Intelligent Prediction of Multi-Factor-Oriented Ground Settlement During TBM Tunneling in Soft Soil
Tunneling-induced ground surface settlement is associated with many complex influencing factors. Beyond factors related to tunnel geometry and surrounding geological conditions, operational factors related to the shield machine are highly significant because of the complexity of shield-soil interact...
Saved in:
Published in | Frontiers in built environment Vol. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
05.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tunneling-induced ground surface settlement is associated with many complex influencing factors. Beyond factors related to tunnel geometry and surrounding geological conditions, operational factors related to the shield machine are highly significant because of the complexity of shield-soil interactions. Distinguishing the most relevant factors can be very difficult, for all factors seem to affect tunneling-induced settlement to some degree, with none clearly the most influential. In this research, a machine learning method is adopted to intelligently select features related to tunneling-induced ground settlement based on measured data and form a robust non-parametric model with which to make a prediction. The recorded data from a real construction site were compiled and 12 features related to the operational factors were summarized. Using the intelligent method, two other features in addition to cover depth–pitching angle and rolling angle–were distinguished from among the 12 feature candidates as those most influencing the settlement trough. Another new finding is that advance rate does not emerge in the top 10 selected models from the observational data used. The generated non-parametric model was validated by comparing the measured data from the testing dataset and performance on a new dataset. Sensitivity analysis was conducted to evaluate the contribution of each factor. According to the results, engineers in general practice should attend closely to pitching angle during tunnel excavation in soft soil conditions. |
---|---|
AbstractList | Tunneling-induced ground surface settlement is associated with many complex influencing factors. Beyond factors related to tunnel geometry and surrounding geological conditions, operational factors related to the shield machine are highly significant because of the complexity of shield-soil interactions. Distinguishing the most relevant factors can be very difficult, for all factors seem to affect tunneling-induced settlement to some degree, with none clearly the most influential. In this research, a machine learning method is adopted to intelligently select features related to tunneling-induced ground settlement based on measured data and form a robust non-parametric model with which to make a prediction. The recorded data from a real construction site were compiled and 12 features related to the operational factors were summarized. Using the intelligent method, two other features in addition to cover depth–pitching angle and rolling angle–were distinguished from among the 12 feature candidates as those most influencing the settlement trough. Another new finding is that advance rate does not emerge in the top 10 selected models from the observational data used. The generated non-parametric model was validated by comparing the measured data from the testing dataset and performance on a new dataset. Sensitivity analysis was conducted to evaluate the contribution of each factor. According to the results, engineers in general practice should attend closely to pitching angle during tunnel excavation in soft soil conditions. |
Author | Zhao, Lin-Shuang Zhou, Wan-Huan Ding, Zhi Bezuijen, Adam |
Author_xml | – sequence: 1 givenname: Zhi surname: Ding fullname: Ding, Zhi – sequence: 2 givenname: Lin-Shuang surname: Zhao fullname: Zhao, Lin-Shuang – sequence: 3 givenname: Wan-Huan surname: Zhou fullname: Zhou, Wan-Huan – sequence: 4 givenname: Adam surname: Bezuijen fullname: Bezuijen, Adam |
BookMark | eNp1kEtLxDAUhYMo-PwB7voHOuZpM0uf44AywozrcJveDJGYSJou_Pe2jogIbu7jcM5ZfMdkP6aIhJwzOhNCzy9cO_gw45TzmZaaKb1HjjifN7UQl3z_131Izvr-lVLKGiUUbY6IXcaCIfgtxlI9Z-y8LT7FKrnqaQjF1_dgS8r1KvvRgV21yGmIXbXGUgK-TanbIfu4rTbXT9VmiBHD9PlYrZMr4_DhlBw4CD2efe8T8nJ_t7l5qB9Xi-XN1WNthZKlboAp1milOdfYUTrnLVhEVFpLoUXTSmeVhBal0sAoBwDLpG7Hm85bBHFClrveLsGrec_-DfKHSeDNl5Dy1kAu3gY0rgHnOJUSAKUWbav1JZOSKm4lH9Wxi-26bE59n9H99DFqJujmC7qZoJsd9DHT_MlYX2DCWTKM3v-Tn-yAioM |
CitedBy_id | crossref_primary_10_1016_j_tust_2024_105643 crossref_primary_10_3389_fevo_2023_1237250 |
Cites_doi | 10.1016/j.apm.2016.06.003 10.1139/cgj-2014-0338 10.1109/72.97934 10.1016/j.tust.2012.04.012 10.1016/j.cma.2017.08.031 10.1139/T10-023 10.1016/j.tust.2021.103917 10.1007/s11440-022-01461-4 10.1016/j.tust.2017.12.011 10.1016/j.tust.2005.06.007 10.1016/j.tust.2015.04.001 10.1061/(ASCE)MT.1943-5533.0002850 10.1016/j.tust.2017.03.011 10.1016/j.ress.2017.07.018 10.1016/j.engfailanal.2017.04.030 10.1016/j.sandf.2018.11.005 10.1016/j.undsp.2019.03.007 10.1061/(ASCE)GM.1943-5622.0000259 10.1139/t99-039 10.1016/j.compgeo.2017.04.003 10.1016/j.compgeo.2009.01.003 10.1016/j.neucom.2010.10.013 10.1016/j.ijrmms.2012.06.005 10.1016/j.sandf.2015.02.016 10.1016/j.gsf.2021.101177 10.1016/j.tust.2018.04.009 10.1139/t05-025 10.1016/j.compgeo.2017.07.027 10.1016/j.trgeo.2018.11.009 10.1007/s00366-018-00699-5 10.1016/j.autcon.2019.102860 10.1061/(asce)1090-0241(1998)124:5(389) 10.1016/j.tust.2007.07.002 10.1016/j.tust.2015.08.001 10.1139/cgj-2017-0355 10.1680/geot.1996.46.4.753 10.1016/j.tust.2005.07.001 10.1016/j.compgeo.2018.04.006 10.1615/int.j.uncertaintyquantification.2016016055 10.1016/j.tust.2022.104405 10.1061/(asce)0887-3801(2006)20:4(281) 10.1061/(ASCE)EE.1943-7870.0000689 10.1680/geot.14.P.123 10.1680/jgeen.17.0011710.1680/jgeen.17.00117 10.1016/j.tust.2015.09.010 10.1016/S0886-7798(01)00068-2 10.3390/app9214650 10.1061/(asce)1090-0241(2005)131:10(1234) 10.1016/j.geotexmem.2019.01.006 10.1016/S0893-6080(09)80013-0 10.1002/nag.2788 10.1016/j.tust.2016.12.004 10.1016/j.sandf.2015.06.006 10.1061/(asce)1090-0241(2008)134:7(1021) 10.1016/j.enggeo.2018.12.006 10.1016/j.tust.2022.104428 10.1016/j.compgeo.2017.04.002 10.1016/j.undsp.2017.08.001 10.1016/j.cie.2018.02.028 10.1016/j.compgeo.2014.11.010 10.1016/j.tust.2019.103096 10.1016/j.asoc.2019.105859 10.1007/s12665-017-6893-1 10.1016/j.tust.2019.103104 10.1016/j.tust.2006.11.001 10.1016/j.trgeo.2020.100336 10.3390/app9091812 10.1139/cgj-2012-0445 10.1016/j.compgeo.2016.12.032 10.1016/j.compgeo.2012.01.002 10.1061/(ASCE)GM.1943-5622.0000817 10.1061/(asce)1090-0241(1998)124:9(846) 10.1002/nag.2979 10.1061/(ASCE)GT.1943-5606.0000390 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fbuil.2022.848158 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2297-3362 |
ExternalDocumentID | oai_doaj_org_article_f7aff2044aae483bb886144052c4244a 10_3389_fbuil_2022_848158 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-7a1517858228ed0092baceee58843837b4fc54abe458a102aaac148ba1009bea3 |
IEDL.DBID | DOA |
ISSN | 2297-3362 |
IngestDate | Wed Aug 27 01:24:21 EDT 2025 Tue Jul 01 03:54:11 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-7a1517858228ed0092baceee58843837b4fc54abe458a102aaac148ba1009bea3 |
OpenAccessLink | https://doaj.org/article/f7aff2044aae483bb886144052c4244a |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7aff2044aae483bb886144052c4244a crossref_primary_10_3389_fbuil_2022_848158 crossref_citationtrail_10_3389_fbuil_2022_848158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-05 |
PublicationDateYYYYMMDD | 2022-04-05 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in built environment |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Peck (B43) 1969 Zhang (B67) 2019; 106 Hajihassani (B16) 2020; 36 Khisamitov (B23) 2018; 328 Moeinossadat (B34) 2019; 18 Yan (B63) 2021; 112 Specht (B55) 1991; 2 Lyu (B30) 2022; 123 Pal (B40) 2008; 134 Zheng (B73) 2017; 79 Bouayad (B4) 2017; 68 Mahdevari (B31) 2012; 55 Ng (B36) 2005; 42 Zhao (B70) 2017; 92 Ahangari (B1) 2015; 55 Lu (B29) 2019; 4 Ibrahim (B18) 2015; 49 Neaupane (B35) 2006; 21 Darabi (B10) 2012; 31 Gamse (B14) 2018; 169 Qi (B47) 2017; 85 Wu (B61) 2018; 78 Zhao (B69) 2019; 47 Huang (B17) 2015; 64 Shen (B50) 2022 Attewell (B3) 1985; 18 Kanevski (B21) 1999 Verruijt (B59) 1996; 46 Zhang (B68) 2017; 76 Chen (B6) 2016; 51 Lin (B26) 2021; 12 Ren (B48) 2018; 55 Suwansawat (B56) 2006; 21 Zhao (B71) 2016; 40 Chou (B9) 2002; 17 Jin (B19) 2019; 248 Soga (B53) 2017; 2 Phoon (B44) 1999; 36 Qi (B46) 2018; 118 Pooya Nejad (B45) 2017; 89 Leca (B25) 2007; 22 Xu (B62) 2018; 73 Yuen (B65) 2016; 6 Alagha (B2) 2019; 94 Marshall (B32) 2010; 136 Hajihassani (B15) 2019; 9 Tan (B57) 2018; 42 Yang (B64) 2020; 23 Shi (B52) 1998; 124 Zhou (B75) 2018; 100 Zhang (B66) 2019; 85 Santos (B49) 2008; 23 Soranzo (B54) 2015; 65 Kurup (B24) 2006; 20 Paternesi (B42) 2017; 88 Elbaz (B12) 2018; 171 Zhou (B74) 2017; 17 Lin (B27) 2019; 93 Boubou (B5) 2010; 47 Chen (B7) 2019; 59 Kelly (B22) 2015; 52 Elbaz (B13) 2022; 123 Park (B41) 2012; 42 Jin (B20) 2019; 43 Shen (B51) 2019; 9 Loganathan (B28) 1998; 124 Ninić (B38) 2017; 63 Ng (B37) 2013; 50 Cho (B8) 2009; 36 Zhao (B72) 2019; 31 Wu (B60) 2015; 50 Doulati Ardejanii (B11) 2013; 139 Theodosiou (B58) 2011; 74 Zhou (B76) 2013; 13 Maynar (B33) 2005; 131 Ochmański (B39) 2015; 55 |
References_xml | – volume: 40 start-page: 9254 year: 2016 ident: B71 article-title: A Dual Beam Model for Geosynthetic-Reinforced Granular Fill on an Elastic Foundation publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.06.003 – volume: 52 start-page: 1318 year: 2015 ident: B22 article-title: Bayesian Updating for One-Dimensional Consolidation Measurements publication-title: Can. Geotech. J. doi: 10.1139/cgj-2014-0338 – volume: 2 start-page: 568 year: 1991 ident: B55 article-title: A General Regression Neural Network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 31 start-page: 117 year: 2012 ident: B10 article-title: Subsidence Estimation Utilizing Various Approaches - A Case Study: Tehran No. 3 Subway Line publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2012.04.012 – volume: 328 start-page: 452 year: 2018 ident: B23 article-title: Variational Approach to Interface Element Modeling of Brittle Fracture Propagation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.08.031 – volume: 47 start-page: 1214 year: 2010 ident: B5 article-title: Artificial Neural Network Application for the Prediction of Ground Surface Movements Induced by Shield Tunnelling publication-title: Can. Geotech. J. doi: 10.1139/T10-023 – volume: 112 start-page: 103917 year: 2021 ident: B63 article-title: Construction Efficiency of Shield Tunnelling through Soft deposit in Tianjin, China publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2021.103917 – year: 2022 ident: B50 article-title: Real-time Prediction of Shield Moving Trajectory during Tunnelling publication-title: Acta Geotech. doi: 10.1007/s11440-022-01461-4 – start-page: 225 volume-title: Deep Excavations and Tunneling in Soft Ground. 7th Int. Conf. Soil Mech. Found. Eng. year: 1969 ident: B43 – volume: 73 start-page: 203 year: 2018 ident: B62 article-title: Analytical Methods in Predicting Excess Pore Water Pressure in Front of Slurry Shield in Saturated sandy Ground publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2017.12.011 – volume: 21 start-page: 133 year: 2006 ident: B56 article-title: Artificial Neural Networks for Predicting the Maximum Surface Settlement Caused by EPB Shield Tunneling publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2005.06.007 – volume: 49 start-page: 18 year: 2015 ident: B18 article-title: Three-dimensional Face Stability Analysis of Pressurized Tunnels Driven in a Multilayered Purely Frictional Medium publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2015.04.001 – volume: 31 year: 2019 ident: B72 article-title: Selection of Physical and Chemical Properties of Natural Fibers for Predicting Soil Reinforcement publication-title: J. Mater. Civ Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002850 – volume: 68 start-page: 142 year: 2017 ident: B4 article-title: Modeling the Relationship between Ground Surface Settlements Induced by Shield Tunneling and the Operational and Geological Parameters Based on the Hybrid PCA/ANFIS Method publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2017.03.011 – volume: 169 start-page: 40 year: 2018 ident: B14 article-title: Hydrostatic-season-time Model Updating Using Bayesian Model Class Selection publication-title: Reliability Eng. Syst. Saf. doi: 10.1016/j.ress.2017.07.018 – volume: 79 start-page: 464 year: 2017 ident: B73 article-title: Study of the Collapse Mechanism of Shield Tunnels Due to the Failure of Segments in sandy Ground publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2017.04.030 – volume: 59 start-page: 284 year: 2019 ident: B7 article-title: Prediction of Maximum Surface Settlement Caused by Earth Pressure Balance (EPB) Shield Tunneling with ANN Methods publication-title: Soils and Foundations doi: 10.1016/j.sandf.2018.11.005 – volume: 4 start-page: 302 year: 2019 ident: B29 article-title: Centrifuge Modeling of Tunneling-Induced Ground Surface Settlement in Sand publication-title: Underground Space doi: 10.1016/j.undsp.2019.03.007 – volume: 13 start-page: 659 year: 2013 ident: B76 article-title: Estimation of Maximum Pullout Shear Stress of Grouted Soil Nails Using Bayesian Probabilistic Approach publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000259 – volume: 36 start-page: 625 year: 1999 ident: B44 article-title: Evaluation of Geotechnical Property Variability publication-title: Can. Geotech. J. doi: 10.1139/t99-039 – volume: 89 start-page: 9 year: 2017 ident: B45 article-title: Load-settlement Behavior Modeling of Single Piles Using Artificial Neural Networks and CPT Data publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2017.04.003 – volume: 36 start-page: 787 year: 2009 ident: B8 article-title: Probabilistic Stability Analyses of Slopes Using the ANN-Based Response Surface publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2009.01.003 – volume: 74 start-page: 896 year: 2011 ident: B58 article-title: Disaggregation & Aggregation of Time Series Components: A Hybrid Forecasting Approach Using Generalized Regression Neural Networks and the Theta Method publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.10.013 – volume: 55 start-page: 33 year: 2012 ident: B31 article-title: Application of Artificial Intelligence Algorithms in Predicting Tunnel Convergence to Avoid TBM Jamming Phenomenon publication-title: Int. J. Rock Mech. Mining Sci. doi: 10.1016/j.ijrmms.2012.06.005 – volume: 55 start-page: 425 year: 2015 ident: B39 article-title: Prediction of the Diameter of Jet Grouting Columns with Artificial Neural Networks publication-title: Soils and Foundations doi: 10.1016/j.sandf.2015.02.016 – volume: 12 start-page: 101177 year: 2021 ident: B26 article-title: Modelling the Performance of EPB Shield Tunnelling Using Machine and Deep Learning Algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2021.101177 – volume: 78 start-page: 168 year: 2018 ident: B61 article-title: Soil-tunnel Interaction Modelling for Shield Tunnels Considering Shearing Dislocation in Longitudinal Joints publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2018.04.009 – volume: 42 start-page: 1015 year: 2005 ident: B36 article-title: Three-dimensional Ground Settlements and Stress-Transfer Mechanisms Due to Open-Face Tunnelling publication-title: Can. Geotech. J. doi: 10.1139/t05-025 – volume: 92 start-page: 96 year: 2017 ident: B70 article-title: A Simplified Axisymmetric Model for Column Supported Embankment Systems publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2017.07.027 – volume: 18 start-page: 92 year: 2019 ident: B34 article-title: Estimating Maximum Surface Settlement Due to EPBM Tunneling by Numerical-Intelligent Approach - A Case Study: Tehran Subway Line 7 publication-title: Transportation Geotechnics doi: 10.1016/j.trgeo.2018.11.009 – volume: 36 start-page: 251 year: 2020 ident: B16 article-title: 3D Prediction of Tunneling-Induced Ground Movements Based on a Hybrid ANN and Empirical Methods publication-title: Eng. Comput. doi: 10.1007/s00366-018-00699-5 – volume: 106 start-page: 102860 year: 2019 ident: B67 article-title: Real-time Analysis and Regulation of EPB Shield Steering Using Random Forest publication-title: Automation in Construction doi: 10.1016/j.autcon.2019.102860 – volume: 124 start-page: 389 year: 1998 ident: B52 article-title: Modular Neural Networks for Predicting Settlements during Tunneling publication-title: J. Geotechnical Geoenvironmental Eng. doi: 10.1061/(asce)1090-0241(1998)124:5(389) – volume: 18 start-page: 17 year: 1985 ident: B3 article-title: Settlement Development Caused by Tunnelling in Soil publication-title: Gr Eng. – volume: 23 start-page: 481 year: 2008 ident: B49 article-title: Artificial Neural Networks Analysis of São Paulo Subway Tunnel Settlement Data publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2007.07.002 – volume: 50 start-page: 317 year: 2015 ident: B60 article-title: Longitudinal Structural Modelling of Shield Tunnels Considering Shearing Dislocation between Segmental Rings publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2015.08.001 – volume: 55 start-page: 894 year: 2018 ident: B48 article-title: Evaluation of Ground Loss Ratio with Moving Trajectories Induced in Double-O-Tube (DOT) Tunnelling publication-title: Can. Geotech. J. doi: 10.1139/cgj-2017-0355 – volume: 46 start-page: 753 year: 1996 ident: B59 article-title: Surface Settlements Due to Deformation of a Tunnel in an Elastic Half Plane publication-title: Géotechnique doi: 10.1680/geot.1996.46.4.753 – volume: 21 start-page: 151 year: 2006 ident: B35 article-title: Prediction of Tunneling-Induced Ground Movement with the Multi-Layer Perceptron publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2005.07.001 – volume: 100 start-page: 135 year: 2018 ident: B75 article-title: Model Updating and Uncertainty Analysis for Creep Behavior of Soft Soil publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2018.04.006 – volume: 6 start-page: 195 year: 2016 ident: B65 article-title: Bayesian Nonparametric General Regression publication-title: Int. J. Uncertaintyquantification doi: 10.1615/int.j.uncertaintyquantification.2016016055 – volume: 123 start-page: 104405 year: 2022 ident: B13 article-title: Deep Learning Analysis for Energy Consumption of Shield Tunneling Machine Drive System publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2022.104405 – volume: 20 start-page: 281 year: 2006 ident: B24 article-title: Prediction of Soil Composition from CPT Data Using General Regression Neural Network publication-title: J. Comput. Civ. Eng. doi: 10.1061/(asce)0887-3801(2006)20:4(281) – volume: 139 start-page: 896 year: 2013 ident: B11 article-title: Prediction of Rare Earth Elements in Neutral Alkaline Mine Drainage from Razi Coal Mine, Golestan Province, Northeast Iran, Using General Regression Neural Network publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000689 – volume: 65 start-page: 454 year: 2015 ident: B54 article-title: Face Stability of Shallow Tunnels in Partially Saturated Soil: Centrifuge Testing and Numerical Analysis publication-title: Géotechnique doi: 10.1680/geot.14.P.123 – volume: 171 start-page: 363 year: 2018 ident: B12 article-title: Cutter-disc Consumption during Earth Pressure Balance Tunnelling in Mixed Strata publication-title: Proc. Inst. Civil Eng. - Geotechnical Eng. doi: 10.1680/jgeen.17.0011710.1680/jgeen.17.00117 – volume: 51 start-page: 372 year: 2016 ident: B6 article-title: Use of an Improved ANN Model to Predict Collapse Depth of Thin and Extremely Thin Layered Rock Strata during Tunnelling publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2015.09.010 – volume: 17 start-page: 3 year: 2002 ident: B9 article-title: Predictions of Ground Deformations in Shallow Tunnels in clay publication-title: Tunnelling Underground Space Techn. doi: 10.1016/S0886-7798(01)00068-2 – volume: 9 start-page: 4650 year: 2019 ident: B15 article-title: A Gene Expression Programming Model for Predicting Tunnel Convergence publication-title: Appl. Sci. doi: 10.3390/app9214650 – volume: 131 start-page: 1234 year: 2005 ident: B33 article-title: Discrete Numerical Model for Analysis of Earth Pressure Balance Tunnel Excavation publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(asce)1090-0241(2005)131:10(1234) – volume: 47 start-page: 389 year: 2019 ident: B69 article-title: A Closed-form Solution for Column-Supported Embankments with Geosynthetic Reinforcement publication-title: Geotextiles and Geomembranes doi: 10.1016/j.geotexmem.2019.01.006 – start-page: 241 year: 1999 ident: B21 article-title: The General Regression Neural Network—Rediscovered publication-title: Int. J. Syst. Res. Inf. Syst. doi: 10.1016/S0893-6080(09)80013-0 – volume: 42 start-page: 1235 year: 2018 ident: B57 article-title: Effect of Loading Duration on Uncertainty in Creep Analysis of clay publication-title: Int. J. Numer. Anal. Methods Geomech doi: 10.1002/nag.2788 – volume: 63 start-page: 12 year: 2017 ident: B38 article-title: A Hybrid Finite Element and Surrogate Modelling Approach for Simulation and Monitoring Supported TBM Steering publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2016.12.004 – volume: 55 start-page: 737 year: 2015 ident: B1 article-title: Estimation of Tunnelling-Induced Settlement by Modern Intelligent Methods publication-title: Soils and Foundations doi: 10.1016/j.sandf.2015.06.006 – volume: 134 start-page: 1021 year: 2008 ident: B40 article-title: Modeling Pile Capacity Using Support Vector Machines and Generalized Regression Neural Network publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(asce)1090-0241(2008)134:7(1021) – volume: 248 start-page: 242 year: 2019 ident: B19 article-title: A Single-Objective EPR Based Model for Creep index of Soft Clays Considering L2 Regularization publication-title: Eng. Geology. doi: 10.1016/j.enggeo.2018.12.006 – volume: 123 start-page: 104428 year: 2022 ident: B30 article-title: Assessment of Safety Status of Shield Tunnelling Using Operational Parameters with Enhanced SPA publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2022.104428 – volume: 88 start-page: 256 year: 2017 ident: B42 article-title: Numerical Analyses of Stability and Deformation Behavior of Reinforced and Unreinforced Tunnel Faces publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2017.04.002 – volume: 2 start-page: 149 year: 2017 ident: B53 article-title: Long-term Tunnel Behaviour and Ground Movements after Tunnelling in Clayey Soils publication-title: Underground Space doi: 10.1016/j.undsp.2017.08.001 – volume: 118 start-page: 112 year: 2018 ident: B46 article-title: Slope Stability Prediction Using Integrated Metaheuristic and Machine Learning Approaches: A Comparative Study publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.02.028 – volume: 64 start-page: 132 year: 2015 ident: B17 article-title: Simplified Procedure for Finite Element Analysis of the Longitudinal Performance of Shield Tunnels Considering Spatial Soil Variability in Longitudinal Direction publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2014.11.010 – volume: 94 start-page: 103096 year: 2019 ident: B2 article-title: Numerical Modelling of Tunnel Face Stability in Homogeneous and Layered Soft Ground publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2019.103096 – volume: 85 start-page: 105859 year: 2019 ident: B66 article-title: A Novel Feature Selection Method Based on Global Sensitivity Analysis with Application in Machine Learning-Based Prediction Model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105859 – volume: 76 start-page: 1 year: 2017 ident: B68 article-title: Numerical Analysis of Volume Loss Caused by Tunnel Face Instability in Soft Soils publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6893-1 – volume: 93 start-page: 103104 year: 2019 ident: B27 article-title: Three-dimensional Stress-Transfer Mechanism and Soil Arching Evolution Induced by Shield Tunneling in sandy Ground publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2019.103104 – volume: 22 start-page: 119 year: 2007 ident: B25 article-title: Settlements Induced by Tunneling in Soft Ground publication-title: Tunnelling Underground Space Techn. doi: 10.1016/j.tust.2006.11.001 – volume: 23 start-page: 100336 year: 2020 ident: B64 article-title: Numerical Analysis for the Role of Soil Properties to the Load Transfer in clay Foundation Due to the Traffic Load of the Metro Tunnel publication-title: Transportation Geotechnics doi: 10.1016/j.trgeo.2020.100336 – volume: 9 start-page: 1812 year: 2019 ident: B51 article-title: Influence of Shield Attitude Change on Shield-Soil Interaction publication-title: Appl. Sci. doi: 10.3390/app9091812 – volume: 50 start-page: 935 year: 2013 ident: B37 article-title: Three-dimensional Centrifuge and Numerical Modeling of the Interaction between Perpendicularly Crossing Tunnels publication-title: Can. Geotech. J. doi: 10.1139/cgj-2012-0445 – volume: 85 start-page: 186 year: 2017 ident: B47 article-title: An Efficient Probabilistic Back-Analysis Method for Braced Excavations Using wall Deflection Data at Multiple Points publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2016.12.032 – volume: 42 start-page: 73 year: 2012 ident: B41 article-title: Implementation of Bayesian Theory on LRFD of Axially Loaded Driven Piles publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2012.01.002 – volume: 17 start-page: 1 year: 2017 ident: B74 article-title: Feasibility of Random-forest Approach for Prediction of Ground Settlements Induced by the Construction of a Shield-Driven Tunnel publication-title: Int. J. Geomech doi: 10.1061/(ASCE)GM.1943-5622.0000817 – volume: 124 start-page: 846 year: 1998 ident: B28 article-title: Analytical Prediction for Tunneling-Induced Ground Movements in Clays publication-title: J. Geotechnical Geoenvironmental Eng. doi: 10.1061/(asce)1090-0241(1998)124:9(846) – volume: 43 start-page: 2305 year: 2019 ident: B20 article-title: Bayesian Model Selection for Sand with Generalization Ability Evaluation publication-title: Int. J. Numer. Anal. Methods Geomech doi: 10.1002/nag.2979 – volume: 136 start-page: 1664 year: 2010 ident: B32 article-title: Tunneling beneath Buried Pipes: View of Soil Strain and its Effect on Pipeline Behavior publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000390 |
SSID | ssj0001753507 |
Score | 2.2337775 |
Snippet | Tunneling-induced ground surface settlement is associated with many complex influencing factors. Beyond factors related to tunnel geometry and surrounding... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | feature selection non-parametric operational factor pitching angle tunneling-induced settlement |
Title | Intelligent Prediction of Multi-Factor-Oriented Ground Settlement During TBM Tunneling in Soft Soil |
URI | https://doaj.org/article/f7aff2044aae483bb886144052c4244a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7Enzh_kYMnIa42SdscnTqmMBW2wW4lr0tgMLoxuv_f99I6etKLl9KWtoSPR9_3JXnfY-yOPLK8kSAgS6RQoFIBkfcClJdGG5ukoep99JEMp-p9pmetVl-0J6y2B66B6_nUeh9HSlnrVCYBsow0TKTjgmq0AjXCnNcSU2F2BVk4Mp16GRNVmOl52C5oqSGOH8hBnlq8txJRy68_JJbBETtsGCF_qkdyzPZcecIOWj6Bp6x42xlnVvxrQ2srhCdfeR4KaMUgdM0Rn2RajBSS04xSOedjRw7FNP_HX0I5Ip_0R3yypb0tdLUo-Rh_w3hYLM_YdPA6eR6KpjuCKKRWlUgtJus005jhMzcn7ySwmPEcVZ6S7ES0C60sOKUzizTCWlug9gE8jww4K89Zp1yV7oJxMC7xHqRU1iilFfh5mjhq4YtyLC0euyz6gSovGutw6mCxzFFCELp5QDcndPMa3S67372yrn0zfnu4T_jvHiTL63ADAyFvAiH_KxAu_-MjV2yfxhW25uhr1qk2W3eDrKOC2xBg3zeC1GI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Prediction+of+Multi-Factor-Oriented+Ground+Settlement+During+TBM+Tunneling+in+Soft+Soil&rft.jtitle=Frontiers+in+built+environment&rft.au=Ding%2C+Zhi&rft.au=Zhao%2C+Lin-Shuang&rft.au=Zhou%2C+Wan-Huan&rft.au=Bezuijen%2C+Adam&rft.date=2022-04-05&rft.issn=2297-3362&rft.eissn=2297-3362&rft.volume=8&rft_id=info:doi/10.3389%2Ffbuil.2022.848158&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fbuil_2022_848158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-3362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-3362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-3362&client=summon |