A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects

Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical properties of monomers. Thus, emerging opportunities exist in generating high-value small molecules from lignin through depolymerization. Thi...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 9
Main Authors Zhou, Ningning, Thilakarathna, W. P. D. Wass, He, Quan Sophia, Rupasinghe, H. P. Vasantha
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 11.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical properties of monomers. Thus, emerging opportunities exist in generating high-value small molecules from lignin through depolymerization. This review aims at providing an overview of the major technologies of lignin depolymerization. The feasibility of large-scale implementation of these technologies, including thermal, biological, and chemical depolymerizations, are discussed in relation to potential industrial applications. Lignin as a renewable alternative to petroleum-based chemicals has been well documented. This review attempts to emphasize potential applications of lignin-derived monomers and their derivatives as bioactives in food, natural health product, and pharmaceutical sectors. The critical review of the prospects and challenges of lignin-derived bioproducts reveals that the advancement of research and development is required to explore the applications of depolymerization of lignins to their full potential.
AbstractList Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical properties of monomers. Thus, emerging opportunities exist in generating high-value small molecules from lignin through depolymerization. This review aims at providing an overview of the major technologies of lignin depolymerization. The feasibility of large-scale implementation of these technologies, including thermal, biological, and chemical depolymerizations, are discussed in relation to potential industrial applications. Lignin as a renewable alternative to petroleum-based chemicals has been well documented. This review attempts to emphasize potential applications of lignin-derived monomers and their derivatives as bioactives in food, natural health product, and pharmaceutical sectors. The critical review of the prospects and challenges of lignin-derived bioproducts reveals that the advancement of research and development is required to explore the applications of depolymerization of lignins to their full potential.
Author Zhou, Ningning
Thilakarathna, W. P. D. Wass
He, Quan Sophia
Rupasinghe, H. P. Vasantha
Author_xml – sequence: 1
  givenname: Ningning
  surname: Zhou
  fullname: Zhou, Ningning
– sequence: 2
  givenname: W. P. D. Wass
  surname: Thilakarathna
  fullname: Thilakarathna, W. P. D. Wass
– sequence: 3
  givenname: Quan Sophia
  surname: He
  fullname: He, Quan Sophia
– sequence: 4
  givenname: H. P. Vasantha
  surname: Rupasinghe
  fullname: Rupasinghe, H. P. Vasantha
BookMark eNp1UV1LHDEUDWLBj_oDfMsPcLbJZJJJfNPVrsKCpbTiW8gmN2NkTIZMVrG_vrO7ClLo0z1czjnce84R2o8pAkKnlMwYk-qbh5i7WU1qOmu5bJtmDx3WtRIVV_Jh_xM-QCfj-EQIoazmDSWHKF_gn_AS4PUcX8GQ-rdnyOGPKSFFnDxehi6GiEvCC4iQTQF8E7rH6t70a8CXIVU_cnJrW8ZzfDcMKZd1DCXAeIbnj6bvIXYbbKLDE3EcYGJ-RV-86Uc4eZ_H6Pf361_zm2p5t7idXywry3hTKqEkyIYrLkRLqVFeOm9B1QSEVZwII4inyoLx0jLWtH4Fsp7SMNZNCaw8O0a3O1-XzJMecng2-U0nE_R2kXKnTS7B9qBpzaARKyWcso30ZuUcZUQSzl0rlRSTV7vzstMXYwavbSjblEo2odeU6E0TetuE3jShd01MSvqP8uOS_2v-AqbKkDA
CitedBy_id crossref_primary_10_1007_s12649_024_02655_5
crossref_primary_10_3390_en17081953
crossref_primary_10_1016_j_ijbiomac_2024_129877
crossref_primary_10_1016_j_biortech_2024_130804
crossref_primary_10_31857_S2686953522600490
crossref_primary_10_1134_S1068162024070264
crossref_primary_10_1016_j_bioeco_2022_100036
crossref_primary_10_3390_polym16233325
crossref_primary_10_35812_CelluloseChemTechnol_2024_58_49
crossref_primary_10_4491_KSEE_2025_47_1_23
crossref_primary_10_1016_j_molstruc_2024_139325
crossref_primary_10_1016_j_biortech_2025_132278
crossref_primary_10_1016_j_biortech_2023_129492
crossref_primary_10_12688_openreseurope_16734_2
crossref_primary_10_1016_j_ijbiomac_2023_124174
crossref_primary_10_1016_j_greenca_2024_11_005
crossref_primary_10_1016_j_indcrop_2024_119321
crossref_primary_10_1021_acs_jpca_4c00964
crossref_primary_10_1007_s13399_022_02694_9
crossref_primary_10_3390_molecules28124842
crossref_primary_10_1016_j_ijbiomac_2024_139278
crossref_primary_10_1016_j_jece_2023_109691
crossref_primary_10_3390_horticulturae10101079
crossref_primary_10_1016_j_jece_2023_109614
crossref_primary_10_1021_acssuschemeng_5c00773
crossref_primary_10_3389_fbioe_2022_1082341
crossref_primary_10_1016_j_ijbiomac_2024_138856
crossref_primary_10_1016_j_indcrop_2023_116275
crossref_primary_10_1515_gps_2023_0154
crossref_primary_10_1134_S0012501623600110
crossref_primary_10_1016_j_bej_2023_109065
crossref_primary_10_1016_j_bej_2024_109347
crossref_primary_10_1016_j_indcrop_2023_116987
crossref_primary_10_1039_D2GC00092J
crossref_primary_10_1016_j_clema_2024_100253
crossref_primary_10_1016_j_scenv_2024_100179
crossref_primary_10_1039_D3GC04597H
crossref_primary_10_1016_j_cej_2023_144269
crossref_primary_10_1016_j_molliq_2023_122030
crossref_primary_10_1016_j_ijbiomac_2024_132696
crossref_primary_10_1016_j_ijbiomac_2024_136383
crossref_primary_10_1515_hf_2022_0113
crossref_primary_10_1016_j_isci_2023_106549
crossref_primary_10_3390_app14219790
crossref_primary_10_1039_D4SE00527A
crossref_primary_10_1016_j_ijbiomac_2024_138952
crossref_primary_10_1039_D3GC02927A
crossref_primary_10_3390_pr10102004
crossref_primary_10_1039_D4GC05439C
crossref_primary_10_1002_biot_202300312
crossref_primary_10_4028_p_DL8dG5
crossref_primary_10_1111_ijfs_16652
crossref_primary_10_1680_jgrma_24_00121
crossref_primary_10_3390_molecules29020442
crossref_primary_10_1016_j_seppur_2023_124778
crossref_primary_10_1016_j_biteb_2024_101786
crossref_primary_10_1186_s13068_023_02278_3
crossref_primary_10_1039_D4CC02501F
crossref_primary_10_1039_D3SE00173C
crossref_primary_10_1016_j_biortech_2024_130728
crossref_primary_10_1016_j_giant_2022_100106
crossref_primary_10_1021_acs_energyfuels_4c02301
crossref_primary_10_1021_acs_joc_4c00962
crossref_primary_10_3390_biochem4040017
crossref_primary_10_1021_acsnano_3c00436
crossref_primary_10_1016_j_cogsc_2024_100931
crossref_primary_10_1016_j_copbio_2024_103178
crossref_primary_10_1002_bbb_2460
crossref_primary_10_3389_fceng_2022_982126
crossref_primary_10_1016_j_cej_2024_152204
crossref_primary_10_1016_j_ijbiomac_2024_136408
crossref_primary_10_1016_j_biortech_2023_129294
crossref_primary_10_1016_j_eurpolymj_2023_112141
crossref_primary_10_1021_acselectrochem_4c00049
crossref_primary_10_1007_s13399_024_06365_9
crossref_primary_10_1016_j_fuel_2024_134199
crossref_primary_10_1039_D4GC00333K
crossref_primary_10_3390_ijms241713115
crossref_primary_10_1016_j_mcat_2023_113551
crossref_primary_10_1021_acs_iecr_3c03453
crossref_primary_10_15407_hftp15_03_313
crossref_primary_10_1016_j_biteb_2024_101933
crossref_primary_10_3389_fchem_2023_1239479
crossref_primary_10_1002_macp_202200378
crossref_primary_10_1039_D4GC05724D
crossref_primary_10_1016_j_colsurfa_2025_136311
crossref_primary_10_1007_s13399_024_05366_y
crossref_primary_10_1016_j_scenv_2024_100107
crossref_primary_10_1002_cssc_202402334
crossref_primary_10_3390_ijms23073767
crossref_primary_10_1155_2023_7454857
crossref_primary_10_1039_D3GC01105D
crossref_primary_10_3390_polym16243542
crossref_primary_10_1007_s13399_024_05793_x
crossref_primary_10_1039_D4GC03567D
crossref_primary_10_1002_cssc_202301460
crossref_primary_10_1039_D2GC02982K
crossref_primary_10_3389_fchem_2024_1485354
crossref_primary_10_1007_s11172_023_4020_x
crossref_primary_10_1016_j_mtbio_2022_100520
crossref_primary_10_1080_01496395_2024_2315612
crossref_primary_10_1016_j_renene_2025_122557
crossref_primary_10_3390_catal13010149
crossref_primary_10_1038_s41467_025_57129_6
crossref_primary_10_1016_j_ijbiomac_2025_139476
crossref_primary_10_1149_1945_7111_ad8f00
crossref_primary_10_1021_acssuschemeng_4c01213
crossref_primary_10_1016_j_indcrop_2024_118211
crossref_primary_10_1021_acssuschemeng_3c00257
crossref_primary_10_1080_26395940_2023_2263168
crossref_primary_10_3390_biomass4030053
crossref_primary_10_3390_catal12121651
crossref_primary_10_1016_j_biombioe_2024_107491
Cites_doi 10.1016/j.biortech.2014.03.103
10.1016/j.tiv.2011.05.007
10.1016/j.jaap.2016.01.008
10.1016/j.biombioe.2009.03.006
10.1021/acs.chemrev.7b00588
10.1021/acssuschemeng.1c01450
10.1016/j.ejphar.2012.05.019
10.1021/acssuschemeng.6b00639
10.1002/bbb.1913
10.3389/fnut.2019.00121
10.1039/c7gc01479a
10.1039/c7ee01298e
10.1039/c1gc15543a
10.1016/j.cej.2015.02.003
10.1016/j.pmatsci.2017.12.001
10.1039/C0EE00246A
10.1016/j.jbiotec.2016.08.011
10.1039/c4gc01825g
10.1016/j.foodres.2005.11.005
10.1039/c5gc01436k
10.1039/d1gc01456k
10.1038/nature13867
10.1039/d0gc02802a
10.2172/921839
10.1016/j.biortech.2017.05.129
10.1385/abab:84-86:1-9:153
10.3390/nu10060713
10.3109/10715760903247264
10.1039/9781788010351-00001
10.1080/17458080.2015.1055842
10.1016/j.postharvbio.2007.01.017
10.1016/j.foodres.2010.05.021
10.1039/c7gc01324h
10.1016/j.indcrop.2015.03.070
10.1016/j.fct.2017.02.028
10.1016/j.fuproc.2018.09.017
10.1016/j.eurpolymj.2015.03.050
10.1002/macp.201500194
10.1002/slct.201801393
10.1016/j.indcrop.2021.113757
10.1021/acs.iecr.0c01617
10.1016/j.cej.2018.01.002
10.1016/j.lfs.2021.120036
10.1002/jctb.3799
10.1016/j.jff.2014.04.007
10.1021/acssuschemeng.9b06556
10.1021/acs.iecr.9b00376
10.1016/j.jece.2017.08.031
10.1016/j.biortech.2020.123189
10.1021/acsmacrolett.0c00424
10.3390/antiox6020030
10.1016/j.fuproc.2017.03.020
10.1016/j.rser.2013.07.013
10.1016/j.cej.2018.04.020
10.1016/j.progpolymsci.2013.11.004
10.1071/ch12324
10.1039/c4gc01143k
10.1016/j.biortech.2014.03.060
10.1016/j.polymdegradstab.2011.01.011
10.1016/j.gene.2015.10.061
10.1002/cssc.201402314
10.1016/j.renene.2020.01.054
10.1080/15422119.2015.1070178
10.1016/j.matpr.2020.05.376
10.1016/j.biortech.2018.08.118
10.1021/op010087o
10.1016/j.biomaterials.2016.12.034
10.1016/j.carbpol.2005.07.011
10.1254/jphs.fp0060711
10.1016/j.etap.2012.04.005
10.1016/j.carbpol.2011.07.030
10.1111/j.1527-3458.2007.00017.x
10.1111/j.1742-7843.2006.pto_535.x
10.1002/adma.202003206
10.1016/j.jaap.2014.06.005
10.1016/j.bmc.2004.07.022
10.1016/j.fct.2013.12.024
10.1007/s41061-018-0207-2
10.1016/j.indcrop.2015.06.020
10.1271/bbb.100645
10.1002/jctb.3996
10.1016/j.eurpolymj.2013.03.002
10.1016/j.fuproc.2021.106997
10.1007/s00592-003-0099-6
10.1039/C7EE01298E
10.3390/app10051599
10.1016/j.jff.2011.10.004
10.1039/c8cy00845k
10.1016/j.biortech.2021.126035
10.1016/j.freeradbiomed.2019.09.035
10.1016/j.foodchem.2012.04.070
10.1016/j.ejphar.2019.01.047
10.1016/j.bbagen.2010.11.004
10.1016/j.ijbiomac.2016.01.109
10.1002/chem.201002438
10.1016/j.apcatb.2012.10.015
10.3390/ijms18112367
10.15376/biores.13.1.412-424
10.1021/acscatal.7b02563
10.1039/d1gc00503k
10.1155/2013/838645
10.1016/j.tetlet.2016.09.084
10.1007/s00253-009-2358-0
10.1016/j.rser.2017.09.066
10.1002/marc.201500474
10.1016/j.biortech.2013.03.199
10.1158/1078-0432.ccr-09-0788
10.1080/02773813.2014.902965
10.1271/bbb1961.54.479
10.1016/j.pharmthera.2010.05.004
10.1007/s00107-020-01637-3
10.1002/ep.12276
10.1016/j.antiviral.2007.03.010
10.1002/jsfa.9303
10.1016/j.biortech.2014.02.076
10.1002/cssc.201600237
10.1002/jsfa.1873
10.1155/2016/9734816
10.3390/molecules23102464
10.1039/c6gc01937d
10.1016/j.cbpa.2015.06.009
10.1080/1828051x.2017.1350120
10.1016/j.poly.2018.12.055
10.1016/j.renene.2019.09.108
10.1021/cr3001274
10.1007/978-981-10-7853-8_25
10.1039/c4cs00235k
10.3390/ijms18112421
10.1134/s0003683816060053
10.1016/j.rser.2017.01.166
10.1039/c4ra00181h
10.1016/j.biotechadv.2016.10.001
10.1021/cr900354u
10.1007/s11010-010-0645-9
10.1177/0960327119831067
10.1039/c7gc00626h
10.1016/j.btre.2014.09.002
10.1016/j.enconman.2019.06.070
10.15376/biores.7.3.4377-4399
10.1016/j.jclepro.2020.120076
10.1039/c7se00535k
10.1039/c5gc01054c
10.1016/j.cbpa.2013.11.015
10.3390/ijms18061219
10.1039/c6gc01813k
10.1016/j.rser.2019.03.008
10.1016/j.cogsc.2020.100438
10.1007/s002530100687
10.1016/j.biortech.2018.08.065
10.1021/acssuschemeng.5b01344
10.1021/acs.accounts.9b00573
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2021.758744
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_123e46b96d9c48fabdd1308055d78986
10_3389_fenrg_2021_758744
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-698e8459566711a9f8dfce920e6c9506a60f19ceaf8c3347fbe82389acd744bf3
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:07:06 EDT 2025
Tue Jul 01 03:00:24 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-698e8459566711a9f8dfce920e6c9506a60f19ceaf8c3347fbe82389acd744bf3
OpenAccessLink https://doaj.org/article/123e46b96d9c48fabdd1308055d78986
ParticipantIDs doaj_primary_oai_doaj_org_article_123e46b96d9c48fabdd1308055d78986
crossref_citationtrail_10_3389_fenrg_2021_758744
crossref_primary_10_3389_fenrg_2021_758744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-11
PublicationDateYYYYMMDD 2022-01-11
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-11
  day: 11
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Binder (B17) 2009; 33
Muley (B94) 2019; 196
Cao (B28) 2020; 59
Nanbu (B97) 2013; 27
Bahron (B11) 2019; 161
Bu (B23) 2014; 162
Sri Balasubashini (B124) 2003; 40
Xue (B150) 2016; 4
Zhao (B160) 2020; 253
Zhang (B156) 2015; 216
Zhang (B157) 2020; 53
Tayier (B131) 2017; 13
Menter (B89) 2010; 16
Kumar (B164) 2021; 41
Tai (B129) 2011; 1810
Xu (B145) 2014; 43
Renders (B107) 2017; 10
Ghanim (B53) 2021; 286
Auvergne (B10) 2014; 114
Kuamr (B71); 9
Nandiwale (B98) 2020; 8
Banerjee (B13) 2018; 99
Akao (B7) 2004; 12
Bajpai (B12) 2018
Bezerra (B16) 20162016; 2016
Cox (B33) 2011; 96
Ramar (B106) 2012; 690
Fache (B41) 2015; 68
Cao (B27) 2018; 269
Xu (B148) 2021; 342
Agarwal (B2) 2018; 181
Mukai (B93) 2011; 348
Vinardell (B138) 2017; 18
Dhar (B37) 2017; 5
Wang (B141) 2019; 58
Kang (B67) 2013; 27
Xu (B147) 2018; 269
Ahmed (B6) 2020; 10
Vangeel (B137) 2018; 376
Yang (B151) 2020; 22
Gillet (B55) 2017; 19
Zakzeski (B155) 2010; 110
Ghosh (B54) 2017; 103
Figueiredo (B47) 2018; 93
Liu (B82) 2015; 17
Van den Bosch (B135) 2017; 19
Sakagami (B111) 2011; 25
Alam (B9) 2019; 6
Xiao (B144) 2017; 7
Suzuki (B128) 1990; 54
Mancuso (B88) 2014; 65
Feofilova (B46) 2016; 52
Zhao (B159) 2016; 18
Katahira (B70) 2018; 2018
Li (B79) 2021; 2021
Huang (B63) 2018; 2
Galkin (B50) 2021; 28
Akiba (B8) 2017; 19
Zhu (B162) 2017; 161
Börcsök (B19) 2021; 79
Kumar (B72); 19
Dai (B34) 2016; 57
Parmar (B102) 2015
Chen (B30) 2017; 73
Ou (B100) 2004; 84
Fan (B43) 2017; 241
González-Sarrías (B56) 2012; 4
Xu (B146) 2017
Panzella (B101) 2017; 6
Beisl (B15) 2017; 18
Bundhoo (B26) 2018; 82
Zhu (B163) 2018; 3
Brienza (B21) 2021; 23
Lievonen (B81) 2016; 18
Singh (B121) 2014; 165
Li (B77) 2019; 145
Laurichesse (B75) 2014; 39
Abdelaziz (B1) 2016; 34
Mohammadi Gheisar (B91) 2018; 17
Fahrioğlu (B42) 2016; 576
Holladay (B60) 2007
Roberts (B108) 2011; 17
Chio (B32) 2019; 107
Nair (B95) 2014; 7
Yearla (B152) 2015; 11
Thoresen (B166) 2020; 306
Toledano (B133) 2014; 145
Shu (B119) 2018; 338
Toledano (B132) 2012; 87
De Gonzalo (B36) 2016; 236
Brown (B22) 2014; 19
Farag (B44) 2014; 109
Sato (B116) 2009; 43
Rajak (B105) 2021; 23
Sagues (B165) 2018; 6
Song (B123) 2014; 9
Wang (B139) 2013; 9
Zhang (B158) 2007; 75
Sakagami (B112) 2016; 30
Lochab (B84) 2014; 4
Rahimi (B104) 2014; 515
Yuan (B154) 2013; 88
Tarabanko (B130) 2017; 18
Harvey (B58) 2015; 17
Shu (B120) 2018; 338
Shen (B118) 2015; 270
Hossain (B61) 2012; 65
Chen (B29) 2018; 346
Ibrahim (B64) 2012; 7
Xiang (B143) 2000
Agrawal (B3) 2014; 1
Li (B80) 2018; 12
Feghali (B45) 2020; 9
Ito (B65) 2007; 13
Davis (B35) 2010; 86
Kumar (B73) 2014; 4
Du (B39) 2020; 147
Sakagami (B113) 2010; 128
Sefi (B117) 2019; 38
Cheng (B31) 2018; 8
Lee (B76) 2011; 75
Van Wyk (B136) 2014
Zhou (B161) 2021; 33
Barapatre (B14) 2016; 86
Weldemhret (B142) 2020; 152
Fillat (B49) 2012; 87
Singh (B122) 2005; 62
Lange (B74) 2013; 49
Rupasinghe (B110) 2006; 39
Priefert (B103) 2001; 56
Guo (B57) 2015; 76
Nanbu (B96) 2011; 25
Karthikeyan (B69) 2011; 25
Rojas-Graüa (B109) 2007; 45
Stark (B125) 2010; 4
Tsuchiya (B134) 1975; 7
Mahmood (B87) 2013; 139
Ahmad (B5) 2021; 170
Hoang (B59) 2021; 223
Min (B90) 2015; 35
Lu (B85) 2012; 135
Bjørsvik (B18) 2002; 6
Bumrungpert (B25) 2018; 10
Galkin (B51) 2016; 9
Fache (B40) 2016; 4
Figueiredo (B48) 2017; 121
George (B52) 2011; 13
Sun (B127) 2018; 118
Ahmad (B4) 2018; 23
Oh-Hara (B99) 1990; 4
Strassberger (B126) 2015; 17
Ma (B86) 2019; 849
Mota (B92) 2015; 45
Huang (B62) 2018; 2
Bountagkidou (B20) 2010; 43
Bugg (B24) 2015; 29
Wang (B140) 2016; 119
Llevot (B83) 2016; 37
Xue (B149) 2016; 35
Ito (B66) 2006; 102
Sato (B115) 2012; 34
Dong (B38) 2014; 162
Sato (B114) 2006; 99
You (B153) 2015; 71
References_xml – volume: 162
  start-page: 142
  year: 2014
  ident: B23
  article-title: Bio-based Phenols and Fuel Production from Catalytic Microwave Pyrolysis of Lignin by Activated Carbons
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.103
– volume: 25
  start-page: 1366
  year: 2011
  ident: B69
  article-title: Radiosensitizing Effect of Ferulic Acid on Human Cervical Carcinoma Cells In Vitro
  publication-title: Toxicol. Vitro
  doi: 10.1016/j.tiv.2011.05.007
– volume: 119
  start-page: 104
  year: 2016
  ident: B140
  article-title: Review of Microwave-Assisted Lignin Conversion for Renewable Fuels and Chemicals
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2016.01.008
– volume: 33
  start-page: 1122
  year: 2009
  ident: B17
  article-title: Reactions of Lignin Model Compounds in Ionic Liquids
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2009.03.006
– volume: 118
  start-page: 614
  year: 2018
  ident: B127
  article-title: Bright Side of Lignin Depolymerization: Toward New Platform Chemicals
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00588
– volume: 2021
  start-page: 9248
  year: 2021
  ident: B79
  article-title: Conversion of Beech Wood into Antiviral Lignin–Carbohydrate Complexes by Microwave Acidolysis
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c01450
– volume: 1
  start-page: 30
  year: 2014
  ident: B3
  article-title: Derivatives and Applications of Lignin – an Insight
  publication-title: Scitech J.
– volume: 690
  start-page: 226
  year: 2012
  ident: B106
  article-title: Protective Effect of Ferulic Acid and Resveratrol against Alloxan-Induced Diabetes in Mice
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2012.05.019
– volume: 4
  start-page: 3864
  year: 2016
  ident: B150
  article-title: Biomass-Derived γ-Valerolactone-Based Solvent Systems for Highly Efficient Dissolution of Various Lignins: Dissolution Behavior and Mechanism Study
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00639
– volume: 12
  start-page: 756
  year: 2018
  ident: B80
  article-title: The Current and Emerging Sources of Technical Lignins and Their Applications
  publication-title: Biofuels, Bioprod. Bioref.
  doi: 10.1002/bbb.1913
– volume: 6
  start-page: 121
  year: 2019
  ident: B9
  article-title: Anti-hypertensive Effect of Cereal Antioxidant Ferulic Acid and its Mechanism of Action
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2019.00121
– volume: 19
  start-page: 4200
  year: 2017
  ident: B55
  article-title: Lignin Transformations for High Value Applications: Towards Targeted Modifications Using green Chemistry
  publication-title: Green. Chem.
  doi: 10.1039/c7gc01479a
– volume: 10
  start-page: 1551
  year: 2017
  ident: B107
  article-title: Lignin-first Biomass Fractionation: the Advent of Active Stabilisation Strategies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee01298e
– volume: 13
  start-page: 3375
  year: 2011
  ident: B52
  article-title: The Effect of Ionic Liquid Cation and Anion Combinations on the Macromolecular Structure of Lignins
  publication-title: Green. Chem.
  doi: 10.1039/c1gc15543a
– volume: 270
  start-page: 641
  year: 2015
  ident: B118
  article-title: Catalytic Solvolysis of Lignin with the Modified HUSYs in Formic Acid Assisted by Microwave Heating
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.003
– volume: 93
  start-page: 233
  year: 2018
  ident: B47
  article-title: Properties and Chemical Modifications of Lignin: Towards Lignin-Based Nanomaterials for Biomedical Applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.12.001
– volume: 4
  start-page: 19
  year: 2010
  ident: B125
  article-title: Ionic Liquids in the Biorefinery: A Critical Assessment of Their Potential
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C0EE00246A
– volume: 236
  start-page: 110
  year: 2016
  ident: B36
  article-title: Bacterial Enzymes Involved in Lignin Degradation
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2016.08.011
– volume: 17
  start-page: 1249
  year: 2015
  ident: B58
  article-title: Renewable Thermosetting Resins and Thermoplastics from Vanillin
  publication-title: Green. Chem.
  doi: 10.1039/c4gc01825g
– volume: 39
  start-page: 575
  year: 2006
  ident: B110
  article-title: Vanillin Inhibits Pathogenic and Spoilage Microorganisms In Vitro and Aerobic Microbial Growth in Fresh-Cut Apples
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2005.11.005
– volume: 18
  start-page: 1416
  year: 2016
  ident: B81
  article-title: A Simple Process for Lignin Nanoparticle Preparation
  publication-title: Green. Chem.
  doi: 10.1039/c5gc01436k
– volume: 23
  start-page: 5584
  year: 2021
  ident: B105
  article-title: An Eco-Friendly Biomass Pretreatment Strategy Utilizing Reusable Enzyme Mimicking Nanoparticles for Lignin Depolymerization and Biofuel Production
  publication-title: Green. Chem.
  doi: 10.1039/d1gc01456k
– volume: 515
  start-page: 249
  year: 2014
  ident: B104
  article-title: Formic-Acid-Induced Depolymerization of Oxidized Lignin to Aromatics
  publication-title: Nature
  doi: 10.1038/nature13867
– volume: 22
  start-page: 8210
  year: 2020
  ident: B151
  article-title: Hydrothermal Liquefaction and Gasification of Biomass and Model Compounds: A Review
  publication-title: Green. Chem.
  doi: 10.1039/d0gc02802a
– start-page: 93
  volume-title: Ferulic Acid: Antioxidant Properties, Uses and Potential Health Benefits
  year: 2015
  ident: B102
  article-title: Anti-diabetic Effect of Ferulic Acid and Derivatives: An Update
– volume-title: Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin
  year: 2007
  ident: B60
  doi: 10.2172/921839
– volume: 241
  start-page: 1118
  year: 2017
  ident: B43
  article-title: Bio-oil from Fast Pyrolysis of Lignin: Effects of Process and Upgrading Parameters
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.129
– start-page: 153
  year: 2000
  ident: B143
  article-title: Oxidative Cracking of Precipitated Hardwood Lignin by Hydrogen Peroxide
  publication-title: Abab
  doi: 10.1385/abab:84-86:1-9:153
– volume: 30
  start-page: 331
  year: 2016
  ident: B112
  article-title: Prominent Anti-UV Activity and Possible Cosmetic Potential of Lignin-Carbohydrate Complex
  publication-title: In Vivo
– volume: 10
  start-page: 713
  year: 2018
  ident: B25
  article-title: Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
  publication-title: Nutrients
  doi: 10.3390/nu10060713
– volume: 43
  start-page: 1205
  year: 2009
  ident: B116
  article-title: Lignin-derived Lignophenols Attenuate Oxidative and Inflammatory Damage to the Kidney in Streptozotocin-Induced Diabetic Rats
  publication-title: Free Radic. Res.
  doi: 10.3109/10715760903247264
– volume: 2018
  start-page: 1
  year: 2018
  ident: B70
  article-title: Chapter 1. A Brief Introduction to Lignin Structure
  publication-title: Lignin Valor. Emerging Approaches
  doi: 10.1039/9781788010351-00001
– volume: 11
  start-page: 1
  year: 2015
  ident: B152
  article-title: Preparation and Characterisation of Lignin Nanoparticles: Evaluation of Their Potential as Antioxidants and UV Protectants
  publication-title: J. Exp. Nanoscience
  doi: 10.1080/17458080.2015.1055842
– volume: 45
  start-page: 254
  year: 2007
  ident: B109
  article-title: Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2007.01.017
– volume: 43
  start-page: 2014
  year: 2010
  ident: B20
  article-title: Structure-antioxidant Activity Relationship Study of Natural Hydroxybenzaldehydes Using In Vitro Assays
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2010.05.021
– volume: 19
  start-page: 3313
  year: 2017
  ident: B135
  article-title: Integrating Lignin Valorization and Bio-Ethanol Production: on the Role of Ni-Al2O3catalyst Pellets during Lignin-First Fractionation
  publication-title: Green. Chem.
  doi: 10.1039/c7gc01324h
– volume: 71
  start-page: 65
  year: 2015
  ident: B153
  article-title: Structural Elucidation of Lignin-Carbohydrate Complex (LCC) Preparations and Lignin from Arundo donax Linn
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2015.03.070
– volume: 103
  start-page: 41
  year: 2017
  ident: B54
  article-title: New Insights into the Ameliorative Effects of Ferulic Acid in Pathophysiological Conditions
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2017.02.028
– volume: 181
  start-page: 115
  year: 2018
  ident: B2
  article-title: Advancement in Technologies for the Depolymerization of Lignin
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.09.017
– volume: 68
  start-page: 488
  year: 2015
  ident: B41
  article-title: Vanillin, a Key-Intermediate of Biobased Polymers
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.03.050
– volume: 216
  start-page: 1816
  year: 2015
  ident: B156
  article-title: Renewable Polymers Prepared from Vanillin and its Derivatives
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201500194
– volume: 3
  start-page: 7945
  year: 2018
  ident: B163
  article-title: Opportunities of Ionic Liquids for Lignin Utilization from Biorefinery
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201801393
– volume: 170
  start-page: 113757
  year: 2021
  ident: B5
  article-title: Oxidative Depolymerization of Lignin Using Nitric Acid under Ambient Conditions
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2021.113757
– volume: 59
  start-page: 16957
  year: 2020
  ident: B28
  article-title: Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c01617
– volume-title: Conversion of Lignin into Bio-Based Chemicals and Materials (Green Chemistry and Sustainable Technology)
  year: 2017
  ident: B146
– volume: 338
  start-page: 457
  year: 2018
  ident: B120
  article-title: Controllable Production of Guaiacols and Phenols from Lignin Depolymerization Using Pd/C Catalyst Cooperated with Metal Chloride
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.002
– volume: 286
  start-page: 120036
  year: 2021
  ident: B53
  article-title: Vanillin Augments Liver Regeneration Effectively in Thioacetamide Induced Liver Fibrosis Rat Model
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2021.120036
– volume: 87
  start-page: 1593
  year: 2012
  ident: B132
  article-title: Organosolv Lignin Depolymerization with Different Base Catalysts
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.3799
– volume: 9
  start-page: 141
  year: 2014
  ident: B123
  article-title: Ferulic Acid Alleviates the Symptoms of Diabetes in Obese Rats
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2014.04.007
– volume: 8
  start-page: 4096
  year: 2020
  ident: B98
  article-title: Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06556
– volume: 58
  start-page: 7866
  year: 2019
  ident: B141
  article-title: Investigation on the Catalytic Hydrogenolysis of Lignin over NbOx-Ni/ZnO-Al2O3
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b00376
– volume: 5
  start-page: 4759
  year: 2017
  ident: B37
  article-title: Understanding Lignin Depolymerization to Phenols via Microwave-Assisted Solvolysis Process
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.08.031
– volume: 306
  start-page: 123189
  year: 2020
  ident: B166
  article-title: Recent Advances in Organosolv Fractionation: Towards Biomass Fractionation Technology of the Future
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123189
– volume: 9
  start-page: 1155
  year: 2020
  ident: B45
  article-title: Biobased Epoxy Thermoset Polymers from Depolymerized Native Hardwood Lignin
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.0c00424
– volume: 6
  start-page: 30
  year: 2017
  ident: B101
  article-title: Natural Phenol Polymers: Recent Advances in Food and Health Applications
  publication-title: Antioxidants
  doi: 10.3390/antiox6020030
– volume: 161
  start-page: 155
  year: 2017
  ident: B162
  article-title: Microwave-assisted Selective Cleavage of C C Bond for Lignin Depolymerization
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.03.020
– volume: 27
  start-page: 546
  year: 2013
  ident: B67
  article-title: Hydrothermal Conversion of Lignin: A Review
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2013.07.013
– volume: 346
  start-page: 217
  year: 2018
  ident: B29
  article-title: Green Synthesis of Lignin Nanoparticle in Aqueous Hydrotropic Solution toward Broadening the Window for its Processing and Application
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.020
– volume: 39
  start-page: 1266
  year: 2014
  ident: B75
  article-title: Chemical Modification of Lignins: Towards Biobased Polymers
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.11.004
– volume: 65
  start-page: 1465
  year: 2012
  ident: B61
  article-title: Ionic Liquids for Lignin Processing: Dissolution, Isolation, and Conversion
  publication-title: Aust. J. Chem.
  doi: 10.1071/ch12324
– volume: 17
  start-page: 325
  year: 2015
  ident: B126
  article-title: Lignin Solubilisation and Gentle Fractionation in Liquid Ammonia
  publication-title: Green. Chem.
  doi: 10.1039/c4gc01143k
– volume: 162
  start-page: 136
  year: 2014
  ident: B38
  article-title: Mechanism on Microwave-Assisted Acidic Solvolysis of Black-Liquor Lignin
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.060
– volume: 96
  start-page: 426
  year: 2011
  ident: B33
  article-title: Catalytic Degradation of Lignin Model Compounds in Acidic Imidazolium Based Ionic Liquids: Hammett Acidity and Anion Effects
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2011.01.011
– volume: 576
  start-page: 476
  year: 2016
  ident: B42
  article-title: Ferulic Acid Decreases Cell Viability and colony Formation while Inhibiting Migration of MIA PaCa-2 Human Pancreatic Cancer Cells In Vitro
  publication-title: Gene
  doi: 10.1016/j.gene.2015.10.061
– volume: 7
  start-page: 3513
  year: 2014
  ident: B95
  article-title: High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402314
– volume: 152
  start-page: 283
  year: 2020
  ident: B142
  article-title: Current Advances in Ionic Liquid-Based Pre-treatment and Depolymerization of Macroalgal Biomass
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2020.01.054
– volume: 45
  start-page: 227
  year: 2015
  ident: B92
  article-title: Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes
  publication-title: Separat. Purif. Rev.
  doi: 10.1080/15422119.2015.1070178
– volume: 41
  year: 2021
  ident: B164
  article-title: Antioxidant, Antidiabetic and Anticancer Studies of Nickel Complex of Vanillin-4-Methyl-4-Phenyl-3-Thiosemicarbazone
  publication-title: Mat. Today
  doi: 10.1016/j.matpr.2020.05.376
– volume: 269
  start-page: 557
  year: 2018
  ident: B147
  article-title: Lignin Depolymerization and Utilization by Bacteria
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.08.118
– volume: 6
  start-page: 279
  year: 2002
  ident: B18
  article-title: Organic Processes to Pharmaceutical Chemicals Based on Fine Chemicals from Lignosulfonates
  publication-title: Org. Process Res. Develop.
  doi: 10.1021/op010087o
– volume: 121
  start-page: 97
  year: 2017
  ident: B48
  article-title: In Vitro evaluation of Biodegradable Lignin-Based Nanoparticles for Drug Delivery and Enhanced Antiproliferation Effect in Cancer Cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.12.034
– volume: 62
  start-page: 57
  year: 2005
  ident: B122
  article-title: Lignin-carbohydrate Complexes from Sugarcane Bagasse: Preparation, Purification, and Characterization
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2005.07.011
– volume: 25
  start-page: 229
  year: 2011
  ident: B111
  article-title: Anti-HIV and Immunomodulation Activities of Cacao Mass Lignin-Carbohydrate Complex
  publication-title: In Vivo
– volume: 102
  start-page: 196
  year: 2006
  ident: B66
  article-title: Lig-8, a Bioactive Lignophenol Derivative from Bamboo Lignin, Protects against Neuronal Damage In Vitro and In Vivo
  publication-title: J. Pharmacol. Sci.
  doi: 10.1254/jphs.fp0060711
– volume: 34
  start-page: 228
  year: 2012
  ident: B115
  article-title: Effect of Lignin-Derived Lignophenols on Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet
  publication-title: Environ. Toxicol. Pharmacol.
  doi: 10.1016/j.etap.2012.04.005
– volume-title: Phytomedicines, Herbal Drugs, and Poisons
  year: 2014
  ident: B136
– volume: 87
  start-page: 146
  year: 2012
  ident: B49
  article-title: Enzymatic Grafting of Natural Phenols to Flax Fibres: Development of Antimicrobial Properties
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.07.030
– volume: 338
  start-page: 457
  year: 2018
  ident: B119
  article-title: Controllable Production of Guaiacols and Phenols from Lignin Depolymerization Using Pd/C Catalyst Cooperated with Metal Chloride
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.002
– volume: 13
  start-page: 296
  year: 2007
  ident: B65
  article-title: Lig-8, a Highly Bioactive Lignophenol Derivative from Bamboo Lignin, Exhibits Multifaceted Neuroprotective Activity
  publication-title: CNS Drug Rev.
  doi: 10.1111/j.1527-3458.2007.00017.x
– volume: 4
  start-page: 7
  year: 1990
  ident: B99
  article-title: Antimicrobial spectrum of lignin-related pine cone extracts of Pinus parviflora Sieb. et Zucc
  publication-title: In Vivo
– volume: 99
  start-page: 353
  year: 2006
  ident: B114
  article-title: Protective Effect of Lignophenol Derivative from Beech (Fagus Crenata Blume) on Copper- and Zinc-Mediated Cell Death in PC12 Cells
  publication-title: Basic Clin. Pharmacol. Toxicol.
  doi: 10.1111/j.1742-7843.2006.pto_535.x
– volume: 33
  start-page: 2003206
  year: 2021
  ident: B161
  article-title: Understanding Plant Biomass via Computational Modeling
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003206
– volume: 109
  start-page: 249
  year: 2014
  ident: B44
  article-title: Detailed Compositional Analysis and Structural Investigation of a Bio-Oil from Microwave Pyrolysis of Kraft Lignin
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2014.06.005
– volume: 12
  start-page: 4791
  year: 2004
  ident: B7
  article-title: A Highly Bioactive Lignophenol Derivative from Bamboo Lignin Exhibits a Potent Activity to Suppress Apoptosis Induced by Oxidative Stress in Human Neuroblastoma SH-Sy5y Cells
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2004.07.022
– volume: 65
  start-page: 185
  year: 2014
  ident: B88
  article-title: Ferulic Acid: Pharmacological and Toxicological Aspects
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2013.12.024
– volume: 376
  start-page: 30
  year: 2018
  ident: B137
  article-title: Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions
  publication-title: Top. Curr. Chem. (Cham)
  doi: 10.1007/s41061-018-0207-2
– volume: 76
  start-page: 522
  year: 2015
  ident: B57
  article-title: Structural Transformations of Triploid of Populus Tomentosa Carr. Lignin during Auto-Catalyzed Ethanol Organosolv Pretreatment
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2015.06.020
– volume: 75
  start-page: 459
  year: 2011
  ident: B76
  article-title: Antiviral and Immunostimulating Effects of Lignin-Carbohydrate-Protein Complexes fromPimpinella Anisum
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.100645
– volume: 88
  start-page: 346
  year: 2013
  ident: B154
  article-title: Role of Lignin in a Biorefinery: Separation Characterization and Valorization
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.3996
– volume: 49
  start-page: 1151
  year: 2013
  ident: B74
  article-title: Oxidative Upgrade of Lignin - Recent Routes Reviewed
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2013.03.002
– volume: 223
  start-page: 106997
  year: 2021
  ident: B59
  article-title: Progress on the Lignocellulosic Biomass Pyrolysis for Biofuel Production toward Environmental Sustainability
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2021.106997
– volume: 40
  start-page: 118
  year: 2003
  ident: B124
  article-title: Protective Effects of Ferulic Acid on Hyperlipidemic Diabetic Rats
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-003-0099-6
– volume: 6
  year: 2018
  ident: B165
  article-title: Lignin-First Approach to Biorefining: Utilizing Fenton’s Reagent and Supercritical Ethanol for the Production of Phenolics and Sugars
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1039/C7EE01298E
– volume: 10
  start-page: 1599
  year: 2020
  ident: B6
  article-title: Effects of Gamma-Valerolactone Assisted Fractionation of ball-milled pine wood on Lignin Extraction and its Characterization as Well as its Corresponding Cellulose Digestion
  publication-title: Appl. Sci.
  doi: 10.3390/app10051599
– volume: 4
  start-page: 185
  year: 2012
  ident: B56
  article-title: Anticancer Effects of maple Syrup Phenolics and Extracts on Proliferation, Apoptosis, and Cell Cycle Arrest of Human colon Cells
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2011.10.004
– volume: 8
  start-page: 6275
  year: 2018
  ident: B31
  article-title: State-of-the-art Catalytic Hydrogenolysis of Lignin for the Production of Aromatic Chemicals
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c8cy00845k
– volume: 25
  start-page: 733
  year: 2011
  ident: B96
  article-title: Anti-UV Activity of Lentinus Edodes Mycelia Extract (LEM)
  publication-title: In Vivo
– volume: 342
  start-page: 126035
  year: 2021
  ident: B148
  article-title: Hydrothermal Liquefaction of Lignocellulose for Value-Added Products: Mechanism, Parameter and Production Application
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126035
– volume: 145
  start-page: 223
  year: 2019
  ident: B77
  article-title: The Vanillin Derivative VND3207 Protects Intestine against Radiation Injury by Modulating P53/NOXA Signaling Pathway and Restoring the Balance of Gut Microbiota
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.09.035
– volume: 135
  start-page: 63
  year: 2012
  ident: B85
  article-title: Comparative Antioxidant Activity of Nanoscale Lignin Prepared by a Supercritical Antisolvent (SAS) Process with Non-nanoscale Lignin
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.04.070
– volume: 849
  start-page: 43
  year: 2019
  ident: B86
  article-title: A Vanillin Derivative Suppresses the Growth of HT29 Cells through the Wnt/β-Catenin Signaling Pathway
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2019.01.047
– volume: 1810
  start-page: 170
  year: 2011
  ident: B129
  article-title: Evaluation of Antioxidant Activity of Vanillin by Using Multiple Antioxidant Assays
  publication-title: Biochim. Biophys. Acta (Bba) - Gen. Subjects
  doi: 10.1016/j.bbagen.2010.11.004
– volume: 86
  start-page: 443
  year: 2016
  ident: B14
  article-title: In Vitro evaluation of Antioxidant and Cytotoxic Activities of Lignin Fractions Extracted from Acacia Nilotica
  publication-title: Int. J. Biol. Macromolecules
  doi: 10.1016/j.ijbiomac.2016.01.109
– volume: 17
  start-page: 5939
  year: 2011
  ident: B108
  article-title: Towards Quantitative Catalytic Lignin Depolymerization
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201002438
– volume: 145
  start-page: 43
  year: 2014
  ident: B133
  article-title: Microwave-assisted Depolymerisation of Organosolv Lignin via Mild Hydrogen-free Hydrogenolysis: Catalyst Screening
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.10.015
– volume: 18
  start-page: 2367
  year: 2017
  ident: B15
  article-title: Lignin from Micro- to Nanosize: Applications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18112367
– volume: 27
  start-page: 133
  year: 2013
  ident: B97
  article-title: Anti-UV Activity of Lignin-Carbohydrate Complex and Related Compounds
  publication-title: In Vivo
– volume: 13
  start-page: 412
  year: 2017
  ident: B131
  article-title: Catalytic Effects of Various Acids on Microwave-Assisted Depolymerization of Organosolv Lignin
  publication-title: BioResources
  doi: 10.15376/biores.13.1.412-424
– volume: 7
  start-page: 7535
  year: 2017
  ident: B144
  article-title: Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02563
– volume: 9
  start-page: 1317
  ident: B71
  article-title: Synthesis, Characterization, Cytotoxic, Anticancer and Antimicrobial Studies of Novel Schiff Base Ligand Derived from Vanillin and its Transition Metal Complexes
  publication-title: J. Pharm. Sci. Res.
– volume: 23
  start-page: 3268
  year: 2021
  ident: B21
  article-title: Enhancing Lignin Depolymerization via a Dithionite-Assisted Organosolv Fractionation of Birch Sawdust
  publication-title: Green. Chem.
  doi: 10.1039/d1gc00503k
– volume: 9
  start-page: 838645
  year: 2013
  ident: B139
  article-title: Recent Development in Chemical Depolymerization of Lignin: A Review
  publication-title: J. Appl. Chem.
  doi: 10.1155/2013/838645
– volume: 57
  start-page: 4945
  year: 2016
  ident: B34
  article-title: Recent Developments in Chemical Degradation of Lignin: Catalytic Oxidation and Ionic Liquids
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2016.09.084
– volume: 86
  start-page: 921
  year: 2010
  ident: B35
  article-title: Regulation of Genes in Streptomyces Bacteria Required for Catabolism of Lignin-Derived Aromatic Compounds
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2358-0
– volume: 82
  start-page: 1149
  year: 2018
  ident: B26
  article-title: Microwave-assisted Conversion of Biomass and Waste Materials to Biofuels
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2017.09.066
– volume: 37
  start-page: 9
  year: 2016
  ident: B83
  article-title: From Lignin-Derived Aromatic Compounds to Novel Biobased Polymers
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201500474
– volume: 139
  start-page: 13
  year: 2013
  ident: B87
  article-title: Production of Polyols via Direct Hydrolysis of Kraft Lignin: Effect of Process Parameters
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.199
– volume: 16
  start-page: 1384
  year: 2010
  ident: B89
  article-title: Cyclooxygenase-2 and Cancer Treatment: Understanding the Risk Should Be Worth the Reward: Fig. 1
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.ccr-09-0788
– volume: 35
  start-page: 52
  year: 2015
  ident: B90
  article-title: Improved Protocol for Alkaline Nitrobenzene Oxidation of Woody and Non-woody Biomass
  publication-title: J. Wood Chem. Technol.
  doi: 10.1080/02773813.2014.902965
– volume: 54
  start-page: 479
  year: 1990
  ident: B128
  article-title: Structural Characterization of the Immunoactive and Antiviral Water-Solubilized Lignin in an Extract of the Culture Medium of Lentinus Edodes Mycelia (LEM)
  publication-title: Agric. Biol. Chem.
  doi: 10.1271/bbb1961.54.479
– volume: 128
  start-page: 91
  year: 2010
  ident: B113
  article-title: Distribution of Lignin-Carbohydrate Complex in Plant Kingdom and its Functionality as Alternative Medicine
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2010.05.004
– volume: 79
  start-page: 511
  year: 2021
  ident: B19
  article-title: The Role of Lignin in wood Working Processes Using Elevated Temperatures: An Abbreviated Literature Survey
  publication-title: Eur. J. Wood Prod.
  doi: 10.1007/s00107-020-01637-3
– volume: 35
  start-page: 809
  year: 2016
  ident: B149
  article-title: Degradation of Lignin in Ionic Liquid with HCl as Catalyst
  publication-title: Environ. Prog. Sustain. Energ.
  doi: 10.1002/ep.12276
– volume: 75
  start-page: 242
  year: 2007
  ident: B158
  article-title: Chemical Properties, Mode of Action, and In Vivo Anti-herpes Activities of a Lignin-Carbohydrate Complex from Prunella Vulgaris
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2007.03.010
– volume: 99
  start-page: 499
  year: 2018
  ident: B13
  article-title: Vanillin Biotechnology: The Perspectives and Future
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.9303
– volume: 165
  start-page: 319
  year: 2014
  ident: B121
  article-title: Hydrothermal Conversion of Lignin to Substituted Phenols and Aromatic Ethers
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.076
– volume: 9
  start-page: 1544
  year: 2016
  ident: B51
  article-title: Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600237
– volume: 84
  start-page: 1261
  year: 2004
  ident: B100
  article-title: Ferulic Acid: Pharmaceutical Functions, Preparation and Applications in Foods
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.1873
– volume: 2016
  start-page: 9734816
  year: 20162016
  ident: B16
  article-title: Overview of the Role of Vanillin on Redox Status and Cancer Development
  publication-title: Oxid Med. Cel Longev
  doi: 10.1155/2016/9734816
– volume: 23
  start-page: 2464
  year: 2018
  ident: B4
  article-title: Effects of Process Parameters on Hydrolytic Treatment of Black Liquor for the Production of Low-Molecular-Weight Depolymerized Kraft Lignin
  publication-title: Molecules
  doi: 10.3390/molecules23102464
– volume: 19
  ident: B72
  article-title: A Review of Thermochemical Conversion of Microalgal Biomass for Biofuels: Chemistry and Processes
  publication-title: Green. Chem.
  doi: 10.1039/c6gc01937d
– volume: 29
  start-page: 10
  year: 2015
  ident: B24
  article-title: Enzymatic Conversion of Lignin into Renewable Chemicals
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2015.06.009
– volume: 17
  start-page: 92
  year: 2018
  ident: B91
  article-title: Phytobiotics in Poultry and Swine Nutrition - a Review
  publication-title: Ital. J. Anim. Sci.
  doi: 10.1080/1828051x.2017.1350120
– volume: 161
  start-page: 84
  year: 2019
  ident: B11
  article-title: Synthesis, Characterization and Anticancer Activity of Mono- and Dinuclear Ni(II) and Co(II) Complexes of a Schiff Base Derived from O-Vanillin
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2018.12.055
– volume: 147
  start-page: 1331
  year: 2020
  ident: B39
  article-title: Renewable Lignin-Based Carbon Nanofiber as Ni Catalyst Support for Depolymerization of Lignin to Phenols in Supercritical Ethanol/water
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2019.09.108
– volume: 7
  start-page: 518
  year: 1975
  ident: B134
  article-title: Oryzanol, Ferulic Acid, and Their Derivatives as Preservatives
  publication-title: Jpn. Kokai
– volume: 114
  start-page: 1082
  year: 2014
  ident: B10
  article-title: Biobased Thermosetting Epoxy: Present and Future
  publication-title: Chem. Rev.
  doi: 10.1021/cr3001274
– start-page: 561
  volume-title: Biotechnology for Pulp and Paper Processing
  year: 2018
  ident: B12
  article-title: Value-added Products from Lignin
  doi: 10.1007/978-981-10-7853-8_25
– volume: 43
  start-page: 7485
  year: 2014
  ident: B145
  article-title: Lignin Depolymerisation Strategies: Towards Valuable Chemicals and Fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00235k
– volume: 18
  year: 2017
  ident: B130
  article-title: Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18112421
– volume: 52
  start-page: 573
  year: 2016
  ident: B46
  article-title: Lignin: Chemical Structure, Biodegradation, and Practical Application (A Review)
  publication-title: Appl. Biochem. Microbiol.
  doi: 10.1134/s0003683816060053
– volume: 73
  start-page: 610
  year: 2017
  ident: B30
  article-title: Biological Valorization Strategies for Converting Lignin into Fuels and Chemicals
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2017.01.166
– volume: 4
  start-page: 21712
  year: 2014
  ident: B84
  article-title: Naturally Occurring Phenolic Sources: Monomers and Polymers
  publication-title: RSC Adv.
  doi: 10.1039/c4ra00181h
– volume: 34
  start-page: 1318
  year: 2016
  ident: B1
  article-title: Biological Valorization of Low Molecular Weight Lignin
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.10.001
– volume: 110
  start-page: 3552
  year: 2010
  ident: B155
  article-title: The Catalytic Valorization of Lignin for the Production of Renewable Chemicals
  publication-title: Chem. Rev.
  doi: 10.1021/cr900354u
– volume: 348
  start-page: 117
  year: 2011
  ident: B93
  article-title: Effect of Lignin-Derived Lignophenols on Vascular Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats
  publication-title: Mol. Cel Biochem
  doi: 10.1007/s11010-010-0645-9
– volume: 38
  start-page: 619
  year: 2019
  ident: B117
  article-title: Beneficial Role of Vanillin, a Polyphenolic Flavoring Agent, on Maneb-Induced Oxidative Stress, DNA Damage, and Liver Histological Changes in Swiss Albino Mice
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/0960327119831067
– volume: 19
  start-page: 2260
  year: 2017
  ident: B8
  article-title: Induction of Lignin Solubility for a Series of Polar Ionic Liquids by the Addition of a Small Amount of Water
  publication-title: Green. Chem.
  doi: 10.1039/c7gc00626h
– volume: 4
  start-page: 86
  year: 2014
  ident: B73
  article-title: Potential Applications of Ferulic Acid from Natural Sources
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2014.09.002
– volume: 196
  start-page: 1080
  year: 2019
  ident: B94
  article-title: Rapid Microwave-Assisted Biomass Delignification and Lignin Depolymerization in Deep Eutectic Solvents
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2019.06.070
– volume: 7
  start-page: 4377
  year: 2012
  ident: B64
  article-title: A Concise Review of the Natural Existance, Synthesis, Properties, and Applications of Syringaldehyde
  publication-title: BioResources
  doi: 10.15376/biores.7.3.4377-4399
– volume: 253
  start-page: 120076
  year: 2020
  ident: B160
  article-title: Lignin-carbohydrate Complexes (LCCs) and its Role in Biorefinery
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120076
– volume: 2
  start-page: 637
  year: 2018
  ident: B63
  article-title: Lignin-first Biorefinery: a Reusable Catalyst for Lignin Depolymerization and Application of Lignin Oil to Jet Fuel Aromatics and Polyurethane Feedstock
  publication-title: Sustain. Energ. Fuels
  doi: 10.1039/c7se00535k
– volume: 2
  start-page: 637
  year: 2018
  ident: B62
  article-title: Lignin-first Biorefinery: a Reusable Catalyst for Lignin Depolymerization and Application of Lignin Oil to Jet Fuel Aromatics and Polyurethane Feedstock
  publication-title: Sustain. Energ. Fuels
  doi: 10.1039/c7se00535k
– volume: 17
  start-page: 4888
  year: 2015
  ident: B82
  article-title: Thermochemical Conversion of Lignin to Functional Materials: A Review and Future Directions
  publication-title: Green. Chem.
  doi: 10.1039/c5gc01054c
– volume: 19
  start-page: 1
  year: 2014
  ident: B22
  article-title: Exploring Bacterial Lignin Degradation
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2013.11.015
– volume: 18
  year: 2017
  ident: B138
  article-title: Lignins and Their Derivatives with Beneficial Effects on Human Health
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18061219
– volume: 18
  start-page: 5693
  year: 2016
  ident: B159
  article-title: From Lignin Association to Nano-/micro-Particle Preparation: Extracting Higher Value of Lignin
  publication-title: Green. Chem.
  doi: 10.1039/c6gc01813k
– volume: 107
  start-page: 232
  year: 2019
  ident: B32
  article-title: Lignin Utilization: a Review of Lignin Depolymerization from Various Aspects
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2019.03.008
– volume: 28
  start-page: 100438
  year: 2021
  ident: B50
  article-title: From Stabilization Strategies to Tailor-Made Lignin Macromolecules and Oligomers for Materials
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2020.100438
– volume: 56
  start-page: 296
  year: 2001
  ident: B103
  article-title: Biotechnological Production of Vanillin
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530100687
– volume: 269
  start-page: 465
  year: 2018
  ident: B27
  article-title: Lignin Valorization for the Production of Renewable Chemicals: State-Of-The-Art Review and Future Prospects
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.08.065
– volume: 4
  start-page: 35
  year: 2016
  ident: B40
  article-title: Vanillin Production from Lignin and its Use as a Renewable Chemical
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01344
– volume: 53
  start-page: 470
  year: 2020
  ident: B157
  article-title: Catalytic Lignin Depolymerization to Aromatic Chemicals
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00573
SSID ssj0001325410
Score 2.5366647
SecondaryResourceType review_article
Snippet Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms depolymerization
ferulic acid
lignin
lignin-first biorefining
syringaldehyde
vanillin
Title A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects
URI https://doaj.org/article/123e46b96d9c48fabdd1308055d78986
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-RQmrSlaR7o0FOoupItyZrc8iSEPHpoyt6MrEdYWLzLrveQf5-R5YTtJb30ZsxYmE-DZj5J8w0h3wUPIAO3TBegmCx9avMSLTOA7MEbzStIhcJ39_r6Ud6M1Xit1Ve6E5blgTNwI1xZg9QNaA9Ommgb73HZNVwpXxkwvdg2xrw1MtXvrpRIfMRwjIksDEYRp-MJ-WAhfmKKXEn5VyBa0-vvA8vVR_JhyAjpaf6THbIR2l2yvaYT-IksTmnewz-hF5gwT5_TMUuun6SzSG8nT-2kpd2MZhHpLtB0fYP9sdNVoGeTGfuVdV2XJ_RhnhLuVdsLqf6g56-9VPDZtp6iYV97ufxMHq8uf59fs6FZAnOlkh3TYIKRCumOroSwEI2PLkDBg3aguLaaRwEu2GhcWcoqNsFguAbrPILRxPIL2WxnbfhKqDWFA6tKb2IhlbQQAKTGQR1mT976PcJfkavdoCSeGlpMa2QUCey6B7tOYNcZ7D1y_PbJPMtovGd8lqbjzTApYPcv0C_qwS_qf_nFt_8xyD7ZKlK5AxdMiAOy2S1W4RCTkK456v3tBSBz2Wc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review%3A+Depolymerization+of+Lignin+to+Generate+High-Value+Bio-Products%3A+Opportunities%2C+Challenges%2C+and+Prospects&rft.jtitle=Frontiers+in+energy+research&rft.au=Zhou%2C+Ningning&rft.au=Thilakarathna%2C+W.+P.+D.+Wass&rft.au=He%2C+Quan+Sophia&rft.au=Rupasinghe%2C+H.+P.+Vasantha&rft.date=2022-01-11&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.758744&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_758744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon