Graph-Guided Bayesian Factor Model for Integrative Analysis of Multi-modal Data with Noisy Network Information

There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that ca...

Full description

Saved in:
Bibliographic Details
Published inStatistics in biosciences
Main Authors Li, Wenrui, Zhang, Qiyiwen, Qu, Kewen, Long, Qi
Format Journal Article
LanguageEnglish
Published United States 11.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease.
AbstractList There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer’s disease.
There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease.There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these approaches incorporate biological knowledge such as functional genomics and functional metabolomics. Graph-guided statistical learning methods that can incorporate knowledge of underlying networks have been shown to improve predication and classification accuracy, and yield more interpretable results. Moreover, these methods typically use graphs extracted from existing databases or rely on subject matter expertise which are known to be incomplete and may contain false edges. To address this gap, we propose a graph-guided Bayesian factor model that can account for network noise and identify globally shared, partially shared and modality-specific latent factors in multimodal data. Specifically, we use two sources of network information, including the noisy graph extracted from existing databases and the estimated graph from observed features in the dataset at hand, to inform the model for the true underlying network via a latent scale modeling framework. This model is coupled with the Bayesian factor analysis model with shrinkage priors to encourage feature-wise and modal-wise sparsity, thereby allowing feature selection and identification of factors of each type. We develop an efficient Markov chain Monte Carlo algorithm for posterior sampling. We demonstrate the advantages of our method over existing methods in simulations, and through analyses of gene expression and metabolomics datasets for Alzheimer's disease.
Author Qu, Kewen
Long, Qi
Li, Wenrui
Zhang, Qiyiwen
AuthorAffiliation 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, 19104, Pennsylvania, U.S.A
AuthorAffiliation_xml – name: 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, 19104, Pennsylvania, U.S.A
Author_xml – sequence: 1
  givenname: Wenrui
  orcidid: 0000-0002-6471-7911
  surname: Li
  fullname: Li, Wenrui
– sequence: 2
  givenname: Qiyiwen
  surname: Zhang
  fullname: Zhang, Qiyiwen
– sequence: 3
  givenname: Kewen
  surname: Qu
  fullname: Qu, Kewen
– sequence: 4
  givenname: Qi
  surname: Long
  fullname: Long, Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40693697$$D View this record in MEDLINE/PubMed
BookMark eNpVUcluFDEQtVAQWeAHOCAfuRi8td0-oZCQIVKWC5yt6m53xtBtD7Y70fw9DpOMwqmeVG9R1TtGByEGh9B7Rj8xSvXnzHijGKFcEmpkw4l-hY5YqzRhWvODPVbyEB3n_ItSpbQxb9ChpMoIZfQRCqsEmzVZLX5wA_4KW5c9BHwBfYkJX8fBTXis6DIUd5eg-HuHTwNM2-wzjiO-XqbiyRwHmPA5FMAPvqzxTfR5i29ceYjpd9VWh7lqY3iLXo8wZffuaZ6gnxfffpx9J1e3q8uz0yvSi0YW0hoA14wtsEGNWtfrpIGKJOXa9UZ0net7Jk3XNp2mQEUrGdNS8NbQVolRnKAvO9_N0s1u6F0oCSa7SX6GtLURvP1_E_za3sV7yzjnjKumOnx8ckjxz-JysbPPvZsmCC4u2QouuGwbqVSlfngZtk95_nIl8B2hTzHn5MY9hVH7WKXdVWlrlfZflVaLv2pckew
Cites_doi 10.1111/rssb.12033
10.1038/s41598-017-12931-1
10.3233/JAD-210461
10.1093/nar/28.1.27
10.1111/biom.12882
10.1200/PO.19.00018
10.1093/biostatistics/kxy081
10.1093/bib/bbad073
10.3233/JAD-2006-9S331
10.1109/TNNLS.2014.2376974
10.3233/JAD-180400
10.1186/s13041-019-0528-2
10.1093/bioinformatics/btn081
10.1007/978-0-387-88146-1
10.1093/nar/gkp427
10.1109/DSAA.2018.00021
10.1093/bioinformatics/btq690
10.1093/comnet/cnaa046
10.1111/j.1467-9868.2008.00674.x
10.1093/brain/awq258
10.1371/journal.pcbi.1003123
10.1214/13-BA846
10.1145/2601438
10.1111/rssb.12554
10.1198/jasa.2010.tm08177
10.1053/apnr.2000.9231
10.1080/01621459.2016.1164051
10.1080/01621459.2020.1778482
10.1109/TNNLS.2015.2487364
10.1007/s12561-011-9049-y
10.1093/nar/gkab382
10.1093/biostatistics/kxm045
10.1111/j.1541-0420.2010.01519.x
10.1007/s10994-022-06174-z
10.1016/j.nic.2005.09.008
10.1214/14-AOS1272
10.1214/20-AOAS1382
10.1111/biom.13108
10.1201/b16018
10.1111/1467-9868.00353
10.1214/12-AOAS597
10.15252/msb.20178124
10.1080/10618600.2014.951049
10.1186/s13195-021-00814-7
10.3389/fnagi.2013.00033
10.1093/bioinformatics/btv544
10.1088/0034-4885/77/2/026601
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s12561-024-09452-7
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1867-1772
ExternalDocumentID PMC12221265
40693697
10_1007_s12561_024_09452_7
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG063481
– fundername: NIA NIH HHS
  grantid: R01 AG071174
GroupedDBID ---
06D
0R~
0VY
1N0
203
29Q
2JY
2KG
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BA0
BAPOH
BGNMA
CITATION
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
GXS
HLICF
HMJXF
HQYDN
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9R
PT4
QOS
R89
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
ABRTQ
NPM
7X8
5PM
ID FETCH-LOGICAL-c354t-89aae5f8a1d6f7709449a6f74027ec93bbecc149b85b70a0384117432890863f3
ISSN 1867-1764
IngestDate Thu Aug 21 18:29:20 EDT 2025
Thu Jul 24 01:48:46 EDT 2025
Wed Aug 13 02:12:50 EDT 2025
Tue Jul 08 02:36:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords factor analysis
MCMC algorithm
Bayesian shrinkage
latent scale network model
noisy graph
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c354t-89aae5f8a1d6f7709449a6f74027ec93bbecc149b85b70a0384117432890863f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6471-7911
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/12221265
PMID 40693697
PQID 3232485466
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12221265
proquest_miscellaneous_3232485466
pubmed_primary_40693697
crossref_primary_10_1007_s12561_024_09452_7
PublicationCentury 2000
PublicationDate 2024-08-11
PublicationDateYYYYMMDD 2024-08-11
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Statistics in biosciences
PublicationTitleAlternate Stat Biosci
PublicationYear 2024
References J Fan (9452_CR41) 2008; 70
J Chang (9452_CR27) 2022; 117
DJ Spiegelhalter (9452_CR39) 2002; 64
J-W Liang (9452_CR50) 2018; 65
S Zhao (9452_CR37) 2016; 17
P Balachandran (9452_CR26) 2017; 18
Z Li (9452_CR35) 2020; 21
B Szewczyk (9452_CR46) 2013; 5
CE Priebe (9452_CR23) 2015; 24
S Li (9452_CR42) 2013; 9
9452_CR34
SG Mueller (9452_CR1) 2005; 15
C Clark (9452_CR2) 2021; 13
9452_CR36
A Gelman (9452_CR38) 2013
R Argelaguet (9452_CR7) 2018; 14
J Bao (9452_CR18) 2023; 24
X Jiang (9452_CR21) 2012; 4
FC Stingo (9452_CR12) 2011; 27
Z Pang (9452_CR44) 2021; 49
NK Ahmed (9452_CR29) 2014; 8
Y Zhao (9452_CR16) 2019; 3
J Friedman (9452_CR33) 2008; 9
M Kanehisa (9452_CR9) 2000; 28
Z Yang (9452_CR6) 2016; 32
CM Le (9452_CR24) 2022; 84
C Chang (9452_CR15) 2018; 74
ED Kolaczyk (9452_CR28) 2009
9452_CR43
EF Lock (9452_CR3) 2013; 7
I Gaynanova (9452_CR8) 2019; 75
VC Pangman (9452_CR40) 2000; 13
X Ma (9452_CR30) 2022; 111
A Klami (9452_CR4) 2014; 26
X Jiang (9452_CR20) 2011; 67
K Bossers (9452_CR51) 2010; 133
RA Nixon (9452_CR48) 2006; 9
S Chatterjee (9452_CR22) 2015; 43
Y Xu (9452_CR45) 2019; 12
C Li (9452_CR10) 2008; 24
P Danaher (9452_CR31) 2014; 76
F Li (9452_CR11) 2010; 105
G Zhou (9452_CR5) 2015; 27
SC Larsson (9452_CR49) 2017; 7
9452_CR17
LS Tsimring (9452_CR19) 2014; 77
S Xie (9452_CR32) 2021; 15
Y Zhao (9452_CR14) 2016; 111
X Quan (9452_CR52) 2020; 26
V Rockova (9452_CR13) 2014; 9
P Liu (9452_CR47) 2021; 83
J-G Young (9452_CR25) 2020; 8
References_xml – volume: 76
  start-page: 373
  issue: 2
  year: 2014
  ident: 9452_CR31
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/rssb.12033
– volume: 7
  start-page: 13604
  year: 2017
  ident: 9452_CR49
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12931-1
– volume: 83
  start-page: 609
  issue: 2
  year: 2021
  ident: 9452_CR47
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-210461
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 9452_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 74
  start-page: 1372
  issue: 4
  year: 2018
  ident: 9452_CR15
  publication-title: Biometrics
  doi: 10.1111/biom.12882
– volume: 3
  start-page: 1
  year: 2019
  ident: 9452_CR16
  publication-title: JCO Precis Oncol
  doi: 10.1200/PO.19.00018
– volume: 21
  start-page: 610
  issue: 3
  year: 2020
  ident: 9452_CR35
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxy081
– volume: 24
  start-page: bbad073
  issue: 2
  year: 2023
  ident: 9452_CR18
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad073
– volume: 9
  start-page: 277
  issue: s3
  year: 2006
  ident: 9452_CR48
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2006-9S331
– volume: 26
  start-page: 2136
  issue: 9
  year: 2014
  ident: 9452_CR4
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2376974
– volume: 65
  start-page: 1353
  issue: 4
  year: 2018
  ident: 9452_CR50
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-180400
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: 9452_CR45
  publication-title: Mol Brain
  doi: 10.1186/s13041-019-0528-2
– volume: 24
  start-page: 1175
  issue: 9
  year: 2008
  ident: 9452_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn081
– volume: 17
  start-page: 1
  issue: 196
  year: 2016
  ident: 9452_CR37
  publication-title: J Mach Learn Res
– volume-title: Statistical analysis of network data: methods and models
  year: 2009
  ident: 9452_CR28
  doi: 10.1007/978-0-387-88146-1
– ident: 9452_CR34
– ident: 9452_CR43
  doi: 10.1093/nar/gkp427
– ident: 9452_CR17
  doi: 10.1109/DSAA.2018.00021
– volume: 27
  start-page: 495
  issue: 4
  year: 2011
  ident: 9452_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq690
– volume: 18
  start-page: 2025
  issue: 1
  year: 2017
  ident: 9452_CR26
  publication-title: J Mach Learn Res
– volume: 8
  start-page: cnaa046
  issue: 6
  year: 2020
  ident: 9452_CR25
  publication-title: J Complex Netw
  doi: 10.1093/comnet/cnaa046
– volume: 70
  start-page: 849
  issue: 5
  year: 2008
  ident: 9452_CR41
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2008.00674.x
– volume: 133
  start-page: 3699
  issue: 12
  year: 2010
  ident: 9452_CR51
  publication-title: Brain
  doi: 10.1093/brain/awq258
– volume: 9
  start-page: e1003123
  issue: 7
  year: 2013
  ident: 9452_CR42
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003123
– volume: 9
  start-page: 221
  issue: 1
  year: 2014
  ident: 9452_CR13
  publication-title: Bayesian Anal
  doi: 10.1214/13-BA846
– volume: 8
  start-page: 7
  issue: 2
  year: 2014
  ident: 9452_CR29
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/2601438
– volume: 26
  start-page: e919311
  year: 2020
  ident: 9452_CR52
  publication-title: Med Sci Monit Int Med J Exp Clin Res
– volume: 84
  start-page: 1851
  issue: 5
  year: 2022
  ident: 9452_CR24
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/rssb.12554
– volume: 105
  start-page: 1202
  issue: 491
  year: 2010
  ident: 9452_CR11
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2010.tm08177
– volume: 13
  start-page: 209
  issue: 4
  year: 2000
  ident: 9452_CR40
  publication-title: Appl Nurs Res
  doi: 10.1053/apnr.2000.9231
– volume: 111
  start-page: 1427
  issue: 516
  year: 2016
  ident: 9452_CR14
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2016.1164051
– volume: 117
  start-page: 361
  issue: 537
  year: 2022
  ident: 9452_CR27
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2020.1778482
– volume: 27
  start-page: 2426
  issue: 11
  year: 2015
  ident: 9452_CR5
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2487364
– volume: 4
  start-page: 84
  issue: 1
  year: 2012
  ident: 9452_CR21
  publication-title: Stat Biosci
  doi: 10.1007/s12561-011-9049-y
– volume: 49
  start-page: 388
  issue: W1
  year: 2021
  ident: 9452_CR44
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab382
– volume: 9
  start-page: 432
  issue: 3
  year: 2008
  ident: 9452_CR33
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 67
  start-page: 958
  issue: 3
  year: 2011
  ident: 9452_CR20
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01519.x
– volume: 111
  start-page: 3733
  issue: 10
  year: 2022
  ident: 9452_CR30
  publication-title: Mach Learn
  doi: 10.1007/s10994-022-06174-z
– volume: 15
  start-page: 869
  issue: 4
  year: 2005
  ident: 9452_CR1
  publication-title: Neuroimaging Clin
  doi: 10.1016/j.nic.2005.09.008
– volume: 43
  start-page: 177
  issue: 1
  year: 2015
  ident: 9452_CR22
  publication-title: Ann Stat
  doi: 10.1214/14-AOS1272
– volume: 15
  start-page: 64
  issue: 1
  year: 2021
  ident: 9452_CR32
  publication-title: Ann Appl Stat
  doi: 10.1214/20-AOAS1382
– ident: 9452_CR36
– volume: 75
  start-page: 1121
  issue: 4
  year: 2019
  ident: 9452_CR8
  publication-title: Biometrics
  doi: 10.1111/biom.13108
– volume-title: Bayesian data analysis
  year: 2013
  ident: 9452_CR38
  doi: 10.1201/b16018
– volume: 64
  start-page: 583
  issue: 4
  year: 2002
  ident: 9452_CR39
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/1467-9868.00353
– volume: 7
  start-page: 523
  issue: 1
  year: 2013
  ident: 9452_CR3
  publication-title: Ann Appl Stat
  doi: 10.1214/12-AOAS597
– volume: 14
  start-page: 8124
  issue: 6
  year: 2018
  ident: 9452_CR7
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178124
– volume: 24
  start-page: 930
  issue: 4
  year: 2015
  ident: 9452_CR23
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2014.951049
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 9452_CR2
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-021-00814-7
– volume: 5
  start-page: 33
  year: 2013
  ident: 9452_CR46
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00033
– volume: 32
  start-page: 1
  issue: 1
  year: 2016
  ident: 9452_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv544
– volume: 77
  start-page: 026601
  issue: 2
  year: 2014
  ident: 9452_CR19
  publication-title: Rep Prog Phys
  doi: 10.1088/0034-4885/77/2/026601
SSID ssj0066799
Score 2.2835088
Snippet There is a growing body of literature on factor analysis that can capture individual and shared structures in multi-modal data. However, few of these...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Title Graph-Guided Bayesian Factor Model for Integrative Analysis of Multi-modal Data with Noisy Network Information
URI https://www.ncbi.nlm.nih.gov/pubmed/40693697
https://www.proquest.com/docview/3232485466
https://pubmed.ncbi.nlm.nih.gov/PMC12221265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLayVpp6qTbtV9Z18qTdIiYMxpjbmmpZNXWRKrVab8gG03EoVCuoSv_6PRubOGknbbsgBMYh7_t4vGf8PSP0seAKHrQyC4goaEAV0JgnigSsSFkogDRJqRPF70t2ckG_XSaXk8lnX13SyU_F_aO6kv9BFY4Brlol-w_Ijp3CAdgHfGELCMP2rzD-qqtNB1d9XULYOBcrZRSRC7OEjlnlzIgTzajfla3w7RchMeLb4LottesTnRgGZZdtfbvSQmA9ZWtm5UojfDaO1TGqLfFcNzNZ25KY6wmJp2aWwA-4875-MDh9Vq_qu7UG7awfFELeodPWtfSHJSKqx1mt2xw8KWem-iR91E-HVrcMARcJzNUZTSDU9xuDrW-uDXJanRuzYR7vVnVsd-oJ2o0gUQBPt3u0mM-X7m3MWGrWEB1vxwqnBvnk9s_voaeuw8045UHysT2H1gtKzp-hfZtN4KOBGs_RRDUvUOPTAjta4IEW2NACA6jYowV2tMBthT1aYE0LrGmBDS2wpQX2aPESXSy-nB-fBHZZjaCIE9oFPBNCJRUXpGRVmsJfp5mAPRpGqSqyWOrHGhJnyROZhiKMOSU6b9WfpDmLq_gV2mnaRr1BmFQsVpFkcAGlUkacsCKTKZWUZBX4qCmaOSPmN0P1lHxdJ1tbPwfr58b6eTpFH5ydc3By-suVaFTb3-axjvt5QhmboteD3cf-HGBTxDcQGRvoAuqbZ5r6pymkTiA4JhFL3v6x0wO0tyb3O7TT_erVIUShnXxvifYbd96GWg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-guided+Bayesian+Factor+Model+for+Integrative+Analysis+of+Multi-modal+Data+with+Noisy+Network+Information&rft.jtitle=Statistics+in+biosciences&rft.au=Li%2C+Wenrui&rft.au=Zhang%2C+Qiyiwen&rft.au=Qu%2C+Kewen&rft.au=Long%2C+Qi&rft.date=2024-08-11&rft.issn=1867-1764&rft_id=info:doi/10.1007%2Fs12561-024-09452-7&rft_id=info%3Apmid%2F40693697&rft.externalDocID=40693697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1764&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1764&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1764&client=summon