Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition

In the present study, the physical meaning of vorticity is revisited based on the Liutex-Shear (RS) decomposition proposed by Liu et al. in the framework of Liutex (previously called Rortex), a vortex vector field with information of both rotation axis and swirling strength (Liu et al. 2018). It is...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 31; no. 3; pp. 464 - 474
Main Authors Wang, Yi-qian, Gao, Yi-sheng, Liu, Jian-ming, Liu, Chaoqun
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present study, the physical meaning of vorticity is revisited based on the Liutex-Shear (RS) decomposition proposed by Liu et al. in the framework of Liutex (previously called Rortex), a vortex vector field with information of both rotation axis and swirling strength (Liu et al. 2018). It is demonstrated that the vorticity in the direction of rotational axis is twice the spatial mean angular velocity in the small neighborhood around the considered point while the imaginary part of the complex eigenvalue ( λ ci ) of the velocity gradient tensor (if exist) is the pseudo-time average angular velocity of a trajectory moving circularly or spirally around the axis. In addition, an explicit expression of the Liutex vector in terms of the eigenvalues and eigenvectors of velocity gradient is obtained for the first time from above understanding, which can further, though mildly, accelerate the calculation and give more physical comprehension of the Liutex vector.
AbstractList In the present study, the physical meaning of vorticity is revisited based on the Liutex-Shear (RS) decomposition proposed by Liu et al. in the framework of Liutex (previously called Rortex), a vortex vector field with information of both rotation axis and swirling strength (Liu et al. 2018). It is demonstrated that the vorticity in the direction of rotational axis is twice the spatial mean angular velocity in the small neighborhood around the considered point while the imaginary part of the complex eigenvalue ( λ ci ) of the velocity gradient tensor (if exist) is the pseudo-time average angular velocity of a trajectory moving circularly or spirally around the axis. In addition, an explicit expression of the Liutex vector in terms of the eigenvalues and eigenvectors of velocity gradient is obtained for the first time from above understanding, which can further, though mildly, accelerate the calculation and give more physical comprehension of the Liutex vector.
Author Liu, Chaoqun
Wang, Yi-qian
Gao, Yi-sheng
Liu, Jian-ming
Author_xml – sequence: 1
  givenname: Yi-qian
  surname: Wang
  fullname: Wang, Yi-qian
  organization: School of Aerospace Engineering, Tsinghua University
– sequence: 2
  givenname: Yi-sheng
  surname: Gao
  fullname: Gao, Yi-sheng
  organization: Department of Mathematics, University of Texas at Arlington
– sequence: 3
  givenname: Jian-ming
  surname: Liu
  fullname: Liu, Jian-ming
  organization: School of Mathematics and Statistics, Jiangsu Normal University
– sequence: 4
  givenname: Chaoqun
  surname: Liu
  fullname: Liu, Chaoqun
  email: cliu@uta.edu
  organization: Department of Mathematics, University of Texas at Arlington
BookMark eNp9kMtKAzEUhoNUsK0-gLu8QDTJZG5LKfUCBRfqOmRyaVNmkiFJS_v2ZqgLceHqPxzOd875_wWYOe80APcEPxCM68fIKGUEYdIijAuK6BWYk6ZuEC4YneUaY4IqXDY3YBHjPs9ULWZzMK5PY2-lTdD4MBx6MSlMOw039pD0CR61TLkjnILj7hytFD0ctHDWbaE38OhDmvAz7ETUCnr3C0YfOy0CVFr6YfTRJuvdLbg2oo_67keX4Ot5_bl6RZv3l7fV0wbJomQJVVIITVpDlBSyZQIT0xHWUlPJhtVVqUzXCkoJNbgsSyJrRboai05VSjWVMcUSkMteGXyMQRs-BjuIcOYE8ykyfomM58j4FBmnman_MNmZmL5OQdj-X5JeyJivuK0OfO8PwWWD_0DfUleE-w
CitedBy_id crossref_primary_10_1007_s12650_023_00923_5
crossref_primary_10_1080_19942060_2023_2261532
crossref_primary_10_1007_s42241_022_0051_2
crossref_primary_10_1016_j_euromechflu_2022_12_007
crossref_primary_10_1103_PhysRevFluids_8_084603
crossref_primary_10_1007_s42241_023_0026_y
crossref_primary_10_1088_1742_6596_2752_1_012058
crossref_primary_10_1016_j_est_2023_108173
crossref_primary_10_1063_5_0156118
crossref_primary_10_31857_S1024708422601019
crossref_primary_10_1063_5_0138807
crossref_primary_10_1007_s42241_019_0049_6
crossref_primary_10_1063_5_0074615
crossref_primary_10_1007_s42241_022_0064_x
crossref_primary_10_1007_s42241_023_0006_2
crossref_primary_10_1016_j_est_2022_105079
crossref_primary_10_1063_1_5118948
crossref_primary_10_1016_j_compfluid_2021_104977
crossref_primary_10_1002_ese3_1778
crossref_primary_10_1007_s42241_021_0037_5
crossref_primary_10_1016_j_ijheatfluidflow_2024_109407
crossref_primary_10_1088_1742_6596_2752_1_012065
crossref_primary_10_2514_1_J064345
crossref_primary_10_1177_0957650920983061
crossref_primary_10_1007_s42241_020_0037_x
crossref_primary_10_1063_1_5116374
crossref_primary_10_1007_s42241_020_0052_y
crossref_primary_10_1142_S0217984921500111
crossref_primary_10_1007_s42241_024_0010_1
crossref_primary_10_1007_s10439_023_03362_3
crossref_primary_10_1016_j_enconman_2024_118798
crossref_primary_10_1016_j_est_2024_112731
crossref_primary_10_1051_0004_6361_202449401
crossref_primary_10_1063_5_0124552
crossref_primary_10_1063_5_0209003
crossref_primary_10_1007_s42241_020_0022_4
crossref_primary_10_3390_e25010025
crossref_primary_10_1016_j_est_2024_112297
crossref_primary_10_1016_j_ijmecsci_2021_106692
crossref_primary_10_1007_s42241_021_0062_4
crossref_primary_10_1007_s42241_024_0003_0
crossref_primary_10_1007_s42241_019_0046_9
crossref_primary_10_1016_j_energy_2023_129835
crossref_primary_10_1016_j_energy_2023_130086
crossref_primary_10_1016_j_seta_2023_103441
crossref_primary_10_1063_5_0142624
crossref_primary_10_1051_0004_6361_202346217
crossref_primary_10_1007_s42241_020_0056_7
crossref_primary_10_1063_5_0126564
crossref_primary_10_3389_arc_2023_12300
crossref_primary_10_1007_s42241_019_0092_3
crossref_primary_10_1007_s42241_021_0013_0
crossref_primary_10_1016_j_ces_2022_117950
crossref_primary_10_1088_1742_6596_2707_1_012058
crossref_primary_10_1063_5_0050555
crossref_primary_10_1007_s42241_023_0011_5
crossref_primary_10_1007_s42241_020_0079_0
crossref_primary_10_1016_j_ces_2022_118369
crossref_primary_10_1109_ACCESS_2021_3052777
crossref_primary_10_1007_s42241_020_0018_0
crossref_primary_10_1007_s42241_023_0053_8
crossref_primary_10_1063_5_0253618
crossref_primary_10_1016_j_energy_2024_134214
crossref_primary_10_1007_s11431_020_1687_4
crossref_primary_10_1007_s42241_022_0053_0
crossref_primary_10_1051_0004_6361_202243740
crossref_primary_10_1080_19942060_2021_1985615
crossref_primary_10_1063_5_0135502
crossref_primary_10_1007_s42241_024_0005_y
crossref_primary_10_1007_s42241_024_0008_8
crossref_primary_10_1007_s42241_023_0061_8
crossref_primary_10_1063_5_0099959
crossref_primary_10_1007_s42241_019_0066_5
crossref_primary_10_1016_j_oceaneng_2022_111333
crossref_primary_10_1093_gji_ggab120
crossref_primary_10_1007_s42241_020_0035_z
crossref_primary_10_1007_s42241_021_0058_0
crossref_primary_10_1016_j_apm_2021_10_046
crossref_primary_10_1016_j_compfluid_2022_105371
crossref_primary_10_2514_1_J060505
crossref_primary_10_1007_s42241_021_0096_7
crossref_primary_10_1063_5_0186353
crossref_primary_10_1016_j_compfluid_2022_105731
crossref_primary_10_1088_1742_6596_2752_1_012109
crossref_primary_10_1016_j_jmps_2019_103835
crossref_primary_10_1007_s42241_022_0046_z
crossref_primary_10_1134_S0015462823600578
crossref_primary_10_1016_j_joes_2021_09_017
crossref_primary_10_1007_s42241_019_0048_7
crossref_primary_10_1063_1_5109437
crossref_primary_10_3390_math11010116
crossref_primary_10_1007_s42241_023_0085_0
crossref_primary_10_1016_j_est_2024_110921
crossref_primary_10_1115_1_4049687
crossref_primary_10_3390_jmse9101058
crossref_primary_10_1007_s42241_020_0058_5
crossref_primary_10_1007_s42241_021_0034_8
crossref_primary_10_1063_5_0086084
crossref_primary_10_1063_5_0213678
crossref_primary_10_1007_s42241_019_0094_1
crossref_primary_10_1063_5_0176538
crossref_primary_10_3390_w15112053
crossref_primary_10_1088_1873_7005_ace6cf
crossref_primary_10_1007_s10409_021_09085_x
crossref_primary_10_1080_19942060_2021_1938685
crossref_primary_10_1007_s11214_022_00946_8
Cites_doi 10.1063/1.1311613
10.1063/1.5040112
10.1016/j.jcp.2009.05.010
10.1063/1.5009115
10.1017/S0022112067001740
10.1063/1.857730
10.1146/annurev.fl.23.010191.003125
10.1063/1.2717527
10.1017/S002211200100667X
10.1007/s42241-019-0024-2
10.1017/jfm.2018.144
10.1017/jfm.2018.406
10.1063/1.4893343
10.1063/1.4907783
10.1007/s42241-019-0022-4
10.1016/j.compfluid.2010.11.006
10.1080/14685240600925163
10.1016/j.compfluid.2014.06.032
10.1017/S0022112095000462
10.1016/0021-9991(92)90324-R
10.1002/fld.2480
10.1007/978-3-540-29028-5
10.1016/0142-727X(94)00006-X
10.1007/s42241-019-0028-y
10.1063/1.5018844
10.1007/s42241-018-0112-8
10.1063/1.4927647
10.1017/S0022112096003965
10.4208/cicp.OA-2016-0183
ContentType Journal Article
Copyright China Ship Scientific Research Center 2019
Copyright_xml – notice: China Ship Scientific Research Center 2019
DBID AAYXX
CITATION
DOI 10.1007/s42241-019-0032-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0342
EndPage 474
ExternalDocumentID 10_1007_s42241_019_0032_2
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
7-5
71M
8P~
92H
92I
92M
9D9
9DA
AABNK
AACDK
AACTN
AAEDT
AAEDW
AAHNG
AAIAL
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AAQFI
AASML
AATNV
AAUYE
AAXDM
AAXKI
AAXUO
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABWVN
ABXDB
ABXPI
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACMLO
ACNNM
ACOKC
ACPIV
ACRLP
ACRPL
ACZOJ
ADEZE
ADHHG
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFQL
AEIPS
AEJRE
AEKER
AEMSY
AENEX
AEPYU
AESKC
AFBBN
AFKWA
AFQWF
AFUIB
AGDGC
AGHFR
AGJBK
AGMZJ
AGQEE
AGRTI
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIGIU
AIKHN
AILAN
AITGF
AITUG
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ANKPU
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CCEZO
CCVFK
CHBEP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIGPU
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~LB
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c354t-6caae19f1dcac94a01fb1492f6c84765dfb9a2212f05551c7d1b70abd6dd86ff3
ISSN 1001-6058
IngestDate Tue Jul 01 02:16:52 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Fri Feb 21 02:30:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Liutex
Liutex-Shear decomposition
explicit formula of Liutex
Vorticity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c354t-6caae19f1dcac94a01fb1492f6c84765dfb9a2212f05551c7d1b70abd6dd86ff3
PageCount 11
ParticipantIDs crossref_primary_10_1007_s42241_019_0032_2
crossref_citationtrail_10_1007_s42241_019_0032_2
springer_journals_10_1007_s42241_019_0032_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationYear 2019
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References ChongMPerryACantwellBA general classification of three dimensional flow fields [J]Physics of Fluids A19902765777105001310.1063/1.857730
JeongJHussainFOn the identification of a vortex [J]Journal of Fluid Mechanics19952856994131790010.1017/S00221120950004620847.76007
LiuJWangYGaoYGalilean invariance of Omega vortex identification method [J]Journal of Hydrodynamics2019
LiuCChenLParallel DNS for vortex structure of late stages of flow transition [J]Computers and Fluids20114512913710.1016/j.compfluid.2010.11.00605895928
JiménezJCoherent structures in wall-bounded turbulence [J]Journal of Fluid Mechanics2018842P1377957810.1017/jfm.2018.144
ChenQZhongQQiMComparison of vortex identification criteria for velocity fields in wall turbulence [J]Physics of Fluids20152708510110.1063/1.4927647
Eitel-AmorGórlúRSchlatterPHairpin vortices in turbulent boundary layers [J]Physics of Fluids20152702510810.1063/1.4907783
JeongJHussainFSchoppaWCoherent structures near the wall in a turbulent channel flow [J]Journal of Fluid Mechanics199733218521410.1017/S00221120960039650892.76036
WangYAl-DujalyHYanYPhysics of multiple level hairpin vortex structures in turbulence [J]Science China: Physics, Mechanics and Astronomy201659624703
LeleS KCompact finite difference schemes with spectral-like resolution [J]Journal of Computational Physics19921031642118808810.1016/0021-9991(92)90324-R0759.65006
RobinsonS KCoherent motion in the turbulent boundary layer [J]Annual Review of Fluid Mechanics19912360163910.1146/annurev.fl.23.010191.003125
AdrianR JHairpin vortex organization in wall turbulence [J]Physics of Fluids20071904130110.1063/1.27175271146.76307
LiuJGaoYWangYObjective Omega vortex identification method [J]Journal of Hydrodynamics2019
EppsBReview of vortex identification methods [C]55th AIAA Aerospace Sciences Meeting2017
LiuCYanYLuPPhysics of turbulence generation and sustence in a transitional boundary layer [J]Computers and Fluids201410235338410.1016/j.compfluid.2014.06.032
GaoYLiuCRortex and comparison with eigenvalue-based vortex identification criteria [J]Physics of Fluids20183008510710.1063/1.5040112
ZhangY NQiuXChenFA selected review of vortex identification methods with applications [J]Journal of Hydrodynamics201830576777910.1007/s42241-018-0112-8
LaizetSLamballaisEHigh-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy [J]Journal of Computational Physics200822859896015254292410.1016/j.jcp.2009.05.0101185.76823
LaizetSLiNIncompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores [J]International Journal for Numerical Methods in Fluids2011671735175710.1002/fld.248006047586
WangYYangYYangGDNS study on vortex and vorticity in late boundary layer transition [J]Communications in Computational Physics201722441459366841910.4208/cicp.OA-2016-0183
ChenHAdrianR JZhongQAnalytic solutions for three-dimensional swirling strength in compressible and incompressible flows [J]Physics of Fluids20142608170110.1063/1.4893343
KlineS JReynoldsW CSchraubF ARunstadlerP WThe structure of turbulent boundary layers [J]Journal of Fluid Mechanics19673074177310.1017/S0022112067001740
LiuCGaoY SDongX RThird generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]Journal of Hydrodynamics2019
DongXDongGLiuCStudy on vorticity structures in late flow transition [J]Physics of Fluids20183001410510.1063/1.5009115
KasagiNSumitaniYSuzukiYKinematics of the quasi-coherent vertical structure in near-wall turbulence [J]International Journal of Heat and Fluid Flow19951621010.1016/0142-727X(94)00006-X
TheodorsenTMechanism of turbulence [C]Proceedings of the Midwestern Conference on Fluid Mechanics1952
SchoppaWHussainFCoherent structure generation in near-wall turbulence [J]Journal of Fluid Mechanics200245357108188989310.1017/S002211200100667X1141.76408
WuJMaHZhouMVorticity and Vortices Dynamics [B]2006Berlin HeidelbergSpringer-Verlag10.1007/978-3-540-29028-5
LiuCWangYYangYNew Omega vortex identification method [J]Science China: Physics, Mechanics and Astronomy201659684711
LiuCGaoYTianSRortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]Physics of Fluids20183003410310.1063/1.5018844
HuntJWrayAMoinPEddies, streams, and convergence zones in turbulent flows [C]Proceedings of the Summer Program. Center for Turbulence Research1988193208
LeeCLiRDominant structure for turbulent production in a transitional boundary layer [J]Journal of Turbulence200785510.1080/14685240600925163
TianSGaoYDongXDefinition of vortex vector and vortex [J]Journal of Fluid Mechanics2018849312339381547810.1017/jfm.2018.40606948660
IidaOIwatsukiMNaganoYVortical turbulence structure and transport mechanism in a homogeneous shear flow [J]Physics of Fluids200012289510.1063/1.13116131184.76242
C Liu (32_CR26) 2019
N Kasagi (32_CR10) 1995; 16
G Eitel-Amor (32_CR9) 2015; 27
J Liu (32_CR27) 2019
Y N Zhang (32_CR21) 2018; 30
C Liu (32_CR23) 2018; 30
C Lee (32_CR30) 2007; 8
W Schoppa (32_CR14) 2002; 453
S Tian (32_CR24) 2018; 849
J Wu (32_CR1) 2006
Y Gao (32_CR25) 2018; 30
C Liu (32_CR18) 2016; 59
M Chong (32_CR15) 1990; 2
S K Robinson (32_CR4) 1991; 23
S J Kline (32_CR13) 1967; 30
X Dong (32_CR2) 2018; 30
T Theodorsen (32_CR6) 1952
S Laizet (32_CR33) 2008; 228
Y Wang (32_CR8) 2016; 59
O Iida (32_CR12) 2000; 12
H Chen (32_CR19) 2014; 26
Y Wang (32_CR3) 2017; 22
J Jeong (32_CR11) 1997; 332
J Liu (32_CR28) 2019
J Jiménez (32_CR5) 2018; 842
S K Lele (32_CR29) 1992; 103
C Liu (32_CR31) 2014; 102
J Jeong (32_CR17) 1995; 285
C Liu (32_CR32) 2011; 45
R J Adrian (32_CR7) 2007; 19
S Laizet (32_CR34) 2011; 67
J Hunt (32_CR16) 1988
Q Chen (32_CR20) 2015; 27
B Epps (32_CR22) 2017
References_xml – reference: WangYYangYYangGDNS study on vortex and vorticity in late boundary layer transition [J]Communications in Computational Physics201722441459366841910.4208/cicp.OA-2016-0183
– reference: JeongJHussainFSchoppaWCoherent structures near the wall in a turbulent channel flow [J]Journal of Fluid Mechanics199733218521410.1017/S00221120960039650892.76036
– reference: LiuJWangYGaoYGalilean invariance of Omega vortex identification method [J]Journal of Hydrodynamics2019
– reference: WangYAl-DujalyHYanYPhysics of multiple level hairpin vortex structures in turbulence [J]Science China: Physics, Mechanics and Astronomy201659624703
– reference: AdrianR JHairpin vortex organization in wall turbulence [J]Physics of Fluids20071904130110.1063/1.27175271146.76307
– reference: LeeCLiRDominant structure for turbulent production in a transitional boundary layer [J]Journal of Turbulence200785510.1080/14685240600925163
– reference: JeongJHussainFOn the identification of a vortex [J]Journal of Fluid Mechanics19952856994131790010.1017/S00221120950004620847.76007
– reference: LiuCGaoYTianSRortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]Physics of Fluids20183003410310.1063/1.5018844
– reference: DongXDongGLiuCStudy on vorticity structures in late flow transition [J]Physics of Fluids20183001410510.1063/1.5009115
– reference: KlineS JReynoldsW CSchraubF ARunstadlerP WThe structure of turbulent boundary layers [J]Journal of Fluid Mechanics19673074177310.1017/S0022112067001740
– reference: SchoppaWHussainFCoherent structure generation in near-wall turbulence [J]Journal of Fluid Mechanics200245357108188989310.1017/S002211200100667X1141.76408
– reference: KasagiNSumitaniYSuzukiYKinematics of the quasi-coherent vertical structure in near-wall turbulence [J]International Journal of Heat and Fluid Flow19951621010.1016/0142-727X(94)00006-X
– reference: LiuCYanYLuPPhysics of turbulence generation and sustence in a transitional boundary layer [J]Computers and Fluids201410235338410.1016/j.compfluid.2014.06.032
– reference: IidaOIwatsukiMNaganoYVortical turbulence structure and transport mechanism in a homogeneous shear flow [J]Physics of Fluids200012289510.1063/1.13116131184.76242
– reference: HuntJWrayAMoinPEddies, streams, and convergence zones in turbulent flows [C]Proceedings of the Summer Program. Center for Turbulence Research1988193208
– reference: ZhangY NQiuXChenFA selected review of vortex identification methods with applications [J]Journal of Hydrodynamics201830576777910.1007/s42241-018-0112-8
– reference: LiuCGaoY SDongX RThird generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]Journal of Hydrodynamics2019
– reference: Eitel-AmorGórlúRSchlatterPHairpin vortices in turbulent boundary layers [J]Physics of Fluids20152702510810.1063/1.4907783
– reference: LiuCChenLParallel DNS for vortex structure of late stages of flow transition [J]Computers and Fluids20114512913710.1016/j.compfluid.2010.11.00605895928
– reference: LaizetSLamballaisEHigh-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy [J]Journal of Computational Physics200822859896015254292410.1016/j.jcp.2009.05.0101185.76823
– reference: LaizetSLiNIncompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores [J]International Journal for Numerical Methods in Fluids2011671735175710.1002/fld.248006047586
– reference: JiménezJCoherent structures in wall-bounded turbulence [J]Journal of Fluid Mechanics2018842P1377957810.1017/jfm.2018.144
– reference: LiuCWangYYangYNew Omega vortex identification method [J]Science China: Physics, Mechanics and Astronomy201659684711
– reference: LiuJGaoYWangYObjective Omega vortex identification method [J]Journal of Hydrodynamics2019
– reference: WuJMaHZhouMVorticity and Vortices Dynamics [B]2006Berlin HeidelbergSpringer-Verlag10.1007/978-3-540-29028-5
– reference: EppsBReview of vortex identification methods [C]55th AIAA Aerospace Sciences Meeting2017
– reference: RobinsonS KCoherent motion in the turbulent boundary layer [J]Annual Review of Fluid Mechanics19912360163910.1146/annurev.fl.23.010191.003125
– reference: ChongMPerryACantwellBA general classification of three dimensional flow fields [J]Physics of Fluids A19902765777105001310.1063/1.857730
– reference: TianSGaoYDongXDefinition of vortex vector and vortex [J]Journal of Fluid Mechanics2018849312339381547810.1017/jfm.2018.40606948660
– reference: ChenQZhongQQiMComparison of vortex identification criteria for velocity fields in wall turbulence [J]Physics of Fluids20152708510110.1063/1.4927647
– reference: GaoYLiuCRortex and comparison with eigenvalue-based vortex identification criteria [J]Physics of Fluids20183008510710.1063/1.5040112
– reference: LeleS KCompact finite difference schemes with spectral-like resolution [J]Journal of Computational Physics19921031642118808810.1016/0021-9991(92)90324-R0759.65006
– reference: TheodorsenTMechanism of turbulence [C]Proceedings of the Midwestern Conference on Fluid Mechanics1952
– reference: ChenHAdrianR JZhongQAnalytic solutions for three-dimensional swirling strength in compressible and incompressible flows [J]Physics of Fluids20142608170110.1063/1.4893343
– volume: 12
  start-page: 2895
  year: 2000
  ident: 32_CR12
  publication-title: Physics of Fluids
  doi: 10.1063/1.1311613
– volume: 30
  start-page: 085107
  year: 2018
  ident: 32_CR25
  publication-title: Physics of Fluids
  doi: 10.1063/1.5040112
– volume: 228
  start-page: 5989
  year: 2008
  ident: 32_CR33
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2009.05.010
– volume: 30
  start-page: 014105
  year: 2018
  ident: 32_CR2
  publication-title: Physics of Fluids
  doi: 10.1063/1.5009115
– volume: 30
  start-page: 741
  year: 1967
  ident: 32_CR13
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112067001740
– volume: 2
  start-page: 765
  year: 1990
  ident: 32_CR15
  publication-title: Physics of Fluids A
  doi: 10.1063/1.857730
– volume-title: Proceedings of the Midwestern Conference on Fluid Mechanics
  year: 1952
  ident: 32_CR6
– volume: 23
  start-page: 601
  year: 1991
  ident: 32_CR4
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fl.23.010191.003125
– volume: 19
  start-page: 041301
  year: 2007
  ident: 32_CR7
  publication-title: Physics of Fluids
  doi: 10.1063/1.2717527
– volume: 453
  start-page: 57
  year: 2002
  ident: 32_CR14
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S002211200100667X
– volume-title: Journal of Hydrodynamics
  year: 2019
  ident: 32_CR28
  doi: 10.1007/s42241-019-0024-2
– start-page: 193
  volume-title: Proceedings of the Summer Program. Center for Turbulence Research
  year: 1988
  ident: 32_CR16
– volume: 842
  start-page: P1
  year: 2018
  ident: 32_CR5
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2018.144
– volume: 849
  start-page: 312
  year: 2018
  ident: 32_CR24
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2018.406
– volume: 26
  start-page: 081701
  year: 2014
  ident: 32_CR19
  publication-title: Physics of Fluids
  doi: 10.1063/1.4893343
– volume: 27
  start-page: 025108
  year: 2015
  ident: 32_CR9
  publication-title: Physics of Fluids
  doi: 10.1063/1.4907783
– volume-title: Journal of Hydrodynamics
  year: 2019
  ident: 32_CR26
  doi: 10.1007/s42241-019-0022-4
– volume: 45
  start-page: 129
  year: 2011
  ident: 32_CR32
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2010.11.006
– volume: 8
  start-page: 55
  year: 2007
  ident: 32_CR30
  publication-title: Journal of Turbulence
  doi: 10.1080/14685240600925163
– volume: 102
  start-page: 353
  year: 2014
  ident: 32_CR31
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2014.06.032
– volume: 59
  start-page: 684711
  year: 2016
  ident: 32_CR18
  publication-title: Science China: Physics, Mechanics and Astronomy
– volume: 285
  start-page: 69
  year: 1995
  ident: 32_CR17
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112095000462
– volume: 103
  start-page: 16
  year: 1992
  ident: 32_CR29
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(92)90324-R
– volume: 67
  start-page: 1735
  year: 2011
  ident: 32_CR34
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.2480
– volume-title: Vorticity and Vortices Dynamics [B]
  year: 2006
  ident: 32_CR1
  doi: 10.1007/978-3-540-29028-5
– volume: 16
  start-page: 2
  year: 1995
  ident: 32_CR10
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/0142-727X(94)00006-X
– volume-title: Journal of Hydrodynamics
  year: 2019
  ident: 32_CR27
  doi: 10.1007/s42241-019-0028-y
– volume: 30
  start-page: 034103
  year: 2018
  ident: 32_CR23
  publication-title: Physics of Fluids
  doi: 10.1063/1.5018844
– volume: 30
  start-page: 767
  issue: 5
  year: 2018
  ident: 32_CR21
  publication-title: Journal of Hydrodynamics
  doi: 10.1007/s42241-018-0112-8
– volume: 27
  start-page: 085101
  year: 2015
  ident: 32_CR20
  publication-title: Physics of Fluids
  doi: 10.1063/1.4927647
– volume: 59
  start-page: 624703
  year: 2016
  ident: 32_CR8
  publication-title: Science China: Physics, Mechanics and Astronomy
– volume: 332
  start-page: 185
  year: 1997
  ident: 32_CR11
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112096003965
– volume: 22
  start-page: 441
  year: 2017
  ident: 32_CR3
  publication-title: Communications in Computational Physics
  doi: 10.4208/cicp.OA-2016-0183
– volume-title: 55th AIAA Aerospace Sciences Meeting
  year: 2017
  ident: 32_CR22
SSID ssj0036904
Score 2.5468228
Snippet In the present study, the physical meaning of vorticity is revisited based on the Liutex-Shear (RS) decomposition proposed by Liu et al. in the framework of...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 464
SubjectTerms Engineering
Engineering Fluid Dynamics
Hydrology/Water Resources
Numerical and Computational Physics
Simulation
Title Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition
URI https://link.springer.com/article/10.1007/s42241-019-0032-2
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F6QUOiKdoodUeOBG58vtxrKrSigIHaNVysvapWGrtQuwK-E_8R2Z2165NCaJcnGg1GyeZzzszuzPfEPIqyFWRiRzCEs5yCFB85hVSRV6uRJZyrlWeYO3w-w_p0Wn89jw5n81-jrKWupbvih9_rCv5H63CGOgVq2TvoNnhQ2EA3oN-4Qoahus_6RgT6CpRtaYEsbtgQ87gu6pr1bfFtdmSt1wAvT4uFatdpvN1Y3KqwQ1HWybduYGb7Jle1wupMOncZXat8WSX3yUsw7a1_WoXlx8Iv2_aOZ-5LenPlfdlBMZD1rjR1VI5-4mZQVVnkAWS3mV1a3x_ycCU1ePNCqyPSsebFf1m5eIT9vuGAEONll5M7sJDWmuZ7FiO_L9RPFmvndWoxuG8WXxjy4fu7Hhsu__cMhE2K2QVo-_ima_oR6ErwZwybw-Mzka2BFlkUg1LsPgbIUQl4Zxs7B1_PDvuTX-UFqZf5fBT-mN0rNX8_YZTR2h6Cm-cm5OH5IHTJd2zEHtEZqp-TO6PuCqfkKsebNSBDV8p4IVavFALNgpgoz3YqAMbbTQdwEYN2GhTjyZbsNEJ2J6S0zcHJ_tHnmvX4YkoiVsvFYypoNCBFEwUMfMDzSH-DnUqwAVKE6l5wUJwlTSSzAUikwHPfMZlKmWeah09I_O6qdVzJBJIIIyRkSwg3BVxwFkUMj_UWZgLphXbJH7_35XCcdljS5WLcq3ONsnrYcqVJXL5m_CiV0jpnvfVeumtO0m_IPdunoyXZN5-7dQ2OLYt33Fw-gVfHaOP
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+formula+for+the+Liutex+vector+and+physical+meaning+of+vorticity+based+on+the+Liutex-Shear+decomposition&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Wang%2C+Yi-qian&rft.au=Gao%2C+Yi-sheng&rft.au=Liu%2C+Jian-ming&rft.au=Liu%2C+Chaoqun&rft.date=2019-06-01&rft.pub=Springer+Singapore&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=31&rft.issue=3&rft.spage=464&rft.epage=474&rft_id=info:doi/10.1007%2Fs42241-019-0032-2&rft.externalDocID=10_1007_s42241_019_0032_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-6058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-6058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-6058&client=summon