Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene
Graphite-like carbon nitride (g-C3N4) was innovatively modified by diethylphosphinic acid through hydrogen bonding; g-C3N4/organic aluminum diethylhypophosphites (g-C3N4/DAHPi) hybrid (denoted as CDAHPi) was synthesized by salification reactions, and subsequently incorporated into PS matrix to prepa...
Saved in:
Published in | Composites. Part A, Applied science and manufacturing Vol. 99; pp. 149 - 156 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphite-like carbon nitride (g-C3N4) was innovatively modified by diethylphosphinic acid through hydrogen bonding; g-C3N4/organic aluminum diethylhypophosphites (g-C3N4/DAHPi) hybrid (denoted as CDAHPi) was synthesized by salification reactions, and subsequently incorporated into PS matrix to prepare composites through melt blending method. Thermal data showed that g-C3N4 could protect DAHPi from external heat, leading to improved thermal stability of DAHPi. Moreover, it was found that the introduction of the hybrid reduced the values of heat release rate (HRR) and total heat release (THR) of the composites. Compared with those of pure PS, the HRR and THR of PS/CDAPHi4 decreasing by 43% and 21% respectively were observed at loadings as low as 4.0wt%. The PS/CDAHPi exhibited an additional advantage in suppression of pyrolysis gas production in comparison with neat PS. In addition, the additive showed higher interfacial adhesion with PS. |
---|---|
AbstractList | Graphite-like carbon nitride (g-C3N4) was innovatively modified by diethylphosphinic acid through hydrogen bonding; g-C3N4/organic aluminum diethylhypophosphites (g-C3N4/DAHPi) hybrid (denoted as CDAHPi) was synthesized by salification reactions, and subsequently incorporated into PS matrix to prepare composites through melt blending method. Thermal data showed that g-C3N4 could protect DAHPi from external heat, leading to improved thermal stability of DAHPi. Moreover, it was found that the introduction of the hybrid reduced the values of heat release rate (HRR) and total heat release (THR) of the composites. Compared with those of pure PS, the HRR and THR of PS/CDAPHi4 decreasing by 43% and 21% respectively were observed at loadings as low as 4.0wt%. The PS/CDAHPi exhibited an additional advantage in suppression of pyrolysis gas production in comparison with neat PS. In addition, the additive showed higher interfacial adhesion with PS. |
Author | Huang, Zheng-Qi Tai, Qilong Hu, Yuan Zhu, Yulu Duan, Lijin Shi, Yongqian |
Author_xml | – sequence: 1 givenname: Yulu surname: Zhu fullname: Zhu, Yulu organization: State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China – sequence: 2 givenname: Yongqian surname: Shi fullname: Shi, Yongqian organization: State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China – sequence: 3 givenname: Zheng-Qi surname: Huang fullname: Huang, Zheng-Qi organization: State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China – sequence: 4 givenname: Lijin surname: Duan fullname: Duan, Lijin organization: State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China – sequence: 5 givenname: Qilong surname: Tai fullname: Tai, Qilong email: qltai@ustc.edu.cn organization: State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China – sequence: 6 givenname: Yuan surname: Hu fullname: Hu, Yuan email: yuanhu@ustc.edu.cn organization: State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China |
BookMark | eNqNkc1u1DAUhSNUJNrCO5gdm6R2nHgcNgiN-JMqYAESO-vGvmk8OHawPZXySjwl7gwLxKorX1nf-RbnXFUXPnisqpeMNowycXNodFjWkGzGBE1L2a6hvKEtf1JdMrmTdS87elFu3g-15P2PZ9VVSgdKKecDu6x-fw736MhdhHUujtrZn0g0xDF44m2O1uBNiHfgrSbgjov1x4UYi3ne3LytYZ1DOiUT8eDDvI0l8pp8jbhChGyLBrwh6GfwGhf0mZSvPGNcwJGUYbTO5u0ETQ4WJBEzRFPojYSJrMFtKW8RPT6vnk7gEr74-15X39-_-7b_WN9--fBp__a21rzvci2poAz1BCB7FGJnJsOZbjvTdRI7seOGT62ZhNGagug7rttRShjZALLr9cCvq1dn7xrDryOmrBabNDoHHsMxqZb1XFDBOlHQ4YzqGFKKOKk12gXiphhVD_uog_pnH_Wwj6JclX1K9s1_WW3zqbEcwbpHGfZnA5Y27i1GlbTFUrOxEXVWJthHWP4Auhy-MQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_143487 crossref_primary_10_1016_j_matpr_2022_07_402 crossref_primary_10_1007_s10853_019_03841_w crossref_primary_10_1002_batt_202400069 crossref_primary_10_1007_s10973_019_08051_9 crossref_primary_10_1021_acsami_2c20765 crossref_primary_10_1002_vnl_21912 crossref_primary_10_1155_2019_4273253 crossref_primary_10_1007_s10973_017_6659_8 crossref_primary_10_1007_s13233_021_9074_8 crossref_primary_10_1016_j_jaap_2022_105466 crossref_primary_10_1007_s10853_018_03267_w crossref_primary_10_1016_j_jcis_2021_10_177 crossref_primary_10_1016_j_porgcoat_2024_108423 crossref_primary_10_1021_acsapm_1c01060 crossref_primary_10_1088_2053_1591_ab24f7 crossref_primary_10_1002_pat_4630 crossref_primary_10_1016_j_mtchem_2022_101127 crossref_primary_10_1002_fam_2950 crossref_primary_10_3390_ijms232113434 crossref_primary_10_1186_s40712_024_00183_7 crossref_primary_10_1016_j_compositesb_2021_109453 crossref_primary_10_1016_j_chemosphere_2024_142733 crossref_primary_10_3390_ma13122756 crossref_primary_10_1016_j_ijhydene_2023_09_195 crossref_primary_10_1021_acsanm_3c03679 crossref_primary_10_3390_molecules25173779 crossref_primary_10_1007_s10973_020_10461_z crossref_primary_10_1016_j_mtsust_2024_100789 crossref_primary_10_1016_j_matchemphys_2020_123810 crossref_primary_10_1039_D2RA08070B crossref_primary_10_1002_app_50399 crossref_primary_10_1002_pat_5516 crossref_primary_10_1007_s00289_020_03377_z crossref_primary_10_3390_polym16213083 crossref_primary_10_1016_j_compositesb_2020_108397 crossref_primary_10_1021_acsanm_4c00862 crossref_primary_10_1021_acsaem_3c02852 crossref_primary_10_1007_s10973_024_13547_0 crossref_primary_10_1007_s10118_021_2575_2 crossref_primary_10_1016_j_compositesb_2020_108271 crossref_primary_10_1016_j_polymdegradstab_2020_109366 crossref_primary_10_1002_app_53071 crossref_primary_10_1016_j_cej_2024_156498 crossref_primary_10_1016_j_jcis_2021_07_100 crossref_primary_10_1515_ipp_2020_4082 crossref_primary_10_1002_app_48136 crossref_primary_10_1134_S0023158424602390 crossref_primary_10_1016_j_coco_2018_07_003 crossref_primary_10_1016_j_apsusc_2021_151648 crossref_primary_10_1002_pc_27622 |
Cites_doi | 10.1002/app.34489 10.1016/j.jhazmat.2015.04.002 10.1016/j.jhazmat.2015.06.040 10.1016/j.polymdegradstab.2015.10.011 10.1016/j.matchemphys.2012.02.046 10.1021/jz500546b 10.1021/ie3008133 10.1016/S0079-6700(02)00018-7 10.1021/ie504511f 10.1016/j.tca.2012.08.012 10.1039/C5TA04349B 10.1016/j.compositesb.2011.03.019 10.1039/B307086G 10.1002/app.35678 10.1016/j.polymdegradstab.2007.05.007 10.1002/pat.1922 10.1016/j.polymdegradstab.2012.05.028 10.1021/ie301650f 10.1007/s10853-013-7234-8 10.1016/j.compositesa.2011.03.009 10.1002/pola.21122 10.1016/j.cclet.2010.10.039 10.1016/S1464-391X(07)70067-3 10.1021/ie303446s 10.1021/am4038307 10.1016/j.jhazmat.2015.03.041 10.1016/j.polymdegradstab.2011.03.010 10.1002/chem.200800190 10.1016/j.progpolymsci.2009.06.002 10.1016/j.polymdegradstab.2010.01.031 10.1002/(SICI)1097-4628(19980516)68:7<1067::AID-APP4>3.0.CO;2-D 10.1016/j.reactfunctpolym.2006.01.013 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.compositesa.2017.03.023 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-5840 |
EndPage | 156 |
ExternalDocumentID | 10_1016_j_compositesa_2017_03_023 S1359835X17301264 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K TN5 ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c354t-80601ecfaa85e667dfd31c24d448e4673d3f2df6dcc0a6543c2b88ab19a845c93 |
IEDL.DBID | .~1 |
ISSN | 1359-835X |
IngestDate | Sun Aug 24 04:16:10 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 00:48:33 EDT 2025 Fri Feb 23 02:27:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | g-C3N4/organic aluminum diethylhypophosphites hybrid Flame retardancy Thermal stability Mechanism Hydrogen bond |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-80601ecfaa85e667dfd31c24d448e4673d3f2df6dcc0a6543c2b88ab19a845c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2153606146 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2153606146 crossref_primary_10_1016_j_compositesa_2017_03_023 crossref_citationtrail_10_1016_j_compositesa_2017_03_023 elsevier_sciencedirect_doi_10_1016_j_compositesa_2017_03_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2017 2017-08-00 20170801 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationTitle | Composites. Part A, Applied science and manufacturing |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Braun, Schartel, Fichera, Jäger (b0030) 2007; 92 Bojdys, Müller, Antonietti, Thomas (b0130) 2008; 14 Thomas LC. Interpretation of the infrared spectra of organophosphorus compounds [by] LC Thomas; 1974. Zhao, Chen, Long, Chen, Wang (b0020) 2013; 52 Qiu, Gao (b0160) 2003; 18 Shi, Long, Yu, Zhou, Gui, Yuen (b0135) 2015; 3 Wang, Qian, Xu, Xi, Liu (b0050) 2015; 122 Schmitt (b0035) 2007; 9 Tang, Wang, Xing, Zhang, Wang, Hong (b0025) 2012; 51 Shi, Yu, Zhou, Yuen, Gui, Hu (b0125) 2015; 293 Han, Wu, Shen, Huang, Zhu, Zhang (b0150) 2013; 48 Chattopadhyay, Webster (b0080) 2009; 34 Li, Li, Zhang, Lin (b0015) 2012; 125 Martin, Hunt, Ebdon, Ronda, Cadiz (b0085) 2005; 43 Xu, Han, Dong (b0120) 2013; 5 Yuan, Bao, Guo, Song, Liew, Hu (b0170) 2012; 51 Isitman, Dogan, Bayramli, Kaynak (b0065) 2012; 97 Tai, Song, Lv, Lu, Hu, Yuen (b0105) 2012; 123 Lu, Hamerton (b0075) 2002; 27 Yang, Han, Tang, Han, Zhou, Zhang (b0155) 2011; 22 Hill M, Hoerold S, Krause W, Sicken M. Method for producing mixtures of alkylphosphonous acid salts and dialkylphosphinic acid salts. Google Patents; 2014. Ge, Tang, Hu, Wang, Pan, Song (b0070) 2015; 294 Hu, Chen, Lin, Luo, Wang (b0055) 2011; 96 Wei, Yuan, Qilong, Hongdian, Lei, Yuen (b0005) 2011; 42 Costa, Montelera, Rossi, Camino, Weil, Pearce (b0110) 1998; 68 Martin, Hunt, Ebdon, Ronda, Cadiz (b0090) 2006; 66 Tai, Song, Hu, Yuen, Feng, Tao (b0100) 2012; 134 Hu, Yu, Jiang, Song, Hu, Wang (b0140) 2015; 300 Hu, Lin, Chen, Wang (b0060) 2011; 22 Tai, Chen, Song, Nie, Hu, Yuen (b0095) 2010; 95 Cao, Yu (b0115) 2014; 5 Qiu, Hu, Yu, Yuan, Zhu, Jiang (b0145) 2015; 54 Shao, Wang, Li, Jia (b0045) 2012; 547 Yang, Song, Hu, Lu, Yuen (b0010) 2011; 42 Wang (10.1016/j.compositesa.2017.03.023_b0050) 2015; 122 Bojdys (10.1016/j.compositesa.2017.03.023_b0130) 2008; 14 Martin (10.1016/j.compositesa.2017.03.023_b0085) 2005; 43 Xu (10.1016/j.compositesa.2017.03.023_b0120) 2013; 5 Wei (10.1016/j.compositesa.2017.03.023_b0005) 2011; 42 Qiu (10.1016/j.compositesa.2017.03.023_b0160) 2003; 18 Shao (10.1016/j.compositesa.2017.03.023_b0045) 2012; 547 Tai (10.1016/j.compositesa.2017.03.023_b0100) 2012; 134 Yang (10.1016/j.compositesa.2017.03.023_b0010) 2011; 42 Cao (10.1016/j.compositesa.2017.03.023_b0115) 2014; 5 Yang (10.1016/j.compositesa.2017.03.023_b0155) 2011; 22 Shi (10.1016/j.compositesa.2017.03.023_b0125) 2015; 293 Han (10.1016/j.compositesa.2017.03.023_b0150) 2013; 48 Tai (10.1016/j.compositesa.2017.03.023_b0095) 2010; 95 Costa (10.1016/j.compositesa.2017.03.023_b0110) 1998; 68 Tang (10.1016/j.compositesa.2017.03.023_b0025) 2012; 51 Braun (10.1016/j.compositesa.2017.03.023_b0030) 2007; 92 Hu (10.1016/j.compositesa.2017.03.023_b0140) 2015; 300 Chattopadhyay (10.1016/j.compositesa.2017.03.023_b0080) 2009; 34 Hu (10.1016/j.compositesa.2017.03.023_b0055) 2011; 96 Zhao (10.1016/j.compositesa.2017.03.023_b0020) 2013; 52 Lu (10.1016/j.compositesa.2017.03.023_b0075) 2002; 27 Hu (10.1016/j.compositesa.2017.03.023_b0060) 2011; 22 Isitman (10.1016/j.compositesa.2017.03.023_b0065) 2012; 97 10.1016/j.compositesa.2017.03.023_b0040 Qiu (10.1016/j.compositesa.2017.03.023_b0145) 2015; 54 Schmitt (10.1016/j.compositesa.2017.03.023_b0035) 2007; 9 Martin (10.1016/j.compositesa.2017.03.023_b0090) 2006; 66 Yuan (10.1016/j.compositesa.2017.03.023_b0170) 2012; 51 Tai (10.1016/j.compositesa.2017.03.023_b0105) 2012; 123 10.1016/j.compositesa.2017.03.023_b0165 Li (10.1016/j.compositesa.2017.03.023_b0015) 2012; 125 Ge (10.1016/j.compositesa.2017.03.023_b0070) 2015; 294 Shi (10.1016/j.compositesa.2017.03.023_b0135) 2015; 3 |
References_xml | – volume: 294 start-page: 186 year: 2015 end-page: 194 ident: b0070 article-title: Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6 publication-title: J Hazard Mater – volume: 22 start-page: 1166 year: 2011 end-page: 1173 ident: b0060 article-title: Flame retardation of glass-fiber-reinforced polyamide 6 by combination of aluminum phenylphosphinate with melamine pyrophosphate publication-title: Polym Adv Technol – volume: 3 start-page: 17064 year: 2015 end-page: 17073 ident: b0135 article-title: Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes publication-title: J Mater Chem A – volume: 22 start-page: 385 year: 2011 end-page: 388 ident: b0155 article-title: A novel photo-initiated approach for preparing aluminum diethylphosphinate under atmospheric pressure publication-title: Chin Chem Lett – reference: Hill M, Hoerold S, Krause W, Sicken M. Method for producing mixtures of alkylphosphonous acid salts and dialkylphosphinic acid salts. Google Patents; 2014. – volume: 68 start-page: 1067 year: 1998 end-page: 1076 ident: b0110 article-title: Flame-retardant properties of phenol–formaldehyde-type resins and triphenyl phosphate in styrene–acrylonitrile copolymers publication-title: J Appl Polym Sci – volume: 293 start-page: 87 year: 2015 end-page: 96 ident: b0125 article-title: Novel CuCo publication-title: J Hazard Mater – volume: 48 start-page: 4214 year: 2013 end-page: 4222 ident: b0150 article-title: Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants publication-title: J Mater Sci – volume: 95 start-page: 830 year: 2010 end-page: 836 ident: b0095 article-title: Preparation and thermal properties of a novel flame retardant copolymer publication-title: Polym Degrad Stab – volume: 42 start-page: 794 year: 2011 end-page: 800 ident: b0005 article-title: Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles publication-title: Compos Part A-Appl Sci Manuf – volume: 125 start-page: 1782 year: 2012 end-page: 1789 ident: b0015 article-title: Investigation on effects of aluminum and magnesium hypophosphites on flame retardancy and thermal degradation of polyamide 6 publication-title: J Appl Polym Sci – volume: 547 start-page: 70 year: 2012 end-page: 75 ident: b0045 article-title: Synthesis, characterization and thermal degradation kinetics of aluminum diisobutylphosphinate publication-title: Thermochim Acta – volume: 97 start-page: 1285 year: 2012 end-page: 1296 ident: b0065 article-title: The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate publication-title: Polym Degrad Stab – volume: 34 start-page: 1068 year: 2009 end-page: 1133 ident: b0080 article-title: Thermal stability and flame retardancy of polyurethanes publication-title: Prog Polym Sci – volume: 42 start-page: 1057 year: 2011 end-page: 1065 ident: b0010 article-title: Enhancement of fire retardancy performance of glass-fibre reinforced poly (ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate publication-title: Compos B Eng – volume: 92 start-page: 1528 year: 2007 end-page: 1545 ident: b0030 article-title: Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6 publication-title: Polym Degrad Stab – volume: 96 start-page: 1538 year: 2011 end-page: 1545 ident: b0055 article-title: Flame retardation of glass-fibre-reinforced polyamide 6 by a novel metal salt of alkylphosphinic acid publication-title: Polym Degrad Stab – volume: 66 start-page: 1047 year: 2006 end-page: 1054 ident: b0090 article-title: Synthesis, crosslinking and flame retardance of polymers of boron-containing difunctional styrenic monomers publication-title: React Funct Polym – volume: 14 start-page: 8177 year: 2008 end-page: 8182 ident: b0130 article-title: Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride publication-title: Chem –A Eur J – volume: 51 start-page: 12009 year: 2012 end-page: 12016 ident: b0025 article-title: Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite publication-title: Ind Eng Chem Res – volume: 18 start-page: 2378 year: 2003 end-page: 2379 ident: b0160 article-title: Chemical synthesis of turbostratic carbon nitride, containing C publication-title: Chem Commun – reference: Thomas LC. Interpretation of the infrared spectra of organophosphorus compounds [by] LC Thomas; 1974. – volume: 43 start-page: 6419 year: 2005 end-page: 6430 ident: b0085 article-title: Synthesis, polymerization, and effects on the flame retardancy of boron-containing styrenic monomers publication-title: J Polym Sci, Part A: Polym Chem – volume: 27 start-page: 1661 year: 2002 end-page: 1712 ident: b0075 article-title: Recent developments in the chemistry of halogen-free flame retardant polymers publication-title: Prog Polym Sci – volume: 5 start-page: 2101 year: 2014 end-page: 2107 ident: b0115 article-title: G-C publication-title: J Phys Chem Lett – volume: 5 start-page: 12533 year: 2013 end-page: 12540 ident: b0120 article-title: Facile fabrication of highly efficient g-C publication-title: ACS Appl Mater Interfaces – volume: 134 start-page: 163 year: 2012 end-page: 169 ident: b0100 article-title: Novel styrene polymers functionalized with phosphorus–nitrogen containing molecules: synthesis and properties publication-title: Mater Chem Phys – volume: 9 start-page: 26 year: 2007 end-page: 30 ident: b0035 article-title: Phosphorus-based flame retardants for thermoplastics publication-title: Plas Addit Compounding – volume: 54 start-page: 3309 year: 2015 end-page: 3319 ident: b0145 article-title: Effect of functionalized graphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene publication-title: Ind Eng Chem Res – volume: 51 start-page: 14065 year: 2012 end-page: 14075 ident: b0170 article-title: Preparation and characterization of flame-retardant aluminum hypophosphite/poly (vinyl alcohol) composite publication-title: Ind Eng Chem Res – volume: 52 start-page: 2875 year: 2013 end-page: 2886 ident: b0020 article-title: Aluminum hypophosphite versus alkyl-substituted phosphinate in polyamide 6: flame retardance, thermal degradation, and pyrolysis behavior publication-title: Ind Eng Chem Res – volume: 123 start-page: 770 year: 2012 end-page: 778 ident: b0105 article-title: Flame-retarded polystyrene with phosphorus-and nitrogen-containing oligomer: preparation and thermal properties publication-title: J Appl Polym Sci – volume: 300 start-page: 58 year: 2015 end-page: 66 ident: b0140 article-title: Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene publication-title: J Hazard Mater – volume: 122 start-page: 8 year: 2015 end-page: 17 ident: b0050 article-title: Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin publication-title: Polym Degrad Stab – ident: 10.1016/j.compositesa.2017.03.023_b0165 – volume: 123 start-page: 770 issue: 2 year: 2012 ident: 10.1016/j.compositesa.2017.03.023_b0105 article-title: Flame-retarded polystyrene with phosphorus-and nitrogen-containing oligomer: preparation and thermal properties publication-title: J Appl Polym Sci doi: 10.1002/app.34489 – volume: 294 start-page: 186 year: 2015 ident: 10.1016/j.compositesa.2017.03.023_b0070 article-title: Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.04.002 – volume: 300 start-page: 58 year: 2015 ident: 10.1016/j.compositesa.2017.03.023_b0140 article-title: Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.06.040 – volume: 122 start-page: 8 year: 2015 ident: 10.1016/j.compositesa.2017.03.023_b0050 article-title: Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2015.10.011 – volume: 134 start-page: 163 issue: 1 year: 2012 ident: 10.1016/j.compositesa.2017.03.023_b0100 article-title: Novel styrene polymers functionalized with phosphorus–nitrogen containing molecules: synthesis and properties publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2012.02.046 – volume: 5 start-page: 2101 issue: 12 year: 2014 ident: 10.1016/j.compositesa.2017.03.023_b0115 article-title: G-C3N4-based photocatalysts for hydrogen generation publication-title: J Phys Chem Lett doi: 10.1021/jz500546b – volume: 51 start-page: 12009 issue: 37 year: 2012 ident: 10.1016/j.compositesa.2017.03.023_b0025 article-title: Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite publication-title: Ind Eng Chem Res doi: 10.1021/ie3008133 – volume: 27 start-page: 1661 issue: 8 year: 2002 ident: 10.1016/j.compositesa.2017.03.023_b0075 article-title: Recent developments in the chemistry of halogen-free flame retardant polymers publication-title: Prog Polym Sci doi: 10.1016/S0079-6700(02)00018-7 – volume: 54 start-page: 3309 issue: 13 year: 2015 ident: 10.1016/j.compositesa.2017.03.023_b0145 article-title: Effect of functionalized graphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene publication-title: Ind Eng Chem Res doi: 10.1021/ie504511f – volume: 547 start-page: 70 year: 2012 ident: 10.1016/j.compositesa.2017.03.023_b0045 article-title: Synthesis, characterization and thermal degradation kinetics of aluminum diisobutylphosphinate publication-title: Thermochim Acta doi: 10.1016/j.tca.2012.08.012 – volume: 3 start-page: 17064 issue: 33 year: 2015 ident: 10.1016/j.compositesa.2017.03.023_b0135 article-title: Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes publication-title: J Mater Chem A doi: 10.1039/C5TA04349B – volume: 42 start-page: 1057 issue: 5 year: 2011 ident: 10.1016/j.compositesa.2017.03.023_b0010 article-title: Enhancement of fire retardancy performance of glass-fibre reinforced poly (ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate publication-title: Compos B Eng doi: 10.1016/j.compositesb.2011.03.019 – volume: 18 start-page: 2378 year: 2003 ident: 10.1016/j.compositesa.2017.03.023_b0160 article-title: Chemical synthesis of turbostratic carbon nitride, containing CN crystallites, at atmospheric pressure publication-title: Chem Commun doi: 10.1039/B307086G – volume: 125 start-page: 1782 issue: 3 year: 2012 ident: 10.1016/j.compositesa.2017.03.023_b0015 article-title: Investigation on effects of aluminum and magnesium hypophosphites on flame retardancy and thermal degradation of polyamide 6 publication-title: J Appl Polym Sci doi: 10.1002/app.35678 – volume: 92 start-page: 1528 issue: 8 year: 2007 ident: 10.1016/j.compositesa.2017.03.023_b0030 article-title: Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2007.05.007 – volume: 22 start-page: 1166 issue: 7 year: 2011 ident: 10.1016/j.compositesa.2017.03.023_b0060 article-title: Flame retardation of glass-fiber-reinforced polyamide 6 by combination of aluminum phenylphosphinate with melamine pyrophosphate publication-title: Polym Adv Technol doi: 10.1002/pat.1922 – ident: 10.1016/j.compositesa.2017.03.023_b0040 – volume: 97 start-page: 1285 issue: 8 year: 2012 ident: 10.1016/j.compositesa.2017.03.023_b0065 article-title: The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2012.05.028 – volume: 51 start-page: 14065 issue: 43 year: 2012 ident: 10.1016/j.compositesa.2017.03.023_b0170 article-title: Preparation and characterization of flame-retardant aluminum hypophosphite/poly (vinyl alcohol) composite publication-title: Ind Eng Chem Res doi: 10.1021/ie301650f – volume: 48 start-page: 4214 issue: 12 year: 2013 ident: 10.1016/j.compositesa.2017.03.023_b0150 article-title: Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants publication-title: J Mater Sci doi: 10.1007/s10853-013-7234-8 – volume: 42 start-page: 794 issue: 7 year: 2011 ident: 10.1016/j.compositesa.2017.03.023_b0005 article-title: Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles publication-title: Compos Part A-Appl Sci Manuf doi: 10.1016/j.compositesa.2011.03.009 – volume: 43 start-page: 6419 issue: 24 year: 2005 ident: 10.1016/j.compositesa.2017.03.023_b0085 article-title: Synthesis, polymerization, and effects on the flame retardancy of boron-containing styrenic monomers publication-title: J Polym Sci, Part A: Polym Chem doi: 10.1002/pola.21122 – volume: 22 start-page: 385 issue: 4 year: 2011 ident: 10.1016/j.compositesa.2017.03.023_b0155 article-title: A novel photo-initiated approach for preparing aluminum diethylphosphinate under atmospheric pressure publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2010.10.039 – volume: 9 start-page: 26 issue: 3 year: 2007 ident: 10.1016/j.compositesa.2017.03.023_b0035 article-title: Phosphorus-based flame retardants for thermoplastics publication-title: Plas Addit Compounding doi: 10.1016/S1464-391X(07)70067-3 – volume: 52 start-page: 2875 issue: 8 year: 2013 ident: 10.1016/j.compositesa.2017.03.023_b0020 article-title: Aluminum hypophosphite versus alkyl-substituted phosphinate in polyamide 6: flame retardance, thermal degradation, and pyrolysis behavior publication-title: Ind Eng Chem Res doi: 10.1021/ie303446s – volume: 5 start-page: 12533 issue: 23 year: 2013 ident: 10.1016/j.compositesa.2017.03.023_b0120 article-title: Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity publication-title: ACS Appl Mater Interfaces doi: 10.1021/am4038307 – volume: 293 start-page: 87 year: 2015 ident: 10.1016/j.compositesa.2017.03.023_b0125 article-title: Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.03.041 – volume: 96 start-page: 1538 issue: 9 year: 2011 ident: 10.1016/j.compositesa.2017.03.023_b0055 article-title: Flame retardation of glass-fibre-reinforced polyamide 6 by a novel metal salt of alkylphosphinic acid publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2011.03.010 – volume: 14 start-page: 8177 issue: 27 year: 2008 ident: 10.1016/j.compositesa.2017.03.023_b0130 article-title: Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride publication-title: Chem –A Eur J doi: 10.1002/chem.200800190 – volume: 34 start-page: 1068 issue: 10 year: 2009 ident: 10.1016/j.compositesa.2017.03.023_b0080 article-title: Thermal stability and flame retardancy of polyurethanes publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2009.06.002 – volume: 95 start-page: 830 issue: 5 year: 2010 ident: 10.1016/j.compositesa.2017.03.023_b0095 article-title: Preparation and thermal properties of a novel flame retardant copolymer publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2010.01.031 – volume: 68 start-page: 1067 issue: 7 year: 1998 ident: 10.1016/j.compositesa.2017.03.023_b0110 article-title: Flame-retardant properties of phenol–formaldehyde-type resins and triphenyl phosphate in styrene–acrylonitrile copolymers publication-title: J Appl Polym Sci doi: 10.1002/(SICI)1097-4628(19980516)68:7<1067::AID-APP4>3.0.CO;2-D – volume: 66 start-page: 1047 issue: 10 year: 2006 ident: 10.1016/j.compositesa.2017.03.023_b0090 article-title: Synthesis, crosslinking and flame retardance of polymers of boron-containing difunctional styrenic monomers publication-title: React Funct Polym doi: 10.1016/j.reactfunctpolym.2006.01.013 |
SSID | ssj0003391 |
Score | 2.4293532 |
Snippet | Graphite-like carbon nitride (g-C3N4) was innovatively modified by diethylphosphinic acid through hydrogen bonding; g-C3N4/organic aluminum... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 149 |
SubjectTerms | adhesion aluminum carbon nitride composite materials Flame retardancy g-C3N4/organic aluminum diethylhypophosphites hybrid heat Hydrogen bond hydrogen bonding Mechanism melting mixing nanohybrids polystyrenes pyrolysis Thermal stability |
Title | Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene |
URI | https://dx.doi.org/10.1016/j.compositesa.2017.03.023 https://www.proquest.com/docview/2153606146 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdIeSvqiaR4o0Ku7a8v2yqWXEBq2LV0KbWBvQpbGrFNHNvZuYS_5Qf2VnZHtJi0UAj1aeCzjGc1D_uYTY69lmOQG0mlgpDZBHOo0yOPUBpqOxcmyJLG-w_vzIp1fxh-XyXKHnY-9MASrHHx_79O9tx5GJsPXnDRlOfkaEvmcSJYhGSnGdepgj2dk5W9ubmEeQmR90UXbXXj3A3Z6i_Ei2DZho6AjCqJw5vlOI_GvGPWXt_Yh6GKfPR5yR37Wv94TtgPuKXt0h1HwGfu5qH9AxT0NNU4YVOV34Ea3ee04Lt62tDDpD3IyXKNfKt3mmtsSUF3VatvUzaruvGTHnXb1aksNXW_5lxZ6jnB8jHaWg1uRtdDOIschSiKv8c0w0_RY262_qUBjA054xtaSD-d1wZu62na08e3gObu8eP_tfB4MxzEERiTxGmMZFm9gCq1lAmk6s4UVoYliixUeoL8VVhSRLVJrzFRTy6qJcil1HmZaxonJxAu262oHLxmPiVVM5nEuBEpDloHI5QwrP-KuxJzhgMlRAcoMXOV0ZEalRlDalbqjO0W6U1OhUHcHLPot2vSEHfcRejdqWf1hfQoDy33ET0fLULg66ZeLdlBvOoUJlUip6E5f_d8Uh-whXfXQwyO2u243cIzp0Do_8fZ-wvbOPnyaL34BvJMSKg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkaAcEE9Rnq7ENewmTrIJ4oIqqgXaFRKttDfLsSfaQGpHyW6lvfCD-JXMOAktSEiVuCaexMqM5-F8_oax11mYFBrSaaAzpYM4VGlQxKkJFLXFyfMkMf6E98kinZ_Fn5bJcocdjmdhCFY5-P7ep3tvPVyZDF9z0lTV5GtI5HMiWYZkpBjXb7CbMS5famPw5sclzkOIvK-6aL8Lh99iB5cgL8JtEzgKOuIgCmee8DQS_wpSf7lrH4OO7rG7Q_LI3_fzu892wD5gd65QCj5kPxfuAmrueajxhUFdfQeuVVs4y3H1tpWBSd_JSXOFjqmym3NuKkB91att45qV67xkx62ybrWlE11v-ZcWepJwfIyyhoNdkbnQ1iLHS5RFnuPMMNX0YNutH1SitQEnQGNryIlzV_LG1duOdr4tPGJnRx9OD-fB0I8h0CKJ1xjMsHoDXSqVJZCmM1MaEeooNljiATpcYUQZmTI1Wk8VnVnVUZFlqghzlcWJzsVjtmudhSeMx0QrlhVxIQRKQ56DKLIZln5EXolJwz7LRgVIPZCVU8-MWo6otG_yiu4k6U5OhUTd7bPot2jTM3ZcR-jdqGX5h_lJjCzXET8YLUPi8qR_LsqC23QSMyqRUtWdPv2_V7xit-enJ8fy-OPi8zO2R3d6HOJztrtuN_ACc6N18dLb_i_VEBO4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+graphite-like+carbon+nitride%2Forganic+aluminum+diethylhypophosphites+nanohybrid%3A+Preparation+and+enhancement+on+thermal+stability+and+flame+retardancy+of+polystyrene&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Zhu%2C+Yulu&rft.au=Shi%2C+Yongqian&rft.au=Huang%2C+Zheng-Qi&rft.au=Duan%2C+Lijin&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-835X&rft.eissn=1878-5840&rft.volume=99&rft.spage=149&rft.epage=156&rft_id=info:doi/10.1016%2Fj.compositesa.2017.03.023&rft.externalDocID=S1359835X17301264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon |