Stochastic stability of quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises

A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with α resonant rel...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of non-linear mechanics Vol. 67; pp. 52 - 62
Main Authors Liu, Weiyan, Zhu, Weiqiu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with α resonant relations, the averaged Ito^ stochastic differential equations (SDEs) for quasi-integrable and resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii׳s procedure to the averaged Ito^ SDEs and using the property of the stochastic integro-differential equations (SIDEs). Finally, the stochastic stability of the original system is determined approximately by using the largest Lyapunov exponent. An example of two non-linear damping oscillators under parametric excitations of combined Gaussian and Poisson white noises is worked out to illustrate the application of the proposed procedure. The validity of the proposed procedure is verified by the good agreement between the analytical results and those from Monte Carlo simulation. •The case of resonance with α resonant relations is considered.•The excitations are the combined Gaussian and Poisson white noises excitations.•Stochastic averaging method is used to derive the averaged equations.•The expression for the largest Lyapunov exponent of the system is formulated.•Theoretical results agree well with those from Monte Carlo simulation.
AbstractList A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with α resonant relations, the averaged Ito^ stochastic differential equations (SDEs) for quasi-integrable and resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii׳s procedure to the averaged Ito^ SDEs and using the property of the stochastic integro-differential equations (SIDEs). Finally, the stochastic stability of the original system is determined approximately by using the largest Lyapunov exponent. An example of two non-linear damping oscillators under parametric excitations of combined Gaussian and Poisson white noises is worked out to illustrate the application of the proposed procedure. The validity of the proposed procedure is verified by the good agreement between the analytical results and those from Monte Carlo simulation. •The case of resonance with α resonant relations is considered.•The excitations are the combined Gaussian and Poisson white noises excitations.•Stochastic averaging method is used to derive the averaged equations.•The expression for the largest Lyapunov exponent of the system is formulated.•Theoretical results agree well with those from Monte Carlo simulation.
A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with alpha resonant relations, the averaged It stochastic differential equations (SDEs) for quasi-integrable and resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii's procedure to the averaged Ito SDEs and using the property of the stochastic integro-differential equations (SIDEs). Finally, the stochastic stability of the original system is determined approximately by using the largest Lyapunov exponent. An example of two non-linear damping oscillators under parametric excitations of combined Gaussian and Poisson white noises is worked out to illustrate the application of the proposed procedure. The validity of the proposed procedure is verified by the good agreement between the analytical results and those from Monte Carlo simulation.
Author Zhu, Weiqiu
Liu, Weiyan
Author_xml – sequence: 1
  givenname: Weiyan
  surname: Liu
  fullname: Liu, Weiyan
  organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi׳an 710072, China
– sequence: 2
  givenname: Weiqiu
  surname: Zhu
  fullname: Zhu, Weiqiu
  email: wqzhu@yahoo.com
  organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi׳an 710072, China
BookMark eNqNkcFu1DAQhiNUJLaFdzA3Lgl24nWcE0IraJEqFQk4WxNnQmeV2FuPF9j34IFJtEVCnHoazWj-T5r5LouLEAMWxWslKyWVebuvaL-MJgoz-qqWSlfSVlI2z4qNsq0tt6axF8VGylqWrTb1i-KSeS-XrJbtpvj9JUd_D5zJC87Q00T5JOIoHo7AVFLI-D1BP6GAMIiEHAOELG5gpinHQBAEnzjjzOIYBkziAAlmzGnh4S9PGTLFwCvRx7mngIO4hiPzmlyRnyPxAhU_7ymjCEuH_LJ4PsLE-OqxXhXfPn74urspb--uP-3e35a-2epcmsZjN0rY9l3vFUhtlAdjQGloOu9Ry2bstKq19NqiblvoOgttL3GU9dZ0zVXx5sw9pPhwRM5uJvY4TRAwHtkpYzprjbF6WX13XvUpMicc3d_bcgKanJJu9eH27h8fbvXhpHWLj4XQ_Uc4JJohnZ6U3Z2zuHzjB2Fy7AmDx4ES-uyGSE-g_AHGobRB
CitedBy_id crossref_primary_10_1016_j_ijnonlinmec_2022_104196
crossref_primary_10_1080_23311835_2018_1431092
crossref_primary_10_1140_epjs_s11734_024_01340_x
crossref_primary_10_1007_s11071_015_2113_2
crossref_primary_10_1016_j_ijnonlinmec_2020_103574
crossref_primary_10_1007_s11071_018_4277_z
crossref_primary_10_1051_matecconf_20179504008
crossref_primary_10_12677_AAM_2020_94065
Cites_doi 10.1016/0021-8928(82)90131-9
10.1016/S0020-7462(01)00018-X
10.1115/1.4025141
10.1007/s11071-013-0757-3
10.1016/S0020-7462(00)00006-8
10.1016/j.ijnonlinmec.2013.09.010
10.1002/eqe.4290190408
10.1016/j.probengmech.2008.11.001
10.1016/0266-8920(91)90022-V
10.1007/s11071-014-1413-2
10.1016/j.probengmech.2012.12.009
10.1016/j.ijnonlinmec.2012.12.003
10.1016/S0020-7462(02)00223-8
10.1016/j.physd.2011.06.001
10.1016/S0020-7462(96)00081-9
10.1115/1.2893775
10.1115/1.2900736
10.1016/S0020-7462(99)00047-5
10.1137/1112019
10.1006/jsvi.2000.2951
10.1115/1.2193137
10.1016/0266-8920(93)90015-N
10.1007/978-94-009-9121-7
10.1115/1.2948382
10.1115/1.2789148
10.1115/1.2789009
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.ijnonlinmec.2014.08.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1878-5638
EndPage 62
ExternalDocumentID 10_1016_j_ijnonlinmec_2014_08_003
S0020746214001553
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMJ
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M25
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SME
SPC
SPCBC
SPD
SPG
SSQ
SST
SSZ
T5K
T9H
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c354t-63ce9f0a5b9bc1a0461ca66a14a39cce403f941240c48e477a998a7b0ef025693
IEDL.DBID .~1
ISSN 0020-7462
IngestDate Sun Aug 24 04:12:31 EDT 2025
Tue Jul 01 04:03:37 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Fri Feb 23 02:34:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stochastic stability
Quasi-integrable and resonant Hamiltonian system
Stochastic averaging
Combined Gaussian and Poisson white noise excitations
Lyapunov exponent
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-63ce9f0a5b9bc1a0461ca66a14a39cce403f941240c48e477a998a7b0ef025693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669886684
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1669886684
crossref_citationtrail_10_1016_j_ijnonlinmec_2014_08_003
crossref_primary_10_1016_j_ijnonlinmec_2014_08_003
elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2014_08_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of non-linear mechanics
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Zhu (bib15) 2000; 35
Jia, Zhu, Xu (bib19) 2013; 51
Liu, Zhu, Jia, Gu (bib23) 2014; 77
Zhu (bib31) 2006; 59
Asokanthan, Ariaratnam (bib14) 2000; 235
Itô (bib30) 1951; 4
Zhu (bib1) 2006; 4
Ariaratnam, Xie (bib16) 1992; 59
Di Paola, Falsone (bib29) 1993; 60
Di Paola, Vasta (bib26) 1997; 32
Kozin, Zhang (bib17) 1991; 6
Liu, Zhu, Xu (bib21) 2013; 32
Lin, Cai (bib8) 1995
Zhu, Huang, Yang (bib24) 1997; 64
Zhu (bib11) 2004; 39
Xu, Duan, Xu (bib33) 2011; 240
Oseledec (bib4) 1968; 19
R.Z. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
Zhu, Huang, Suzuki (bib13) 2002; 37
Khasminskii (bib9) 1996; 9
Di Paola, Falsone (bib25) 1993; 8
Gan, Zhu (bib35) 2011; 36
Liu, Zhu, Jia (bib22) 2014; 58
Khasminskii (bib32) 1968; 3
Dimentberg (bib10) 1982; 46
Jia, Zhu, Xu, Liu (bib20) 2014; 81
Wu, Zhu (bib34) 2008; 130
Khasminskii (bib7) 1967; 12
Zhu, Huang (bib12) 1999; 66
Kushner (bib3) 1967
Mironowicz, Śniady (bib18) 1990; 19
Hanson (bib28) 2007
Huang, Jin, Zhu (bib6) 2009; 24
Ling, Jin, Li, Huang (bib5) 2013; 72
Lin (bib27) 1967
Dimentberg (10.1016/j.ijnonlinmec.2014.08.003_bib10) 1982; 46
Huang (10.1016/j.ijnonlinmec.2014.08.003_bib6) 2009; 24
Ariaratnam (10.1016/j.ijnonlinmec.2014.08.003_bib16) 1992; 59
Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib24) 1997; 64
Kushner (10.1016/j.ijnonlinmec.2014.08.003_bib3) 1967
Jia (10.1016/j.ijnonlinmec.2014.08.003_bib19) 2013; 51
Ling (10.1016/j.ijnonlinmec.2014.08.003_bib5) 2013; 72
Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib12) 1999; 66
10.1016/j.ijnonlinmec.2014.08.003_bib2
Khasminskii (10.1016/j.ijnonlinmec.2014.08.003_bib7) 1967; 12
Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib13) 2002; 37
Liu (10.1016/j.ijnonlinmec.2014.08.003_bib23) 2014; 77
Oseledec (10.1016/j.ijnonlinmec.2014.08.003_bib4) 1968; 19
Lin (10.1016/j.ijnonlinmec.2014.08.003_bib8) 1995
Hanson (10.1016/j.ijnonlinmec.2014.08.003_bib28) 2007
Xu (10.1016/j.ijnonlinmec.2014.08.003_bib33) 2011; 240
Di Paola (10.1016/j.ijnonlinmec.2014.08.003_bib25) 1993; 8
Khasminskii (10.1016/j.ijnonlinmec.2014.08.003_bib9) 1996; 9
Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib11) 2004; 39
Kozin (10.1016/j.ijnonlinmec.2014.08.003_bib17) 1991; 6
Mironowicz (10.1016/j.ijnonlinmec.2014.08.003_bib18) 1990; 19
Asokanthan (10.1016/j.ijnonlinmec.2014.08.003_bib14) 2000; 235
Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib31) 2006; 59
Gan (10.1016/j.ijnonlinmec.2014.08.003_bib35) 2011; 36
Itô (10.1016/j.ijnonlinmec.2014.08.003_bib30) 1951; 4
Di Paola (10.1016/j.ijnonlinmec.2014.08.003_bib29) 1993; 60
Liu (10.1016/j.ijnonlinmec.2014.08.003_bib21) 2013; 32
Wu (10.1016/j.ijnonlinmec.2014.08.003_bib34) 2008; 130
Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib1) 2006; 4
Huang (10.1016/j.ijnonlinmec.2014.08.003_bib15) 2000; 35
Di Paola (10.1016/j.ijnonlinmec.2014.08.003_bib26) 1997; 32
Lin (10.1016/j.ijnonlinmec.2014.08.003_bib27) 1967
Jia (10.1016/j.ijnonlinmec.2014.08.003_bib20) 2014; 81
Khasminskii (10.1016/j.ijnonlinmec.2014.08.003_bib32) 1968; 3
Liu (10.1016/j.ijnonlinmec.2014.08.003_bib22) 2014; 58
References_xml – volume: 39
  start-page: 569
  year: 2004
  end-page: 579
  ident: bib11
  article-title: Lyapunov exponent and stochastic stability of quasi-non-integrable Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
– volume: 59
  start-page: 230
  year: 2006
  end-page: 248
  ident: bib31
  article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation
  publication-title: ASME J. Appl. Mech.
– volume: 81
  start-page: 041009
  year: 2014
  ident: bib20
  article-title: Stochastic averaging of quasi-integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations
  publication-title: ASME J. Appl. Mech.
– volume: 46
  start-page: 161
  year: 1982
  end-page: 166
  ident: bib10
  article-title: Methods of moments in problems of dynamics of systems with randomly varying parameters
  publication-title: J. Appl. Math. Mech.
– volume: 19
  start-page: 577
  year: 1990
  end-page: 582
  ident: bib18
  article-title: Vibration of linear structures due to jump-discontinuous, non-interrupted, stochastic processes
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 51
  start-page: 45
  year: 2013
  end-page: 53
  ident: bib19
  article-title: Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations
  publication-title: Int. J. Non-Linear Mech.
– volume: 58
  start-page: 191
  year: 2014
  end-page: 198
  ident: bib22
  article-title: Stochastic stability of quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises
  publication-title: Int. J. Non-Linear Mech.
– volume: 77
  start-page: 1721
  year: 2014
  end-page: 1735
  ident: bib23
  article-title: Stochastic stability of quasi partially integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises
  publication-title: Nonlinear Dyn.
– volume: 235
  start-page: 801
  year: 2000
  end-page: 812
  ident: bib14
  article-title: Almost-sure stability of a gyro pendulum subjected to white-noise random support motion
  publication-title: J. Sound Vib.
– volume: 8
  start-page: 197
  year: 1993
  end-page: 208
  ident: bib25
  article-title: and Stratonovich integrals for delta-correlated processes
  publication-title: Probab. Eng. Mech.
– volume: 37
  start-page: 419
  year: 2002
  end-page: 437
  ident: bib13
  article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
– volume: 6
  start-page: 92
  year: 1991
  end-page: 95
  ident: bib17
  article-title: On almost sure sample stability of nonlinear
  publication-title: Probab. Eng. Mech.
– volume: 32
  start-page: 39
  year: 2013
  end-page: 47
  ident: bib21
  article-title: Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises
  publication-title: Probab. Eng. Mech.
– volume: 4
  start-page: 230
  year: 2006
  end-page: 248
  ident: bib1
  article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation
  publication-title: ASME Appl. Mech. Rev.
– volume: 35
  start-page: 645
  year: 2000
  end-page: 655
  ident: bib15
  article-title: Lyapunov exponent and almost sure asymptotic stability of quasi-linear gyroscopic systems
  publication-title: Int. J. Non-Linear Mech.
– volume: 36
  start-page: 209
  year: 2011
  end-page: 220
  ident: bib35
  article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
– volume: 240
  start-page: 1365
  year: 2011
  end-page: 1401
  ident: bib33
  article-title: An averaging principle for stochastic dynamical systems with
  publication-title: Physica D
– volume: 24
  start-page: 374
  year: 2009
  end-page: 381
  ident: bib6
  article-title: Lyapunov functions for quasi-Hamiltonian systems
  publication-title: Probab. Eng. Mech.
– volume: 32
  start-page: 855
  year: 1997
  end-page: 862
  ident: bib26
  article-title: Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses
  publication-title: Int. J. Non-Linear Mech.
– volume: 130
  start-page: 051004
  year: 2008
  ident: bib34
  article-title: Stochastic averaging of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations
  publication-title: J. Vib. Acoust.
– reference: R.Z. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
– year: 2007
  ident: bib28
  article-title: Applied Stochastic Processes and Control for Jump-diffusions
– year: 1967
  ident: bib27
  article-title: Probabilistic Theory of Structural Dynamics
– volume: 66
  start-page: 211
  year: 1999
  end-page: 217
  ident: bib12
  article-title: Lyapunov exponent and stochastic stability of quasi-integrable-Hamiltonian systems
  publication-title: ASME J. Appl. Mech.
– volume: 19
  start-page: 197
  year: 1968
  end-page: 231
  ident: bib4
  article-title: A multiplicative ergodic theorem
  publication-title: Trans. Mosc. Math. Soc.
– volume: 4
  start-page: 289
  year: 1951
  end-page: 302
  ident: bib30
  article-title: On stochastic differential equations
  publication-title: Mem. Am. Math. Soc.
– volume: 9
  start-page: 131
  year: 1996
  end-page: 137
  ident: bib9
  article-title: On robustness of some concepts in stability of stochastic differential equations
  publication-title: Fields Inst. Commun.
– volume: 64
  start-page: 975
  year: 1997
  end-page: 984
  ident: bib24
  article-title: Stochastic averaging of quasi-integrable-Hamiltonian systems
  publication-title: ASME J. Appl. Mech.
– year: 1967
  ident: bib3
  article-title: Stochastic Stability and Control
– volume: 3
  start-page: 260
  year: 1968
  end-page: 279
  ident: bib32
  article-title: On the averaging principle for stochastic differential equations
  publication-title: Kibernetka
– volume: 59
  start-page: 664
  year: 1992
  end-page: 673
  ident: bib16
  article-title: Lyapunov exponent and stochastic stability of coupled linear systems under real noise excitation
  publication-title: ASME J. Appl. Mech.
– volume: 60
  start-page: 141
  year: 1993
  end-page: 148
  ident: bib29
  article-title: Stochastic dynamics of nonlinear systems driven by non-normal delta-correlated process
  publication-title: ASME J. Appl. Mech.
– year: 1995
  ident: bib8
  article-title: Probability Structural Dynamics
– volume: 72
  start-page: 853
  year: 2013
  end-page: 864
  ident: bib5
  article-title: Lyapunov function construction for nonlinear stochastic dynamical systems
  publication-title: Nonlinear Dyn.
– volume: 12
  start-page: 144
  year: 1967
  end-page: 147
  ident: bib7
  article-title: Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems
  publication-title: Theory Probab. Appl.
– volume: 46
  start-page: 161
  issue: 2
  year: 1982
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib10
  article-title: Methods of moments in problems of dynamics of systems with randomly varying parameters
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(82)90131-9
– volume: 37
  start-page: 419
  issue: 3
  year: 2002
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib13
  article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(01)00018-X
– year: 1967
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib3
– volume: 81
  start-page: 041009
  issue: 4
  year: 2014
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib20
  article-title: Stochastic averaging of quasi-integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.4025141
– volume: 72
  start-page: 853
  issue: 4
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib5
  article-title: Lyapunov function construction for nonlinear stochastic dynamical systems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0757-3
– volume: 3
  start-page: 260
  issue: 4
  year: 1968
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib32
  article-title: On the averaging principle for stochastic differential equations
  publication-title: Kibernetka
– volume: 36
  start-page: 209
  issue: 2
  year: 2011
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib35
  article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(00)00006-8
– volume: 58
  start-page: 191
  year: 2014
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib22
  article-title: Stochastic stability of quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2013.09.010
– year: 1967
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib27
– year: 1995
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib8
– volume: 19
  start-page: 577
  year: 1990
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib18
  article-title: Vibration of linear structures due to jump-discontinuous, non-interrupted, stochastic processes
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290190408
– volume: 24
  start-page: 374
  issue: 3
  year: 2009
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib6
  article-title: Lyapunov functions for quasi-Hamiltonian systems
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2008.11.001
– volume: 6
  start-page: 92
  issue: 2
  year: 1991
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib17
  article-title: On almost sure sample stability of nonlinear Ito^ differential equations
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/0266-8920(91)90022-V
– volume: 19
  start-page: 197
  year: 1968
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib4
  article-title: A multiplicative ergodic theorem
  publication-title: Trans. Mosc. Math. Soc.
– volume: 9
  start-page: 131
  year: 1996
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib9
  article-title: On robustness of some concepts in stability of stochastic differential equations
  publication-title: Fields Inst. Commun.
– volume: 77
  start-page: 1721
  issue: 4
  year: 2014
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib23
  article-title: Stochastic stability of quasi partially integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1413-2
– volume: 32
  start-page: 39
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib21
  article-title: Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2012.12.009
– volume: 51
  start-page: 45
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib19
  article-title: Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2012.12.003
– volume: 39
  start-page: 569
  year: 2004
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib11
  article-title: Lyapunov exponent and stochastic stability of quasi-non-integrable Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(02)00223-8
– volume: 240
  start-page: 1365
  issue: 17
  year: 2011
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib33
  article-title: An averaging principle for stochastic dynamical systems with Le´vy noise
  publication-title: Physica D
  doi: 10.1016/j.physd.2011.06.001
– volume: 32
  start-page: 855
  issue: 5
  year: 1997
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib26
  article-title: Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(96)00081-9
– volume: 59
  start-page: 664
  issue: 3
  year: 1992
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib16
  article-title: Lyapunov exponent and stochastic stability of coupled linear systems under real noise excitation
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2893775
– volume: 60
  start-page: 141
  issue: 1
  year: 1993
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib29
  article-title: Stochastic dynamics of nonlinear systems driven by non-normal delta-correlated process
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2900736
– volume: 35
  start-page: 645
  issue: 4
  year: 2000
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib15
  article-title: Lyapunov exponent and almost sure asymptotic stability of quasi-linear gyroscopic systems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(99)00047-5
– volume: 12
  start-page: 144
  issue: 1
  year: 1967
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib7
  article-title: Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1112019
– volume: 235
  start-page: 801
  issue: 5
  year: 2000
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib14
  article-title: Almost-sure stability of a gyro pendulum subjected to white-noise random support motion
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2000.2951
– volume: 59
  start-page: 230
  issue: 4
  year: 2006
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib31
  article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2193137
– volume: 8
  start-page: 197
  issue: 3
  year: 1993
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib25
  article-title: Ito^ and Stratonovich integrals for delta-correlated processes
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/0266-8920(93)90015-N
– volume: 4
  start-page: 289
  year: 1951
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib30
  article-title: On stochastic differential equations
  publication-title: Mem. Am. Math. Soc.
– ident: 10.1016/j.ijnonlinmec.2014.08.003_bib2
  doi: 10.1007/978-94-009-9121-7
– volume: 130
  start-page: 051004
  issue: 5
  year: 2008
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib34
  article-title: Stochastic averaging of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.2948382
– volume: 66
  start-page: 211
  issue: 1
  year: 1999
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib12
  article-title: Lyapunov exponent and stochastic stability of quasi-integrable-Hamiltonian systems
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2789148
– volume: 64
  start-page: 975
  issue: 4
  year: 1997
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib24
  article-title: Stochastic averaging of quasi-integrable-Hamiltonian systems
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2789009
– volume: 4
  start-page: 230
  year: 2006
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib1
  article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation
  publication-title: ASME Appl. Mech. Rev.
  doi: 10.1115/1.2193137
– year: 2007
  ident: 10.1016/j.ijnonlinmec.2014.08.003_bib28
SSID ssj0016407
Score 2.0998065
Snippet A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Combined Gaussian and Poisson white noise excitations
Computer simulation
Excitation
Gaussian
Lyapunov exponent
Lyapunov exponents
Mathematical analysis
Quasi-integrable and resonant Hamiltonian system
Stability
Stochastic averaging
Stochastic stability
Stochasticity
White noise
Title Stochastic stability of quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises
URI https://dx.doi.org/10.1016/j.ijnonlinmec.2014.08.003
https://www.proquest.com/docview/1669886684
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQSAgOVQtFQFtkpF5dko3txFIvCJUuVKBKFImb5ThjsQgSILtqe-lT9IGZcZItLRekHh3FTjIzmR975hvG3hfKuUqDFIDWT0jwSpgKvPCAwqKTEGTczDk51eNzeXyhLhbYwVALQ2mVve7vdHrU1v2VvZ6ae7eTCdX4jqhZxghDhNj9hirYZU5S_uHXPM0jpYOqLs0jEXT3Mtv9k-M1uaojIMUNEJphKiOa59A_66mN-kdbRxN0-JK96H1Hvt-93iu2APUaW32EKIijkzkMa7vOfp9NG3_pCIqZoxcY82B_8ibwu5lrJ6KHiiivgbu64hh4N5QWw8e06YE-IUoO75CeW061ZvecgMJvqAeX5_DD9_DeLa2I9MMYGyr-2c1aKsyMS35tkK9Nzb_TYQWvcQTta3Z--OnbwVj0bRiEz5ScCp15MCFxqjSlTx0htHuntUuly4z3IJMsGGpinXhZgMxzhyGcy8sEAjlUJttgi0hm2GRch8I55YMvlJHkPGp0l8tKhZEJusrVFisGwtvhI6hVxrUdktGu7COeWeKZpTaaSbbFRvOptx1Qx3MmfRy4a_-SOosG5TnTdweJsPhX0lGLq6GZtTbV2hSF1oXc_r9HvGErNOoSaN6yxen9DN6hGzQtd6Kc77Cl_aMv49MHY7AORw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSH0cEH2ptECN1KtLsrG9sdQLQtCFsqhSQeJmOc5YXQQJkF3RXvor-oOZcZItpRekHp3ETuIZj2fs8fcx9iFXzpUapACc_YQEr4QpwQsPqCw6CUHGxZzxkR6dyINTdbrAdvqzMJRW2dn-1qZHa91d2ep6c-tyMqEzvgMiyxhgiBDZbx6xJYnDl2gMPv6a53mktFPV5nkkgh5_zDb_JHlNzqqISHEBBGeYygjn2RNo_TtJ3TPXcQ7aW2HLnfPIt9vve84WoHrBnt2BFMTSeI7D2rxkv79Na__dERYzRzcwJsL-5HXgVzPXTESHFVGcA3dVyTHyrikvho9o1QOdQlQd3kI9N5wOm11zQgq_IBIuz-GH7_C9G2oROxCDbCj5Zzdr6GRmbPJrjYKtK35DuxW8whI0r9jJ3u7xzkh0PAzCZ0pOhc48mJA4VZjCp44g2r3T2qXSZcZ7kEkWDLFYJ17mIIdDhzGcGxYJBPKoTPaaLWI3wxvGdcidUz74XBlJ3qNGf7koVRiYoMuhWmV53_G2_wniyji3fTbamb0jM0sys8SjmWSrbDCvetkidTyk0qdeuvYvtbM4ozyk-mavERaHJe21uArqWWNTrU2ea53Lt__3ivfsyeh4fGgP94--vGNP6U6bTbPGFqfXM1hHn2habESdvwVr4A_V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+stability+of+quasi-integrable+and+resonant+Hamiltonian+systems+under+parametric+excitations+of+combined+Gaussian+and+Poisson+white+noises&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Liu%2C+Weiyan&rft.au=Zhu%2C+Weiqiu&rft.date=2014-12-01&rft.issn=0020-7462&rft.volume=67&rft.spage=52&rft.epage=62&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2014.08.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon