Progresses and Challenges of Machine Learning Approaches in Thermochemical Processes for Bioenergy: A Review

Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 41; no. 7; pp. 1923 - 1953
Main Authors Ogunsola, Nafiu Olanrewaju, Oh, Seung Seok, Jeon, Pil Rip, Ling, Jester Lih Jie, Park, Hyun Jun, Park, Han Saem, Lee, Ha Eun, Sohn, Jung Min, Lee, See Hoon
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-024-00181-7

Cover

Abstract Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine learning techniques are cost-effective and non-time consuming and have been widely utilized in thermochemical conversion process modelling with robust and accurate results and solutions. Nonetheless, no standard method has been proposed for applying ML models to biomass thermochemical processes. Consequently, the general development procedure for ML models with high accuracy and robustness remains unclear. This review provides a comprehensive review of machine learning techniques for predicting biofuel yield and composition. It is recommended that quality datasets be ensured to enable the development of more robust machine learning-aided models for practical engineering applications. Finally, solutions to the identified challenges and prospective future research directions on machine learning-based biomass thermochemical conversion processes are recommended to accelerate the optimization and large-scale deployment of these processes.
AbstractList Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine learning techniques are cost-eff ective and non-time consuming and have been widely utilized in thermochemical conversion process modelling with robust and accurate results and solutions. Nonetheless, no standard method has been proposed for applying ML models to biomass thermochemical processes. Consequently, the general development procedure for ML models with high accuracy and robustness remains unclear. This review provides a comprehensive review of machine learning techniques for predicting biofuel yield and composition. It is recommended that quality datasets be ensured to enable the development of more robust machine learning-aided models for practical engineering applications. Finally, solutions to the identifi ed challenges and prospective future research directions on machine learning-based biomass thermochemical conversion processes are recommended to accelerate the optimization and large-scale deployment of these processes. KCI Citation Count: 0
Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine learning techniques are cost-effective and non-time consuming and have been widely utilized in thermochemical conversion process modelling with robust and accurate results and solutions. Nonetheless, no standard method has been proposed for applying ML models to biomass thermochemical processes. Consequently, the general development procedure for ML models with high accuracy and robustness remains unclear. This review provides a comprehensive review of machine learning techniques for predicting biofuel yield and composition. It is recommended that quality datasets be ensured to enable the development of more robust machine learning-aided models for practical engineering applications. Finally, solutions to the identified challenges and prospective future research directions on machine learning-based biomass thermochemical conversion processes are recommended to accelerate the optimization and large-scale deployment of these processes.
Author Oh, Seung Seok
Park, Hyun Jun
Jeon, Pil Rip
Ogunsola, Nafiu Olanrewaju
Sohn, Jung Min
Lee, Ha Eun
Lee, See Hoon
Park, Han Saem
Ling, Jester Lih Jie
Author_xml – sequence: 1
  givenname: Nafiu Olanrewaju
  surname: Ogunsola
  fullname: Ogunsola, Nafiu Olanrewaju
  organization: Department of Mineral Resources and Energy Engineering, Jeonbuk National University
– sequence: 2
  givenname: Seung Seok
  surname: Oh
  fullname: Oh, Seung Seok
  organization: Department of Environment and Energy, Jeonbuk National University
– sequence: 3
  givenname: Pil Rip
  surname: Jeon
  fullname: Jeon, Pil Rip
  organization: Department of Chemical Engineering, Kongju National University
– sequence: 4
  givenname: Jester Lih Jie
  surname: Ling
  fullname: Ling, Jester Lih Jie
  organization: Department of Environment and Energy, Jeonbuk National University
– sequence: 5
  givenname: Hyun Jun
  surname: Park
  fullname: Park, Hyun Jun
  organization: Department of Environment and Energy, Jeonbuk National University
– sequence: 6
  givenname: Han Saem
  surname: Park
  fullname: Park, Han Saem
  organization: Department of Environment and Energy, Jeonbuk National University
– sequence: 7
  givenname: Ha Eun
  surname: Lee
  fullname: Lee, Ha Eun
  organization: Department of Environment and Energy, Jeonbuk National University
– sequence: 8
  givenname: Jung Min
  surname: Sohn
  fullname: Sohn, Jung Min
  organization: Department of Mineral Resources and Energy Engineering, Jeonbuk National University
– sequence: 9
  givenname: See Hoon
  orcidid: 0000-0002-5147-8720
  surname: Lee
  fullname: Lee, See Hoon
  email: donald@jbnu.ac.kr
  organization: Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Department of Environment and Energy, Jeonbuk National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003102840$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UcFu3CAQRVUqdZP2B3pC6i2SU8DGsL1tVmkaaatW0faMMB68JF7YgDdV_r7TuFKlHHJAwzDvPWbmnZKTmCIQ8pGzC86Y-lw417ypmMDD8FqpN2TBl0pWSgh2QhZMyLbinMt35LSUO8akbAVbkPFnTkOGUqBQG3u63tlxhDhgmjz9bt0uRKAbsDmGONDV4ZATPmI5RLrdQd4nzPbB2ZGilJuVfMr0MiSIkIenL3RFb-ExwO_35K23Y4EP_-IZ-fX1arv-Vm1-XN-sV5vK1bKZqlbWAF0vJe9t27pOc617paCzWnnueyGdblTd9stONr5uJRdOK2g6acVSelefkfNZN2Zv7l0wyYbnOCRzn83qdntjOG5AyUYj-NMMxskejlAmc5eOOWJ_pma4PdXWiiNKzCiXUykZvDnksLf5CYXMXwvMbIFBC8yzBUYhSb8guTDZKaQ4ZRvG16n1TC34D9qR_3f1CusPyL-cpQ
CitedBy_id crossref_primary_10_3390_mining5010005
Cites_doi 10.1016/j.algal.2020.102006
10.1016/j.apenergy.2016.02.105
10.1016/j.biortech.2022.127348
10.1016/j.biombioe.2017.01.029
10.1016/j.gce.2022.05.006
10.1016/j.energy.2018.09.131
10.1016/j.biortech.2021.125292
10.1016/j.rser.2019.04.048
10.1016/j.jaap.2008.06.006
10.1016/j.jece.2022.108025
10.1021/acs.chemrestox.0c00316
10.1007/s11814-020-0611-5
10.1016/j.pecs.2017.05.004
10.1016/j.energy.2022.123295
10.1016/j.renene.2023.01.017
10.1016/j.jclepro.2018.12.093
10.1002/er.4682
10.3233/IFS-131004
10.1016/j.apenergy.2021.117674
10.18331/BRJ2021.8.4.3
10.1080/00102202.2015.1102905
10.1021/acs.energyfuels.6b03161
10.3390/en11092260
10.1016/j.rser.2021.111254
10.1016/j.biortech.2012.09.126
10.1016/j.fuel.2020.119903
10.1016/j.biombioe.2019.02.008
10.1002/er.3739
10.1016/j.nbt.2014.08.003
10.1016/j.scitotenv.2022.152921
10.1016/j.rser.2014.07.129
10.1109/2.485891
10.1016/j.jclepro.2020.122462
10.3390/en14113000
10.1016/j.energy.2019.116541
10.1016/j.fuel.2016.12.046
10.1016/j.renene.2020.01.057
10.1016/j.energy.2022.123896
10.1016/j.ijhydene.2019.02.108
10.1016/j.pecs.2021.100904
10.1016/j.rser.2019.109546
10.1016/j.energy.2022.123676
10.1016/j.biortech.2019.121527
10.1007/s13399-021-01858-3
10.1016/j.joei.2015.10.007
10.1016/j.renene.2021.07.003
10.1016/j.asoc.2013.06.006
10.1016/j.fuel.2022.123644
10.1016/j.biortech.2021.126011
10.1007/978-0-387-84858-7
10.1177/0144598717716282
10.1007/s41062-019-0234-z
10.1016/j.matpr.2022.03.051
10.1016/j.biortech.2016.05.091
10.1016/j.apenergy.2017.05.080
10.1016/j.jenvman.2017.07.034
10.1016/j.biortech.2021.126099
10.1016/j.renene.2019.01.074
10.1016/j.renene.2022.05.033
10.1021/acs.jcim.0c00801
10.1016/j.cej.2022.136013
10.1016/j.renene.2019.11.038
10.1021/ef5027955
10.1016/j.solener.2013.08.001
10.1016/j.cej.2020.126229
10.1007/s11053-021-09955-w
10.1016/j.supflu.2021.105199
10.1016/j.combustflame.2022.111992
10.1016/j.enconman.2022.115734
10.1016/j.apenergy.2022.119289
10.1007/s11814-023-1528-6
10.1016/j.psep.2022.04.013
10.1016/j.jrmge.2020.05.010
10.1016/j.rser.2014.06.013
10.3390/pr9081324
10.1016/j.rser.2015.05.012
10.1016/j.jaap.2018.06.022
10.1016/j.ijhydene.2018.04.007
10.1016/j.enconman.2022.115569
10.1016/j.jclepro.2021.127302
10.1016/j.jaap.2016.04.013
10.1016/j.jclepro.2021.128244
10.1016/j.jaap.2022.105448
10.1016/j.biombioe.2011.01.048
10.1016/j.ijhydene.2021.01.122
10.1016/j.enconman.2018.03.057
10.1504/IJNT.2022.122369
10.1016/j.compchemeng.2017.04.012
10.1016/j.energy.2019.116077
10.1016/j.renene.2018.08.089
10.1007/s12155-015-9694-y
10.1016/j.wasman.2017.11.057
10.1016/j.ejor.2017.12.001
10.1016/j.biortech.2022.127132
10.1016/j.jaap.2021.105180
10.1016/j.egyr.2022.02.113
10.1007/s11814-017-0214-y
10.1007/s10064-018-1400-9
10.3390/en13174572
10.1016/j.wasman.2017.03.044
10.1002/ese3.1155
10.1016/j.tsep.2022.101346
10.3390/en13205358
10.1016/j.jaap.2021.105286
10.1002/er.6483
10.1016/S0360-1285(03)00058-3
10.1007/s13399-020-01233-8
10.1016/j.biortech.2021.126109
10.1016/j.biortech.2021.125642
10.1162/089976603762553004
10.1016/j.cej.2022.137501
10.1016/j.ijhydene.2016.01.094
10.1016/j.enconman.2022.115613
10.1214/15-AOS1321
10.1016/j.biortech.2021.126278
10.1016/j.cej.2022.136579
10.1007/s10973-022-11208-8
10.1016/j.energy.2020.118790
10.1016/j.cej.2023.144503
10.1016/j.jclepro.2020.123928
10.1016/j.wasman.2018.12.044
10.1016/j.chemosphere.2021.132052
10.1016/j.chemosphere.2021.131824
10.1007/s13399-019-00575-2
10.1177/0958305X20971628
10.1016/j.energy.2021.121921
10.2533/chimia.2015.572
10.1016/j.apenergy.2020.116414
10.1080/15567036.2019.1630521
10.1155/2022/6491745
10.1007/s00521-020-05006-2
10.1007/s13399-022-02609-8
10.1016/j.enconman.2014.03.036
10.1016/j.apenergy.2019.113668
10.1016/j.apenergy.2020.115339
10.1016/j.ces.2021.117131
10.1038/nbt1206-1565
10.1016/j.fuel.2021.122966
10.1016/j.biteb.2022.100976
10.1016/j.biortech.2021.125581
10.1016/j.fuel.2022.123944
10.4172/2157-7471.1000398
10.1016/j.enconman.2019.112252
10.3390/j4030022
10.1016/j.jhazmat.2021.125426
10.1016/j.ces.2021.117224
10.1002/ese3.117
10.1016/j.fuel.2021.122248
10.1109/I2MTC.2015.7151261
10.1145/2001576.2001710
10.1016/j.jclepro.2021.128606
10.1016/j.energy.2021.121010
10.1109/HNICEM.2018.8666376
10.1007/s40808-021-01276-4
10.1016/j.fuel.2018.02.045
10.1016/j.fuel.2021.122082
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-024-00181-7
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 1953
ExternalDocumentID oai_kci_go_kr_ARTI_10557548
10_1007_s11814_024_00181_7
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: RS-2023-00281706
– fundername: National Research Foundation of korea
  grantid: 2023R1A2C200449711
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ACYCR
ID FETCH-LOGICAL-c354t-653eebd551da66cb8188d77eba87f1fd25c84736d9b54f36512c87e4b5a295fc3
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Sun Jul 06 03:12:59 EDT 2025
Fri Jul 25 11:19:15 EDT 2025
Thu Apr 24 23:07:41 EDT 2025
Tue Jul 01 03:29:46 EDT 2025
Fri Feb 21 02:40:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Sustainable biomass utilization
Thermochemical conversion
Bioenergy
Machine learning
Artificial neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-653eebd551da66cb8188d77eba87f1fd25c84736d9b54f36512c87e4b5a295fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5147-8720
PQID 3072276371
PQPubID 2044390
PageCount 31
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10557548
proquest_journals_3072276371
crossref_primary_10_1007_s11814_024_00181_7
crossref_citationtrail_10_1007_s11814_024_00181_7
springer_journals_10_1007_s11814_024_00181_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References Noushabadi, Dashti, Ahmadijokani, Hu, Mohammadi (CR154) 2021; 179
Hough, Beck, Schwartz, Pfaendtner (CR91) 2017; 104
Wen, Buyukada, Evrendilek, Liu (CR147) 2020; 151
Chen, Ku, Lin, Ström (CR29) 2020; 13
Kang, Azargohar, Dalai, Wang (CR108) 2017; 41
CR162
Baruah, Baruah, Hazarika (CR95) 2017; 98
CR163
Ullah, Khan, Aqvi, Farooq, Yang, Wang, Vo (CR69) 2021; 335
CR34
Wang, Goodman, Allen (CR42) 2021; 34
Hastie, Tibshirani, Friedman, Friedman (CR49) 2009
Panahi, Dehhaghi, Ok, Nizami, Khoshnevisan, Mussatto, Aghbashlo, Tabatabaei, Lam (CR62) 2020; 270
CR159
CR157
Puig-Arnavat, Tora, Bruno, Coronas (CR93) 2013; 97
CR156
Aghbashlo, Peng, Tabatabaei, Kalogirou, Soltanian, Hosseinzadeh-Bandbafha, Mahian, Lam (CR30) 2021; 85
CR153
Gopirajan, Gopinath, Sivaranjani, Arun (CR133) 2023; 13
Shafizadeh, Shahbeig, Nadian, Mobli, Dowlati, Gupta, Peng, Lam, Tabatabaei, Aghbashlo (CR134) 2022; 445
Li, Lu, Li, Yan (CR150) 2016; 188
Wang, Shi, Jin, Zaini, Li, Tang, Mu, Wen, Jiang, Jonsson (CR83) 2022; 260
Sezer, Kartal, Özveren (CR137) 2022; 147
Verbeek, Vlassis, Krose (CR60) 2003; 15
Ayodele, Mustapa, Kanthasamy, Zwawi, Cheng (CR111) 2021; 45
Jeon, Moon, Ogunsola, Lee, Ling, You, Park (CR39) 2023; 471
CR48
CR47
Sahoo, Roy, Wang, Mi, Yu, Balasubramani, Khan, Stoddart (CR43) 2020; 60
Shreyas, Dey (CR51) 2019; 4
Onsree, Tippayawong, Phithakkitnukoon, Lauterbach (CR74) 2022; 249
Sasithorn, Chalermsinsuwan, Piumsomboon (CR82) 2017; 193
CR41
Cheng, Belden, Li, Shahabuddin, Paffenroth, Timko (CR131) 2022; 442
Wong, Wong, Cheung, Vong (CR28) 2013; 13
Baruah, Baruah (CR36) 2014; 39
Wang, Zheng, Yoon, Ko (CR59) 2018; 267
You, Ma, Tang, Wang, Yan, Ni, Cen, Huang (CR155) 2017; 68
Li, Suvarna, Pan, Zhao, Wang (CR116) 2021; 304
Khunphakdee, Korkerd, Soanuch, Chalermsinsuwan (CR158) 2022; 8
Mutlu, Yucel (CR84) 2018; 165
Lee, Nam, Seo, Lee, Tokmurzin, Wang, Park (CR9) 2022; 447
Zhong, Xiong, Yin, Zhang, Zhu, Liang, Niu, Zhang (CR81) 2020; 152
Jiang, Xing, Zhang, Mi (CR141) 2019; 130
Perera, Wickramasinghe, Samarasiri, Narayana (CR40) 2021; 8
Li, Zhu, Li, Tong, Ok, Wang (CR128) 2021; 278
Wang, Dai, Yang, Luo (CR23) 2017; 62
Li, Xiang, Yang, Wang, Yildiz (CR71) 2021; 159
Lee, Lee, Jeong, Lee (CR17) 2019; 138
George, Arun, Muraleedharan (CR96) 2018; 43
Leng, Zhang, Liu, Zhan, Li, Yang, Li, Peng, Li (CR135) 2022; 358
Seo, Lee, Nam, Lee, Tokmurzin, Wang, Park (CR7) 2022; 343
Kannangara, Dua, Ahmadi, Bensebaa (CR50) 2018; 74
CR58
CR57
CR55
CR54
CR52
Elmaz, Yücel, Mutlu (CR97) 2020; 191
Kim, Kim, Yang, Moon, Kim, Lee, Lee, Lee, Kim, Eom, Lee, Kang, Lee (CR15) 2013; 127
Kardani, Zhou, Nazem, Lin (CR110) 2021; 289
Rameshkumar, Mayilsamy (CR107) 2014; 27
Seo, Go, Ling, Lee (CR22) 2022; 193
Ozbas, Aksu, Ongen, Aydin, Ozcan (CR98) 2019; 44
Scornet, Biau, Vert (CR53) 2015; 43
Balsora, Kartik, Dua, Joshi, Kataria, Sharma, Chakinala (CR78) 2022; 10
Zhang, Li, Liu, Leng, Yang, Peng, Jiang, Zhou, Leng, Li (CR115) 2021; 342
Serrano, Castelló (CR101) 2020; 402
Kapetanakis, Vardiambasis, Nikolopoulos, Konstantaras, Trang, Khuong, Tsubota, Keyikoglu, Khataee, Kalderis (CR123) 2021; 14
CR151
CR152
Ascher, Sloan, Watson, You (CR31) 2022; 320
Hejazi, Grace, Bi, Mahecha-Botero (CR106) 2017; 31
Lee, Eom, Yoo, Kim, Jeon, Park, Song, Lee (CR16) 2008; 83
Ullah, Khan, Naqvi, Khan, Farooq, Anjum, Yaqub, AlMohamadi, Almomani (CR75) 2022; 162
Kalogirou (CR136) 2003; 29
Ghaderi, Shahri, Larsson (CR160) 2019; 78
Hameed, Sharma, Pareek, Wu, Yu (CR11) 2019; 123
Katongtung, Onsree, Tippayawong (CR132) 2022; 344
CR149
CR146
CR63
Jain, Mao, Mohiuddin (CR46) 1996; 29
CR61
Aghaaminiha, Mehrani, Reza, Sharma (CR125) 2023; 13
Zhu, Li, Wang (CR72) 2019; 288
Ismail, Shirazian, Skoretska, Mynko, Ghanim, Leahy, Walker, Kwapinski (CR122) 2019; 85
Shenbagaraj, Sharma, Sharma, Raghav, Kota, Ashokkumar (CR114) 2021; 46
Okolie, Epelle, Nanda, Castello, Dalai, Kozinski (CR109) 2021; 173
Patra, Sheth (CR37) 2015; 50
Lin, Chai, Lay, Chen, Lee, Show (CR14) 2021; 9
Ling, Kim, Go, Oh, Park, Jeong, Lee (CR1) 2022; 259
Kartal, Dalbudak, Özveren (CR79) 2023; 204
Collard, Blin (CR10) 2014; 38
Krzywanski, Czakiert, Nowak, Shimizu, Zylka, Idziak, Sosnowski, Grabowska (CR33) 2022; 251
Chai, Bao, Jin, Tang, Zhou (CR4) 2021; 147
Sharma, Chouhan, Bisen (CR143) 2022; 57
Yucel, Aydin, Sadikoglu (CR112) 2019; 43
Djandja, Salami, Wang, Duo, Yin, Duan (CR126) 2022; 245
CR77
Fang, Ma, Yao, Li, You (CR99) 2022; 264
Pathy, Meher, Balasubramanian (CR68) 2020; 50
CR73
Kartal, Özveren (CR142) 2022; 33
Williams, Westover, Emerson, Tumuluru, Li (CR161) 2016; 9
CR118
CR2
CR6
Song, Tang, Yu, Yang, Yang (CR76) 2022; 353
CR5
Debiagi, Gentile, Cuoci, Frassoldati, Ranzi, Faravelli (CR8) 2018; 134
Wang, Peng, Xia, Shah, Huang, Zhu, Zhu, Liao (CR35) 2022; 343
CR89
Gwak, Yun, Keel, Lee (CR26) 2020; 37
Mandegari, Farzad, Görgens (CR3) 2018; 165
CR127
Kook, Gwak, Gwak, Seo, Lee (CR27) 2017; 34
CR85
Zhao, Li, Chen, Yan, Tao, Chen (CR113) 2021; 316
CR80
Stark, Bates, Zhao, Ghoniem (CR103) 2015; 29
Bi, Wang, Lin, Jiang, Jiang, Bao (CR140) 2020; 213
Lawal, Oniyide, Kwon, Onifade, Köken, Ogunsola (CR44) 2021; 30
Meena, Shubham, Paritosh, Pareek, Vivekanand (CR130) 2021; 340
Bridgwater (CR19) 2012; 38
CR13
CR12
Ferreira, Ferreira, Neto (CR32) 2023; 40
Okolie, Nanda, Dalai, Berruti, Kozinski (CR18) 2020; 119
Karaci, Caglar, Aydinli, Pekol (CR64) 2016; 41
Hlihor, Diaconu, Leon, Curteanu, Tavares, Gavrilescu (CR56) 2015; 32
Gopirajan, Gopinath, Sivaranjani, Arun (CR117) 2021; 306
Tóth, Garami, Csordás (CR139) 2017; 200
CR94
Chen, Li, Lin, Wu, Chao (CR21) 2018; 11
CR92
Li, Li, Tong, Wang (CR100) 2023; 4
Bahadar, Kanthasamy, Sait, Zwawi, Algarni, Ayodele, Cheng, Wei (CR119) 2022; 287
Go, Kim, Kang, Keel, Ling, Lee (CR25) 2022; 19
CR90
Lawal, Kwon (CR45) 2021; 13
Sunphorka, Chalermsinsuwan, Piumsomboon (CR144) 2017; 90
Li, Li, Suvarna, Pan, Tabatabaei, Ok, Wang (CR120) 2022; 817
Tsekos, Tandurella, de Jong (CR70) 2021; 157
Kim, Choi, Choi (CR66) 2022; 162
Jiang, Xing, Li, Zhang, Wang (CR129) 2019; 212
Karimi, Khosravi, Fathollahi, Khandakar, Vaferi (CR138) 2022; 10
Mu, Wang, Wu, Zhao, Yin (CR124) 2022; 318
CR24
Ramos, Monteiro, Rouboa (CR38) 2019; 110
Xing, Luo, Wang, Gao, Fan (CR86) 2019; 188
CR104
CR105
CR20
CR102
Vardiambasis, Kapetanakis, Nikolopoulos, Trang, Tsubota, Keyikoglu, Khataee, Kalderis (CR121) 2020; 13
Lerkkasemsan (CR87) 2017; 185
Aydinli, Caglar, Pekol, Karaci (CR65) 2017; 35
Ji, Richter, Gollner, Deng (CR88) 2022; 240
Sun, Liu, Wang, Yang, Tu (CR67) 2016; 120
Buyukada (CR145) 2016; 216
Rico-Contreras, Aguilar-Lasserre, Mendez-Contreras, Lopez-Andres, Cid-Chama (CR148) 2017; 202
GB Chen (181_CR21) 2018; 11
S Sasithorn (181_CR82) 2017; 193
A Bahadar (181_CR119) 2022; 287
MWH Wang (181_CR42) 2021; 34
IO Vardiambasis (181_CR121) 2020; 13
181_CR48
V Sharma (181_CR143) 2022; 57
181_CR47
M Puig-Arnavat (181_CR93) 2013; 97
PR Jeon (181_CR39) 2023; 471
181_CR41
181_CR163
181_CR162
C Tsekos (181_CR70) 2021; 157
M Meena (181_CR130) 2021; 340
D Baruah (181_CR95) 2017; 98
A Ramos (181_CR38) 2019; 110
MW Seo (181_CR7) 2022; 343
L Leng (181_CR135) 2022; 358
TH Kim (181_CR66) 2022; 162
TY Li (181_CR71) 2021; 159
H You (181_CR155) 2017; 68
P Khunphakdee (181_CR158) 2022; 8
181_CR34
E Scornet (181_CR53) 2015; 43
TN Kapetanakis (181_CR123) 2021; 14
P Tóth (181_CR139) 2017; 200
JA Okolie (181_CR109) 2021; 173
T Chen (181_CR29) 2020; 13
Z Wang (181_CR35) 2022; 343
SL Wang (181_CR83) 2022; 260
SMHD Perera (181_CR40) 2021; 8
J Li (181_CR116) 2021; 304
S Sezer (181_CR137) 2022; 147
AK Stark (181_CR103) 2015; 29
PV Gopirajan (181_CR133) 2023; 13
J Li (181_CR128) 2021; 278
AI Lawal (181_CR45) 2021; 13
WS Chai (181_CR4) 2021; 147
181_CR24
F Cheng (181_CR131) 2022; 442
181_CR20
181_CR149
KI Wong (181_CR28) 2013; 13
A Pathy (181_CR68) 2020; 50
T Hastie (181_CR49) 2009
A Karaci (181_CR64) 2016; 41
181_CR146
BV Ayodele (181_CR111) 2021; 45
N Lerkkasemsan (181_CR87) 2017; 185
T Katongtung (181_CR132) 2022; 344
CL Williams (181_CR161) 2016; 9
ST Wen (181_CR147) 2020; 151
AY Mutlu (181_CR84) 2018; 165
JA Okolie (181_CR18) 2020; 119
F Kartal (181_CR142) 2022; 33
TK Patra (181_CR37) 2015; 50
EE Ozbas (181_CR98) 2019; 44
181_CR13
D Serrano (181_CR101) 2020; 402
P Sahoo (181_CR43) 2020; 60
PV Gopirajan (181_CR117) 2021; 306
181_CR12
W Zhang (181_CR115) 2021; 342
AS Noushabadi (181_CR154) 2021; 179
M Aghbashlo (181_CR30) 2021; 85
M Aghaaminiha (181_CR125) 2023; 13
181_CR159
RM Hlihor (181_CR56) 2015; 32
HB Bi (181_CR140) 2020; 213
181_CR156
X Zhu (181_CR72) 2019; 288
181_CR157
JK Xing (181_CR86) 2019; 188
S Sunphorka (181_CR144) 2017; 90
181_CR152
181_CR153
ES Go (181_CR25) 2022; 19
181_CR151
HY Ismail (181_CR122) 2019; 85
F Kartal (181_CR79) 2023; 204
F Elmaz (181_CR97) 2020; 191
S Shenbagaraj (181_CR114) 2021; 46
S Zhao (181_CR113) 2021; 316
BR Hough (181_CR91) 2017; 104
N Li (181_CR150) 2016; 188
181_CR89
181_CR127
J Krzywanski (181_CR33) 2022; 251
B Aydinli (181_CR65) 2017; 35
181_CR85
T Onsree (181_CR74) 2022; 249
181_CR94
S Ascher (181_CR31) 2022; 320
181_CR92
S Hameed (181_CR11) 2019; 123
AV Bridgwater (181_CR19) 2012; 38
J Song (181_CR76) 2022; 353
181_CR90
K Kang (181_CR108) 2017; 41
M Kannangara (181_CR50) 2018; 74
JJ Verbeek (181_CR60) 2003; 15
J Li (181_CR120) 2022; 817
SB Seo (181_CR22) 2022; 193
YR Gwak (181_CR26) 2020; 37
L Mu (181_CR124) 2022; 318
A Ghaderi (181_CR160) 2019; 78
Z Ullah (181_CR69) 2021; 335
HB Zhong (181_CR81) 2020; 152
181_CR77
Y Fang (181_CR99) 2022; 264
N Kardani (181_CR110) 2021; 289
181_CR6
181_CR5
181_CR73
JW Kook (181_CR27) 2017; 34
181_CR2
D Lee (181_CR9) 2022; 447
HK Balsora (181_CR78) 2022; 10
WQ Ji (181_CR88) 2022; 240
181_CR80
O Yucel (181_CR112) 2019; 43
M Mandegari (181_CR3) 2018; 165
K Kim (181_CR15) 2013; 127
AK Jain (181_CR46) 1996; 29
Z Ullah (181_CR75) 2022; 162
FX Collard (181_CR10) 2014; 38
YF Sun (181_CR67) 2016; 120
A Shafizadeh (181_CR134) 2022; 445
CY Lin (181_CR14) 2021; 9
181_CR105
SH Lee (181_CR17) 2019; 138
181_CR63
181_CR104
181_CR102
B Hejazi (181_CR106) 2017; 31
AD Ferreira (181_CR32) 2023; 40
HF Wang (181_CR59) 2018; 267
M Buyukada (181_CR145) 2016; 216
R Rameshkumar (181_CR107) 2014; 27
J Li (181_CR100) 2023; 4
P Debiagi (181_CR8) 2018; 134
SK Shreyas (181_CR51) 2019; 4
AI Lawal (181_CR44) 2021; 30
JO Rico-Contreras (181_CR148) 2017; 202
SH Lee (181_CR16) 2008; 83
HKS Panahi (181_CR62) 2020; 270
W Jiang (181_CR129) 2019; 212
SR Wang (181_CR23) 2017; 62
181_CR57
181_CR58
181_CR55
181_CR118
M Karimi (181_CR138) 2022; 10
181_CR54
181_CR52
181_CR61
OS Djandja (181_CR126) 2022; 245
JLJ Ling (181_CR1) 2022; 259
W Jiang (181_CR141) 2019; 130
D Baruah (181_CR36) 2014; 39
SA Kalogirou (181_CR136) 2003; 29
J George (181_CR96) 2018; 43
References_xml – volume: 50
  year: 2020
  ident: CR68
  article-title: Predicting algal biochar yield using extreme gradient boosting (xgb) algorithm of machine learning methods
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2020.102006
– volume: 185
  start-page: 1019
  year: 2017
  ident: CR87
  article-title: Fuzzy logic-based predictive model for biomass pyrolysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.105
– volume: 358
  year: 2022
  ident: CR135
  article-title: Machine learning predicting wastewater properties of the aqueous phase derived from hydrothermal treatment of biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127348
– volume: 98
  start-page: 264
  year: 2017
  ident: CR95
  article-title: Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.01.029
– volume: 4
  start-page: 123
  year: 2023
  ident: CR100
  article-title: Understanding and optimizing the gasification of biomass waste with machine learning
  publication-title: Green Chem. Eng.
  doi: 10.1016/j.gce.2022.05.006
– volume: 165
  start-page: 895
  year: 2018
  ident: CR84
  article-title: An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.131
– volume: 335
  start-page: 125292
  year: 2021
  ident: CR69
  article-title: A comparative study of machine learning methods for bio-oil yield prediction – A genetic algorithm-based features selection
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2021.125292
– volume: 110
  start-page: 188
  year: 2019
  ident: CR38
  article-title: Numerical approaches and comprehensive models for gasification process: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.04.048
– ident: CR54
– volume: 83
  start-page: 110
  year: 2008
  ident: CR16
  article-title: The yields and composition of bio-oil produced from quercus acutissima in a bubbling fluidized bed pyrolyzer
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2008.06.006
– volume: 10
  year: 2022
  ident: CR78
  article-title: Machine learning approach for the prediction of biomass pyrolysis kinetics from preliminary analysis
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108025
– ident: CR80
– volume: 34
  start-page: 217
  year: 2021
  ident: CR42
  article-title: Machine learning in predictive toxicology: recent applications and future directions for classification models
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.0c00316
– ident: CR77
– volume: 37
  start-page: 1878
  year: 2020
  ident: CR26
  article-title: Numerical study of oxy-fuel combustion behaviors in a 2mwe cfb boiler
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0611-5
– volume: 62
  start-page: 33
  year: 2017
  ident: CR23
  article-title: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review
  publication-title: Prog. Energy Combust.
  doi: 10.1016/j.pecs.2017.05.004
– volume: 245
  year: 2022
  ident: CR126
  article-title: Random forest-based modeling for insights on phosphorus content in hydrochar produced from hydrothermal carbonization of sewage sludge
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123295
– volume: 204
  start-page: 774
  year: 2023
  ident: CR79
  article-title: Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.01.017
– volume: 212
  start-page: 1210
  year: 2019
  ident: CR129
  article-title: Synthesis, characterization and machine learning based performance prediction of straw activated carbon
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.093
– volume: 43
  start-page: 5992
  year: 2019
  ident: CR112
  article-title: Comparison of the different artificial neural networks in prediction of biomass gasification products
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4682
– volume: 27
  start-page: 361
  year: 2014
  ident: CR107
  article-title: Prediction of tar and particulate in biomass gasification using adaptive neuro fuzzy inference system
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-131004
– volume: 304
  year: 2021
  ident: CR116
  article-title: A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117674
– ident: CR92
– volume: 8
  start-page: 1481
  year: 2021
  ident: CR40
  article-title: Modeling of thermochemical conversion of waste biomass—a comprehensive review
  publication-title: Biofuel Res. J.
  doi: 10.18331/BRJ2021.8.4.3
– volume: 188
  start-page: 233
  year: 2016
  ident: CR150
  article-title: Prediction of nox emissions from a biomass fired combustion process based on flame radical imaging and deep learning techniques
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2015.1102905
– ident: CR153
– volume: 31
  start-page: 1702
  year: 2017
  ident: CR106
  article-title: Kinetic model of steam gasification of biomass in a bubbling fluidized bed reactor
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.6b03161
– volume: 11
  start-page: 2260
  year: 2018
  ident: CR21
  article-title: A study of the production and combustion characteristics of pyrolytic oil from sewage sludge using the taguchi method
  publication-title: Energies
  doi: 10.3390/en11092260
– ident: CR57
– ident: CR85
– volume: 147
  year: 2021
  ident: CR4
  article-title: A review on ammonia, ammonia-hydrogen and ammonia-methane fuels
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111254
– volume: 127
  start-page: 391
  year: 2013
  ident: CR15
  article-title: Long-term operation of biomass-to-liquid systems coupled to gasification and fischer-tropsch processes for biofuel production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.126
– ident: CR5
– volume: 289
  year: 2021
  ident: CR110
  article-title: Modelling of municipal solid waste gasification using an optimised ensemble soft computing model
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119903
– volume: 123
  start-page: 104
  year: 2019
  ident: CR11
  article-title: A review on biomass pyrolysis models: kinetic, network and mechanistic models
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2019.02.008
– volume: 41
  start-page: 1835
  year: 2017
  ident: CR108
  article-title: Hydrogen generation via supercritical water gasification of lignin using ni-co/mg-al catalysts
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3739
– volume: 32
  start-page: 358
  year: 2015
  ident: CR56
  article-title: Experimental analysis and mathematical prediction of cd(ii) removal by biosorption using support vector machines and genetic algorithms
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2014.08.003
– volume: 817
  year: 2022
  ident: CR120
  article-title: Wet wastes to bioenergy and biochar: a critical review with future perspectives
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2022.152921
– volume: 39
  start-page: 806
  year: 2014
  ident: CR36
  article-title: Modeling of biomass gasification: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.07.129
– volume: 29
  start-page: 31
  year: 1996
  ident: CR46
  article-title: Artificial neural networks: a tutorial
  publication-title: Computer
  doi: 10.1109/2.485891
– volume: 270
  year: 2020
  ident: CR62
  article-title: A comprehensive review of engineered biochar: production, characteristics, and environmental applications
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122462
– ident: CR47
– volume: 14
  start-page: 3000
  year: 2021
  ident: CR123
  article-title: Towards engineered hydrochars: application of artificial neural networks in the hydrothermal carbonization of sewage sludge
  publication-title: Energies
  doi: 10.3390/en14113000
– volume: 191
  year: 2020
  ident: CR97
  article-title: Predictive modeling of biomass gasification with machine learning-based regression methods
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116541
– volume: 193
  start-page: 142
  year: 2017
  ident: CR82
  article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.046
– ident: CR156
– ident: CR89
– volume: 152
  start-page: 613
  year: 2020
  ident: CR81
  article-title: Cfd-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.01.057
– volume: 251
  year: 2022
  ident: CR33
  article-title: Gaseous emissions from advanced clc and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility: a comprehensive model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123896
– volume: 44
  start-page: 17260
  year: 2019
  ident: CR98
  article-title: Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2019.02.108
– volume: 85
  year: 2021
  ident: CR30
  article-title: Machine learning technology in biodiesel research: a review
  publication-title: Prog. Energy Combust.
  doi: 10.1016/j.pecs.2021.100904
– ident: CR6
– volume: 119
  year: 2020
  ident: CR18
  article-title: A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109546
– ident: CR63
– volume: 249
  year: 2022
  ident: CR74
  article-title: Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123676
– volume: 288
  year: 2019
  ident: CR72
  article-title: Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121527
– volume: 13
  start-page: 9855
  year: 2023
  ident: CR125
  article-title: Comparison of machine learning methodologies for predicting kinetics of hydrothermal carbonization of selective biomass
  publication-title: Biomass Convers. Bioresour.
  doi: 10.1007/s13399-021-01858-3
– volume: 90
  start-page: 51
  year: 2017
  ident: CR144
  article-title: Application of artificial neural network for kinetic parameters prediction of biomass oxidation from biomass properties
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2015.10.007
– ident: CR94
– volume: 179
  start-page: 550
  year: 2021
  ident: CR154
  article-title: Estimation of higher heating values (hhvs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.07.003
– volume: 13
  start-page: 4428
  year: 2013
  ident: CR28
  article-title: Modelling of diesel engine performance using advanced machine learning methods under scarce and exponential data set
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.06.006
– volume: 318
  year: 2022
  ident: CR124
  article-title: Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: machine learning algorithm based on proposed pso-nn model
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123644
– ident: CR52
– volume: 342
  year: 2021
  ident: CR115
  article-title: Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126011
– ident: CR13
– ident: CR151
– year: 2009
  ident: CR49
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  doi: 10.1007/978-0-387-84858-7
– volume: 35
  start-page: 698
  year: 2017
  ident: CR65
  article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network
  publication-title: Energy Explor. Exploit.Explor. Exploit.
  doi: 10.1177/0144598717716282
– ident: CR162
– volume: 4
  start-page: 1
  year: 2019
  ident: CR51
  article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects
  publication-title: Innov. Infrastruct. Solut.
  doi: 10.1007/s41062-019-0234-z
– ident: CR159
– volume: 57
  start-page: 1944
  year: 2022
  ident: CR143
  article-title: Prediction of activation energy of biomass wastes by using multilayer perceptron neural network with weka
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.03.051
– ident: CR55
– volume: 216
  start-page: 280
  year: 2016
  ident: CR145
  article-title: Co-combustion of peanut hull and coal blends: artificial neural networks modeling, particle swarm optimization and monte carlo simulation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.091
– ident: CR41
– ident: CR24
– volume: 200
  start-page: 155
  year: 2017
  ident: CR139
  article-title: Image-based deep neural network prediction of the heat output of a step-grate biomass boiler
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.080
– volume: 202
  start-page: 254
  year: 2017
  ident: CR148
  article-title: Moisture content prediction in poultry litter using artificial intelligence techniques and Monte Carlo simulation to determine the economic yield from energy use
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.07.034
– volume: 343
  year: 2022
  ident: CR35
  article-title: The role of machine learning to boost the bioenergy and biofuels conversion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126099
– volume: 138
  start-page: 121
  year: 2019
  ident: CR17
  article-title: Economic analysis of a 600 mwe ultra supercritical circulating fluidized bed power plant based on coal tax and biomass co-combustion plans
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.074
– ident: CR102
– volume: 193
  start-page: 23
  year: 2022
  ident: CR22
  article-title: Techno-economic assessment of a solar-assisted biomass gasification process
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.05.033
– volume: 60
  start-page: 5995
  year: 2020
  ident: CR43
  article-title: Multicon: a semi-supervised approach for predicting drug function from chemical structure analysis
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00801
– volume: 442
  year: 2022
  ident: CR131
  article-title: Accuracy of predictions made by machine learned models for biocrude yields obtained from hydrothermal liquefaction of organic wastes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136013
– volume: 151
  start-page: 463
  year: 2020
  ident: CR147
  article-title: Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.11.038
– ident: CR12
– volume: 29
  start-page: 2437
  year: 2015
  ident: CR103
  article-title: Prediction and validation of major gas and tar species from a reactor network model of air-blown fluidized bed biomass gasification
  publication-title: Energy Fuel
  doi: 10.1021/ef5027955
– volume: 97
  start-page: 67
  year: 2013
  ident: CR93
  article-title: State of the art on reactor designs for solar gasification of carbonaceous feedstock
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.08.001
– volume: 402
  year: 2020
  ident: CR101
  article-title: Tar prediction in bubbling fluidized bed gasification through artificial neural networks
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126229
– volume: 30
  start-page: 4547
  year: 2021
  ident: CR44
  article-title: Prediction of mechanical properties of coal from non-destructive properties: a comparative application of mars, ann, and ga
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09955-w
– ident: CR61
– volume: 173
  year: 2021
  ident: CR109
  article-title: Modeling and process optimization of hydrothermal gasification for hydrogen production: a comprehensive review
  publication-title: J. Supercrit. Fluid
  doi: 10.1016/j.supflu.2021.105199
– ident: CR58
– volume: 240
  year: 2022
  ident: CR88
  article-title: Autonomous kinetic modeling of biomass pyrolysis using chemical reaction neural networks
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2022.111992
– volume: 264
  year: 2022
  ident: CR99
  article-title: Process optimization of biomass gasification with a monte carlo approach and random forest algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115734
– volume: 320
  year: 2022
  ident: CR31
  article-title: A comprehensive artificial neural network model for gasification process prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119289
– volume: 40
  start-page: 2787
  year: 2023
  ident: CR32
  article-title: Study of the influence of operational parameters on biomass conversion in a pyrolysis reactor via cfd
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-023-1528-6
– volume: 162
  start-page: 337
  year: 2022
  ident: CR75
  article-title: An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis
  publication-title: Process. Saf. Environ.
  doi: 10.1016/j.psep.2022.04.013
– ident: CR163
– volume: 13
  start-page: 248
  year: 2021
  ident: CR45
  article-title: Application of artificial intelligence to rock mechanics: an overview
  publication-title: J. Rock Mech. Geotech.
  doi: 10.1016/j.jrmge.2020.05.010
– volume: 38
  start-page: 594
  year: 2014
  ident: CR10
  article-title: A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.06.013
– volume: 9
  start-page: 1324
  year: 2021
  ident: CR14
  article-title: Optimization of hydrolysis-acidogenesis phase of swine manure for biogas production using two-stage anaerobic fermentation
  publication-title: Processes
  doi: 10.3390/pr9081324
– volume: 50
  start-page: 583
  year: 2015
  ident: CR37
  article-title: Biomass gasification models for downdraft gasifier: a state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.05.012
– volume: 134
  start-page: 326
  year: 2018
  ident: CR8
  article-title: A predictive model of biochar formation and characterization
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2018.06.022
– volume: 43
  start-page: 9558
  year: 2018
  ident: CR96
  article-title: Assessment of producer gas composition in air gasification of biomass using artificial neural network model
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2018.04.007
– volume: 259
  year: 2022
  ident: CR1
  article-title: Analysis of operational characteristics of biomass oxygen fuel circulating fluidized bed combustor with indirect supercritical carbon dioxide cycle
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2022.115569
– volume: 306
  year: 2021
  ident: CR117
  article-title: Optimization of hydrothermal gasification process through machine learning approach: experimental conditions, product yield and pollution
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127302
– ident: CR157
– volume: 120
  start-page: 94
  year: 2016
  ident: CR67
  article-title: Pyrolysis products from industrial waste biomass based on a neural network model
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.04.013
– volume: 316
  year: 2021
  ident: CR113
  article-title: Interpretable machine learning for predicting and evaluating hydrogen production via supercritical water gasification of biomass
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128244
– volume: 162
  year: 2022
  ident: CR66
  article-title: Biomass fast pyrolysis prediction model through data-based prediction models coupling with cpfd simulation
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2022.105448
– volume: 38
  start-page: 68
  year: 2012
  ident: CR19
  article-title: Review of fast pyrolysis of biomass and product upgrading
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.01.048
– volume: 46
  start-page: 12739
  year: 2021
  ident: CR114
  article-title: Gasification of food waste in supercritical water: an innovative synthesis gas composition prediction model based on artificial neural networks
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2021.01.122
– volume: 165
  start-page: 76
  year: 2018
  ident: CR3
  article-title: A new insight into sugarcane biorefineries with fossil fuel co-combustion: techno-economic analysis and life cycle assessment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.03.057
– volume: 19
  start-page: 63
  year: 2022
  ident: CR25
  article-title: Analysis of combustion characteristics using cpfd in 0.1 mw oxy-fuel cfb
  publication-title: Int. J. Nanotechnol.
  doi: 10.1504/IJNT.2022.122369
– volume: 104
  start-page: 56
  year: 2017
  ident: CR91
  article-title: Application of machine learning to pyrolysis reaction networks: reducing model solution time to enable process optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.04.012
– volume: 188
  year: 2019
  ident: CR86
  article-title: A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116077
– ident: CR105
– volume: 130
  start-page: 1216
  year: 2019
  ident: CR141
  article-title: Prediction of combustion activation energy of naoh/koh catalyzed straw pyrolytic carbon based on machine learning
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.089
– volume: 9
  start-page: 1
  year: 2016
  ident: CR161
  article-title: Sources of biomass feedstock variability and the potential impact on biofuels production
  publication-title: Bioenerg. Res.
  doi: 10.1007/s12155-015-9694-y
– volume: 74
  start-page: 3
  year: 2018
  ident: CR50
  article-title: Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.11.057
– volume: 267
  start-page: 687
  year: 2018
  ident: CR59
  article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.12.001
– volume: 353
  year: 2022
  ident: CR76
  article-title: Prediction of product yields using fusion model from co-pyrolysis of biomass and coal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127132
– volume: 157
  year: 2021
  ident: CR70
  article-title: Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2021.105180
– ident: CR2
– ident: CR152
– volume: 8
  start-page: 36
  year: 2022
  ident: CR158
  article-title: Data-driven correlations of higher heating value for biomass, waste and their combination based on their elemental compositions
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.113
– volume: 34
  start-page: 3092
  year: 2017
  ident: CR27
  article-title: A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-017-0214-y
– volume: 78
  start-page: 4579
  year: 2019
  ident: CR160
  article-title: An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (cptu)
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1400-9
– volume: 13
  start-page: 4572
  year: 2020
  ident: CR121
  article-title: Hydrochars as emerging biofuels: recent advances and application of artificial neural networks for the prediction of heating values
  publication-title: Energies
  doi: 10.3390/en13174572
– volume: 68
  start-page: 186
  year: 2017
  ident: CR155
  article-title: Comparison of ann (mlp), anfis, svm, and rf models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.03.044
– ident: CR104
– volume: 10
  start-page: 1925
  year: 2022
  ident: CR138
  article-title: Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.1155
– volume: 33
  year: 2022
  ident: CR142
  article-title: Prediction of activation energy for combustion and pyrolysis by means of machine learning
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2022.101346
– ident: CR146
– volume: 13
  start-page: 5358
  year: 2020
  ident: CR29
  article-title: Cfd-dem simulation of biomass pyrolysis in fluidized-bed reactor with a multistep kinetic scheme
  publication-title: Energies
  doi: 10.3390/en13205358
– ident: CR127
– ident: CR149
– volume: 159
  start-page: 105286
  year: 2021
  ident: CR71
  article-title: Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network
  publication-title: J Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2021.105286
– volume: 45
  start-page: 9580
  year: 2021
  ident: CR111
  article-title: Modeling the prediction of hydrogen production by co-gasification of plastic and rubber wastes using machine learning algorithms
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6483
– ident: CR48
– ident: CR73
– volume: 29
  start-page: 515
  year: 2003
  ident: CR136
  article-title: Artificial intelligence for the modeling and control of combustion processes: a review
  publication-title: Prog. Energy Combust.
  doi: 10.1016/S0360-1285(03)00058-3
– ident: CR90
– volume: 13
  start-page: 1213
  year: 2023
  ident: CR133
  article-title: Optimization of hydrothermal liquefaction process through machine learning approach: process conditions and oil yield
  publication-title: Biomass Convers. Bioresour.
  doi: 10.1007/s13399-020-01233-8
– volume: 343
  year: 2022
  ident: CR7
  article-title: Recent advances of thermochemical conversion processes for biorefinery
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126109
– volume: 340
  year: 2021
  ident: CR130
  article-title: Production of biofuels from biomass: predicting the energy employing artificial intelligence modelling
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125642
– volume: 15
  start-page: 469
  year: 2003
  ident: CR60
  article-title: Efficient greedy learning of gaussian mixture models
  publication-title: Neural Comput.
  doi: 10.1162/089976603762553004
– volume: 447
  year: 2022
  ident: CR9
  article-title: Recent progress in the catalytic thermochemical conversion process of biomass for biofuels
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137501
– ident: CR118
– volume: 41
  start-page: 4570
  year: 2016
  ident: CR64
  article-title: The pyrolysis process verification of hydrogen rich gas (h-rg) production by artificial neural network (ann)
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2016.01.094
– volume: 260
  year: 2022
  ident: CR83
  article-title: A machine learning model to predict the pyrolytic kinetics of different types of feedstocks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115613
– ident: CR34
– volume: 43
  start-page: 1716
  year: 2015
  ident: CR53
  article-title: Consistency of random forests
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1321
– volume: 344
  year: 2022
  ident: CR132
  article-title: Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126278
– volume: 445
  year: 2022
  ident: CR134
  article-title: Machine learning predicts and optimizes hydrothermal liquefaction of biomass
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136579
– volume: 147
  start-page: 9793
  year: 2022
  ident: CR137
  article-title: Prediction of combustion reactivity for lignocellulosic fuels by means of machine learning
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-022-11208-8
– volume: 213
  year: 2020
  ident: CR140
  article-title: Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via tg-ftir
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118790
– volume: 471
  year: 2023
  ident: CR39
  article-title: Recent advances and future prospects of thermochemical biofuel conversion processes with machine learning
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144503
– volume: 278
  year: 2021
  ident: CR128
  article-title: Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: application of machine learning on waste-to-resource
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123928
– ident: CR20
– volume: 85
  start-page: 242
  year: 2019
  ident: CR122
  article-title: Ann-kriging hybrid model for predicting carbon and inorganic phosphorus recovery in hydrothermal carbonization
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2018.12.044
– volume: 287
  year: 2022
  ident: CR119
  article-title: Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal co-gasification techniques: a multi-criteria modeling approach
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132052
– volume: 119
  year: 2020
  ident: 181_CR18
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109546
– volume: 288
  year: 2019
  ident: 181_CR72
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121527
– ident: 181_CR20
  doi: 10.1016/j.chemosphere.2021.131824
– volume: 353
  year: 2022
  ident: 181_CR76
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127132
– volume: 344
  year: 2022
  ident: 181_CR132
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126278
– volume: 41
  start-page: 1835
  year: 2017
  ident: 181_CR108
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3739
– volume: 152
  start-page: 613
  year: 2020
  ident: 181_CR81
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.01.057
– volume: 9
  start-page: 1324
  year: 2021
  ident: 181_CR14
  publication-title: Processes
  doi: 10.3390/pr9081324
– volume: 471
  year: 2023
  ident: 181_CR39
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144503
– ident: 181_CR105
  doi: 10.1007/s13399-019-00575-2
– volume: 9
  start-page: 1
  year: 2016
  ident: 181_CR161
  publication-title: Bioenerg. Res.
  doi: 10.1007/s12155-015-9694-y
– ident: 181_CR6
  doi: 10.1177/0958305X20971628
– ident: 181_CR156
  doi: 10.1016/j.energy.2021.121921
– volume: 442
  year: 2022
  ident: 181_CR131
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136013
– volume: 445
  year: 2022
  ident: 181_CR134
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136579
– volume: 159
  start-page: 105286
  year: 2021
  ident: 181_CR71
  publication-title: J Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2021.105286
– volume: 130
  start-page: 1216
  year: 2019
  ident: 181_CR141
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.089
– ident: 181_CR13
  doi: 10.2533/chimia.2015.572
– volume: 34
  start-page: 217
  year: 2021
  ident: 181_CR42
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.0c00316
– volume: 60
  start-page: 5995
  year: 2020
  ident: 181_CR43
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00801
– volume: 343
  year: 2022
  ident: 181_CR35
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126099
– volume: 342
  year: 2021
  ident: 181_CR115
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126011
– volume: 193
  start-page: 23
  year: 2022
  ident: 181_CR22
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.05.033
– ident: 181_CR151
  doi: 10.1016/j.apenergy.2020.116414
– volume: 44
  start-page: 17260
  year: 2019
  ident: 181_CR98
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2019.02.108
– volume: 43
  start-page: 1716
  year: 2015
  ident: 181_CR53
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1321
– volume: 202
  start-page: 254
  year: 2017
  ident: 181_CR148
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.07.034
– ident: 181_CR159
  doi: 10.1080/15567036.2019.1630521
– volume: 188
  year: 2019
  ident: 181_CR86
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116077
– volume: 318
  year: 2022
  ident: 181_CR124
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123644
– volume: 306
  year: 2021
  ident: 181_CR117
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127302
– volume: 260
  year: 2022
  ident: 181_CR83
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115613
– volume: 165
  start-page: 76
  year: 2018
  ident: 181_CR3
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.03.057
– ident: 181_CR90
  doi: 10.1155/2022/6491745
– ident: 181_CR61
  doi: 10.1007/s00521-020-05006-2
– volume: 10
  start-page: 1925
  year: 2022
  ident: 181_CR138
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.1155
– volume: 13
  start-page: 5358
  year: 2020
  ident: 181_CR29
  publication-title: Energies
  doi: 10.3390/en13205358
– volume: 249
  year: 2022
  ident: 181_CR74
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123676
– volume: 74
  start-page: 3
  year: 2018
  ident: 181_CR50
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.11.057
– volume: 216
  start-page: 280
  year: 2016
  ident: 181_CR145
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.091
– volume: 267
  start-page: 687
  year: 2018
  ident: 181_CR59
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.12.001
– volume: 29
  start-page: 2437
  year: 2015
  ident: 181_CR103
  publication-title: Energy Fuel
  doi: 10.1021/ef5027955
– volume: 68
  start-page: 186
  year: 2017
  ident: 181_CR155
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.03.044
– ident: 181_CR104
– volume: 817
  year: 2022
  ident: 181_CR120
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2022.152921
– ident: 181_CR24
  doi: 10.1007/s13399-022-02609-8
– volume: 41
  start-page: 4570
  year: 2016
  ident: 181_CR64
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2016.01.094
– volume: 104
  start-page: 56
  year: 2017
  ident: 181_CR91
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.04.012
– volume: 240
  year: 2022
  ident: 181_CR88
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2022.111992
– ident: 181_CR94
  doi: 10.1016/j.enconman.2014.03.036
– volume: 39
  start-page: 806
  year: 2014
  ident: 181_CR36
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.07.129
– ident: 181_CR152
  doi: 10.1016/j.apenergy.2019.113668
– ident: 181_CR55
– volume: 4
  start-page: 123
  year: 2023
  ident: 181_CR100
  publication-title: Green Chem. Eng.
  doi: 10.1016/j.gce.2022.05.006
– volume: 33
  year: 2022
  ident: 181_CR142
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2022.101346
– volume: 62
  start-page: 33
  year: 2017
  ident: 181_CR23
  publication-title: Prog. Energy Combust.
  doi: 10.1016/j.pecs.2017.05.004
– volume: 50
  year: 2020
  ident: 181_CR68
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2020.102006
– volume: 15
  start-page: 469
  year: 2003
  ident: 181_CR60
  publication-title: Neural Comput.
  doi: 10.1162/089976603762553004
– volume: 213
  year: 2020
  ident: 181_CR140
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118790
– volume: 98
  start-page: 264
  year: 2017
  ident: 181_CR95
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.01.029
– volume: 304
  year: 2021
  ident: 181_CR116
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117674
– ident: 181_CR153
  doi: 10.1016/j.apenergy.2020.115339
– volume: 8
  start-page: 36
  year: 2022
  ident: 181_CR158
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.113
– volume: 289
  year: 2021
  ident: 181_CR110
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119903
– ident: 181_CR63
  doi: 10.1016/j.ces.2021.117131
– volume: 212
  start-page: 1210
  year: 2019
  ident: 181_CR129
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.093
– ident: 181_CR52
– ident: 181_CR58
  doi: 10.1038/nbt1206-1565
– volume: 13
  start-page: 1213
  year: 2023
  ident: 181_CR133
  publication-title: Biomass Convers. Bioresour.
  doi: 10.1007/s13399-020-01233-8
– volume: 11
  start-page: 2260
  year: 2018
  ident: 181_CR21
  publication-title: Energies
  doi: 10.3390/en11092260
– volume: 173
  year: 2021
  ident: 181_CR109
  publication-title: J. Supercrit. Fluid
  doi: 10.1016/j.supflu.2021.105199
– volume: 35
  start-page: 698
  year: 2017
  ident: 181_CR65
  publication-title: Energy Explor. Exploit.Explor. Exploit.
  doi: 10.1177/0144598717716282
– ident: 181_CR102
– ident: 181_CR73
  doi: 10.1016/j.fuel.2021.122966
– volume: 134
  start-page: 326
  year: 2018
  ident: 181_CR8
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2018.06.022
– volume: 447
  year: 2022
  ident: 181_CR9
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137501
– volume: 83
  start-page: 110
  year: 2008
  ident: 181_CR16
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2008.06.006
– volume: 8
  start-page: 1481
  year: 2021
  ident: 181_CR40
  publication-title: Biofuel Res. J.
  doi: 10.18331/BRJ2021.8.4.3
– ident: 181_CR2
  doi: 10.1016/j.biteb.2022.100976
– volume: 57
  start-page: 1944
  year: 2022
  ident: 181_CR143
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.03.051
– volume: 120
  start-page: 94
  year: 2016
  ident: 181_CR67
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.04.013
– volume: 97
  start-page: 67
  year: 2013
  ident: 181_CR93
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.08.001
– volume: 188
  start-page: 233
  year: 2016
  ident: 181_CR150
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2015.1102905
– ident: 181_CR77
  doi: 10.1016/j.biortech.2021.125581
– volume: 320
  year: 2022
  ident: 181_CR31
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119289
– volume: 270
  year: 2020
  ident: 181_CR62
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122462
– volume: 31
  start-page: 1702
  year: 2017
  ident: 181_CR106
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.6b03161
– volume: 151
  start-page: 463
  year: 2020
  ident: 181_CR147
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.11.038
– volume: 4
  start-page: 1
  year: 2019
  ident: 181_CR51
  publication-title: Innov. Infrastruct. Solut.
  doi: 10.1007/s41062-019-0234-z
– ident: 181_CR57
– ident: 181_CR47
  doi: 10.1016/j.fuel.2022.123944
– volume: 138
  start-page: 121
  year: 2019
  ident: 181_CR17
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.074
– volume: 38
  start-page: 68
  year: 2012
  ident: 181_CR19
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.01.048
– volume: 204
  start-page: 774
  year: 2023
  ident: 181_CR79
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.01.017
– volume: 43
  start-page: 5992
  year: 2019
  ident: 181_CR112
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4682
– volume: 123
  start-page: 104
  year: 2019
  ident: 181_CR11
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2019.02.008
– volume: 29
  start-page: 515
  year: 2003
  ident: 181_CR136
  publication-title: Prog. Energy Combust.
  doi: 10.1016/S0360-1285(03)00058-3
– volume: 78
  start-page: 4579
  year: 2019
  ident: 181_CR160
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1400-9
– volume: 245
  year: 2022
  ident: 181_CR126
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123295
– volume: 14
  start-page: 3000
  year: 2021
  ident: 181_CR123
  publication-title: Energies
  doi: 10.3390/en14113000
– volume: 46
  start-page: 12739
  year: 2021
  ident: 181_CR114
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2021.01.122
– volume: 110
  start-page: 188
  year: 2019
  ident: 181_CR38
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.04.048
– ident: 181_CR12
  doi: 10.4172/2157-7471.1000398
– volume: 185
  start-page: 1019
  year: 2017
  ident: 181_CR87
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.105
– volume: 162
  year: 2022
  ident: 181_CR66
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2022.105448
– ident: 181_CR80
  doi: 10.1016/j.enconman.2019.112252
– volume: 316
  year: 2021
  ident: 181_CR113
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128244
– ident: 181_CR163
– volume: 10
  year: 2022
  ident: 181_CR78
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108025
– volume: 287
  year: 2022
  ident: 181_CR119
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132052
– volume: 251
  year: 2022
  ident: 181_CR33
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123896
– ident: 181_CR34
  doi: 10.3390/j4030022
– volume: 147
  year: 2021
  ident: 181_CR4
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111254
– volume: 358
  year: 2022
  ident: 181_CR135
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127348
– volume: 85
  start-page: 242
  year: 2019
  ident: 181_CR122
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2018.12.044
– ident: 181_CR54
  doi: 10.1016/j.jhazmat.2021.125426
– volume: 45
  start-page: 9580
  year: 2021
  ident: 181_CR111
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6483
– volume: 13
  start-page: 248
  year: 2021
  ident: 181_CR45
  publication-title: J. Rock Mech. Geotech.
  doi: 10.1016/j.jrmge.2020.05.010
– volume: 147
  start-page: 9793
  year: 2022
  ident: 181_CR137
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-022-11208-8
– volume: 335
  start-page: 125292
  year: 2021
  ident: 181_CR69
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2021.125292
– volume: 13
  start-page: 9855
  year: 2023
  ident: 181_CR125
  publication-title: Biomass Convers. Bioresour.
  doi: 10.1007/s13399-021-01858-3
– ident: 181_CR41
  doi: 10.1016/j.ces.2021.117224
– volume: 162
  start-page: 337
  year: 2022
  ident: 181_CR75
  publication-title: Process. Saf. Environ.
  doi: 10.1016/j.psep.2022.04.013
– ident: 181_CR162
– ident: 181_CR5
  doi: 10.1002/ese3.117
– ident: 181_CR89
  doi: 10.1016/j.fuel.2021.122248
– volume: 32
  start-page: 358
  year: 2015
  ident: 181_CR56
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2014.08.003
– ident: 181_CR149
  doi: 10.1109/I2MTC.2015.7151261
– volume: 40
  start-page: 2787
  year: 2023
  ident: 181_CR32
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-023-1528-6
– volume: 19
  start-page: 63
  year: 2022
  ident: 181_CR25
  publication-title: Int. J. Nanotechnol.
  doi: 10.1504/IJNT.2022.122369
– ident: 181_CR48
  doi: 10.1145/2001576.2001710
– volume: 191
  year: 2020
  ident: 181_CR97
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116541
– volume: 43
  start-page: 9558
  year: 2018
  ident: 181_CR96
  publication-title: Int. J. Hydrog. EnergyHydrog. Energy
  doi: 10.1016/j.ijhydene.2018.04.007
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: 181_CR49
  doi: 10.1007/978-0-387-84858-7
– ident: 181_CR118
  doi: 10.1016/j.jclepro.2021.128606
– volume: 278
  year: 2021
  ident: 181_CR128
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123928
– ident: 181_CR127
  doi: 10.1016/j.energy.2021.121010
– volume: 29
  start-page: 31
  year: 1996
  ident: 181_CR46
  publication-title: Computer
  doi: 10.1109/2.485891
– volume: 50
  start-page: 583
  year: 2015
  ident: 181_CR37
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.05.012
– volume: 27
  start-page: 361
  year: 2014
  ident: 181_CR107
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-131004
– volume: 30
  start-page: 4547
  year: 2021
  ident: 181_CR44
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09955-w
– ident: 181_CR92
  doi: 10.1109/HNICEM.2018.8666376
– volume: 85
  year: 2021
  ident: 181_CR30
  publication-title: Prog. Energy Combust.
  doi: 10.1016/j.pecs.2021.100904
– volume: 38
  start-page: 594
  year: 2014
  ident: 181_CR10
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.06.013
– volume: 127
  start-page: 391
  year: 2013
  ident: 181_CR15
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.126
– volume: 165
  start-page: 895
  year: 2018
  ident: 181_CR84
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.131
– volume: 37
  start-page: 1878
  year: 2020
  ident: 181_CR26
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0611-5
– volume: 340
  year: 2021
  ident: 181_CR130
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125642
– ident: 181_CR157
  doi: 10.1007/s40808-021-01276-4
– volume: 402
  year: 2020
  ident: 181_CR101
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126229
– volume: 13
  start-page: 4428
  year: 2013
  ident: 181_CR28
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.06.006
– volume: 193
  start-page: 142
  year: 2017
  ident: 181_CR82
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.046
– ident: 181_CR85
  doi: 10.1016/j.fuel.2018.02.045
– volume: 264
  year: 2022
  ident: 181_CR99
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115734
– volume: 259
  year: 2022
  ident: 181_CR1
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2022.115569
– volume: 200
  start-page: 155
  year: 2017
  ident: 181_CR139
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.080
– volume: 90
  start-page: 51
  year: 2017
  ident: 181_CR144
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2015.10.007
– volume: 157
  year: 2021
  ident: 181_CR70
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2021.105180
– volume: 179
  start-page: 550
  year: 2021
  ident: 181_CR154
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.07.003
– volume: 343
  year: 2022
  ident: 181_CR7
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126109
– volume: 34
  start-page: 3092
  year: 2017
  ident: 181_CR27
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-017-0214-y
– volume: 13
  start-page: 4572
  year: 2020
  ident: 181_CR121
  publication-title: Energies
  doi: 10.3390/en13174572
– ident: 181_CR146
  doi: 10.1016/j.fuel.2021.122082
SSID ssj0055620
Score 2.4107842
SecondaryResourceType review_article
Snippet Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1923
SubjectTerms Alternative energy sources
Biofuels
Biomass
Biomass energy production
Biotechnology
Catalysis
Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Machine learning
Materials Science
Renewable energy
Review Article
Robustness (mathematics)
화학공학
Title Progresses and Challenges of Machine Learning Approaches in Thermochemical Processes for Bioenergy: A Review
URI https://link.springer.com/article/10.1007/s11814-024-00181-7
https://www.proquest.com/docview/3072276371
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003102840
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2024, 41(7), 292, pp.1923-1953
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6xy6HtgVeLWKArS-XWGtVJnAe37IrlUYF66Er0ZMUvtFrIVrvLpb--48RmC2qROOVgJ3Hs8cw38cw3AEfSyoqlhcSNZBPqLAaV6FrTotCWK_WVW-Oyka-u0_NxcnnDb3xS2CJEu4cjyUZTr5Ld0BglFG0KdZXkGM06sM5ZXuRdWC_Pfn47DRqYo01v_604jj2EPD5Z5t9PeWKQOvXcPsGaz45HG6sz2oRxGG8bbDI9fljKY_X7GZXjaz9oCzY8DCVlKzfbsGbqHXgzDNXfduDdX0SF7-HuuwvjcjTjC1LVmgxDCZYFmVly1QRkGuK5Wm9J6YnKsXlSE5TE-b0rzNUwExCfmoBtiJfJYDIzTfrhCSlJe1DxAcaj0x_Dc-rrNFAV82RJUx4bIzViL12lqZKIAXKdZUZWeWaZ1RFXaAPjVBeSJzZOEWOoPDOJ5FVUcKviXejWs9rsAYkTo1Hl2TRGt5NJ9M8LbTTT3Fp0BRjrAQuLJZQnMXe1NO7Ein7ZzarAWRXNrIqsB58f7_nVUni82PsTyoCYqolwzNvuejsT07lA_-JCuHKiGTp5PTgMMiL8pl8IVJdRhPo6w2F-CUu-av7_O_df1_0A3kaN1Lig4UPoLucP5iNCo6Xs404YDQbXfb8j-tAZR-UfAjEEFg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3RcgAOiFUUCliCG1gii5OGW6ioytKKQytxs-KtqoAUteX_GScOBQRInHJwNmXseW_imTcAp8KIzIsSgQvJhNQiBhUYWtMkUYZJecGMttXIvX7UHYa3j-zRFYXNqmz3akuy8NSLYjcEo5AiplDbSc6jcQ2WkQy0bN-CoZ9W_pchopd_VqzCHhIeVyrz8z2-wFEtn5ovTPPb5miBOZ0NWHdkkaSldTdhSedbsNKuerRtwdonOcFteH6wyVZWDHxGslyRdtUoZUYmhvSKtElNnKLqiKROThyHxznB-TJ9se2zCv0A4goIcAxZLbkaT3RRJHhJUlJuJ-zAsHM9aHep66ZAZcDCOY1YoLVQyJBUFkVSIFK3VBxrkbVi4xnlM4lIFUQqESw0QYRMQLZiHQqW-QkzMtiFej7J9R6QINQKHZOJAgwOPYFRdKK08hQzBgm75zXAqz4ql05q3Ha8eOYLkWRrCI6G4IUheNyAs49rXkuhjT_PPkFb8Sc55lYf2x5HE_405RgF3HDb9DPGUKwBzcqW3C3NGUen5vvoVWN8zfPKvovh35-5_7_Tj2GlO-jd8_ub_t0BrPrFpLNpvk2oz6dv-hDJzFwcFXP3HSQW55E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkVgOCAqIslqCG1jgJE4abqVQsbXiQCVuVrxVFZBWbfl_xlkoRYDEKQdnU8ae9yaeeQNwLK1MWBhLXEg2oA4xqMTQmsaxtlypc26Nq0Zud8KbbnD3zJ-_VPFn2e7llmRe0-BUmtLJ2VDbs2nhGwJTQBFfqOsqx2g0Dwvojpmb6V2vUfpijuie_2VxantIfoqymZ_vMQNN8-nIzrDObxulGf601mC1II6kkVt6HeZMWoWlZtmvrQorX6QFN-D10SVeOWHwMUlSTZpl05QxGVjSzlIoDSnUVXukUUiL43A_JTh3Rm-ulVamJUCKYgIcQ4ZLLvsDkxUMXpAGybcWNqHbun5q3tCiswJVPg8mNOS-MVIjW9JJGCqJqF3XUWRkUo8ss9rjClHLD3UseWD9EFmBqkcmkDzxYm6VvwWVdJCabSB-YDQ6KRv6GCgyiRF1rI1mmluL5J2xGrDyowpVyI677hevYiqY7Awh0BAiM4SIanDyec0wF9348-wjtJV4UX3htLLdsTcQLyOBEcGtcA1AIwzLarBX2lIUy3Qs0MF5HnrYCF_ztLTvdPj3Z-787_RDWHy8aomH2879Lix72ZxzGb97UJmM3s0-8pqJPMim7getc-vN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progresses+and+Challenges+of+Machine+Learning+Approaches+in+Thermochemical+Processes+for+Bioenergy%3A+A+Review&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Nafi+u+Olanrewaju+Ogunsola&rft.au=%EC%98%A4%EC%8A%B9%EC%84%9D&rft.au=%EC%A0%84%ED%95%84%EB%A6%BD&rft.au=Jester+Lih+Jie+Ling&rft.date=2024-07-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=1923&rft.epage=1953&rft_id=info:doi/10.1007%2Fs11814-024-00181-7&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10557548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon