publication-title: Med Sci Monit Int Med J Exp Clin Res – volume: 84 start-page: 1851 issue: 5 year: 2022 ident: 9452_CR24 publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/rssb.12554 – volume: 105 start-page: 1202 issue: 491 year: 2010 ident: 9452_CR11 publication-title: J Am Stat Assoc doi: 10.1198/jasa.2010.tm08177 – volume: 13 start-page: 209 issue: 4 year: 2000 ident: 9452_CR40 publication-title: Appl Nurs Res doi: 10.1053/apnr.2000.9231 – volume: 111 start-page: 1427 issue: 516 year: 2016 ident: 9452_CR14 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2016.1164051 – volume: 117 start-page: 361 issue: 537 year: 2022 ident: 9452_CR27 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2020.1778482 – volume: 27 start-page: 2426 issue: 11 year: 2015 ident: 9452_CR5 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2487364 – volume: 4 start-page: 84 issue: 1 year: 2012 ident: 9452_CR21 publication-title: Stat Biosci doi: 10.1007/s12561-011-9049-y – volume: 49 start-page: 388 issue: W1 year: 2021 ident: 9452_CR44 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab382 – volume: 9 start-page: 432 issue: 3 year: 2008 ident: 9452_CR33 publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 67 start-page: 958 issue: 3 year: 2011 ident: 9452_CR20 publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01519.x – volume: 111 start-page: 3733 issue: 10 year: 2022 ident: 9452_CR30 publication-title: Mach Learn doi: 10.1007/s10994-022-06174-z – volume: 15 start-page: 869 issue: 4 year: 2005 ident: 9452_CR1 publication-title: Neuroimaging Clin doi: 10.1016/j.nic.2005.09.008 – volume: 43 start-page: 177 issue: 1 year: 2015 ident: 9452_CR22 publication-title: Ann Stat doi: 10.1214/14-AOS1272 – volume: 15 start-page: 64 issue: 1 year: 2021 ident: 9452_CR32 publication-title: Ann Appl Stat doi: 10.1214/20-AOAS1382 – ident: 9452_CR36 – volume: 75 start-page: 1121 issue: 4 year: 2019 ident: 9452_CR8 publication-title: Biometrics doi: 10.1111/biom.13108 – volume-title: Bayesian data analysis year: 2013 ident: 9452_CR38 doi: 10.1201/b16018 – volume: 64 start-page: 583 issue: 4 year: 2002 ident: 9452_CR39 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/1467-9868.00353 – volume: 7 start-page: 523 issue: 1 year: 2013 ident: 9452_CR3 publication-title: Ann Appl Stat doi: 10.1214/12-AOAS597 – volume: 14 start-page: 8124 issue: 6 year: 2018 ident: 9452_CR7 publication-title: Mol Syst Biol doi: 10.15252/msb.20178124 – volume: 24 start-page: 930 issue: 4 year: 2015 ident: 9452_CR23 publication-title: J Comput Graph Stat doi: 10.1080/10618600.2014.951049 – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 9452_CR2 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-021-00814-7 – volume: 5 start-page: 33 year: 2013 ident: 9452_CR46 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00033 – volume: 32 start-page: 1 issue: 1 year: 2016 ident: 9452_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv544 – volume: 77 start-page: 026601 issue: 2 year: 2014 ident: 9452_CR19 publication-title: Rep Prog Phys doi: 10.1088/0034-4885/77/2/026601 |
SSID | ssj0066799 |
Score | 2.2835088 |
Snippet | There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
Title | Graph-Guided Bayesian Factor Model for Integrative Analysis of Multi-modal Data with Noisy Network Information |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40693697 https://www.proquest.com/docview/3232485466 https://pubmed.ncbi.nlm.nih.gov/PMC12221265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLayVpp6qTbtV9Z18qTdIiYMxpjbmmpZNXWRKrVab8gG03EoVCuoSv_6PRubOGknbbsgBMYh7_t4vGf8PSP0seAKHrQyC4goaEAV0JgnigSsSFkogDRJqRPF70t2ckG_XSaXk8lnX13SyU_F_aO6kv9BFY4Brlol-w_Ijp3CAdgHfGELCMP2rzD-qqtNB1d9XULYOBcrZRSRC7OEjlnlzIgTzajfla3w7RchMeLb4LottesTnRgGZZdtfbvSQmA9ZWtm5UojfDaO1TGqLfFcNzNZ25KY6wmJp2aWwA-4875-MDh9Vq_qu7UG7awfFELeodPWtfSHJSKqx1mt2xw8KWem-iR91E-HVrcMARcJzNUZTSDU9xuDrW-uDXJanRuzYR7vVnVsd-oJ2o0gUQBPt3u0mM-X7m3MWGrWEB1vxwqnBvnk9s_voaeuw8045UHysT2H1gtKzp-hfZtN4KOBGs_RRDUvUOPTAjta4IEW2NACA6jYowV2tMBthT1aYE0LrGmBDS2wpQX2aPESXSy-nB-fBHZZjaCIE9oFPBNCJRUXpGRVmsJfp5mAPRpGqSqyWOrHGhJnyROZhiKMOSU6b9WfpDmLq_gV2mnaRr1BmFQsVpFkcAGlUkacsCKTKZWUZBX4qCmaOSPmN0P1lHxdJ1tbPwfr58b6eTpFH5ydc3By-suVaFTb3-axjvt5QhmboteD3cf-HGBTxDcQGRvoAuqbZ5r6pymkTiA4JhFL3v6x0wO0tyb3O7TT_erVIUShnXxvifYbd96GWg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-guided+Bayesian+Factor+Model+for+Integrative+Analysis+of+Multi-modal+Data+with+Noisy+Network+Information&rft.jtitle=Statistics+in+biosciences&rft.au=Li%2C+Wenrui&rft.au=Zhang%2C+Qiyiwen&rft.au=Qu%2C+Kewen&rft.au=Long%2C+Qi&rft.date=2024-08-11&rft.issn=1867-1764&rft_id=info:doi/10.1007%2Fs12561-024-09452-7&rft_id=info%3Apmid%2F40693697&rft.externalDocID=40693697 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1764&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1764&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1764&client=summon |