Stochastic stability of quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises
A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with α resonant rel...
Saved in:
Published in | International journal of non-linear mechanics Vol. 67; pp. 52 - 62 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with α resonant relations, the averaged Ito^ stochastic differential equations (SDEs) for quasi-integrable and resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii׳s procedure to the averaged Ito^ SDEs and using the property of the stochastic integro-differential equations (SIDEs). Finally, the stochastic stability of the original system is determined approximately by using the largest Lyapunov exponent. An example of two non-linear damping oscillators under parametric excitations of combined Gaussian and Poisson white noises is worked out to illustrate the application of the proposed procedure. The validity of the proposed procedure is verified by the good agreement between the analytical results and those from Monte Carlo simulation.
•The case of resonance with α resonant relations is considered.•The excitations are the combined Gaussian and Poisson white noises excitations.•Stochastic averaging method is used to derive the averaged equations.•The expression for the largest Lyapunov exponent of the system is formulated.•Theoretical results agree well with those from Monte Carlo simulation. |
---|---|
AbstractList | A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with α resonant relations, the averaged Ito^ stochastic differential equations (SDEs) for quasi-integrable and resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii׳s procedure to the averaged Ito^ SDEs and using the property of the stochastic integro-differential equations (SIDEs). Finally, the stochastic stability of the original system is determined approximately by using the largest Lyapunov exponent. An example of two non-linear damping oscillators under parametric excitations of combined Gaussian and Poisson white noises is worked out to illustrate the application of the proposed procedure. The validity of the proposed procedure is verified by the good agreement between the analytical results and those from Monte Carlo simulation.
•The case of resonance with α resonant relations is considered.•The excitations are the combined Gaussian and Poisson white noises excitations.•Stochastic averaging method is used to derive the averaged equations.•The expression for the largest Lyapunov exponent of the system is formulated.•Theoretical results agree well with those from Monte Carlo simulation. A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. For the case of resonance with alpha resonant relations, the averaged It stochastic differential equations (SDEs) for quasi-integrable and resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii's procedure to the averaged Ito SDEs and using the property of the stochastic integro-differential equations (SIDEs). Finally, the stochastic stability of the original system is determined approximately by using the largest Lyapunov exponent. An example of two non-linear damping oscillators under parametric excitations of combined Gaussian and Poisson white noises is worked out to illustrate the application of the proposed procedure. The validity of the proposed procedure is verified by the good agreement between the analytical results and those from Monte Carlo simulation. |
Author | Zhu, Weiqiu Liu, Weiyan |
Author_xml | – sequence: 1 givenname: Weiyan surname: Liu fullname: Liu, Weiyan organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi׳an 710072, China – sequence: 2 givenname: Weiqiu surname: Zhu fullname: Zhu, Weiqiu email: wqzhu@yahoo.com organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi׳an 710072, China |
BookMark | eNqNkcFu1DAQhiNUJLaFdzA3Lgl24nWcE0IraJEqFQk4WxNnQmeV2FuPF9j34IFJtEVCnHoazWj-T5r5LouLEAMWxWslKyWVebuvaL-MJgoz-qqWSlfSVlI2z4qNsq0tt6axF8VGylqWrTb1i-KSeS-XrJbtpvj9JUd_D5zJC87Q00T5JOIoHo7AVFLI-D1BP6GAMIiEHAOELG5gpinHQBAEnzjjzOIYBkziAAlmzGnh4S9PGTLFwCvRx7mngIO4hiPzmlyRnyPxAhU_7ymjCEuH_LJ4PsLE-OqxXhXfPn74urspb--uP-3e35a-2epcmsZjN0rY9l3vFUhtlAdjQGloOu9Ry2bstKq19NqiblvoOgttL3GU9dZ0zVXx5sw9pPhwRM5uJvY4TRAwHtkpYzprjbF6WX13XvUpMicc3d_bcgKanJJu9eH27h8fbvXhpHWLj4XQ_Uc4JJohnZ6U3Z2zuHzjB2Fy7AmDx4ES-uyGSE-g_AHGobRB |
CitedBy_id | crossref_primary_10_1016_j_ijnonlinmec_2022_104196 crossref_primary_10_1080_23311835_2018_1431092 crossref_primary_10_1140_epjs_s11734_024_01340_x crossref_primary_10_1007_s11071_015_2113_2 crossref_primary_10_1016_j_ijnonlinmec_2020_103574 crossref_primary_10_1007_s11071_018_4277_z crossref_primary_10_1051_matecconf_20179504008 crossref_primary_10_12677_AAM_2020_94065 |
Cites_doi | 10.1016/0021-8928(82)90131-9 10.1016/S0020-7462(01)00018-X 10.1115/1.4025141 10.1007/s11071-013-0757-3 10.1016/S0020-7462(00)00006-8 10.1016/j.ijnonlinmec.2013.09.010 10.1002/eqe.4290190408 10.1016/j.probengmech.2008.11.001 10.1016/0266-8920(91)90022-V 10.1007/s11071-014-1413-2 10.1016/j.probengmech.2012.12.009 10.1016/j.ijnonlinmec.2012.12.003 10.1016/S0020-7462(02)00223-8 10.1016/j.physd.2011.06.001 10.1016/S0020-7462(96)00081-9 10.1115/1.2893775 10.1115/1.2900736 10.1016/S0020-7462(99)00047-5 10.1137/1112019 10.1006/jsvi.2000.2951 10.1115/1.2193137 10.1016/0266-8920(93)90015-N 10.1007/978-94-009-9121-7 10.1115/1.2948382 10.1115/1.2789148 10.1115/1.2789009 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.ijnonlinmec.2014.08.003 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1878-5638 |
EndPage | 62 |
ExternalDocumentID | 10_1016_j_ijnonlinmec_2014_08_003 S0020746214001553 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMJ HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M25 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SME SPC SPCBC SPD SPG SSQ SST SSZ T5K T9H TN5 UNMZH VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c354t-63ce9f0a5b9bc1a0461ca66a14a39cce403f941240c48e477a998a7b0ef025693 |
IEDL.DBID | .~1 |
ISSN | 0020-7462 |
IngestDate | Sun Aug 24 04:12:31 EDT 2025 Tue Jul 01 04:03:37 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Fri Feb 23 02:34:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stochastic stability Quasi-integrable and resonant Hamiltonian system Stochastic averaging Combined Gaussian and Poisson white noise excitations Lyapunov exponent |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-63ce9f0a5b9bc1a0461ca66a14a39cce403f941240c48e477a998a7b0ef025693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669886684 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1669886684 crossref_citationtrail_10_1016_j_ijnonlinmec_2014_08_003 crossref_primary_10_1016_j_ijnonlinmec_2014_08_003 elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2014_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | International journal of non-linear mechanics |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huang, Zhu (bib15) 2000; 35 Jia, Zhu, Xu (bib19) 2013; 51 Liu, Zhu, Jia, Gu (bib23) 2014; 77 Zhu (bib31) 2006; 59 Asokanthan, Ariaratnam (bib14) 2000; 235 Itô (bib30) 1951; 4 Zhu (bib1) 2006; 4 Ariaratnam, Xie (bib16) 1992; 59 Di Paola, Falsone (bib29) 1993; 60 Di Paola, Vasta (bib26) 1997; 32 Kozin, Zhang (bib17) 1991; 6 Liu, Zhu, Xu (bib21) 2013; 32 Lin, Cai (bib8) 1995 Zhu, Huang, Yang (bib24) 1997; 64 Zhu (bib11) 2004; 39 Xu, Duan, Xu (bib33) 2011; 240 Oseledec (bib4) 1968; 19 R.Z. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. Zhu, Huang, Suzuki (bib13) 2002; 37 Khasminskii (bib9) 1996; 9 Di Paola, Falsone (bib25) 1993; 8 Gan, Zhu (bib35) 2011; 36 Liu, Zhu, Jia (bib22) 2014; 58 Khasminskii (bib32) 1968; 3 Dimentberg (bib10) 1982; 46 Jia, Zhu, Xu, Liu (bib20) 2014; 81 Wu, Zhu (bib34) 2008; 130 Khasminskii (bib7) 1967; 12 Zhu, Huang (bib12) 1999; 66 Kushner (bib3) 1967 Mironowicz, Śniady (bib18) 1990; 19 Hanson (bib28) 2007 Huang, Jin, Zhu (bib6) 2009; 24 Ling, Jin, Li, Huang (bib5) 2013; 72 Lin (bib27) 1967 Dimentberg (10.1016/j.ijnonlinmec.2014.08.003_bib10) 1982; 46 Huang (10.1016/j.ijnonlinmec.2014.08.003_bib6) 2009; 24 Ariaratnam (10.1016/j.ijnonlinmec.2014.08.003_bib16) 1992; 59 Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib24) 1997; 64 Kushner (10.1016/j.ijnonlinmec.2014.08.003_bib3) 1967 Jia (10.1016/j.ijnonlinmec.2014.08.003_bib19) 2013; 51 Ling (10.1016/j.ijnonlinmec.2014.08.003_bib5) 2013; 72 Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib12) 1999; 66 10.1016/j.ijnonlinmec.2014.08.003_bib2 Khasminskii (10.1016/j.ijnonlinmec.2014.08.003_bib7) 1967; 12 Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib13) 2002; 37 Liu (10.1016/j.ijnonlinmec.2014.08.003_bib23) 2014; 77 Oseledec (10.1016/j.ijnonlinmec.2014.08.003_bib4) 1968; 19 Lin (10.1016/j.ijnonlinmec.2014.08.003_bib8) 1995 Hanson (10.1016/j.ijnonlinmec.2014.08.003_bib28) 2007 Xu (10.1016/j.ijnonlinmec.2014.08.003_bib33) 2011; 240 Di Paola (10.1016/j.ijnonlinmec.2014.08.003_bib25) 1993; 8 Khasminskii (10.1016/j.ijnonlinmec.2014.08.003_bib9) 1996; 9 Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib11) 2004; 39 Kozin (10.1016/j.ijnonlinmec.2014.08.003_bib17) 1991; 6 Mironowicz (10.1016/j.ijnonlinmec.2014.08.003_bib18) 1990; 19 Asokanthan (10.1016/j.ijnonlinmec.2014.08.003_bib14) 2000; 235 Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib31) 2006; 59 Gan (10.1016/j.ijnonlinmec.2014.08.003_bib35) 2011; 36 Itô (10.1016/j.ijnonlinmec.2014.08.003_bib30) 1951; 4 Di Paola (10.1016/j.ijnonlinmec.2014.08.003_bib29) 1993; 60 Liu (10.1016/j.ijnonlinmec.2014.08.003_bib21) 2013; 32 Wu (10.1016/j.ijnonlinmec.2014.08.003_bib34) 2008; 130 Zhu (10.1016/j.ijnonlinmec.2014.08.003_bib1) 2006; 4 Huang (10.1016/j.ijnonlinmec.2014.08.003_bib15) 2000; 35 Di Paola (10.1016/j.ijnonlinmec.2014.08.003_bib26) 1997; 32 Lin (10.1016/j.ijnonlinmec.2014.08.003_bib27) 1967 Jia (10.1016/j.ijnonlinmec.2014.08.003_bib20) 2014; 81 Khasminskii (10.1016/j.ijnonlinmec.2014.08.003_bib32) 1968; 3 Liu (10.1016/j.ijnonlinmec.2014.08.003_bib22) 2014; 58 |
References_xml | – volume: 39 start-page: 569 year: 2004 end-page: 579 ident: bib11 article-title: Lyapunov exponent and stochastic stability of quasi-non-integrable Hamiltonian systems publication-title: Int. J. Non-Linear Mech. – volume: 59 start-page: 230 year: 2006 end-page: 248 ident: bib31 article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation publication-title: ASME J. Appl. Mech. – volume: 81 start-page: 041009 year: 2014 ident: bib20 article-title: Stochastic averaging of quasi-integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations publication-title: ASME J. Appl. Mech. – volume: 46 start-page: 161 year: 1982 end-page: 166 ident: bib10 article-title: Methods of moments in problems of dynamics of systems with randomly varying parameters publication-title: J. Appl. Math. Mech. – volume: 19 start-page: 577 year: 1990 end-page: 582 ident: bib18 article-title: Vibration of linear structures due to jump-discontinuous, non-interrupted, stochastic processes publication-title: Earthq. Eng. Struct. Dyn. – volume: 51 start-page: 45 year: 2013 end-page: 53 ident: bib19 article-title: Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations publication-title: Int. J. Non-Linear Mech. – volume: 58 start-page: 191 year: 2014 end-page: 198 ident: bib22 article-title: Stochastic stability of quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises publication-title: Int. J. Non-Linear Mech. – volume: 77 start-page: 1721 year: 2014 end-page: 1735 ident: bib23 article-title: Stochastic stability of quasi partially integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises publication-title: Nonlinear Dyn. – volume: 235 start-page: 801 year: 2000 end-page: 812 ident: bib14 article-title: Almost-sure stability of a gyro pendulum subjected to white-noise random support motion publication-title: J. Sound Vib. – volume: 8 start-page: 197 year: 1993 end-page: 208 ident: bib25 article-title: and Stratonovich integrals for delta-correlated processes publication-title: Probab. Eng. Mech. – volume: 37 start-page: 419 year: 2002 end-page: 437 ident: bib13 article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems publication-title: Int. J. Non-Linear Mech. – volume: 6 start-page: 92 year: 1991 end-page: 95 ident: bib17 article-title: On almost sure sample stability of nonlinear publication-title: Probab. Eng. Mech. – volume: 32 start-page: 39 year: 2013 end-page: 47 ident: bib21 article-title: Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises publication-title: Probab. Eng. Mech. – volume: 4 start-page: 230 year: 2006 end-page: 248 ident: bib1 article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation publication-title: ASME Appl. Mech. Rev. – volume: 35 start-page: 645 year: 2000 end-page: 655 ident: bib15 article-title: Lyapunov exponent and almost sure asymptotic stability of quasi-linear gyroscopic systems publication-title: Int. J. Non-Linear Mech. – volume: 36 start-page: 209 year: 2011 end-page: 220 ident: bib35 article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems publication-title: Int. J. Non-Linear Mech. – volume: 240 start-page: 1365 year: 2011 end-page: 1401 ident: bib33 article-title: An averaging principle for stochastic dynamical systems with publication-title: Physica D – volume: 24 start-page: 374 year: 2009 end-page: 381 ident: bib6 article-title: Lyapunov functions for quasi-Hamiltonian systems publication-title: Probab. Eng. Mech. – volume: 32 start-page: 855 year: 1997 end-page: 862 ident: bib26 article-title: Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses publication-title: Int. J. Non-Linear Mech. – volume: 130 start-page: 051004 year: 2008 ident: bib34 article-title: Stochastic averaging of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations publication-title: J. Vib. Acoust. – reference: R.Z. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. – year: 2007 ident: bib28 article-title: Applied Stochastic Processes and Control for Jump-diffusions – year: 1967 ident: bib27 article-title: Probabilistic Theory of Structural Dynamics – volume: 66 start-page: 211 year: 1999 end-page: 217 ident: bib12 article-title: Lyapunov exponent and stochastic stability of quasi-integrable-Hamiltonian systems publication-title: ASME J. Appl. Mech. – volume: 19 start-page: 197 year: 1968 end-page: 231 ident: bib4 article-title: A multiplicative ergodic theorem publication-title: Trans. Mosc. Math. Soc. – volume: 4 start-page: 289 year: 1951 end-page: 302 ident: bib30 article-title: On stochastic differential equations publication-title: Mem. Am. Math. Soc. – volume: 9 start-page: 131 year: 1996 end-page: 137 ident: bib9 article-title: On robustness of some concepts in stability of stochastic differential equations publication-title: Fields Inst. Commun. – volume: 64 start-page: 975 year: 1997 end-page: 984 ident: bib24 article-title: Stochastic averaging of quasi-integrable-Hamiltonian systems publication-title: ASME J. Appl. Mech. – year: 1967 ident: bib3 article-title: Stochastic Stability and Control – volume: 3 start-page: 260 year: 1968 end-page: 279 ident: bib32 article-title: On the averaging principle for stochastic differential equations publication-title: Kibernetka – volume: 59 start-page: 664 year: 1992 end-page: 673 ident: bib16 article-title: Lyapunov exponent and stochastic stability of coupled linear systems under real noise excitation publication-title: ASME J. Appl. Mech. – volume: 60 start-page: 141 year: 1993 end-page: 148 ident: bib29 article-title: Stochastic dynamics of nonlinear systems driven by non-normal delta-correlated process publication-title: ASME J. Appl. Mech. – year: 1995 ident: bib8 article-title: Probability Structural Dynamics – volume: 72 start-page: 853 year: 2013 end-page: 864 ident: bib5 article-title: Lyapunov function construction for nonlinear stochastic dynamical systems publication-title: Nonlinear Dyn. – volume: 12 start-page: 144 year: 1967 end-page: 147 ident: bib7 article-title: Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems publication-title: Theory Probab. Appl. – volume: 46 start-page: 161 issue: 2 year: 1982 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib10 article-title: Methods of moments in problems of dynamics of systems with randomly varying parameters publication-title: J. Appl. Math. Mech. doi: 10.1016/0021-8928(82)90131-9 – volume: 37 start-page: 419 issue: 3 year: 2002 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib13 article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(01)00018-X – year: 1967 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib3 – volume: 81 start-page: 041009 issue: 4 year: 2014 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib20 article-title: Stochastic averaging of quasi-integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations publication-title: ASME J. Appl. Mech. doi: 10.1115/1.4025141 – volume: 72 start-page: 853 issue: 4 year: 2013 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib5 article-title: Lyapunov function construction for nonlinear stochastic dynamical systems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-0757-3 – volume: 3 start-page: 260 issue: 4 year: 1968 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib32 article-title: On the averaging principle for stochastic differential equations publication-title: Kibernetka – volume: 36 start-page: 209 issue: 2 year: 2011 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib35 article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(00)00006-8 – volume: 58 start-page: 191 year: 2014 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib22 article-title: Stochastic stability of quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2013.09.010 – year: 1967 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib27 – year: 1995 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib8 – volume: 19 start-page: 577 year: 1990 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib18 article-title: Vibration of linear structures due to jump-discontinuous, non-interrupted, stochastic processes publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.4290190408 – volume: 24 start-page: 374 issue: 3 year: 2009 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib6 article-title: Lyapunov functions for quasi-Hamiltonian systems publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2008.11.001 – volume: 6 start-page: 92 issue: 2 year: 1991 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib17 article-title: On almost sure sample stability of nonlinear Ito^ differential equations publication-title: Probab. Eng. Mech. doi: 10.1016/0266-8920(91)90022-V – volume: 19 start-page: 197 year: 1968 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib4 article-title: A multiplicative ergodic theorem publication-title: Trans. Mosc. Math. Soc. – volume: 9 start-page: 131 year: 1996 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib9 article-title: On robustness of some concepts in stability of stochastic differential equations publication-title: Fields Inst. Commun. – volume: 77 start-page: 1721 issue: 4 year: 2014 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib23 article-title: Stochastic stability of quasi partially integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1413-2 – volume: 32 start-page: 39 year: 2013 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib21 article-title: Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2012.12.009 – volume: 51 start-page: 45 year: 2013 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib19 article-title: Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2012.12.003 – volume: 39 start-page: 569 year: 2004 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib11 article-title: Lyapunov exponent and stochastic stability of quasi-non-integrable Hamiltonian systems publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(02)00223-8 – volume: 240 start-page: 1365 issue: 17 year: 2011 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib33 article-title: An averaging principle for stochastic dynamical systems with Le´vy noise publication-title: Physica D doi: 10.1016/j.physd.2011.06.001 – volume: 32 start-page: 855 issue: 5 year: 1997 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib26 article-title: Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(96)00081-9 – volume: 59 start-page: 664 issue: 3 year: 1992 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib16 article-title: Lyapunov exponent and stochastic stability of coupled linear systems under real noise excitation publication-title: ASME J. Appl. Mech. doi: 10.1115/1.2893775 – volume: 60 start-page: 141 issue: 1 year: 1993 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib29 article-title: Stochastic dynamics of nonlinear systems driven by non-normal delta-correlated process publication-title: ASME J. Appl. Mech. doi: 10.1115/1.2900736 – volume: 35 start-page: 645 issue: 4 year: 2000 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib15 article-title: Lyapunov exponent and almost sure asymptotic stability of quasi-linear gyroscopic systems publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(99)00047-5 – volume: 12 start-page: 144 issue: 1 year: 1967 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib7 article-title: Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems publication-title: Theory Probab. Appl. doi: 10.1137/1112019 – volume: 235 start-page: 801 issue: 5 year: 2000 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib14 article-title: Almost-sure stability of a gyro pendulum subjected to white-noise random support motion publication-title: J. Sound Vib. doi: 10.1006/jsvi.2000.2951 – volume: 59 start-page: 230 issue: 4 year: 2006 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib31 article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation publication-title: ASME J. Appl. Mech. doi: 10.1115/1.2193137 – volume: 8 start-page: 197 issue: 3 year: 1993 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib25 article-title: Ito^ and Stratonovich integrals for delta-correlated processes publication-title: Probab. Eng. Mech. doi: 10.1016/0266-8920(93)90015-N – volume: 4 start-page: 289 year: 1951 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib30 article-title: On stochastic differential equations publication-title: Mem. Am. Math. Soc. – ident: 10.1016/j.ijnonlinmec.2014.08.003_bib2 doi: 10.1007/978-94-009-9121-7 – volume: 130 start-page: 051004 issue: 5 year: 2008 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib34 article-title: Stochastic averaging of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations publication-title: J. Vib. Acoust. doi: 10.1115/1.2948382 – volume: 66 start-page: 211 issue: 1 year: 1999 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib12 article-title: Lyapunov exponent and stochastic stability of quasi-integrable-Hamiltonian systems publication-title: ASME J. Appl. Mech. doi: 10.1115/1.2789148 – volume: 64 start-page: 975 issue: 4 year: 1997 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib24 article-title: Stochastic averaging of quasi-integrable-Hamiltonian systems publication-title: ASME J. Appl. Mech. doi: 10.1115/1.2789009 – volume: 4 start-page: 230 year: 2006 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib1 article-title: Nonlinear stochastic dynamics and control in Hamiltonian formulation publication-title: ASME Appl. Mech. Rev. doi: 10.1115/1.2193137 – year: 2007 ident: 10.1016/j.ijnonlinmec.2014.08.003_bib28 |
SSID | ssj0016407 |
Score | 2.0998065 |
Snippet | A procedure for determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and resonant Hamiltonian... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52 |
SubjectTerms | Combined Gaussian and Poisson white noise excitations Computer simulation Excitation Gaussian Lyapunov exponent Lyapunov exponents Mathematical analysis Quasi-integrable and resonant Hamiltonian system Stability Stochastic averaging Stochastic stability Stochasticity White noise |
Title | Stochastic stability of quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises |
URI | https://dx.doi.org/10.1016/j.ijnonlinmec.2014.08.003 https://www.proquest.com/docview/1669886684 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQSAgOVQtFQFtkpF5dko3txFIvCJUuVKBKFImb5ThjsQgSILtqe-lT9IGZcZItLRekHh3FTjIzmR975hvG3hfKuUqDFIDWT0jwSpgKvPCAwqKTEGTczDk51eNzeXyhLhbYwVALQ2mVve7vdHrU1v2VvZ6ae7eTCdX4jqhZxghDhNj9hirYZU5S_uHXPM0jpYOqLs0jEXT3Mtv9k-M1uaojIMUNEJphKiOa59A_66mN-kdbRxN0-JK96H1Hvt-93iu2APUaW32EKIijkzkMa7vOfp9NG3_pCIqZoxcY82B_8ibwu5lrJ6KHiiivgbu64hh4N5QWw8e06YE-IUoO75CeW061ZvecgMJvqAeX5_DD9_DeLa2I9MMYGyr-2c1aKsyMS35tkK9Nzb_TYQWvcQTta3Z--OnbwVj0bRiEz5ScCp15MCFxqjSlTx0htHuntUuly4z3IJMsGGpinXhZgMxzhyGcy8sEAjlUJttgi0hm2GRch8I55YMvlJHkPGp0l8tKhZEJusrVFisGwtvhI6hVxrUdktGu7COeWeKZpTaaSbbFRvOptx1Qx3MmfRy4a_-SOosG5TnTdweJsPhX0lGLq6GZtTbV2hSF1oXc_r9HvGErNOoSaN6yxen9DN6hGzQtd6Kc77Cl_aMv49MHY7AORw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSH0cEH2ptECN1KtLsrG9sdQLQtCFsqhSQeJmOc5YXQQJkF3RXvor-oOZcZItpRekHp3ETuIZj2fs8fcx9iFXzpUapACc_YQEr4QpwQsPqCw6CUHGxZzxkR6dyINTdbrAdvqzMJRW2dn-1qZHa91d2ep6c-tyMqEzvgMiyxhgiBDZbx6xJYnDl2gMPv6a53mktFPV5nkkgh5_zDb_JHlNzqqISHEBBGeYygjn2RNo_TtJ3TPXcQ7aW2HLnfPIt9vve84WoHrBnt2BFMTSeI7D2rxkv79Na__dERYzRzcwJsL-5HXgVzPXTESHFVGcA3dVyTHyrikvho9o1QOdQlQd3kI9N5wOm11zQgq_IBIuz-GH7_C9G2oROxCDbCj5Zzdr6GRmbPJrjYKtK35DuxW8whI0r9jJ3u7xzkh0PAzCZ0pOhc48mJA4VZjCp44g2r3T2qXSZcZ7kEkWDLFYJ17mIIdDhzGcGxYJBPKoTPaaLWI3wxvGdcidUz74XBlJ3qNGf7koVRiYoMuhWmV53_G2_wniyji3fTbamb0jM0sys8SjmWSrbDCvetkidTyk0qdeuvYvtbM4ozyk-mavERaHJe21uArqWWNTrU2ea53Lt__3ivfsyeh4fGgP94--vGNP6U6bTbPGFqfXM1hHn2habESdvwVr4A_V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+stability+of+quasi-integrable+and+resonant+Hamiltonian+systems+under+parametric+excitations+of+combined+Gaussian+and+Poisson+white+noises&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Liu%2C+Weiyan&rft.au=Zhu%2C+Weiqiu&rft.date=2014-12-01&rft.issn=0020-7462&rft.volume=67&rft.spage=52&rft.epage=62&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2014.08.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon |