A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects
Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical properties of monomers. Thus, emerging opportunities exist in generating high-value small molecules from lignin through depolymerization. Thi...
Saved in:
Published in | Frontiers in energy research Vol. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
11.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical properties of monomers. Thus, emerging opportunities exist in generating high-value small molecules from lignin through depolymerization. This review aims at providing an overview of the major technologies of lignin depolymerization. The feasibility of large-scale implementation of these technologies, including thermal, biological, and chemical depolymerizations, are discussed in relation to potential industrial applications. Lignin as a renewable alternative to petroleum-based chemicals has been well documented. This review attempts to emphasize potential applications of lignin-derived monomers and their derivatives as bioactives in food, natural health product, and pharmaceutical sectors. The critical review of the prospects and challenges of lignin-derived bioproducts reveals that the advancement of research and development is required to explore the applications of depolymerization of lignins to their full potential. |
---|---|
AbstractList | Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical properties of monomers. Thus, emerging opportunities exist in generating high-value small molecules from lignin through depolymerization. This review aims at providing an overview of the major technologies of lignin depolymerization. The feasibility of large-scale implementation of these technologies, including thermal, biological, and chemical depolymerizations, are discussed in relation to potential industrial applications. Lignin as a renewable alternative to petroleum-based chemicals has been well documented. This review attempts to emphasize potential applications of lignin-derived monomers and their derivatives as bioactives in food, natural health product, and pharmaceutical sectors. The critical review of the prospects and challenges of lignin-derived bioproducts reveals that the advancement of research and development is required to explore the applications of depolymerization of lignins to their full potential. |
Author | Zhou, Ningning Thilakarathna, W. P. D. Wass He, Quan Sophia Rupasinghe, H. P. Vasantha |
Author_xml | – sequence: 1 givenname: Ningning surname: Zhou fullname: Zhou, Ningning – sequence: 2 givenname: W. P. D. Wass surname: Thilakarathna fullname: Thilakarathna, W. P. D. Wass – sequence: 3 givenname: Quan Sophia surname: He fullname: He, Quan Sophia – sequence: 4 givenname: H. P. Vasantha surname: Rupasinghe fullname: Rupasinghe, H. P. Vasantha |
BookMark | eNp1UV1LHDEUDWLBj_oDfMsPcLbJZJJJfNPVrsKCpbTiW8gmN2NkTIZMVrG_vrO7ClLo0z1czjnce84R2o8pAkKnlMwYk-qbh5i7WU1qOmu5bJtmDx3WtRIVV_Jh_xM-QCfj-EQIoazmDSWHKF_gn_AS4PUcX8GQ-rdnyOGPKSFFnDxehi6GiEvCC4iQTQF8E7rH6t70a8CXIVU_cnJrW8ZzfDcMKZd1DCXAeIbnj6bvIXYbbKLDE3EcYGJ-RV-86Uc4eZ_H6Pf361_zm2p5t7idXywry3hTKqEkyIYrLkRLqVFeOm9B1QSEVZwII4inyoLx0jLWtH4Fsp7SMNZNCaw8O0a3O1-XzJMecng2-U0nE_R2kXKnTS7B9qBpzaARKyWcso30ZuUcZUQSzl0rlRSTV7vzstMXYwavbSjblEo2odeU6E0TetuE3jShd01MSvqP8uOS_2v-AqbKkDA |
CitedBy_id | crossref_primary_10_1007_s12649_024_02655_5 crossref_primary_10_3390_en17081953 crossref_primary_10_1016_j_ijbiomac_2024_129877 crossref_primary_10_1016_j_biortech_2024_130804 crossref_primary_10_31857_S2686953522600490 crossref_primary_10_1134_S1068162024070264 crossref_primary_10_1016_j_bioeco_2022_100036 crossref_primary_10_3390_polym16233325 crossref_primary_10_35812_CelluloseChemTechnol_2024_58_49 crossref_primary_10_4491_KSEE_2025_47_1_23 crossref_primary_10_1016_j_molstruc_2024_139325 crossref_primary_10_1016_j_biortech_2025_132278 crossref_primary_10_1016_j_biortech_2023_129492 crossref_primary_10_12688_openreseurope_16734_2 crossref_primary_10_1016_j_ijbiomac_2023_124174 crossref_primary_10_1016_j_greenca_2024_11_005 crossref_primary_10_1016_j_indcrop_2024_119321 crossref_primary_10_1021_acs_jpca_4c00964 crossref_primary_10_1007_s13399_022_02694_9 crossref_primary_10_3390_molecules28124842 crossref_primary_10_1016_j_ijbiomac_2024_139278 crossref_primary_10_1016_j_jece_2023_109691 crossref_primary_10_3390_horticulturae10101079 crossref_primary_10_1016_j_jece_2023_109614 crossref_primary_10_1021_acssuschemeng_5c00773 crossref_primary_10_3389_fbioe_2022_1082341 crossref_primary_10_1016_j_ijbiomac_2024_138856 crossref_primary_10_1016_j_indcrop_2023_116275 crossref_primary_10_1515_gps_2023_0154 crossref_primary_10_1134_S0012501623600110 crossref_primary_10_1016_j_bej_2023_109065 crossref_primary_10_1016_j_bej_2024_109347 crossref_primary_10_1016_j_indcrop_2023_116987 crossref_primary_10_1039_D2GC00092J crossref_primary_10_1016_j_clema_2024_100253 crossref_primary_10_1016_j_scenv_2024_100179 crossref_primary_10_1039_D3GC04597H crossref_primary_10_1016_j_cej_2023_144269 crossref_primary_10_1016_j_molliq_2023_122030 crossref_primary_10_1016_j_ijbiomac_2024_132696 crossref_primary_10_1016_j_ijbiomac_2024_136383 crossref_primary_10_1515_hf_2022_0113 crossref_primary_10_1016_j_isci_2023_106549 crossref_primary_10_3390_app14219790 crossref_primary_10_1039_D4SE00527A crossref_primary_10_1016_j_ijbiomac_2024_138952 crossref_primary_10_1039_D3GC02927A crossref_primary_10_3390_pr10102004 crossref_primary_10_1039_D4GC05439C crossref_primary_10_1002_biot_202300312 crossref_primary_10_4028_p_DL8dG5 crossref_primary_10_1111_ijfs_16652 crossref_primary_10_1680_jgrma_24_00121 crossref_primary_10_3390_molecules29020442 crossref_primary_10_1016_j_seppur_2023_124778 crossref_primary_10_1016_j_biteb_2024_101786 crossref_primary_10_1186_s13068_023_02278_3 crossref_primary_10_1039_D4CC02501F crossref_primary_10_1039_D3SE00173C crossref_primary_10_1016_j_biortech_2024_130728 crossref_primary_10_1016_j_giant_2022_100106 crossref_primary_10_1021_acs_energyfuels_4c02301 crossref_primary_10_1021_acs_joc_4c00962 crossref_primary_10_3390_biochem4040017 crossref_primary_10_1021_acsnano_3c00436 crossref_primary_10_1016_j_cogsc_2024_100931 crossref_primary_10_1016_j_copbio_2024_103178 crossref_primary_10_1002_bbb_2460 crossref_primary_10_3389_fceng_2022_982126 crossref_primary_10_1016_j_cej_2024_152204 crossref_primary_10_1016_j_ijbiomac_2024_136408 crossref_primary_10_1016_j_biortech_2023_129294 crossref_primary_10_1016_j_eurpolymj_2023_112141 crossref_primary_10_1021_acselectrochem_4c00049 crossref_primary_10_1007_s13399_024_06365_9 crossref_primary_10_1016_j_fuel_2024_134199 crossref_primary_10_1039_D4GC00333K crossref_primary_10_3390_ijms241713115 crossref_primary_10_1016_j_mcat_2023_113551 crossref_primary_10_1021_acs_iecr_3c03453 crossref_primary_10_15407_hftp15_03_313 crossref_primary_10_1016_j_biteb_2024_101933 crossref_primary_10_3389_fchem_2023_1239479 crossref_primary_10_1002_macp_202200378 crossref_primary_10_1039_D4GC05724D crossref_primary_10_1016_j_colsurfa_2025_136311 crossref_primary_10_1007_s13399_024_05366_y crossref_primary_10_1016_j_scenv_2024_100107 crossref_primary_10_1002_cssc_202402334 crossref_primary_10_3390_ijms23073767 crossref_primary_10_1155_2023_7454857 crossref_primary_10_1039_D3GC01105D crossref_primary_10_3390_polym16243542 crossref_primary_10_1007_s13399_024_05793_x crossref_primary_10_1039_D4GC03567D crossref_primary_10_1002_cssc_202301460 crossref_primary_10_1039_D2GC02982K crossref_primary_10_3389_fchem_2024_1485354 crossref_primary_10_1007_s11172_023_4020_x crossref_primary_10_1016_j_mtbio_2022_100520 crossref_primary_10_1080_01496395_2024_2315612 crossref_primary_10_1016_j_renene_2025_122557 crossref_primary_10_3390_catal13010149 crossref_primary_10_1038_s41467_025_57129_6 crossref_primary_10_1016_j_ijbiomac_2025_139476 crossref_primary_10_1149_1945_7111_ad8f00 crossref_primary_10_1021_acssuschemeng_4c01213 crossref_primary_10_1016_j_indcrop_2024_118211 crossref_primary_10_1021_acssuschemeng_3c00257 crossref_primary_10_1080_26395940_2023_2263168 crossref_primary_10_3390_biomass4030053 crossref_primary_10_3390_catal12121651 crossref_primary_10_1016_j_biombioe_2024_107491 |
Cites_doi | 10.1016/j.biortech.2014.03.103 10.1016/j.tiv.2011.05.007 10.1016/j.jaap.2016.01.008 10.1016/j.biombioe.2009.03.006 10.1021/acs.chemrev.7b00588 10.1021/acssuschemeng.1c01450 10.1016/j.ejphar.2012.05.019 10.1021/acssuschemeng.6b00639 10.1002/bbb.1913 10.3389/fnut.2019.00121 10.1039/c7gc01479a 10.1039/c7ee01298e 10.1039/c1gc15543a 10.1016/j.cej.2015.02.003 10.1016/j.pmatsci.2017.12.001 10.1039/C0EE00246A 10.1016/j.jbiotec.2016.08.011 10.1039/c4gc01825g 10.1016/j.foodres.2005.11.005 10.1039/c5gc01436k 10.1039/d1gc01456k 10.1038/nature13867 10.1039/d0gc02802a 10.2172/921839 10.1016/j.biortech.2017.05.129 10.1385/abab:84-86:1-9:153 10.3390/nu10060713 10.3109/10715760903247264 10.1039/9781788010351-00001 10.1080/17458080.2015.1055842 10.1016/j.postharvbio.2007.01.017 10.1016/j.foodres.2010.05.021 10.1039/c7gc01324h 10.1016/j.indcrop.2015.03.070 10.1016/j.fct.2017.02.028 10.1016/j.fuproc.2018.09.017 10.1016/j.eurpolymj.2015.03.050 10.1002/macp.201500194 10.1002/slct.201801393 10.1016/j.indcrop.2021.113757 10.1021/acs.iecr.0c01617 10.1016/j.cej.2018.01.002 10.1016/j.lfs.2021.120036 10.1002/jctb.3799 10.1016/j.jff.2014.04.007 10.1021/acssuschemeng.9b06556 10.1021/acs.iecr.9b00376 10.1016/j.jece.2017.08.031 10.1016/j.biortech.2020.123189 10.1021/acsmacrolett.0c00424 10.3390/antiox6020030 10.1016/j.fuproc.2017.03.020 10.1016/j.rser.2013.07.013 10.1016/j.cej.2018.04.020 10.1016/j.progpolymsci.2013.11.004 10.1071/ch12324 10.1039/c4gc01143k 10.1016/j.biortech.2014.03.060 10.1016/j.polymdegradstab.2011.01.011 10.1016/j.gene.2015.10.061 10.1002/cssc.201402314 10.1016/j.renene.2020.01.054 10.1080/15422119.2015.1070178 10.1016/j.matpr.2020.05.376 10.1016/j.biortech.2018.08.118 10.1021/op010087o 10.1016/j.biomaterials.2016.12.034 10.1016/j.carbpol.2005.07.011 10.1254/jphs.fp0060711 10.1016/j.etap.2012.04.005 10.1016/j.carbpol.2011.07.030 10.1111/j.1527-3458.2007.00017.x 10.1111/j.1742-7843.2006.pto_535.x 10.1002/adma.202003206 10.1016/j.jaap.2014.06.005 10.1016/j.bmc.2004.07.022 10.1016/j.fct.2013.12.024 10.1007/s41061-018-0207-2 10.1016/j.indcrop.2015.06.020 10.1271/bbb.100645 10.1002/jctb.3996 10.1016/j.eurpolymj.2013.03.002 10.1016/j.fuproc.2021.106997 10.1007/s00592-003-0099-6 10.1039/C7EE01298E 10.3390/app10051599 10.1016/j.jff.2011.10.004 10.1039/c8cy00845k 10.1016/j.biortech.2021.126035 10.1016/j.freeradbiomed.2019.09.035 10.1016/j.foodchem.2012.04.070 10.1016/j.ejphar.2019.01.047 10.1016/j.bbagen.2010.11.004 10.1016/j.ijbiomac.2016.01.109 10.1002/chem.201002438 10.1016/j.apcatb.2012.10.015 10.3390/ijms18112367 10.15376/biores.13.1.412-424 10.1021/acscatal.7b02563 10.1039/d1gc00503k 10.1155/2013/838645 10.1016/j.tetlet.2016.09.084 10.1007/s00253-009-2358-0 10.1016/j.rser.2017.09.066 10.1002/marc.201500474 10.1016/j.biortech.2013.03.199 10.1158/1078-0432.ccr-09-0788 10.1080/02773813.2014.902965 10.1271/bbb1961.54.479 10.1016/j.pharmthera.2010.05.004 10.1007/s00107-020-01637-3 10.1002/ep.12276 10.1016/j.antiviral.2007.03.010 10.1002/jsfa.9303 10.1016/j.biortech.2014.02.076 10.1002/cssc.201600237 10.1002/jsfa.1873 10.1155/2016/9734816 10.3390/molecules23102464 10.1039/c6gc01937d 10.1016/j.cbpa.2015.06.009 10.1080/1828051x.2017.1350120 10.1016/j.poly.2018.12.055 10.1016/j.renene.2019.09.108 10.1021/cr3001274 10.1007/978-981-10-7853-8_25 10.1039/c4cs00235k 10.3390/ijms18112421 10.1134/s0003683816060053 10.1016/j.rser.2017.01.166 10.1039/c4ra00181h 10.1016/j.biotechadv.2016.10.001 10.1021/cr900354u 10.1007/s11010-010-0645-9 10.1177/0960327119831067 10.1039/c7gc00626h 10.1016/j.btre.2014.09.002 10.1016/j.enconman.2019.06.070 10.15376/biores.7.3.4377-4399 10.1016/j.jclepro.2020.120076 10.1039/c7se00535k 10.1039/c5gc01054c 10.1016/j.cbpa.2013.11.015 10.3390/ijms18061219 10.1039/c6gc01813k 10.1016/j.rser.2019.03.008 10.1016/j.cogsc.2020.100438 10.1007/s002530100687 10.1016/j.biortech.2018.08.065 10.1021/acssuschemeng.5b01344 10.1021/acs.accounts.9b00573 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2021.758744 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_123e46b96d9c48fabdd1308055d78986 10_3389_fenrg_2021_758744 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-698e8459566711a9f8dfce920e6c9506a60f19ceaf8c3347fbe82389acd744bf3 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:07:06 EDT 2025 Tue Jul 01 03:00:24 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-698e8459566711a9f8dfce920e6c9506a60f19ceaf8c3347fbe82389acd744bf3 |
OpenAccessLink | https://doaj.org/article/123e46b96d9c48fabdd1308055d78986 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_123e46b96d9c48fabdd1308055d78986 crossref_citationtrail_10_3389_fenrg_2021_758744 crossref_primary_10_3389_fenrg_2021_758744 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-11 |
PublicationDateYYYYMMDD | 2022-01-11 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Binder (B17) 2009; 33 Muley (B94) 2019; 196 Cao (B28) 2020; 59 Nanbu (B97) 2013; 27 Bahron (B11) 2019; 161 Bu (B23) 2014; 162 Sri Balasubashini (B124) 2003; 40 Xue (B150) 2016; 4 Zhao (B160) 2020; 253 Zhang (B156) 2015; 216 Zhang (B157) 2020; 53 Tayier (B131) 2017; 13 Menter (B89) 2010; 16 Kumar (B164) 2021; 41 Tai (B129) 2011; 1810 Xu (B145) 2014; 43 Renders (B107) 2017; 10 Ghanim (B53) 2021; 286 Auvergne (B10) 2014; 114 Kuamr (B71); 9 Nandiwale (B98) 2020; 8 Banerjee (B13) 2018; 99 Akao (B7) 2004; 12 Bajpai (B12) 2018 Bezerra (B16) 20162016; 2016 Cox (B33) 2011; 96 Ramar (B106) 2012; 690 Fache (B41) 2015; 68 Cao (B27) 2018; 269 Xu (B148) 2021; 342 Agarwal (B2) 2018; 181 Mukai (B93) 2011; 348 Vinardell (B138) 2017; 18 Dhar (B37) 2017; 5 Wang (B141) 2019; 58 Kang (B67) 2013; 27 Xu (B147) 2018; 269 Ahmed (B6) 2020; 10 Vangeel (B137) 2018; 376 Yang (B151) 2020; 22 Gillet (B55) 2017; 19 Zakzeski (B155) 2010; 110 Ghosh (B54) 2017; 103 Figueiredo (B47) 2018; 93 Liu (B82) 2015; 17 Van den Bosch (B135) 2017; 19 Sakagami (B111) 2011; 25 Alam (B9) 2019; 6 Xiao (B144) 2017; 7 Suzuki (B128) 1990; 54 Mancuso (B88) 2014; 65 Feofilova (B46) 2016; 52 Zhao (B159) 2016; 18 Katahira (B70) 2018; 2018 Li (B79) 2021; 2021 Huang (B63) 2018; 2 Galkin (B50) 2021; 28 Akiba (B8) 2017; 19 Zhu (B162) 2017; 161 Börcsök (B19) 2021; 79 Kumar (B72); 19 Dai (B34) 2016; 57 Parmar (B102) 2015 Chen (B30) 2017; 73 Ou (B100) 2004; 84 Fan (B43) 2017; 241 González-Sarrías (B56) 2012; 4 Xu (B146) 2017 Panzella (B101) 2017; 6 Beisl (B15) 2017; 18 Bundhoo (B26) 2018; 82 Zhu (B163) 2018; 3 Brienza (B21) 2021; 23 Lievonen (B81) 2016; 18 Singh (B121) 2014; 165 Li (B77) 2019; 145 Laurichesse (B75) 2014; 39 Abdelaziz (B1) 2016; 34 Mohammadi Gheisar (B91) 2018; 17 Fahrioğlu (B42) 2016; 576 Holladay (B60) 2007 Roberts (B108) 2011; 17 Chio (B32) 2019; 107 Nair (B95) 2014; 7 Yearla (B152) 2015; 11 Thoresen (B166) 2020; 306 Toledano (B133) 2014; 145 Shu (B119) 2018; 338 Toledano (B132) 2012; 87 De Gonzalo (B36) 2016; 236 Brown (B22) 2014; 19 Farag (B44) 2014; 109 Sato (B116) 2009; 43 Rajak (B105) 2021; 23 Sagues (B165) 2018; 6 Song (B123) 2014; 9 Wang (B139) 2013; 9 Zhang (B158) 2007; 75 Sakagami (B112) 2016; 30 Lochab (B84) 2014; 4 Rahimi (B104) 2014; 515 Yuan (B154) 2013; 88 Tarabanko (B130) 2017; 18 Harvey (B58) 2015; 17 Shu (B120) 2018; 338 Shen (B118) 2015; 270 Hossain (B61) 2012; 65 Chen (B29) 2018; 346 Ibrahim (B64) 2012; 7 Xiang (B143) 2000 Agrawal (B3) 2014; 1 Li (B80) 2018; 12 Feghali (B45) 2020; 9 Ito (B65) 2007; 13 Davis (B35) 2010; 86 Kumar (B73) 2014; 4 Du (B39) 2020; 147 Sakagami (B113) 2010; 128 Sefi (B117) 2019; 38 Cheng (B31) 2018; 8 Lee (B76) 2011; 75 Van Wyk (B136) 2014 Zhou (B161) 2021; 33 Barapatre (B14) 2016; 86 Weldemhret (B142) 2020; 152 Fillat (B49) 2012; 87 Singh (B122) 2005; 62 Lange (B74) 2013; 49 Rupasinghe (B110) 2006; 39 Priefert (B103) 2001; 56 Guo (B57) 2015; 76 Nanbu (B96) 2011; 25 Karthikeyan (B69) 2011; 25 Rojas-Graüa (B109) 2007; 45 Stark (B125) 2010; 4 Tsuchiya (B134) 1975; 7 Mahmood (B87) 2013; 139 Ahmad (B5) 2021; 170 Hoang (B59) 2021; 223 Min (B90) 2015; 35 Lu (B85) 2012; 135 Bjørsvik (B18) 2002; 6 Bumrungpert (B25) 2018; 10 Galkin (B51) 2016; 9 Fache (B40) 2016; 4 Figueiredo (B48) 2017; 121 George (B52) 2011; 13 Sun (B127) 2018; 118 Ahmad (B4) 2018; 23 Oh-Hara (B99) 1990; 4 Strassberger (B126) 2015; 17 Ma (B86) 2019; 849 Mota (B92) 2015; 45 Huang (B62) 2018; 2 Bountagkidou (B20) 2010; 43 Bugg (B24) 2015; 29 Wang (B140) 2016; 119 Llevot (B83) 2016; 37 Xue (B149) 2016; 35 Ito (B66) 2006; 102 Sato (B115) 2012; 34 Dong (B38) 2014; 162 Sato (B114) 2006; 99 You (B153) 2015; 71 |
References_xml | – volume: 162 start-page: 142 year: 2014 ident: B23 article-title: Bio-based Phenols and Fuel Production from Catalytic Microwave Pyrolysis of Lignin by Activated Carbons publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.103 – volume: 25 start-page: 1366 year: 2011 ident: B69 article-title: Radiosensitizing Effect of Ferulic Acid on Human Cervical Carcinoma Cells In Vitro publication-title: Toxicol. Vitro doi: 10.1016/j.tiv.2011.05.007 – volume: 119 start-page: 104 year: 2016 ident: B140 article-title: Review of Microwave-Assisted Lignin Conversion for Renewable Fuels and Chemicals publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2016.01.008 – volume: 33 start-page: 1122 year: 2009 ident: B17 article-title: Reactions of Lignin Model Compounds in Ionic Liquids publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2009.03.006 – volume: 118 start-page: 614 year: 2018 ident: B127 article-title: Bright Side of Lignin Depolymerization: Toward New Platform Chemicals publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00588 – volume: 2021 start-page: 9248 year: 2021 ident: B79 article-title: Conversion of Beech Wood into Antiviral Lignin–Carbohydrate Complexes by Microwave Acidolysis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c01450 – volume: 1 start-page: 30 year: 2014 ident: B3 article-title: Derivatives and Applications of Lignin – an Insight publication-title: Scitech J. – volume: 690 start-page: 226 year: 2012 ident: B106 article-title: Protective Effect of Ferulic Acid and Resveratrol against Alloxan-Induced Diabetes in Mice publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2012.05.019 – volume: 4 start-page: 3864 year: 2016 ident: B150 article-title: Biomass-Derived γ-Valerolactone-Based Solvent Systems for Highly Efficient Dissolution of Various Lignins: Dissolution Behavior and Mechanism Study publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00639 – volume: 12 start-page: 756 year: 2018 ident: B80 article-title: The Current and Emerging Sources of Technical Lignins and Their Applications publication-title: Biofuels, Bioprod. Bioref. doi: 10.1002/bbb.1913 – volume: 6 start-page: 121 year: 2019 ident: B9 article-title: Anti-hypertensive Effect of Cereal Antioxidant Ferulic Acid and its Mechanism of Action publication-title: Front. Nutr. doi: 10.3389/fnut.2019.00121 – volume: 19 start-page: 4200 year: 2017 ident: B55 article-title: Lignin Transformations for High Value Applications: Towards Targeted Modifications Using green Chemistry publication-title: Green. Chem. doi: 10.1039/c7gc01479a – volume: 10 start-page: 1551 year: 2017 ident: B107 article-title: Lignin-first Biomass Fractionation: the Advent of Active Stabilisation Strategies publication-title: Energy Environ. Sci. doi: 10.1039/c7ee01298e – volume: 13 start-page: 3375 year: 2011 ident: B52 article-title: The Effect of Ionic Liquid Cation and Anion Combinations on the Macromolecular Structure of Lignins publication-title: Green. Chem. doi: 10.1039/c1gc15543a – volume: 270 start-page: 641 year: 2015 ident: B118 article-title: Catalytic Solvolysis of Lignin with the Modified HUSYs in Formic Acid Assisted by Microwave Heating publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.003 – volume: 93 start-page: 233 year: 2018 ident: B47 article-title: Properties and Chemical Modifications of Lignin: Towards Lignin-Based Nanomaterials for Biomedical Applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.12.001 – volume: 4 start-page: 19 year: 2010 ident: B125 article-title: Ionic Liquids in the Biorefinery: A Critical Assessment of Their Potential publication-title: Energ. Environ. Sci. doi: 10.1039/C0EE00246A – volume: 236 start-page: 110 year: 2016 ident: B36 article-title: Bacterial Enzymes Involved in Lignin Degradation publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2016.08.011 – volume: 17 start-page: 1249 year: 2015 ident: B58 article-title: Renewable Thermosetting Resins and Thermoplastics from Vanillin publication-title: Green. Chem. doi: 10.1039/c4gc01825g – volume: 39 start-page: 575 year: 2006 ident: B110 article-title: Vanillin Inhibits Pathogenic and Spoilage Microorganisms In Vitro and Aerobic Microbial Growth in Fresh-Cut Apples publication-title: Food Res. Int. doi: 10.1016/j.foodres.2005.11.005 – volume: 18 start-page: 1416 year: 2016 ident: B81 article-title: A Simple Process for Lignin Nanoparticle Preparation publication-title: Green. Chem. doi: 10.1039/c5gc01436k – volume: 23 start-page: 5584 year: 2021 ident: B105 article-title: An Eco-Friendly Biomass Pretreatment Strategy Utilizing Reusable Enzyme Mimicking Nanoparticles for Lignin Depolymerization and Biofuel Production publication-title: Green. Chem. doi: 10.1039/d1gc01456k – volume: 515 start-page: 249 year: 2014 ident: B104 article-title: Formic-Acid-Induced Depolymerization of Oxidized Lignin to Aromatics publication-title: Nature doi: 10.1038/nature13867 – volume: 22 start-page: 8210 year: 2020 ident: B151 article-title: Hydrothermal Liquefaction and Gasification of Biomass and Model Compounds: A Review publication-title: Green. Chem. doi: 10.1039/d0gc02802a – start-page: 93 volume-title: Ferulic Acid: Antioxidant Properties, Uses and Potential Health Benefits year: 2015 ident: B102 article-title: Anti-diabetic Effect of Ferulic Acid and Derivatives: An Update – volume-title: Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin year: 2007 ident: B60 doi: 10.2172/921839 – volume: 241 start-page: 1118 year: 2017 ident: B43 article-title: Bio-oil from Fast Pyrolysis of Lignin: Effects of Process and Upgrading Parameters publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.129 – start-page: 153 year: 2000 ident: B143 article-title: Oxidative Cracking of Precipitated Hardwood Lignin by Hydrogen Peroxide publication-title: Abab doi: 10.1385/abab:84-86:1-9:153 – volume: 30 start-page: 331 year: 2016 ident: B112 article-title: Prominent Anti-UV Activity and Possible Cosmetic Potential of Lignin-Carbohydrate Complex publication-title: In Vivo – volume: 10 start-page: 713 year: 2018 ident: B25 article-title: Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial publication-title: Nutrients doi: 10.3390/nu10060713 – volume: 43 start-page: 1205 year: 2009 ident: B116 article-title: Lignin-derived Lignophenols Attenuate Oxidative and Inflammatory Damage to the Kidney in Streptozotocin-Induced Diabetic Rats publication-title: Free Radic. Res. doi: 10.3109/10715760903247264 – volume: 2018 start-page: 1 year: 2018 ident: B70 article-title: Chapter 1. A Brief Introduction to Lignin Structure publication-title: Lignin Valor. Emerging Approaches doi: 10.1039/9781788010351-00001 – volume: 11 start-page: 1 year: 2015 ident: B152 article-title: Preparation and Characterisation of Lignin Nanoparticles: Evaluation of Their Potential as Antioxidants and UV Protectants publication-title: J. Exp. Nanoscience doi: 10.1080/17458080.2015.1055842 – volume: 45 start-page: 254 year: 2007 ident: B109 article-title: Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2007.01.017 – volume: 43 start-page: 2014 year: 2010 ident: B20 article-title: Structure-antioxidant Activity Relationship Study of Natural Hydroxybenzaldehydes Using In Vitro Assays publication-title: Food Res. Int. doi: 10.1016/j.foodres.2010.05.021 – volume: 19 start-page: 3313 year: 2017 ident: B135 article-title: Integrating Lignin Valorization and Bio-Ethanol Production: on the Role of Ni-Al2O3catalyst Pellets during Lignin-First Fractionation publication-title: Green. Chem. doi: 10.1039/c7gc01324h – volume: 71 start-page: 65 year: 2015 ident: B153 article-title: Structural Elucidation of Lignin-Carbohydrate Complex (LCC) Preparations and Lignin from Arundo donax Linn publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.03.070 – volume: 103 start-page: 41 year: 2017 ident: B54 article-title: New Insights into the Ameliorative Effects of Ferulic Acid in Pathophysiological Conditions publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2017.02.028 – volume: 181 start-page: 115 year: 2018 ident: B2 article-title: Advancement in Technologies for the Depolymerization of Lignin publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.09.017 – volume: 68 start-page: 488 year: 2015 ident: B41 article-title: Vanillin, a Key-Intermediate of Biobased Polymers publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2015.03.050 – volume: 216 start-page: 1816 year: 2015 ident: B156 article-title: Renewable Polymers Prepared from Vanillin and its Derivatives publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201500194 – volume: 3 start-page: 7945 year: 2018 ident: B163 article-title: Opportunities of Ionic Liquids for Lignin Utilization from Biorefinery publication-title: ChemistrySelect doi: 10.1002/slct.201801393 – volume: 170 start-page: 113757 year: 2021 ident: B5 article-title: Oxidative Depolymerization of Lignin Using Nitric Acid under Ambient Conditions publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113757 – volume: 59 start-page: 16957 year: 2020 ident: B28 article-title: Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01617 – volume-title: Conversion of Lignin into Bio-Based Chemicals and Materials (Green Chemistry and Sustainable Technology) year: 2017 ident: B146 – volume: 338 start-page: 457 year: 2018 ident: B120 article-title: Controllable Production of Guaiacols and Phenols from Lignin Depolymerization Using Pd/C Catalyst Cooperated with Metal Chloride publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.002 – volume: 286 start-page: 120036 year: 2021 ident: B53 article-title: Vanillin Augments Liver Regeneration Effectively in Thioacetamide Induced Liver Fibrosis Rat Model publication-title: Life Sci. doi: 10.1016/j.lfs.2021.120036 – volume: 87 start-page: 1593 year: 2012 ident: B132 article-title: Organosolv Lignin Depolymerization with Different Base Catalysts publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.3799 – volume: 9 start-page: 141 year: 2014 ident: B123 article-title: Ferulic Acid Alleviates the Symptoms of Diabetes in Obese Rats publication-title: J. Funct. Foods doi: 10.1016/j.jff.2014.04.007 – volume: 8 start-page: 4096 year: 2020 ident: B98 article-title: Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06556 – volume: 58 start-page: 7866 year: 2019 ident: B141 article-title: Investigation on the Catalytic Hydrogenolysis of Lignin over NbOx-Ni/ZnO-Al2O3 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b00376 – volume: 5 start-page: 4759 year: 2017 ident: B37 article-title: Understanding Lignin Depolymerization to Phenols via Microwave-Assisted Solvolysis Process publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.08.031 – volume: 306 start-page: 123189 year: 2020 ident: B166 article-title: Recent Advances in Organosolv Fractionation: Towards Biomass Fractionation Technology of the Future publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123189 – volume: 9 start-page: 1155 year: 2020 ident: B45 article-title: Biobased Epoxy Thermoset Polymers from Depolymerized Native Hardwood Lignin publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.0c00424 – volume: 6 start-page: 30 year: 2017 ident: B101 article-title: Natural Phenol Polymers: Recent Advances in Food and Health Applications publication-title: Antioxidants doi: 10.3390/antiox6020030 – volume: 161 start-page: 155 year: 2017 ident: B162 article-title: Microwave-assisted Selective Cleavage of C C Bond for Lignin Depolymerization publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.03.020 – volume: 27 start-page: 546 year: 2013 ident: B67 article-title: Hydrothermal Conversion of Lignin: A Review publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2013.07.013 – volume: 346 start-page: 217 year: 2018 ident: B29 article-title: Green Synthesis of Lignin Nanoparticle in Aqueous Hydrotropic Solution toward Broadening the Window for its Processing and Application publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.020 – volume: 39 start-page: 1266 year: 2014 ident: B75 article-title: Chemical Modification of Lignins: Towards Biobased Polymers publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.11.004 – volume: 65 start-page: 1465 year: 2012 ident: B61 article-title: Ionic Liquids for Lignin Processing: Dissolution, Isolation, and Conversion publication-title: Aust. J. Chem. doi: 10.1071/ch12324 – volume: 17 start-page: 325 year: 2015 ident: B126 article-title: Lignin Solubilisation and Gentle Fractionation in Liquid Ammonia publication-title: Green. Chem. doi: 10.1039/c4gc01143k – volume: 162 start-page: 136 year: 2014 ident: B38 article-title: Mechanism on Microwave-Assisted Acidic Solvolysis of Black-Liquor Lignin publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.060 – volume: 96 start-page: 426 year: 2011 ident: B33 article-title: Catalytic Degradation of Lignin Model Compounds in Acidic Imidazolium Based Ionic Liquids: Hammett Acidity and Anion Effects publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2011.01.011 – volume: 576 start-page: 476 year: 2016 ident: B42 article-title: Ferulic Acid Decreases Cell Viability and colony Formation while Inhibiting Migration of MIA PaCa-2 Human Pancreatic Cancer Cells In Vitro publication-title: Gene doi: 10.1016/j.gene.2015.10.061 – volume: 7 start-page: 3513 year: 2014 ident: B95 article-title: High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends publication-title: ChemSusChem doi: 10.1002/cssc.201402314 – volume: 152 start-page: 283 year: 2020 ident: B142 article-title: Current Advances in Ionic Liquid-Based Pre-treatment and Depolymerization of Macroalgal Biomass publication-title: Renew. Energ. doi: 10.1016/j.renene.2020.01.054 – volume: 45 start-page: 227 year: 2015 ident: B92 article-title: Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes publication-title: Separat. Purif. Rev. doi: 10.1080/15422119.2015.1070178 – volume: 41 year: 2021 ident: B164 article-title: Antioxidant, Antidiabetic and Anticancer Studies of Nickel Complex of Vanillin-4-Methyl-4-Phenyl-3-Thiosemicarbazone publication-title: Mat. Today doi: 10.1016/j.matpr.2020.05.376 – volume: 269 start-page: 557 year: 2018 ident: B147 article-title: Lignin Depolymerization and Utilization by Bacteria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.118 – volume: 6 start-page: 279 year: 2002 ident: B18 article-title: Organic Processes to Pharmaceutical Chemicals Based on Fine Chemicals from Lignosulfonates publication-title: Org. Process Res. Develop. doi: 10.1021/op010087o – volume: 121 start-page: 97 year: 2017 ident: B48 article-title: In Vitro evaluation of Biodegradable Lignin-Based Nanoparticles for Drug Delivery and Enhanced Antiproliferation Effect in Cancer Cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.12.034 – volume: 62 start-page: 57 year: 2005 ident: B122 article-title: Lignin-carbohydrate Complexes from Sugarcane Bagasse: Preparation, Purification, and Characterization publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2005.07.011 – volume: 25 start-page: 229 year: 2011 ident: B111 article-title: Anti-HIV and Immunomodulation Activities of Cacao Mass Lignin-Carbohydrate Complex publication-title: In Vivo – volume: 102 start-page: 196 year: 2006 ident: B66 article-title: Lig-8, a Bioactive Lignophenol Derivative from Bamboo Lignin, Protects against Neuronal Damage In Vitro and In Vivo publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.fp0060711 – volume: 34 start-page: 228 year: 2012 ident: B115 article-title: Effect of Lignin-Derived Lignophenols on Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2012.04.005 – volume-title: Phytomedicines, Herbal Drugs, and Poisons year: 2014 ident: B136 – volume: 87 start-page: 146 year: 2012 ident: B49 article-title: Enzymatic Grafting of Natural Phenols to Flax Fibres: Development of Antimicrobial Properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.07.030 – volume: 338 start-page: 457 year: 2018 ident: B119 article-title: Controllable Production of Guaiacols and Phenols from Lignin Depolymerization Using Pd/C Catalyst Cooperated with Metal Chloride publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.002 – volume: 13 start-page: 296 year: 2007 ident: B65 article-title: Lig-8, a Highly Bioactive Lignophenol Derivative from Bamboo Lignin, Exhibits Multifaceted Neuroprotective Activity publication-title: CNS Drug Rev. doi: 10.1111/j.1527-3458.2007.00017.x – volume: 4 start-page: 7 year: 1990 ident: B99 article-title: Antimicrobial spectrum of lignin-related pine cone extracts of Pinus parviflora Sieb. et Zucc publication-title: In Vivo – volume: 99 start-page: 353 year: 2006 ident: B114 article-title: Protective Effect of Lignophenol Derivative from Beech (Fagus Crenata Blume) on Copper- and Zinc-Mediated Cell Death in PC12 Cells publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/j.1742-7843.2006.pto_535.x – volume: 33 start-page: 2003206 year: 2021 ident: B161 article-title: Understanding Plant Biomass via Computational Modeling publication-title: Adv. Mater. doi: 10.1002/adma.202003206 – volume: 109 start-page: 249 year: 2014 ident: B44 article-title: Detailed Compositional Analysis and Structural Investigation of a Bio-Oil from Microwave Pyrolysis of Kraft Lignin publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2014.06.005 – volume: 12 start-page: 4791 year: 2004 ident: B7 article-title: A Highly Bioactive Lignophenol Derivative from Bamboo Lignin Exhibits a Potent Activity to Suppress Apoptosis Induced by Oxidative Stress in Human Neuroblastoma SH-Sy5y Cells publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2004.07.022 – volume: 65 start-page: 185 year: 2014 ident: B88 article-title: Ferulic Acid: Pharmacological and Toxicological Aspects publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2013.12.024 – volume: 376 start-page: 30 year: 2018 ident: B137 article-title: Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions publication-title: Top. Curr. Chem. (Cham) doi: 10.1007/s41061-018-0207-2 – volume: 76 start-page: 522 year: 2015 ident: B57 article-title: Structural Transformations of Triploid of Populus Tomentosa Carr. Lignin during Auto-Catalyzed Ethanol Organosolv Pretreatment publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.06.020 – volume: 75 start-page: 459 year: 2011 ident: B76 article-title: Antiviral and Immunostimulating Effects of Lignin-Carbohydrate-Protein Complexes fromPimpinella Anisum publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.100645 – volume: 88 start-page: 346 year: 2013 ident: B154 article-title: Role of Lignin in a Biorefinery: Separation Characterization and Valorization publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.3996 – volume: 49 start-page: 1151 year: 2013 ident: B74 article-title: Oxidative Upgrade of Lignin - Recent Routes Reviewed publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2013.03.002 – volume: 223 start-page: 106997 year: 2021 ident: B59 article-title: Progress on the Lignocellulosic Biomass Pyrolysis for Biofuel Production toward Environmental Sustainability publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2021.106997 – volume: 40 start-page: 118 year: 2003 ident: B124 article-title: Protective Effects of Ferulic Acid on Hyperlipidemic Diabetic Rats publication-title: Acta Diabetol. doi: 10.1007/s00592-003-0099-6 – volume: 6 year: 2018 ident: B165 article-title: Lignin-First Approach to Biorefining: Utilizing Fenton’s Reagent and Supercritical Ethanol for the Production of Phenolics and Sugars publication-title: ACS Sustain. Chem. Eng. doi: 10.1039/C7EE01298E – volume: 10 start-page: 1599 year: 2020 ident: B6 article-title: Effects of Gamma-Valerolactone Assisted Fractionation of ball-milled pine wood on Lignin Extraction and its Characterization as Well as its Corresponding Cellulose Digestion publication-title: Appl. Sci. doi: 10.3390/app10051599 – volume: 4 start-page: 185 year: 2012 ident: B56 article-title: Anticancer Effects of maple Syrup Phenolics and Extracts on Proliferation, Apoptosis, and Cell Cycle Arrest of Human colon Cells publication-title: J. Funct. Foods doi: 10.1016/j.jff.2011.10.004 – volume: 8 start-page: 6275 year: 2018 ident: B31 article-title: State-of-the-art Catalytic Hydrogenolysis of Lignin for the Production of Aromatic Chemicals publication-title: Catal. Sci. Technol. doi: 10.1039/c8cy00845k – volume: 25 start-page: 733 year: 2011 ident: B96 article-title: Anti-UV Activity of Lentinus Edodes Mycelia Extract (LEM) publication-title: In Vivo – volume: 342 start-page: 126035 year: 2021 ident: B148 article-title: Hydrothermal Liquefaction of Lignocellulose for Value-Added Products: Mechanism, Parameter and Production Application publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126035 – volume: 145 start-page: 223 year: 2019 ident: B77 article-title: The Vanillin Derivative VND3207 Protects Intestine against Radiation Injury by Modulating P53/NOXA Signaling Pathway and Restoring the Balance of Gut Microbiota publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.09.035 – volume: 135 start-page: 63 year: 2012 ident: B85 article-title: Comparative Antioxidant Activity of Nanoscale Lignin Prepared by a Supercritical Antisolvent (SAS) Process with Non-nanoscale Lignin publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.04.070 – volume: 849 start-page: 43 year: 2019 ident: B86 article-title: A Vanillin Derivative Suppresses the Growth of HT29 Cells through the Wnt/β-Catenin Signaling Pathway publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2019.01.047 – volume: 1810 start-page: 170 year: 2011 ident: B129 article-title: Evaluation of Antioxidant Activity of Vanillin by Using Multiple Antioxidant Assays publication-title: Biochim. Biophys. Acta (Bba) - Gen. Subjects doi: 10.1016/j.bbagen.2010.11.004 – volume: 86 start-page: 443 year: 2016 ident: B14 article-title: In Vitro evaluation of Antioxidant and Cytotoxic Activities of Lignin Fractions Extracted from Acacia Nilotica publication-title: Int. J. Biol. Macromolecules doi: 10.1016/j.ijbiomac.2016.01.109 – volume: 17 start-page: 5939 year: 2011 ident: B108 article-title: Towards Quantitative Catalytic Lignin Depolymerization publication-title: Chem. Eur. J. doi: 10.1002/chem.201002438 – volume: 145 start-page: 43 year: 2014 ident: B133 article-title: Microwave-assisted Depolymerisation of Organosolv Lignin via Mild Hydrogen-free Hydrogenolysis: Catalyst Screening publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.10.015 – volume: 18 start-page: 2367 year: 2017 ident: B15 article-title: Lignin from Micro- to Nanosize: Applications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18112367 – volume: 27 start-page: 133 year: 2013 ident: B97 article-title: Anti-UV Activity of Lignin-Carbohydrate Complex and Related Compounds publication-title: In Vivo – volume: 13 start-page: 412 year: 2017 ident: B131 article-title: Catalytic Effects of Various Acids on Microwave-Assisted Depolymerization of Organosolv Lignin publication-title: BioResources doi: 10.15376/biores.13.1.412-424 – volume: 7 start-page: 7535 year: 2017 ident: B144 article-title: Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide publication-title: ACS Catal. doi: 10.1021/acscatal.7b02563 – volume: 9 start-page: 1317 ident: B71 article-title: Synthesis, Characterization, Cytotoxic, Anticancer and Antimicrobial Studies of Novel Schiff Base Ligand Derived from Vanillin and its Transition Metal Complexes publication-title: J. Pharm. Sci. Res. – volume: 23 start-page: 3268 year: 2021 ident: B21 article-title: Enhancing Lignin Depolymerization via a Dithionite-Assisted Organosolv Fractionation of Birch Sawdust publication-title: Green. Chem. doi: 10.1039/d1gc00503k – volume: 9 start-page: 838645 year: 2013 ident: B139 article-title: Recent Development in Chemical Depolymerization of Lignin: A Review publication-title: J. Appl. Chem. doi: 10.1155/2013/838645 – volume: 57 start-page: 4945 year: 2016 ident: B34 article-title: Recent Developments in Chemical Degradation of Lignin: Catalytic Oxidation and Ionic Liquids publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2016.09.084 – volume: 86 start-page: 921 year: 2010 ident: B35 article-title: Regulation of Genes in Streptomyces Bacteria Required for Catabolism of Lignin-Derived Aromatic Compounds publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2358-0 – volume: 82 start-page: 1149 year: 2018 ident: B26 article-title: Microwave-assisted Conversion of Biomass and Waste Materials to Biofuels publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2017.09.066 – volume: 37 start-page: 9 year: 2016 ident: B83 article-title: From Lignin-Derived Aromatic Compounds to Novel Biobased Polymers publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201500474 – volume: 139 start-page: 13 year: 2013 ident: B87 article-title: Production of Polyols via Direct Hydrolysis of Kraft Lignin: Effect of Process Parameters publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.199 – volume: 16 start-page: 1384 year: 2010 ident: B89 article-title: Cyclooxygenase-2 and Cancer Treatment: Understanding the Risk Should Be Worth the Reward: Fig. 1 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.ccr-09-0788 – volume: 35 start-page: 52 year: 2015 ident: B90 article-title: Improved Protocol for Alkaline Nitrobenzene Oxidation of Woody and Non-woody Biomass publication-title: J. Wood Chem. Technol. doi: 10.1080/02773813.2014.902965 – volume: 54 start-page: 479 year: 1990 ident: B128 article-title: Structural Characterization of the Immunoactive and Antiviral Water-Solubilized Lignin in an Extract of the Culture Medium of Lentinus Edodes Mycelia (LEM) publication-title: Agric. Biol. Chem. doi: 10.1271/bbb1961.54.479 – volume: 128 start-page: 91 year: 2010 ident: B113 article-title: Distribution of Lignin-Carbohydrate Complex in Plant Kingdom and its Functionality as Alternative Medicine publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2010.05.004 – volume: 79 start-page: 511 year: 2021 ident: B19 article-title: The Role of Lignin in wood Working Processes Using Elevated Temperatures: An Abbreviated Literature Survey publication-title: Eur. J. Wood Prod. doi: 10.1007/s00107-020-01637-3 – volume: 35 start-page: 809 year: 2016 ident: B149 article-title: Degradation of Lignin in Ionic Liquid with HCl as Catalyst publication-title: Environ. Prog. Sustain. Energ. doi: 10.1002/ep.12276 – volume: 75 start-page: 242 year: 2007 ident: B158 article-title: Chemical Properties, Mode of Action, and In Vivo Anti-herpes Activities of a Lignin-Carbohydrate Complex from Prunella Vulgaris publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2007.03.010 – volume: 99 start-page: 499 year: 2018 ident: B13 article-title: Vanillin Biotechnology: The Perspectives and Future publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9303 – volume: 165 start-page: 319 year: 2014 ident: B121 article-title: Hydrothermal Conversion of Lignin to Substituted Phenols and Aromatic Ethers publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.076 – volume: 9 start-page: 1544 year: 2016 ident: B51 article-title: Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery publication-title: ChemSusChem doi: 10.1002/cssc.201600237 – volume: 84 start-page: 1261 year: 2004 ident: B100 article-title: Ferulic Acid: Pharmaceutical Functions, Preparation and Applications in Foods publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.1873 – volume: 2016 start-page: 9734816 year: 20162016 ident: B16 article-title: Overview of the Role of Vanillin on Redox Status and Cancer Development publication-title: Oxid Med. Cel Longev doi: 10.1155/2016/9734816 – volume: 23 start-page: 2464 year: 2018 ident: B4 article-title: Effects of Process Parameters on Hydrolytic Treatment of Black Liquor for the Production of Low-Molecular-Weight Depolymerized Kraft Lignin publication-title: Molecules doi: 10.3390/molecules23102464 – volume: 19 ident: B72 article-title: A Review of Thermochemical Conversion of Microalgal Biomass for Biofuels: Chemistry and Processes publication-title: Green. Chem. doi: 10.1039/c6gc01937d – volume: 29 start-page: 10 year: 2015 ident: B24 article-title: Enzymatic Conversion of Lignin into Renewable Chemicals publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2015.06.009 – volume: 17 start-page: 92 year: 2018 ident: B91 article-title: Phytobiotics in Poultry and Swine Nutrition - a Review publication-title: Ital. J. Anim. Sci. doi: 10.1080/1828051x.2017.1350120 – volume: 161 start-page: 84 year: 2019 ident: B11 article-title: Synthesis, Characterization and Anticancer Activity of Mono- and Dinuclear Ni(II) and Co(II) Complexes of a Schiff Base Derived from O-Vanillin publication-title: Polyhedron doi: 10.1016/j.poly.2018.12.055 – volume: 147 start-page: 1331 year: 2020 ident: B39 article-title: Renewable Lignin-Based Carbon Nanofiber as Ni Catalyst Support for Depolymerization of Lignin to Phenols in Supercritical Ethanol/water publication-title: Renew. Energ. doi: 10.1016/j.renene.2019.09.108 – volume: 7 start-page: 518 year: 1975 ident: B134 article-title: Oryzanol, Ferulic Acid, and Their Derivatives as Preservatives publication-title: Jpn. Kokai – volume: 114 start-page: 1082 year: 2014 ident: B10 article-title: Biobased Thermosetting Epoxy: Present and Future publication-title: Chem. Rev. doi: 10.1021/cr3001274 – start-page: 561 volume-title: Biotechnology for Pulp and Paper Processing year: 2018 ident: B12 article-title: Value-added Products from Lignin doi: 10.1007/978-981-10-7853-8_25 – volume: 43 start-page: 7485 year: 2014 ident: B145 article-title: Lignin Depolymerisation Strategies: Towards Valuable Chemicals and Fuels publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00235k – volume: 18 year: 2017 ident: B130 article-title: Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18112421 – volume: 52 start-page: 573 year: 2016 ident: B46 article-title: Lignin: Chemical Structure, Biodegradation, and Practical Application (A Review) publication-title: Appl. Biochem. Microbiol. doi: 10.1134/s0003683816060053 – volume: 73 start-page: 610 year: 2017 ident: B30 article-title: Biological Valorization Strategies for Converting Lignin into Fuels and Chemicals publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2017.01.166 – volume: 4 start-page: 21712 year: 2014 ident: B84 article-title: Naturally Occurring Phenolic Sources: Monomers and Polymers publication-title: RSC Adv. doi: 10.1039/c4ra00181h – volume: 34 start-page: 1318 year: 2016 ident: B1 article-title: Biological Valorization of Low Molecular Weight Lignin publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.10.001 – volume: 110 start-page: 3552 year: 2010 ident: B155 article-title: The Catalytic Valorization of Lignin for the Production of Renewable Chemicals publication-title: Chem. Rev. doi: 10.1021/cr900354u – volume: 348 start-page: 117 year: 2011 ident: B93 article-title: Effect of Lignin-Derived Lignophenols on Vascular Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats publication-title: Mol. Cel Biochem doi: 10.1007/s11010-010-0645-9 – volume: 38 start-page: 619 year: 2019 ident: B117 article-title: Beneficial Role of Vanillin, a Polyphenolic Flavoring Agent, on Maneb-Induced Oxidative Stress, DNA Damage, and Liver Histological Changes in Swiss Albino Mice publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327119831067 – volume: 19 start-page: 2260 year: 2017 ident: B8 article-title: Induction of Lignin Solubility for a Series of Polar Ionic Liquids by the Addition of a Small Amount of Water publication-title: Green. Chem. doi: 10.1039/c7gc00626h – volume: 4 start-page: 86 year: 2014 ident: B73 article-title: Potential Applications of Ferulic Acid from Natural Sources publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2014.09.002 – volume: 196 start-page: 1080 year: 2019 ident: B94 article-title: Rapid Microwave-Assisted Biomass Delignification and Lignin Depolymerization in Deep Eutectic Solvents publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2019.06.070 – volume: 7 start-page: 4377 year: 2012 ident: B64 article-title: A Concise Review of the Natural Existance, Synthesis, Properties, and Applications of Syringaldehyde publication-title: BioResources doi: 10.15376/biores.7.3.4377-4399 – volume: 253 start-page: 120076 year: 2020 ident: B160 article-title: Lignin-carbohydrate Complexes (LCCs) and its Role in Biorefinery publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120076 – volume: 2 start-page: 637 year: 2018 ident: B63 article-title: Lignin-first Biorefinery: a Reusable Catalyst for Lignin Depolymerization and Application of Lignin Oil to Jet Fuel Aromatics and Polyurethane Feedstock publication-title: Sustain. Energ. Fuels doi: 10.1039/c7se00535k – volume: 2 start-page: 637 year: 2018 ident: B62 article-title: Lignin-first Biorefinery: a Reusable Catalyst for Lignin Depolymerization and Application of Lignin Oil to Jet Fuel Aromatics and Polyurethane Feedstock publication-title: Sustain. Energ. Fuels doi: 10.1039/c7se00535k – volume: 17 start-page: 4888 year: 2015 ident: B82 article-title: Thermochemical Conversion of Lignin to Functional Materials: A Review and Future Directions publication-title: Green. Chem. doi: 10.1039/c5gc01054c – volume: 19 start-page: 1 year: 2014 ident: B22 article-title: Exploring Bacterial Lignin Degradation publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2013.11.015 – volume: 18 year: 2017 ident: B138 article-title: Lignins and Their Derivatives with Beneficial Effects on Human Health publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18061219 – volume: 18 start-page: 5693 year: 2016 ident: B159 article-title: From Lignin Association to Nano-/micro-Particle Preparation: Extracting Higher Value of Lignin publication-title: Green. Chem. doi: 10.1039/c6gc01813k – volume: 107 start-page: 232 year: 2019 ident: B32 article-title: Lignin Utilization: a Review of Lignin Depolymerization from Various Aspects publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2019.03.008 – volume: 28 start-page: 100438 year: 2021 ident: B50 article-title: From Stabilization Strategies to Tailor-Made Lignin Macromolecules and Oligomers for Materials publication-title: Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2020.100438 – volume: 56 start-page: 296 year: 2001 ident: B103 article-title: Biotechnological Production of Vanillin publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530100687 – volume: 269 start-page: 465 year: 2018 ident: B27 article-title: Lignin Valorization for the Production of Renewable Chemicals: State-Of-The-Art Review and Future Prospects publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.065 – volume: 4 start-page: 35 year: 2016 ident: B40 article-title: Vanillin Production from Lignin and its Use as a Renewable Chemical publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01344 – volume: 53 start-page: 470 year: 2020 ident: B157 article-title: Catalytic Lignin Depolymerization to Aromatic Chemicals publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00573 |
SSID | ssj0001325410 |
Score | 2.5366647 |
SecondaryResourceType | review_article |
Snippet | Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | depolymerization ferulic acid lignin lignin-first biorefining syringaldehyde vanillin |
Title | A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects |
URI | https://doaj.org/article/123e46b96d9c48fabdd1308055d78986 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-RQmrSlaR7o0FOoupItyZrc8iSEPHpoyt6MrEdYWLzLrveQf5-R5YTtJb30ZsxYmE-DZj5J8w0h3wUPIAO3TBegmCx9avMSLTOA7MEbzStIhcJ39_r6Ud6M1Xit1Ve6E5blgTNwI1xZg9QNaA9Ommgb73HZNVwpXxkwvdg2xrw1MtXvrpRIfMRwjIksDEYRp-MJ-WAhfmKKXEn5VyBa0-vvA8vVR_JhyAjpaf6THbIR2l2yvaYT-IksTmnewz-hF5gwT5_TMUuun6SzSG8nT-2kpd2MZhHpLtB0fYP9sdNVoGeTGfuVdV2XJ_RhnhLuVdsLqf6g56-9VPDZtp6iYV97ufxMHq8uf59fs6FZAnOlkh3TYIKRCumOroSwEI2PLkDBg3aguLaaRwEu2GhcWcoqNsFguAbrPILRxPIL2WxnbfhKqDWFA6tKb2IhlbQQAKTGQR1mT976PcJfkavdoCSeGlpMa2QUCey6B7tOYNcZ7D1y_PbJPMtovGd8lqbjzTApYPcv0C_qwS_qf_nFt_8xyD7ZKlK5AxdMiAOy2S1W4RCTkK456v3tBSBz2Wc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review%3A+Depolymerization+of+Lignin+to+Generate+High-Value+Bio-Products%3A+Opportunities%2C+Challenges%2C+and+Prospects&rft.jtitle=Frontiers+in+energy+research&rft.au=Zhou%2C+Ningning&rft.au=Thilakarathna%2C+W.+P.+D.+Wass&rft.au=He%2C+Quan+Sophia&rft.au=Rupasinghe%2C+H.+P.+Vasantha&rft.date=2022-01-11&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.758744&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_758744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |