Progresses and Challenges of Machine Learning Approaches in Thermochemical Processes for Bioenergy: A Review
Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 41; no. 7; pp. 1923 - 1953 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2024
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-024-00181-7 |
Cover
Abstract | Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine learning techniques are cost-effective and non-time consuming and have been widely utilized in thermochemical conversion process modelling with robust and accurate results and solutions. Nonetheless, no standard method has been proposed for applying ML models to biomass thermochemical processes. Consequently, the general development procedure for ML models with high accuracy and robustness remains unclear. This review provides a comprehensive review of machine learning techniques for predicting biofuel yield and composition. It is recommended that quality datasets be ensured to enable the development of more robust machine learning-aided models for practical engineering applications. Finally, solutions to the identified challenges and prospective future research directions on machine learning-based biomass thermochemical conversion processes are recommended to accelerate the optimization and large-scale deployment of these processes. |
---|---|
AbstractList | Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine learning techniques are cost-eff ective and non-time consuming and have been widely utilized in thermochemical conversion process modelling with robust and accurate results and solutions.
Nonetheless, no standard method has been proposed for applying ML models to biomass thermochemical processes.
Consequently, the general development procedure for ML models with high accuracy and robustness remains unclear. This review provides a comprehensive review of machine learning techniques for predicting biofuel yield and composition. It is recommended that quality datasets be ensured to enable the development of more robust machine learning-aided models for practical engineering applications. Finally, solutions to the identifi ed challenges and prospective future research directions on machine learning-based biomass thermochemical conversion processes are recommended to accelerate the optimization and large-scale deployment of these processes. KCI Citation Count: 0 Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the optimum design and operating conditions of the processes remains a major challenge due to the laborious and costly experimental methods. Machine learning techniques are cost-effective and non-time consuming and have been widely utilized in thermochemical conversion process modelling with robust and accurate results and solutions. Nonetheless, no standard method has been proposed for applying ML models to biomass thermochemical processes. Consequently, the general development procedure for ML models with high accuracy and robustness remains unclear. This review provides a comprehensive review of machine learning techniques for predicting biofuel yield and composition. It is recommended that quality datasets be ensured to enable the development of more robust machine learning-aided models for practical engineering applications. Finally, solutions to the identified challenges and prospective future research directions on machine learning-based biomass thermochemical conversion processes are recommended to accelerate the optimization and large-scale deployment of these processes. |
Author | Oh, Seung Seok Park, Hyun Jun Jeon, Pil Rip Ogunsola, Nafiu Olanrewaju Sohn, Jung Min Lee, Ha Eun Lee, See Hoon Park, Han Saem Ling, Jester Lih Jie |
Author_xml | – sequence: 1 givenname: Nafiu Olanrewaju surname: Ogunsola fullname: Ogunsola, Nafiu Olanrewaju organization: Department of Mineral Resources and Energy Engineering, Jeonbuk National University – sequence: 2 givenname: Seung Seok surname: Oh fullname: Oh, Seung Seok organization: Department of Environment and Energy, Jeonbuk National University – sequence: 3 givenname: Pil Rip surname: Jeon fullname: Jeon, Pil Rip organization: Department of Chemical Engineering, Kongju National University – sequence: 4 givenname: Jester Lih Jie surname: Ling fullname: Ling, Jester Lih Jie organization: Department of Environment and Energy, Jeonbuk National University – sequence: 5 givenname: Hyun Jun surname: Park fullname: Park, Hyun Jun organization: Department of Environment and Energy, Jeonbuk National University – sequence: 6 givenname: Han Saem surname: Park fullname: Park, Han Saem organization: Department of Environment and Energy, Jeonbuk National University – sequence: 7 givenname: Ha Eun surname: Lee fullname: Lee, Ha Eun organization: Department of Environment and Energy, Jeonbuk National University – sequence: 8 givenname: Jung Min surname: Sohn fullname: Sohn, Jung Min organization: Department of Mineral Resources and Energy Engineering, Jeonbuk National University – sequence: 9 givenname: See Hoon orcidid: 0000-0002-5147-8720 surname: Lee fullname: Lee, See Hoon email: donald@jbnu.ac.kr organization: Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Department of Environment and Energy, Jeonbuk National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003102840$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UcFu3CAQRVUqdZP2B3pC6i2SU8DGsL1tVmkaaatW0faMMB68JF7YgDdV_r7TuFKlHHJAwzDvPWbmnZKTmCIQ8pGzC86Y-lw417ypmMDD8FqpN2TBl0pWSgh2QhZMyLbinMt35LSUO8akbAVbkPFnTkOGUqBQG3u63tlxhDhgmjz9bt0uRKAbsDmGONDV4ZATPmI5RLrdQd4nzPbB2ZGilJuVfMr0MiSIkIenL3RFb-ExwO_35K23Y4EP_-IZ-fX1arv-Vm1-XN-sV5vK1bKZqlbWAF0vJe9t27pOc617paCzWnnueyGdblTd9stONr5uJRdOK2g6acVSelefkfNZN2Zv7l0wyYbnOCRzn83qdntjOG5AyUYj-NMMxskejlAmc5eOOWJ_pma4PdXWiiNKzCiXUykZvDnksLf5CYXMXwvMbIFBC8yzBUYhSb8guTDZKaQ4ZRvG16n1TC34D9qR_3f1CusPyL-cpQ |
CitedBy_id | crossref_primary_10_3390_mining5010005 |
Cites_doi | 10.1016/j.algal.2020.102006 10.1016/j.apenergy.2016.02.105 10.1016/j.biortech.2022.127348 10.1016/j.biombioe.2017.01.029 10.1016/j.gce.2022.05.006 10.1016/j.energy.2018.09.131 10.1016/j.biortech.2021.125292 10.1016/j.rser.2019.04.048 10.1016/j.jaap.2008.06.006 10.1016/j.jece.2022.108025 10.1021/acs.chemrestox.0c00316 10.1007/s11814-020-0611-5 10.1016/j.pecs.2017.05.004 10.1016/j.energy.2022.123295 10.1016/j.renene.2023.01.017 10.1016/j.jclepro.2018.12.093 10.1002/er.4682 10.3233/IFS-131004 10.1016/j.apenergy.2021.117674 10.18331/BRJ2021.8.4.3 10.1080/00102202.2015.1102905 10.1021/acs.energyfuels.6b03161 10.3390/en11092260 10.1016/j.rser.2021.111254 10.1016/j.biortech.2012.09.126 10.1016/j.fuel.2020.119903 10.1016/j.biombioe.2019.02.008 10.1002/er.3739 10.1016/j.nbt.2014.08.003 10.1016/j.scitotenv.2022.152921 10.1016/j.rser.2014.07.129 10.1109/2.485891 10.1016/j.jclepro.2020.122462 10.3390/en14113000 10.1016/j.energy.2019.116541 10.1016/j.fuel.2016.12.046 10.1016/j.renene.2020.01.057 10.1016/j.energy.2022.123896 10.1016/j.ijhydene.2019.02.108 10.1016/j.pecs.2021.100904 10.1016/j.rser.2019.109546 10.1016/j.energy.2022.123676 10.1016/j.biortech.2019.121527 10.1007/s13399-021-01858-3 10.1016/j.joei.2015.10.007 10.1016/j.renene.2021.07.003 10.1016/j.asoc.2013.06.006 10.1016/j.fuel.2022.123644 10.1016/j.biortech.2021.126011 10.1007/978-0-387-84858-7 10.1177/0144598717716282 10.1007/s41062-019-0234-z 10.1016/j.matpr.2022.03.051 10.1016/j.biortech.2016.05.091 10.1016/j.apenergy.2017.05.080 10.1016/j.jenvman.2017.07.034 10.1016/j.biortech.2021.126099 10.1016/j.renene.2019.01.074 10.1016/j.renene.2022.05.033 10.1021/acs.jcim.0c00801 10.1016/j.cej.2022.136013 10.1016/j.renene.2019.11.038 10.1021/ef5027955 10.1016/j.solener.2013.08.001 10.1016/j.cej.2020.126229 10.1007/s11053-021-09955-w 10.1016/j.supflu.2021.105199 10.1016/j.combustflame.2022.111992 10.1016/j.enconman.2022.115734 10.1016/j.apenergy.2022.119289 10.1007/s11814-023-1528-6 10.1016/j.psep.2022.04.013 10.1016/j.jrmge.2020.05.010 10.1016/j.rser.2014.06.013 10.3390/pr9081324 10.1016/j.rser.2015.05.012 10.1016/j.jaap.2018.06.022 10.1016/j.ijhydene.2018.04.007 10.1016/j.enconman.2022.115569 10.1016/j.jclepro.2021.127302 10.1016/j.jaap.2016.04.013 10.1016/j.jclepro.2021.128244 10.1016/j.jaap.2022.105448 10.1016/j.biombioe.2011.01.048 10.1016/j.ijhydene.2021.01.122 10.1016/j.enconman.2018.03.057 10.1504/IJNT.2022.122369 10.1016/j.compchemeng.2017.04.012 10.1016/j.energy.2019.116077 10.1016/j.renene.2018.08.089 10.1007/s12155-015-9694-y 10.1016/j.wasman.2017.11.057 10.1016/j.ejor.2017.12.001 10.1016/j.biortech.2022.127132 10.1016/j.jaap.2021.105180 10.1016/j.egyr.2022.02.113 10.1007/s11814-017-0214-y 10.1007/s10064-018-1400-9 10.3390/en13174572 10.1016/j.wasman.2017.03.044 10.1002/ese3.1155 10.1016/j.tsep.2022.101346 10.3390/en13205358 10.1016/j.jaap.2021.105286 10.1002/er.6483 10.1016/S0360-1285(03)00058-3 10.1007/s13399-020-01233-8 10.1016/j.biortech.2021.126109 10.1016/j.biortech.2021.125642 10.1162/089976603762553004 10.1016/j.cej.2022.137501 10.1016/j.ijhydene.2016.01.094 10.1016/j.enconman.2022.115613 10.1214/15-AOS1321 10.1016/j.biortech.2021.126278 10.1016/j.cej.2022.136579 10.1007/s10973-022-11208-8 10.1016/j.energy.2020.118790 10.1016/j.cej.2023.144503 10.1016/j.jclepro.2020.123928 10.1016/j.wasman.2018.12.044 10.1016/j.chemosphere.2021.132052 10.1016/j.chemosphere.2021.131824 10.1007/s13399-019-00575-2 10.1177/0958305X20971628 10.1016/j.energy.2021.121921 10.2533/chimia.2015.572 10.1016/j.apenergy.2020.116414 10.1080/15567036.2019.1630521 10.1155/2022/6491745 10.1007/s00521-020-05006-2 10.1007/s13399-022-02609-8 10.1016/j.enconman.2014.03.036 10.1016/j.apenergy.2019.113668 10.1016/j.apenergy.2020.115339 10.1016/j.ces.2021.117131 10.1038/nbt1206-1565 10.1016/j.fuel.2021.122966 10.1016/j.biteb.2022.100976 10.1016/j.biortech.2021.125581 10.1016/j.fuel.2022.123944 10.4172/2157-7471.1000398 10.1016/j.enconman.2019.112252 10.3390/j4030022 10.1016/j.jhazmat.2021.125426 10.1016/j.ces.2021.117224 10.1002/ese3.117 10.1016/j.fuel.2021.122248 10.1109/I2MTC.2015.7151261 10.1145/2001576.2001710 10.1016/j.jclepro.2021.128606 10.1016/j.energy.2021.121010 10.1109/HNICEM.2018.8666376 10.1007/s40808-021-01276-4 10.1016/j.fuel.2018.02.045 10.1016/j.fuel.2021.122082 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-024-00181-7 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 1953 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10557548 10_1007_s11814_024_00181_7 |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: RS-2023-00281706 – fundername: National Research Foundation of korea grantid: 2023R1A2C200449711 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ ACYCR |
ID | FETCH-LOGICAL-c354t-653eebd551da66cb8188d77eba87f1fd25c84736d9b54f36512c87e4b5a295fc3 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Sun Jul 06 03:12:59 EDT 2025 Fri Jul 25 11:19:15 EDT 2025 Thu Apr 24 23:07:41 EDT 2025 Tue Jul 01 03:29:46 EDT 2025 Fri Feb 21 02:40:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Sustainable biomass utilization Thermochemical conversion Bioenergy Machine learning Artificial neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-653eebd551da66cb8188d77eba87f1fd25c84736d9b54f36512c87e4b5a295fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5147-8720 |
PQID | 3072276371 |
PQPubID | 2044390 |
PageCount | 31 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10557548 proquest_journals_3072276371 crossref_primary_10_1007_s11814_024_00181_7 crossref_citationtrail_10_1007_s11814_024_00181_7 springer_journals_10_1007_s11814_024_00181_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | Noushabadi, Dashti, Ahmadijokani, Hu, Mohammadi (CR154) 2021; 179 Hough, Beck, Schwartz, Pfaendtner (CR91) 2017; 104 Wen, Buyukada, Evrendilek, Liu (CR147) 2020; 151 Chen, Ku, Lin, Ström (CR29) 2020; 13 Kang, Azargohar, Dalai, Wang (CR108) 2017; 41 CR162 Baruah, Baruah, Hazarika (CR95) 2017; 98 CR163 Ullah, Khan, Aqvi, Farooq, Yang, Wang, Vo (CR69) 2021; 335 CR34 Wang, Goodman, Allen (CR42) 2021; 34 Hastie, Tibshirani, Friedman, Friedman (CR49) 2009 Panahi, Dehhaghi, Ok, Nizami, Khoshnevisan, Mussatto, Aghbashlo, Tabatabaei, Lam (CR62) 2020; 270 CR159 CR157 Puig-Arnavat, Tora, Bruno, Coronas (CR93) 2013; 97 CR156 Aghbashlo, Peng, Tabatabaei, Kalogirou, Soltanian, Hosseinzadeh-Bandbafha, Mahian, Lam (CR30) 2021; 85 CR153 Gopirajan, Gopinath, Sivaranjani, Arun (CR133) 2023; 13 Shafizadeh, Shahbeig, Nadian, Mobli, Dowlati, Gupta, Peng, Lam, Tabatabaei, Aghbashlo (CR134) 2022; 445 Li, Lu, Li, Yan (CR150) 2016; 188 Wang, Shi, Jin, Zaini, Li, Tang, Mu, Wen, Jiang, Jonsson (CR83) 2022; 260 Sezer, Kartal, Özveren (CR137) 2022; 147 Verbeek, Vlassis, Krose (CR60) 2003; 15 Ayodele, Mustapa, Kanthasamy, Zwawi, Cheng (CR111) 2021; 45 Jeon, Moon, Ogunsola, Lee, Ling, You, Park (CR39) 2023; 471 CR48 CR47 Sahoo, Roy, Wang, Mi, Yu, Balasubramani, Khan, Stoddart (CR43) 2020; 60 Shreyas, Dey (CR51) 2019; 4 Onsree, Tippayawong, Phithakkitnukoon, Lauterbach (CR74) 2022; 249 Sasithorn, Chalermsinsuwan, Piumsomboon (CR82) 2017; 193 CR41 Cheng, Belden, Li, Shahabuddin, Paffenroth, Timko (CR131) 2022; 442 Wong, Wong, Cheung, Vong (CR28) 2013; 13 Baruah, Baruah (CR36) 2014; 39 Wang, Zheng, Yoon, Ko (CR59) 2018; 267 You, Ma, Tang, Wang, Yan, Ni, Cen, Huang (CR155) 2017; 68 Li, Suvarna, Pan, Zhao, Wang (CR116) 2021; 304 Khunphakdee, Korkerd, Soanuch, Chalermsinsuwan (CR158) 2022; 8 Mutlu, Yucel (CR84) 2018; 165 Lee, Nam, Seo, Lee, Tokmurzin, Wang, Park (CR9) 2022; 447 Zhong, Xiong, Yin, Zhang, Zhu, Liang, Niu, Zhang (CR81) 2020; 152 Jiang, Xing, Zhang, Mi (CR141) 2019; 130 Perera, Wickramasinghe, Samarasiri, Narayana (CR40) 2021; 8 Li, Zhu, Li, Tong, Ok, Wang (CR128) 2021; 278 Wang, Dai, Yang, Luo (CR23) 2017; 62 Li, Xiang, Yang, Wang, Yildiz (CR71) 2021; 159 Lee, Lee, Jeong, Lee (CR17) 2019; 138 George, Arun, Muraleedharan (CR96) 2018; 43 Leng, Zhang, Liu, Zhan, Li, Yang, Li, Peng, Li (CR135) 2022; 358 Seo, Lee, Nam, Lee, Tokmurzin, Wang, Park (CR7) 2022; 343 Kannangara, Dua, Ahmadi, Bensebaa (CR50) 2018; 74 CR58 CR57 CR55 CR54 CR52 Elmaz, Yücel, Mutlu (CR97) 2020; 191 Kim, Kim, Yang, Moon, Kim, Lee, Lee, Lee, Kim, Eom, Lee, Kang, Lee (CR15) 2013; 127 Kardani, Zhou, Nazem, Lin (CR110) 2021; 289 Rameshkumar, Mayilsamy (CR107) 2014; 27 Seo, Go, Ling, Lee (CR22) 2022; 193 Ozbas, Aksu, Ongen, Aydin, Ozcan (CR98) 2019; 44 Scornet, Biau, Vert (CR53) 2015; 43 Balsora, Kartik, Dua, Joshi, Kataria, Sharma, Chakinala (CR78) 2022; 10 Zhang, Li, Liu, Leng, Yang, Peng, Jiang, Zhou, Leng, Li (CR115) 2021; 342 Serrano, Castelló (CR101) 2020; 402 Kapetanakis, Vardiambasis, Nikolopoulos, Konstantaras, Trang, Khuong, Tsubota, Keyikoglu, Khataee, Kalderis (CR123) 2021; 14 CR151 CR152 Ascher, Sloan, Watson, You (CR31) 2022; 320 Hejazi, Grace, Bi, Mahecha-Botero (CR106) 2017; 31 Lee, Eom, Yoo, Kim, Jeon, Park, Song, Lee (CR16) 2008; 83 Ullah, Khan, Naqvi, Khan, Farooq, Anjum, Yaqub, AlMohamadi, Almomani (CR75) 2022; 162 Kalogirou (CR136) 2003; 29 Ghaderi, Shahri, Larsson (CR160) 2019; 78 Hameed, Sharma, Pareek, Wu, Yu (CR11) 2019; 123 Katongtung, Onsree, Tippayawong (CR132) 2022; 344 CR149 CR146 CR63 Jain, Mao, Mohiuddin (CR46) 1996; 29 CR61 Aghaaminiha, Mehrani, Reza, Sharma (CR125) 2023; 13 Zhu, Li, Wang (CR72) 2019; 288 Ismail, Shirazian, Skoretska, Mynko, Ghanim, Leahy, Walker, Kwapinski (CR122) 2019; 85 Shenbagaraj, Sharma, Sharma, Raghav, Kota, Ashokkumar (CR114) 2021; 46 Okolie, Epelle, Nanda, Castello, Dalai, Kozinski (CR109) 2021; 173 Patra, Sheth (CR37) 2015; 50 Lin, Chai, Lay, Chen, Lee, Show (CR14) 2021; 9 Ling, Kim, Go, Oh, Park, Jeong, Lee (CR1) 2022; 259 Kartal, Dalbudak, Özveren (CR79) 2023; 204 Collard, Blin (CR10) 2014; 38 Krzywanski, Czakiert, Nowak, Shimizu, Zylka, Idziak, Sosnowski, Grabowska (CR33) 2022; 251 Chai, Bao, Jin, Tang, Zhou (CR4) 2021; 147 Sharma, Chouhan, Bisen (CR143) 2022; 57 Yucel, Aydin, Sadikoglu (CR112) 2019; 43 Djandja, Salami, Wang, Duo, Yin, Duan (CR126) 2022; 245 CR77 Fang, Ma, Yao, Li, You (CR99) 2022; 264 Pathy, Meher, Balasubramanian (CR68) 2020; 50 CR73 Kartal, Özveren (CR142) 2022; 33 Williams, Westover, Emerson, Tumuluru, Li (CR161) 2016; 9 CR118 CR2 CR6 Song, Tang, Yu, Yang, Yang (CR76) 2022; 353 CR5 Debiagi, Gentile, Cuoci, Frassoldati, Ranzi, Faravelli (CR8) 2018; 134 Wang, Peng, Xia, Shah, Huang, Zhu, Zhu, Liao (CR35) 2022; 343 CR89 Gwak, Yun, Keel, Lee (CR26) 2020; 37 Mandegari, Farzad, Görgens (CR3) 2018; 165 CR127 Kook, Gwak, Gwak, Seo, Lee (CR27) 2017; 34 CR85 Zhao, Li, Chen, Yan, Tao, Chen (CR113) 2021; 316 CR80 Stark, Bates, Zhao, Ghoniem (CR103) 2015; 29 Bi, Wang, Lin, Jiang, Jiang, Bao (CR140) 2020; 213 Lawal, Oniyide, Kwon, Onifade, Köken, Ogunsola (CR44) 2021; 30 Meena, Shubham, Paritosh, Pareek, Vivekanand (CR130) 2021; 340 Bridgwater (CR19) 2012; 38 CR13 CR12 Ferreira, Ferreira, Neto (CR32) 2023; 40 Okolie, Nanda, Dalai, Berruti, Kozinski (CR18) 2020; 119 Karaci, Caglar, Aydinli, Pekol (CR64) 2016; 41 Hlihor, Diaconu, Leon, Curteanu, Tavares, Gavrilescu (CR56) 2015; 32 Gopirajan, Gopinath, Sivaranjani, Arun (CR117) 2021; 306 Tóth, Garami, Csordás (CR139) 2017; 200 CR94 Chen, Li, Lin, Wu, Chao (CR21) 2018; 11 CR92 Li, Li, Tong, Wang (CR100) 2023; 4 Bahadar, Kanthasamy, Sait, Zwawi, Algarni, Ayodele, Cheng, Wei (CR119) 2022; 287 Go, Kim, Kang, Keel, Ling, Lee (CR25) 2022; 19 CR90 Lawal, Kwon (CR45) 2021; 13 Sunphorka, Chalermsinsuwan, Piumsomboon (CR144) 2017; 90 Li, Li, Suvarna, Pan, Tabatabaei, Ok, Wang (CR120) 2022; 817 Tsekos, Tandurella, de Jong (CR70) 2021; 157 Kim, Choi, Choi (CR66) 2022; 162 Jiang, Xing, Li, Zhang, Wang (CR129) 2019; 212 Karimi, Khosravi, Fathollahi, Khandakar, Vaferi (CR138) 2022; 10 Mu, Wang, Wu, Zhao, Yin (CR124) 2022; 318 CR24 Ramos, Monteiro, Rouboa (CR38) 2019; 110 Xing, Luo, Wang, Gao, Fan (CR86) 2019; 188 CR104 CR105 CR20 CR102 Vardiambasis, Kapetanakis, Nikolopoulos, Trang, Tsubota, Keyikoglu, Khataee, Kalderis (CR121) 2020; 13 Lerkkasemsan (CR87) 2017; 185 Aydinli, Caglar, Pekol, Karaci (CR65) 2017; 35 Ji, Richter, Gollner, Deng (CR88) 2022; 240 Sun, Liu, Wang, Yang, Tu (CR67) 2016; 120 Buyukada (CR145) 2016; 216 Rico-Contreras, Aguilar-Lasserre, Mendez-Contreras, Lopez-Andres, Cid-Chama (CR148) 2017; 202 GB Chen (181_CR21) 2018; 11 S Sasithorn (181_CR82) 2017; 193 A Bahadar (181_CR119) 2022; 287 MWH Wang (181_CR42) 2021; 34 IO Vardiambasis (181_CR121) 2020; 13 181_CR48 V Sharma (181_CR143) 2022; 57 181_CR47 M Puig-Arnavat (181_CR93) 2013; 97 PR Jeon (181_CR39) 2023; 471 181_CR41 181_CR163 181_CR162 C Tsekos (181_CR70) 2021; 157 M Meena (181_CR130) 2021; 340 D Baruah (181_CR95) 2017; 98 A Ramos (181_CR38) 2019; 110 MW Seo (181_CR7) 2022; 343 L Leng (181_CR135) 2022; 358 TH Kim (181_CR66) 2022; 162 TY Li (181_CR71) 2021; 159 H You (181_CR155) 2017; 68 P Khunphakdee (181_CR158) 2022; 8 181_CR34 E Scornet (181_CR53) 2015; 43 TN Kapetanakis (181_CR123) 2021; 14 P Tóth (181_CR139) 2017; 200 JA Okolie (181_CR109) 2021; 173 T Chen (181_CR29) 2020; 13 Z Wang (181_CR35) 2022; 343 SL Wang (181_CR83) 2022; 260 SMHD Perera (181_CR40) 2021; 8 J Li (181_CR116) 2021; 304 S Sezer (181_CR137) 2022; 147 AK Stark (181_CR103) 2015; 29 PV Gopirajan (181_CR133) 2023; 13 J Li (181_CR128) 2021; 278 AI Lawal (181_CR45) 2021; 13 WS Chai (181_CR4) 2021; 147 181_CR24 F Cheng (181_CR131) 2022; 442 181_CR20 181_CR149 KI Wong (181_CR28) 2013; 13 A Pathy (181_CR68) 2020; 50 T Hastie (181_CR49) 2009 A Karaci (181_CR64) 2016; 41 181_CR146 BV Ayodele (181_CR111) 2021; 45 N Lerkkasemsan (181_CR87) 2017; 185 T Katongtung (181_CR132) 2022; 344 CL Williams (181_CR161) 2016; 9 ST Wen (181_CR147) 2020; 151 AY Mutlu (181_CR84) 2018; 165 JA Okolie (181_CR18) 2020; 119 F Kartal (181_CR142) 2022; 33 TK Patra (181_CR37) 2015; 50 EE Ozbas (181_CR98) 2019; 44 181_CR13 D Serrano (181_CR101) 2020; 402 P Sahoo (181_CR43) 2020; 60 PV Gopirajan (181_CR117) 2021; 306 181_CR12 W Zhang (181_CR115) 2021; 342 AS Noushabadi (181_CR154) 2021; 179 M Aghbashlo (181_CR30) 2021; 85 M Aghaaminiha (181_CR125) 2023; 13 181_CR159 RM Hlihor (181_CR56) 2015; 32 HB Bi (181_CR140) 2020; 213 181_CR156 X Zhu (181_CR72) 2019; 288 181_CR157 JK Xing (181_CR86) 2019; 188 S Sunphorka (181_CR144) 2017; 90 181_CR152 181_CR153 ES Go (181_CR25) 2022; 19 181_CR151 HY Ismail (181_CR122) 2019; 85 F Kartal (181_CR79) 2023; 204 F Elmaz (181_CR97) 2020; 191 S Shenbagaraj (181_CR114) 2021; 46 S Zhao (181_CR113) 2021; 316 BR Hough (181_CR91) 2017; 104 N Li (181_CR150) 2016; 188 181_CR89 181_CR127 J Krzywanski (181_CR33) 2022; 251 B Aydinli (181_CR65) 2017; 35 181_CR85 T Onsree (181_CR74) 2022; 249 181_CR94 S Ascher (181_CR31) 2022; 320 181_CR92 S Hameed (181_CR11) 2019; 123 AV Bridgwater (181_CR19) 2012; 38 J Song (181_CR76) 2022; 353 181_CR90 K Kang (181_CR108) 2017; 41 M Kannangara (181_CR50) 2018; 74 JJ Verbeek (181_CR60) 2003; 15 J Li (181_CR120) 2022; 817 SB Seo (181_CR22) 2022; 193 YR Gwak (181_CR26) 2020; 37 L Mu (181_CR124) 2022; 318 A Ghaderi (181_CR160) 2019; 78 Z Ullah (181_CR69) 2021; 335 HB Zhong (181_CR81) 2020; 152 181_CR77 Y Fang (181_CR99) 2022; 264 N Kardani (181_CR110) 2021; 289 181_CR6 181_CR5 181_CR73 JW Kook (181_CR27) 2017; 34 181_CR2 D Lee (181_CR9) 2022; 447 HK Balsora (181_CR78) 2022; 10 WQ Ji (181_CR88) 2022; 240 181_CR80 O Yucel (181_CR112) 2019; 43 M Mandegari (181_CR3) 2018; 165 K Kim (181_CR15) 2013; 127 AK Jain (181_CR46) 1996; 29 Z Ullah (181_CR75) 2022; 162 FX Collard (181_CR10) 2014; 38 YF Sun (181_CR67) 2016; 120 A Shafizadeh (181_CR134) 2022; 445 CY Lin (181_CR14) 2021; 9 181_CR105 SH Lee (181_CR17) 2019; 138 181_CR63 181_CR104 181_CR102 B Hejazi (181_CR106) 2017; 31 AD Ferreira (181_CR32) 2023; 40 HF Wang (181_CR59) 2018; 267 M Buyukada (181_CR145) 2016; 216 R Rameshkumar (181_CR107) 2014; 27 J Li (181_CR100) 2023; 4 P Debiagi (181_CR8) 2018; 134 SK Shreyas (181_CR51) 2019; 4 AI Lawal (181_CR44) 2021; 30 JO Rico-Contreras (181_CR148) 2017; 202 SH Lee (181_CR16) 2008; 83 HKS Panahi (181_CR62) 2020; 270 W Jiang (181_CR129) 2019; 212 SR Wang (181_CR23) 2017; 62 181_CR57 181_CR58 181_CR55 181_CR118 M Karimi (181_CR138) 2022; 10 181_CR54 181_CR52 181_CR61 OS Djandja (181_CR126) 2022; 245 JLJ Ling (181_CR1) 2022; 259 W Jiang (181_CR141) 2019; 130 D Baruah (181_CR36) 2014; 39 SA Kalogirou (181_CR136) 2003; 29 J George (181_CR96) 2018; 43 |
References_xml | – volume: 50 year: 2020 ident: CR68 article-title: Predicting algal biochar yield using extreme gradient boosting (xgb) algorithm of machine learning methods publication-title: Algal Res. doi: 10.1016/j.algal.2020.102006 – volume: 185 start-page: 1019 year: 2017 ident: CR87 article-title: Fuzzy logic-based predictive model for biomass pyrolysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.105 – volume: 358 year: 2022 ident: CR135 article-title: Machine learning predicting wastewater properties of the aqueous phase derived from hydrothermal treatment of biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127348 – volume: 98 start-page: 264 year: 2017 ident: CR95 article-title: Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.01.029 – volume: 4 start-page: 123 year: 2023 ident: CR100 article-title: Understanding and optimizing the gasification of biomass waste with machine learning publication-title: Green Chem. Eng. doi: 10.1016/j.gce.2022.05.006 – volume: 165 start-page: 895 year: 2018 ident: CR84 article-title: An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification publication-title: Energy doi: 10.1016/j.energy.2018.09.131 – volume: 335 start-page: 125292 year: 2021 ident: CR69 article-title: A comparative study of machine learning methods for bio-oil yield prediction – A genetic algorithm-based features selection publication-title: Biores. Technol. doi: 10.1016/j.biortech.2021.125292 – volume: 110 start-page: 188 year: 2019 ident: CR38 article-title: Numerical approaches and comprehensive models for gasification process: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.048 – ident: CR54 – volume: 83 start-page: 110 year: 2008 ident: CR16 article-title: The yields and composition of bio-oil produced from quercus acutissima in a bubbling fluidized bed pyrolyzer publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2008.06.006 – volume: 10 year: 2022 ident: CR78 article-title: Machine learning approach for the prediction of biomass pyrolysis kinetics from preliminary analysis publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108025 – ident: CR80 – volume: 34 start-page: 217 year: 2021 ident: CR42 article-title: Machine learning in predictive toxicology: recent applications and future directions for classification models publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.0c00316 – ident: CR77 – volume: 37 start-page: 1878 year: 2020 ident: CR26 article-title: Numerical study of oxy-fuel combustion behaviors in a 2mwe cfb boiler publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0611-5 – volume: 62 start-page: 33 year: 2017 ident: CR23 article-title: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review publication-title: Prog. Energy Combust. doi: 10.1016/j.pecs.2017.05.004 – volume: 245 year: 2022 ident: CR126 article-title: Random forest-based modeling for insights on phosphorus content in hydrochar produced from hydrothermal carbonization of sewage sludge publication-title: Energy doi: 10.1016/j.energy.2022.123295 – volume: 204 start-page: 774 year: 2023 ident: CR79 article-title: Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning publication-title: Renew. Energy doi: 10.1016/j.renene.2023.01.017 – volume: 212 start-page: 1210 year: 2019 ident: CR129 article-title: Synthesis, characterization and machine learning based performance prediction of straw activated carbon publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.093 – volume: 43 start-page: 5992 year: 2019 ident: CR112 article-title: Comparison of the different artificial neural networks in prediction of biomass gasification products publication-title: Int. J. Energy Res. doi: 10.1002/er.4682 – volume: 27 start-page: 361 year: 2014 ident: CR107 article-title: Prediction of tar and particulate in biomass gasification using adaptive neuro fuzzy inference system publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-131004 – volume: 304 year: 2021 ident: CR116 article-title: A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117674 – ident: CR92 – volume: 8 start-page: 1481 year: 2021 ident: CR40 article-title: Modeling of thermochemical conversion of waste biomass—a comprehensive review publication-title: Biofuel Res. J. doi: 10.18331/BRJ2021.8.4.3 – volume: 188 start-page: 233 year: 2016 ident: CR150 article-title: Prediction of nox emissions from a biomass fired combustion process based on flame radical imaging and deep learning techniques publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2015.1102905 – ident: CR153 – volume: 31 start-page: 1702 year: 2017 ident: CR106 article-title: Kinetic model of steam gasification of biomass in a bubbling fluidized bed reactor publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.6b03161 – volume: 11 start-page: 2260 year: 2018 ident: CR21 article-title: A study of the production and combustion characteristics of pyrolytic oil from sewage sludge using the taguchi method publication-title: Energies doi: 10.3390/en11092260 – ident: CR57 – ident: CR85 – volume: 147 year: 2021 ident: CR4 article-title: A review on ammonia, ammonia-hydrogen and ammonia-methane fuels publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111254 – volume: 127 start-page: 391 year: 2013 ident: CR15 article-title: Long-term operation of biomass-to-liquid systems coupled to gasification and fischer-tropsch processes for biofuel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.126 – ident: CR5 – volume: 289 year: 2021 ident: CR110 article-title: Modelling of municipal solid waste gasification using an optimised ensemble soft computing model publication-title: Fuel doi: 10.1016/j.fuel.2020.119903 – volume: 123 start-page: 104 year: 2019 ident: CR11 article-title: A review on biomass pyrolysis models: kinetic, network and mechanistic models publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2019.02.008 – volume: 41 start-page: 1835 year: 2017 ident: CR108 article-title: Hydrogen generation via supercritical water gasification of lignin using ni-co/mg-al catalysts publication-title: Int. J. Energy Res. doi: 10.1002/er.3739 – volume: 32 start-page: 358 year: 2015 ident: CR56 article-title: Experimental analysis and mathematical prediction of cd(ii) removal by biosorption using support vector machines and genetic algorithms publication-title: New Biotechnol. doi: 10.1016/j.nbt.2014.08.003 – volume: 817 year: 2022 ident: CR120 article-title: Wet wastes to bioenergy and biochar: a critical review with future perspectives publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2022.152921 – volume: 39 start-page: 806 year: 2014 ident: CR36 article-title: Modeling of biomass gasification: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.07.129 – volume: 29 start-page: 31 year: 1996 ident: CR46 article-title: Artificial neural networks: a tutorial publication-title: Computer doi: 10.1109/2.485891 – volume: 270 year: 2020 ident: CR62 article-title: A comprehensive review of engineered biochar: production, characteristics, and environmental applications publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122462 – ident: CR47 – volume: 14 start-page: 3000 year: 2021 ident: CR123 article-title: Towards engineered hydrochars: application of artificial neural networks in the hydrothermal carbonization of sewage sludge publication-title: Energies doi: 10.3390/en14113000 – volume: 191 year: 2020 ident: CR97 article-title: Predictive modeling of biomass gasification with machine learning-based regression methods publication-title: Energy doi: 10.1016/j.energy.2019.116541 – volume: 193 start-page: 142 year: 2017 ident: CR82 article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents publication-title: Fuel doi: 10.1016/j.fuel.2016.12.046 – ident: CR156 – ident: CR89 – volume: 152 start-page: 613 year: 2020 ident: CR81 article-title: Cfd-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network publication-title: Renew. Energy doi: 10.1016/j.renene.2020.01.057 – volume: 251 year: 2022 ident: CR33 article-title: Gaseous emissions from advanced clc and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility: a comprehensive model publication-title: Energy doi: 10.1016/j.energy.2022.123896 – volume: 44 start-page: 17260 year: 2019 ident: CR98 article-title: Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2019.02.108 – volume: 85 year: 2021 ident: CR30 article-title: Machine learning technology in biodiesel research: a review publication-title: Prog. Energy Combust. doi: 10.1016/j.pecs.2021.100904 – ident: CR6 – volume: 119 year: 2020 ident: CR18 article-title: A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109546 – ident: CR63 – volume: 249 year: 2022 ident: CR74 article-title: Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass publication-title: Energy doi: 10.1016/j.energy.2022.123676 – volume: 288 year: 2019 ident: CR72 article-title: Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121527 – volume: 13 start-page: 9855 year: 2023 ident: CR125 article-title: Comparison of machine learning methodologies for predicting kinetics of hydrothermal carbonization of selective biomass publication-title: Biomass Convers. Bioresour. doi: 10.1007/s13399-021-01858-3 – volume: 90 start-page: 51 year: 2017 ident: CR144 article-title: Application of artificial neural network for kinetic parameters prediction of biomass oxidation from biomass properties publication-title: J. Energy Inst. doi: 10.1016/j.joei.2015.10.007 – ident: CR94 – volume: 179 start-page: 550 year: 2021 ident: CR154 article-title: Estimation of higher heating values (hhvs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation publication-title: Renew. Energy doi: 10.1016/j.renene.2021.07.003 – volume: 13 start-page: 4428 year: 2013 ident: CR28 article-title: Modelling of diesel engine performance using advanced machine learning methods under scarce and exponential data set publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.06.006 – volume: 318 year: 2022 ident: CR124 article-title: Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: machine learning algorithm based on proposed pso-nn model publication-title: Fuel doi: 10.1016/j.fuel.2022.123644 – ident: CR52 – volume: 342 year: 2021 ident: CR115 article-title: Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126011 – ident: CR13 – ident: CR151 – year: 2009 ident: CR49 publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction doi: 10.1007/978-0-387-84858-7 – volume: 35 start-page: 698 year: 2017 ident: CR65 article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network publication-title: Energy Explor. Exploit.Explor. Exploit. doi: 10.1177/0144598717716282 – ident: CR162 – volume: 4 start-page: 1 year: 2019 ident: CR51 article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-019-0234-z – ident: CR159 – volume: 57 start-page: 1944 year: 2022 ident: CR143 article-title: Prediction of activation energy of biomass wastes by using multilayer perceptron neural network with weka publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.03.051 – ident: CR55 – volume: 216 start-page: 280 year: 2016 ident: CR145 article-title: Co-combustion of peanut hull and coal blends: artificial neural networks modeling, particle swarm optimization and monte carlo simulation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.091 – ident: CR41 – ident: CR24 – volume: 200 start-page: 155 year: 2017 ident: CR139 article-title: Image-based deep neural network prediction of the heat output of a step-grate biomass boiler publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.080 – volume: 202 start-page: 254 year: 2017 ident: CR148 article-title: Moisture content prediction in poultry litter using artificial intelligence techniques and Monte Carlo simulation to determine the economic yield from energy use publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.07.034 – volume: 343 year: 2022 ident: CR35 article-title: The role of machine learning to boost the bioenergy and biofuels conversion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126099 – volume: 138 start-page: 121 year: 2019 ident: CR17 article-title: Economic analysis of a 600 mwe ultra supercritical circulating fluidized bed power plant based on coal tax and biomass co-combustion plans publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.074 – ident: CR102 – volume: 193 start-page: 23 year: 2022 ident: CR22 article-title: Techno-economic assessment of a solar-assisted biomass gasification process publication-title: Renew. Energy doi: 10.1016/j.renene.2022.05.033 – volume: 60 start-page: 5995 year: 2020 ident: CR43 article-title: Multicon: a semi-supervised approach for predicting drug function from chemical structure analysis publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00801 – volume: 442 year: 2022 ident: CR131 article-title: Accuracy of predictions made by machine learned models for biocrude yields obtained from hydrothermal liquefaction of organic wastes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136013 – volume: 151 start-page: 463 year: 2020 ident: CR147 article-title: Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models publication-title: Renew. Energy doi: 10.1016/j.renene.2019.11.038 – ident: CR12 – volume: 29 start-page: 2437 year: 2015 ident: CR103 article-title: Prediction and validation of major gas and tar species from a reactor network model of air-blown fluidized bed biomass gasification publication-title: Energy Fuel doi: 10.1021/ef5027955 – volume: 97 start-page: 67 year: 2013 ident: CR93 article-title: State of the art on reactor designs for solar gasification of carbonaceous feedstock publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.001 – volume: 402 year: 2020 ident: CR101 article-title: Tar prediction in bubbling fluidized bed gasification through artificial neural networks publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126229 – volume: 30 start-page: 4547 year: 2021 ident: CR44 article-title: Prediction of mechanical properties of coal from non-destructive properties: a comparative application of mars, ann, and ga publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09955-w – ident: CR61 – volume: 173 year: 2021 ident: CR109 article-title: Modeling and process optimization of hydrothermal gasification for hydrogen production: a comprehensive review publication-title: J. Supercrit. Fluid doi: 10.1016/j.supflu.2021.105199 – ident: CR58 – volume: 240 year: 2022 ident: CR88 article-title: Autonomous kinetic modeling of biomass pyrolysis using chemical reaction neural networks publication-title: Combust. Flame doi: 10.1016/j.combustflame.2022.111992 – volume: 264 year: 2022 ident: CR99 article-title: Process optimization of biomass gasification with a monte carlo approach and random forest algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115734 – volume: 320 year: 2022 ident: CR31 article-title: A comprehensive artificial neural network model for gasification process prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119289 – volume: 40 start-page: 2787 year: 2023 ident: CR32 article-title: Study of the influence of operational parameters on biomass conversion in a pyrolysis reactor via cfd publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-023-1528-6 – volume: 162 start-page: 337 year: 2022 ident: CR75 article-title: An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis publication-title: Process. Saf. Environ. doi: 10.1016/j.psep.2022.04.013 – ident: CR163 – volume: 13 start-page: 248 year: 2021 ident: CR45 article-title: Application of artificial intelligence to rock mechanics: an overview publication-title: J. Rock Mech. Geotech. doi: 10.1016/j.jrmge.2020.05.010 – volume: 38 start-page: 594 year: 2014 ident: CR10 article-title: A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.06.013 – volume: 9 start-page: 1324 year: 2021 ident: CR14 article-title: Optimization of hydrolysis-acidogenesis phase of swine manure for biogas production using two-stage anaerobic fermentation publication-title: Processes doi: 10.3390/pr9081324 – volume: 50 start-page: 583 year: 2015 ident: CR37 article-title: Biomass gasification models for downdraft gasifier: a state-of-the-art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.012 – volume: 134 start-page: 326 year: 2018 ident: CR8 article-title: A predictive model of biochar formation and characterization publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2018.06.022 – volume: 43 start-page: 9558 year: 2018 ident: CR96 article-title: Assessment of producer gas composition in air gasification of biomass using artificial neural network model publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2018.04.007 – volume: 259 year: 2022 ident: CR1 article-title: Analysis of operational characteristics of biomass oxygen fuel circulating fluidized bed combustor with indirect supercritical carbon dioxide cycle publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2022.115569 – volume: 306 year: 2021 ident: CR117 article-title: Optimization of hydrothermal gasification process through machine learning approach: experimental conditions, product yield and pollution publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127302 – ident: CR157 – volume: 120 start-page: 94 year: 2016 ident: CR67 article-title: Pyrolysis products from industrial waste biomass based on a neural network model publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2016.04.013 – volume: 316 year: 2021 ident: CR113 article-title: Interpretable machine learning for predicting and evaluating hydrogen production via supercritical water gasification of biomass publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128244 – volume: 162 year: 2022 ident: CR66 article-title: Biomass fast pyrolysis prediction model through data-based prediction models coupling with cpfd simulation publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2022.105448 – volume: 38 start-page: 68 year: 2012 ident: CR19 article-title: Review of fast pyrolysis of biomass and product upgrading publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.048 – volume: 46 start-page: 12739 year: 2021 ident: CR114 article-title: Gasification of food waste in supercritical water: an innovative synthesis gas composition prediction model based on artificial neural networks publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2021.01.122 – volume: 165 start-page: 76 year: 2018 ident: CR3 article-title: A new insight into sugarcane biorefineries with fossil fuel co-combustion: techno-economic analysis and life cycle assessment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.03.057 – volume: 19 start-page: 63 year: 2022 ident: CR25 article-title: Analysis of combustion characteristics using cpfd in 0.1 mw oxy-fuel cfb publication-title: Int. J. Nanotechnol. doi: 10.1504/IJNT.2022.122369 – volume: 104 start-page: 56 year: 2017 ident: CR91 article-title: Application of machine learning to pyrolysis reaction networks: reducing model solution time to enable process optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.04.012 – volume: 188 year: 2019 ident: CR86 article-title: A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches publication-title: Energy doi: 10.1016/j.energy.2019.116077 – ident: CR105 – volume: 130 start-page: 1216 year: 2019 ident: CR141 article-title: Prediction of combustion activation energy of naoh/koh catalyzed straw pyrolytic carbon based on machine learning publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.089 – volume: 9 start-page: 1 year: 2016 ident: CR161 article-title: Sources of biomass feedstock variability and the potential impact on biofuels production publication-title: Bioenerg. Res. doi: 10.1007/s12155-015-9694-y – volume: 74 start-page: 3 year: 2018 ident: CR50 article-title: Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.11.057 – volume: 267 start-page: 687 year: 2018 ident: CR59 article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.12.001 – volume: 353 year: 2022 ident: CR76 article-title: Prediction of product yields using fusion model from co-pyrolysis of biomass and coal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127132 – volume: 157 year: 2021 ident: CR70 article-title: Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2021.105180 – ident: CR2 – ident: CR152 – volume: 8 start-page: 36 year: 2022 ident: CR158 article-title: Data-driven correlations of higher heating value for biomass, waste and their combination based on their elemental compositions publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.02.113 – volume: 34 start-page: 3092 year: 2017 ident: CR27 article-title: A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0214-y – volume: 78 start-page: 4579 year: 2019 ident: CR160 article-title: An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (cptu) publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1400-9 – volume: 13 start-page: 4572 year: 2020 ident: CR121 article-title: Hydrochars as emerging biofuels: recent advances and application of artificial neural networks for the prediction of heating values publication-title: Energies doi: 10.3390/en13174572 – volume: 68 start-page: 186 year: 2017 ident: CR155 article-title: Comparison of ann (mlp), anfis, svm, and rf models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.03.044 – ident: CR104 – volume: 10 start-page: 1925 year: 2022 ident: CR138 article-title: Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches publication-title: Energy Sci. Eng. doi: 10.1002/ese3.1155 – volume: 33 year: 2022 ident: CR142 article-title: Prediction of activation energy for combustion and pyrolysis by means of machine learning publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2022.101346 – ident: CR146 – volume: 13 start-page: 5358 year: 2020 ident: CR29 article-title: Cfd-dem simulation of biomass pyrolysis in fluidized-bed reactor with a multistep kinetic scheme publication-title: Energies doi: 10.3390/en13205358 – ident: CR127 – ident: CR149 – volume: 159 start-page: 105286 year: 2021 ident: CR71 article-title: Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network publication-title: J Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2021.105286 – volume: 45 start-page: 9580 year: 2021 ident: CR111 article-title: Modeling the prediction of hydrogen production by co-gasification of plastic and rubber wastes using machine learning algorithms publication-title: Int. J. Energy Res. doi: 10.1002/er.6483 – ident: CR48 – ident: CR73 – volume: 29 start-page: 515 year: 2003 ident: CR136 article-title: Artificial intelligence for the modeling and control of combustion processes: a review publication-title: Prog. Energy Combust. doi: 10.1016/S0360-1285(03)00058-3 – ident: CR90 – volume: 13 start-page: 1213 year: 2023 ident: CR133 article-title: Optimization of hydrothermal liquefaction process through machine learning approach: process conditions and oil yield publication-title: Biomass Convers. Bioresour. doi: 10.1007/s13399-020-01233-8 – volume: 343 year: 2022 ident: CR7 article-title: Recent advances of thermochemical conversion processes for biorefinery publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126109 – volume: 340 year: 2021 ident: CR130 article-title: Production of biofuels from biomass: predicting the energy employing artificial intelligence modelling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125642 – volume: 15 start-page: 469 year: 2003 ident: CR60 article-title: Efficient greedy learning of gaussian mixture models publication-title: Neural Comput. doi: 10.1162/089976603762553004 – volume: 447 year: 2022 ident: CR9 article-title: Recent progress in the catalytic thermochemical conversion process of biomass for biofuels publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137501 – ident: CR118 – volume: 41 start-page: 4570 year: 2016 ident: CR64 article-title: The pyrolysis process verification of hydrogen rich gas (h-rg) production by artificial neural network (ann) publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2016.01.094 – volume: 260 year: 2022 ident: CR83 article-title: A machine learning model to predict the pyrolytic kinetics of different types of feedstocks publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115613 – ident: CR34 – volume: 43 start-page: 1716 year: 2015 ident: CR53 article-title: Consistency of random forests publication-title: Ann. Stat. doi: 10.1214/15-AOS1321 – volume: 344 year: 2022 ident: CR132 article-title: Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126278 – volume: 445 year: 2022 ident: CR134 article-title: Machine learning predicts and optimizes hydrothermal liquefaction of biomass publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136579 – volume: 147 start-page: 9793 year: 2022 ident: CR137 article-title: Prediction of combustion reactivity for lignocellulosic fuels by means of machine learning publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-022-11208-8 – volume: 213 year: 2020 ident: CR140 article-title: Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via tg-ftir publication-title: Energy doi: 10.1016/j.energy.2020.118790 – volume: 471 year: 2023 ident: CR39 article-title: Recent advances and future prospects of thermochemical biofuel conversion processes with machine learning publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144503 – volume: 278 year: 2021 ident: CR128 article-title: Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: application of machine learning on waste-to-resource publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123928 – ident: CR20 – volume: 85 start-page: 242 year: 2019 ident: CR122 article-title: Ann-kriging hybrid model for predicting carbon and inorganic phosphorus recovery in hydrothermal carbonization publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.12.044 – volume: 287 year: 2022 ident: CR119 article-title: Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal co-gasification techniques: a multi-criteria modeling approach publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132052 – volume: 119 year: 2020 ident: 181_CR18 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109546 – volume: 288 year: 2019 ident: 181_CR72 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121527 – ident: 181_CR20 doi: 10.1016/j.chemosphere.2021.131824 – volume: 353 year: 2022 ident: 181_CR76 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127132 – volume: 344 year: 2022 ident: 181_CR132 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126278 – volume: 41 start-page: 1835 year: 2017 ident: 181_CR108 publication-title: Int. J. Energy Res. doi: 10.1002/er.3739 – volume: 152 start-page: 613 year: 2020 ident: 181_CR81 publication-title: Renew. Energy doi: 10.1016/j.renene.2020.01.057 – volume: 9 start-page: 1324 year: 2021 ident: 181_CR14 publication-title: Processes doi: 10.3390/pr9081324 – volume: 471 year: 2023 ident: 181_CR39 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144503 – ident: 181_CR105 doi: 10.1007/s13399-019-00575-2 – volume: 9 start-page: 1 year: 2016 ident: 181_CR161 publication-title: Bioenerg. Res. doi: 10.1007/s12155-015-9694-y – ident: 181_CR6 doi: 10.1177/0958305X20971628 – ident: 181_CR156 doi: 10.1016/j.energy.2021.121921 – volume: 442 year: 2022 ident: 181_CR131 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136013 – volume: 445 year: 2022 ident: 181_CR134 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136579 – volume: 159 start-page: 105286 year: 2021 ident: 181_CR71 publication-title: J Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2021.105286 – volume: 130 start-page: 1216 year: 2019 ident: 181_CR141 publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.089 – ident: 181_CR13 doi: 10.2533/chimia.2015.572 – volume: 34 start-page: 217 year: 2021 ident: 181_CR42 publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.0c00316 – volume: 60 start-page: 5995 year: 2020 ident: 181_CR43 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00801 – volume: 343 year: 2022 ident: 181_CR35 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126099 – volume: 342 year: 2021 ident: 181_CR115 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126011 – volume: 193 start-page: 23 year: 2022 ident: 181_CR22 publication-title: Renew. Energy doi: 10.1016/j.renene.2022.05.033 – ident: 181_CR151 doi: 10.1016/j.apenergy.2020.116414 – volume: 44 start-page: 17260 year: 2019 ident: 181_CR98 publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2019.02.108 – volume: 43 start-page: 1716 year: 2015 ident: 181_CR53 publication-title: Ann. Stat. doi: 10.1214/15-AOS1321 – volume: 202 start-page: 254 year: 2017 ident: 181_CR148 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.07.034 – ident: 181_CR159 doi: 10.1080/15567036.2019.1630521 – volume: 188 year: 2019 ident: 181_CR86 publication-title: Energy doi: 10.1016/j.energy.2019.116077 – volume: 318 year: 2022 ident: 181_CR124 publication-title: Fuel doi: 10.1016/j.fuel.2022.123644 – volume: 306 year: 2021 ident: 181_CR117 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127302 – volume: 260 year: 2022 ident: 181_CR83 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115613 – volume: 165 start-page: 76 year: 2018 ident: 181_CR3 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.03.057 – ident: 181_CR90 doi: 10.1155/2022/6491745 – ident: 181_CR61 doi: 10.1007/s00521-020-05006-2 – volume: 10 start-page: 1925 year: 2022 ident: 181_CR138 publication-title: Energy Sci. Eng. doi: 10.1002/ese3.1155 – volume: 13 start-page: 5358 year: 2020 ident: 181_CR29 publication-title: Energies doi: 10.3390/en13205358 – volume: 249 year: 2022 ident: 181_CR74 publication-title: Energy doi: 10.1016/j.energy.2022.123676 – volume: 74 start-page: 3 year: 2018 ident: 181_CR50 publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.11.057 – volume: 216 start-page: 280 year: 2016 ident: 181_CR145 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.091 – volume: 267 start-page: 687 year: 2018 ident: 181_CR59 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.12.001 – volume: 29 start-page: 2437 year: 2015 ident: 181_CR103 publication-title: Energy Fuel doi: 10.1021/ef5027955 – volume: 68 start-page: 186 year: 2017 ident: 181_CR155 publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.03.044 – ident: 181_CR104 – volume: 817 year: 2022 ident: 181_CR120 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2022.152921 – ident: 181_CR24 doi: 10.1007/s13399-022-02609-8 – volume: 41 start-page: 4570 year: 2016 ident: 181_CR64 publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2016.01.094 – volume: 104 start-page: 56 year: 2017 ident: 181_CR91 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.04.012 – volume: 240 year: 2022 ident: 181_CR88 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2022.111992 – ident: 181_CR94 doi: 10.1016/j.enconman.2014.03.036 – volume: 39 start-page: 806 year: 2014 ident: 181_CR36 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.07.129 – ident: 181_CR152 doi: 10.1016/j.apenergy.2019.113668 – ident: 181_CR55 – volume: 4 start-page: 123 year: 2023 ident: 181_CR100 publication-title: Green Chem. Eng. doi: 10.1016/j.gce.2022.05.006 – volume: 33 year: 2022 ident: 181_CR142 publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2022.101346 – volume: 62 start-page: 33 year: 2017 ident: 181_CR23 publication-title: Prog. Energy Combust. doi: 10.1016/j.pecs.2017.05.004 – volume: 50 year: 2020 ident: 181_CR68 publication-title: Algal Res. doi: 10.1016/j.algal.2020.102006 – volume: 15 start-page: 469 year: 2003 ident: 181_CR60 publication-title: Neural Comput. doi: 10.1162/089976603762553004 – volume: 213 year: 2020 ident: 181_CR140 publication-title: Energy doi: 10.1016/j.energy.2020.118790 – volume: 98 start-page: 264 year: 2017 ident: 181_CR95 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.01.029 – volume: 304 year: 2021 ident: 181_CR116 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117674 – ident: 181_CR153 doi: 10.1016/j.apenergy.2020.115339 – volume: 8 start-page: 36 year: 2022 ident: 181_CR158 publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.02.113 – volume: 289 year: 2021 ident: 181_CR110 publication-title: Fuel doi: 10.1016/j.fuel.2020.119903 – ident: 181_CR63 doi: 10.1016/j.ces.2021.117131 – volume: 212 start-page: 1210 year: 2019 ident: 181_CR129 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.093 – ident: 181_CR52 – ident: 181_CR58 doi: 10.1038/nbt1206-1565 – volume: 13 start-page: 1213 year: 2023 ident: 181_CR133 publication-title: Biomass Convers. Bioresour. doi: 10.1007/s13399-020-01233-8 – volume: 11 start-page: 2260 year: 2018 ident: 181_CR21 publication-title: Energies doi: 10.3390/en11092260 – volume: 173 year: 2021 ident: 181_CR109 publication-title: J. Supercrit. Fluid doi: 10.1016/j.supflu.2021.105199 – volume: 35 start-page: 698 year: 2017 ident: 181_CR65 publication-title: Energy Explor. Exploit.Explor. Exploit. doi: 10.1177/0144598717716282 – ident: 181_CR102 – ident: 181_CR73 doi: 10.1016/j.fuel.2021.122966 – volume: 134 start-page: 326 year: 2018 ident: 181_CR8 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2018.06.022 – volume: 447 year: 2022 ident: 181_CR9 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137501 – volume: 83 start-page: 110 year: 2008 ident: 181_CR16 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2008.06.006 – volume: 8 start-page: 1481 year: 2021 ident: 181_CR40 publication-title: Biofuel Res. J. doi: 10.18331/BRJ2021.8.4.3 – ident: 181_CR2 doi: 10.1016/j.biteb.2022.100976 – volume: 57 start-page: 1944 year: 2022 ident: 181_CR143 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.03.051 – volume: 120 start-page: 94 year: 2016 ident: 181_CR67 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2016.04.013 – volume: 97 start-page: 67 year: 2013 ident: 181_CR93 publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.001 – volume: 188 start-page: 233 year: 2016 ident: 181_CR150 publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2015.1102905 – ident: 181_CR77 doi: 10.1016/j.biortech.2021.125581 – volume: 320 year: 2022 ident: 181_CR31 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119289 – volume: 270 year: 2020 ident: 181_CR62 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122462 – volume: 31 start-page: 1702 year: 2017 ident: 181_CR106 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.6b03161 – volume: 151 start-page: 463 year: 2020 ident: 181_CR147 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.11.038 – volume: 4 start-page: 1 year: 2019 ident: 181_CR51 publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-019-0234-z – ident: 181_CR57 – ident: 181_CR47 doi: 10.1016/j.fuel.2022.123944 – volume: 138 start-page: 121 year: 2019 ident: 181_CR17 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.074 – volume: 38 start-page: 68 year: 2012 ident: 181_CR19 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.048 – volume: 204 start-page: 774 year: 2023 ident: 181_CR79 publication-title: Renew. Energy doi: 10.1016/j.renene.2023.01.017 – volume: 43 start-page: 5992 year: 2019 ident: 181_CR112 publication-title: Int. J. Energy Res. doi: 10.1002/er.4682 – volume: 123 start-page: 104 year: 2019 ident: 181_CR11 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2019.02.008 – volume: 29 start-page: 515 year: 2003 ident: 181_CR136 publication-title: Prog. Energy Combust. doi: 10.1016/S0360-1285(03)00058-3 – volume: 78 start-page: 4579 year: 2019 ident: 181_CR160 publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1400-9 – volume: 245 year: 2022 ident: 181_CR126 publication-title: Energy doi: 10.1016/j.energy.2022.123295 – volume: 14 start-page: 3000 year: 2021 ident: 181_CR123 publication-title: Energies doi: 10.3390/en14113000 – volume: 46 start-page: 12739 year: 2021 ident: 181_CR114 publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2021.01.122 – volume: 110 start-page: 188 year: 2019 ident: 181_CR38 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.048 – ident: 181_CR12 doi: 10.4172/2157-7471.1000398 – volume: 185 start-page: 1019 year: 2017 ident: 181_CR87 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.105 – volume: 162 year: 2022 ident: 181_CR66 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2022.105448 – ident: 181_CR80 doi: 10.1016/j.enconman.2019.112252 – volume: 316 year: 2021 ident: 181_CR113 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128244 – ident: 181_CR163 – volume: 10 year: 2022 ident: 181_CR78 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108025 – volume: 287 year: 2022 ident: 181_CR119 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132052 – volume: 251 year: 2022 ident: 181_CR33 publication-title: Energy doi: 10.1016/j.energy.2022.123896 – ident: 181_CR34 doi: 10.3390/j4030022 – volume: 147 year: 2021 ident: 181_CR4 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111254 – volume: 358 year: 2022 ident: 181_CR135 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127348 – volume: 85 start-page: 242 year: 2019 ident: 181_CR122 publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.12.044 – ident: 181_CR54 doi: 10.1016/j.jhazmat.2021.125426 – volume: 45 start-page: 9580 year: 2021 ident: 181_CR111 publication-title: Int. J. Energy Res. doi: 10.1002/er.6483 – volume: 13 start-page: 248 year: 2021 ident: 181_CR45 publication-title: J. Rock Mech. Geotech. doi: 10.1016/j.jrmge.2020.05.010 – volume: 147 start-page: 9793 year: 2022 ident: 181_CR137 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-022-11208-8 – volume: 335 start-page: 125292 year: 2021 ident: 181_CR69 publication-title: Biores. Technol. doi: 10.1016/j.biortech.2021.125292 – volume: 13 start-page: 9855 year: 2023 ident: 181_CR125 publication-title: Biomass Convers. Bioresour. doi: 10.1007/s13399-021-01858-3 – ident: 181_CR41 doi: 10.1016/j.ces.2021.117224 – volume: 162 start-page: 337 year: 2022 ident: 181_CR75 publication-title: Process. Saf. Environ. doi: 10.1016/j.psep.2022.04.013 – ident: 181_CR162 – ident: 181_CR5 doi: 10.1002/ese3.117 – ident: 181_CR89 doi: 10.1016/j.fuel.2021.122248 – volume: 32 start-page: 358 year: 2015 ident: 181_CR56 publication-title: New Biotechnol. doi: 10.1016/j.nbt.2014.08.003 – ident: 181_CR149 doi: 10.1109/I2MTC.2015.7151261 – volume: 40 start-page: 2787 year: 2023 ident: 181_CR32 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-023-1528-6 – volume: 19 start-page: 63 year: 2022 ident: 181_CR25 publication-title: Int. J. Nanotechnol. doi: 10.1504/IJNT.2022.122369 – ident: 181_CR48 doi: 10.1145/2001576.2001710 – volume: 191 year: 2020 ident: 181_CR97 publication-title: Energy doi: 10.1016/j.energy.2019.116541 – volume: 43 start-page: 9558 year: 2018 ident: 181_CR96 publication-title: Int. J. Hydrog. EnergyHydrog. Energy doi: 10.1016/j.ijhydene.2018.04.007 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2009 ident: 181_CR49 doi: 10.1007/978-0-387-84858-7 – ident: 181_CR118 doi: 10.1016/j.jclepro.2021.128606 – volume: 278 year: 2021 ident: 181_CR128 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123928 – ident: 181_CR127 doi: 10.1016/j.energy.2021.121010 – volume: 29 start-page: 31 year: 1996 ident: 181_CR46 publication-title: Computer doi: 10.1109/2.485891 – volume: 50 start-page: 583 year: 2015 ident: 181_CR37 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.012 – volume: 27 start-page: 361 year: 2014 ident: 181_CR107 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-131004 – volume: 30 start-page: 4547 year: 2021 ident: 181_CR44 publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09955-w – ident: 181_CR92 doi: 10.1109/HNICEM.2018.8666376 – volume: 85 year: 2021 ident: 181_CR30 publication-title: Prog. Energy Combust. doi: 10.1016/j.pecs.2021.100904 – volume: 38 start-page: 594 year: 2014 ident: 181_CR10 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.06.013 – volume: 127 start-page: 391 year: 2013 ident: 181_CR15 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.126 – volume: 165 start-page: 895 year: 2018 ident: 181_CR84 publication-title: Energy doi: 10.1016/j.energy.2018.09.131 – volume: 37 start-page: 1878 year: 2020 ident: 181_CR26 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0611-5 – volume: 340 year: 2021 ident: 181_CR130 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125642 – ident: 181_CR157 doi: 10.1007/s40808-021-01276-4 – volume: 402 year: 2020 ident: 181_CR101 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126229 – volume: 13 start-page: 4428 year: 2013 ident: 181_CR28 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.06.006 – volume: 193 start-page: 142 year: 2017 ident: 181_CR82 publication-title: Fuel doi: 10.1016/j.fuel.2016.12.046 – ident: 181_CR85 doi: 10.1016/j.fuel.2018.02.045 – volume: 264 year: 2022 ident: 181_CR99 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115734 – volume: 259 year: 2022 ident: 181_CR1 publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2022.115569 – volume: 200 start-page: 155 year: 2017 ident: 181_CR139 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.080 – volume: 90 start-page: 51 year: 2017 ident: 181_CR144 publication-title: J. Energy Inst. doi: 10.1016/j.joei.2015.10.007 – volume: 157 year: 2021 ident: 181_CR70 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2021.105180 – volume: 179 start-page: 550 year: 2021 ident: 181_CR154 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.07.003 – volume: 343 year: 2022 ident: 181_CR7 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126109 – volume: 34 start-page: 3092 year: 2017 ident: 181_CR27 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0214-y – volume: 13 start-page: 4572 year: 2020 ident: 181_CR121 publication-title: Energies doi: 10.3390/en13174572 – ident: 181_CR146 doi: 10.1016/j.fuel.2021.122082 |
SSID | ssj0055620 |
Score | 2.4107842 |
SecondaryResourceType | review_article |
Snippet | Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy society. However, determining the... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1923 |
SubjectTerms | Alternative energy sources Biofuels Biomass Biomass energy production Biotechnology Catalysis Chemistry Chemistry and Materials Science Industrial Chemistry/Chemical Engineering Machine learning Materials Science Renewable energy Review Article Robustness (mathematics) 화학공학 |
Title | Progresses and Challenges of Machine Learning Approaches in Thermochemical Processes for Bioenergy: A Review |
URI | https://link.springer.com/article/10.1007/s11814-024-00181-7 https://www.proquest.com/docview/3072276371 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003102840 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2024, 41(7), 292, pp.1923-1953 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6xy6HtgVeLWKArS-XWGtVJnAe37IrlUYF66Er0ZMUvtFrIVrvLpb--48RmC2qROOVgJ3Hs8cw38cw3AEfSyoqlhcSNZBPqLAaV6FrTotCWK_WVW-Oyka-u0_NxcnnDb3xS2CJEu4cjyUZTr5Ld0BglFG0KdZXkGM06sM5ZXuRdWC_Pfn47DRqYo01v_604jj2EPD5Z5t9PeWKQOvXcPsGaz45HG6sz2oRxGG8bbDI9fljKY_X7GZXjaz9oCzY8DCVlKzfbsGbqHXgzDNXfduDdX0SF7-HuuwvjcjTjC1LVmgxDCZYFmVly1QRkGuK5Wm9J6YnKsXlSE5TE-b0rzNUwExCfmoBtiJfJYDIzTfrhCSlJe1DxAcaj0x_Dc-rrNFAV82RJUx4bIzViL12lqZKIAXKdZUZWeWaZ1RFXaAPjVBeSJzZOEWOoPDOJ5FVUcKviXejWs9rsAYkTo1Hl2TRGt5NJ9M8LbTTT3Fp0BRjrAQuLJZQnMXe1NO7Ein7ZzarAWRXNrIqsB58f7_nVUni82PsTyoCYqolwzNvuejsT07lA_-JCuHKiGTp5PTgMMiL8pl8IVJdRhPo6w2F-CUu-av7_O_df1_0A3kaN1Lig4UPoLucP5iNCo6Xs404YDQbXfb8j-tAZR-UfAjEEFg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3RcgAOiFUUCliCG1gii5OGW6ioytKKQytxs-KtqoAUteX_GScOBQRInHJwNmXseW_imTcAp8KIzIsSgQvJhNQiBhUYWtMkUYZJecGMttXIvX7UHYa3j-zRFYXNqmz3akuy8NSLYjcEo5AiplDbSc6jcQ2WkQy0bN-CoZ9W_pchopd_VqzCHhIeVyrz8z2-wFEtn5ovTPPb5miBOZ0NWHdkkaSldTdhSedbsNKuerRtwdonOcFteH6wyVZWDHxGslyRdtUoZUYmhvSKtElNnKLqiKROThyHxznB-TJ9se2zCv0A4goIcAxZLbkaT3RRJHhJUlJuJ-zAsHM9aHep66ZAZcDCOY1YoLVQyJBUFkVSIFK3VBxrkbVi4xnlM4lIFUQqESw0QYRMQLZiHQqW-QkzMtiFej7J9R6QINQKHZOJAgwOPYFRdKK08hQzBgm75zXAqz4ql05q3Ha8eOYLkWRrCI6G4IUheNyAs49rXkuhjT_PPkFb8Sc55lYf2x5HE_405RgF3HDb9DPGUKwBzcqW3C3NGUen5vvoVWN8zfPKvovh35-5_7_Tj2GlO-jd8_ub_t0BrPrFpLNpvk2oz6dv-hDJzFwcFXP3HSQW55E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkVgOCAqIslqCG1jgJE4abqVQsbXiQCVuVrxVFZBWbfl_xlkoRYDEKQdnU8ae9yaeeQNwLK1MWBhLXEg2oA4xqMTQmsaxtlypc26Nq0Zud8KbbnD3zJ-_VPFn2e7llmRe0-BUmtLJ2VDbs2nhGwJTQBFfqOsqx2g0Dwvojpmb6V2vUfpijuie_2VxantIfoqymZ_vMQNN8-nIzrDObxulGf601mC1II6kkVt6HeZMWoWlZtmvrQorX6QFN-D10SVeOWHwMUlSTZpl05QxGVjSzlIoDSnUVXukUUiL43A_JTh3Rm-ulVamJUCKYgIcQ4ZLLvsDkxUMXpAGybcWNqHbun5q3tCiswJVPg8mNOS-MVIjW9JJGCqJqF3XUWRkUo8ss9rjClHLD3UseWD9EFmBqkcmkDzxYm6VvwWVdJCabSB-YDQ6KRv6GCgyiRF1rI1mmluL5J2xGrDyowpVyI677hevYiqY7Awh0BAiM4SIanDyec0wF9348-wjtJV4UX3htLLdsTcQLyOBEcGtcA1AIwzLarBX2lIUy3Qs0MF5HnrYCF_ztLTvdPj3Z-787_RDWHy8aomH2879Lix72ZxzGb97UJmM3s0-8pqJPMim7getc-vN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progresses+and+Challenges+of+Machine+Learning+Approaches+in+Thermochemical+Processes+for+Bioenergy%3A+A+Review&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Nafi+u+Olanrewaju+Ogunsola&rft.au=%EC%98%A4%EC%8A%B9%EC%84%9D&rft.au=%EC%A0%84%ED%95%84%EB%A6%BD&rft.au=Jester+Lih+Jie+Ling&rft.date=2024-07-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=1923&rft.epage=1953&rft_id=info:doi/10.1007%2Fs11814-024-00181-7&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10557548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |