Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices
The formation of moiré superlattices in twisted van der Waals (vdW) homostructures provides a versatile platform for designing the electronic band structure of two-dimensional (2D) materials. In graphene and transition metal dichalcogenides (TMDs) moiré systems, twist angle has been shown to be a ke...
Saved in:
Published in | Nano research Vol. 16; no. 2; pp. 3429 - 3434 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation of moiré superlattices in twisted van der Waals (vdW) homostructures provides a versatile platform for designing the electronic band structure of two-dimensional (2D) materials. In graphene and transition metal dichalcogenides (TMDs) moiré systems, twist angle has been shown to be a key parameter for regulating the moiré superlattice. However, the effect of the modulation of the twist angle on moiré potential and interlayer coupling has not been the subject of experimental investigation. Here, we report the observation of the modulation of moiré potential and intralayer excitons in the WS
2
/WS
2
homostructure. By accurately adjusting the torsion angle of the homobilayers, the depth of the moiré potential can be modulated. The confinement effect of the moiré potential on the intralayer excitons was further demonstrated by the changing of temperature and valley polarization. Furthermore, we show that a detection of atomic reconstructions by the low-frequency Raman mapping to map out inhomogeneities in moiré lattices on a large scale, which endows the uniformity of interlayer coupling. Our results provide insights for an in-depth understanding of the behaviors of moiré excitons in the twisted van der Waals homostructure, and promote the study of electrical engineering and topological photonics. |
---|---|
AbstractList | The formation of moiré superlattices in twisted van der Waals (vdW) homostructures provides a versatile platform for designing the electronic band structure of two-dimensional (2D) materials. In graphene and transition metal dichalcogenides (TMDs) moiré systems, twist angle has been shown to be a key parameter for regulating the moiré superlattice. However, the effect of the modulation of the twist angle on moiré potential and interlayer coupling has not been the subject of experimental investigation. Here, we report the observation of the modulation of moiré potential and intralayer excitons in the WS
2
/WS
2
homostructure. By accurately adjusting the torsion angle of the homobilayers, the depth of the moiré potential can be modulated. The confinement effect of the moiré potential on the intralayer excitons was further demonstrated by the changing of temperature and valley polarization. Furthermore, we show that a detection of atomic reconstructions by the low-frequency Raman mapping to map out inhomogeneities in moiré lattices on a large scale, which endows the uniformity of interlayer coupling. Our results provide insights for an in-depth understanding of the behaviors of moiré excitons in the twisted van der Waals homostructure, and promote the study of electrical engineering and topological photonics. |
Author | Wu, Biao Li, Shaofei He, Jun Liu, Zongwen Liu, Yanping Chen, Keqiu Zheng, Haihong |
Author_xml | – sequence: 1 givenname: Haihong surname: Zheng fullname: Zheng, Haihong organization: School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, State Key Laboratory of High-Performance Complex Manufacturing, Central South University – sequence: 2 givenname: Biao surname: Wu fullname: Wu, Biao organization: School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, State Key Laboratory of High-Performance Complex Manufacturing, Central South University – sequence: 3 givenname: Shaofei surname: Li fullname: Li, Shaofei organization: School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University – sequence: 4 givenname: Jun surname: He fullname: He, Jun organization: School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University – sequence: 5 givenname: Keqiu surname: Chen fullname: Chen, Keqiu organization: Department of Applied Physics, School of Physics and Electronics, Hunan University – sequence: 6 givenname: Zongwen surname: Liu fullname: Liu, Zongwen organization: School of Chemical and Biomolecular Engineering, The University of Sydney, The University of Sydney Nano Institute, The University of Sydney – sequence: 7 givenname: Yanping surname: Liu fullname: Liu, Yanping email: liuyanping@csu.edu.cn organization: School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Shenzhen Research Institute of Central South University |
BookMark | eNp9kE1OwzAQhS1UJErhAOx8gVDbceJkiaryI1ViAYil5diT4qq1K9sBeiTOwcVwVdiw6EijmcX7nmbeORo57wChK0quKSFiGiljgheEsYK3NS_4CRrTtm0Kkmv0t1PGz9B5jCtCakZ5M0Z6_m4NOA249wFblyCs1Q4C1n7Yrq1bYuUM3ngbvr8wfGqbvItZh9OHjQkMfn1i09z4zW98TGHQaQiA47DdG6VkNcQLdNqrdYTL3zlBL7fz59l9sXi8e5jdLApdVjwVNTOlYUpozY2Brq6MYa2qaNdS03HSCNpxJYgumYBOGNPTqm5q1lesgVoJKCdIHHx18DEG6GU-VyXrXQrKriUlcp-VPGQlc1Zyn5XkmaT_yG2wGxV2Rxl2YGLWuiUEufJDcPnBI9APqJWA6A |
CitedBy_id | crossref_primary_10_1021_acsanm_3c04561 crossref_primary_10_1007_s40843_024_2948_9 crossref_primary_10_3390_nano14231889 crossref_primary_10_1007_s12274_024_6936_3 crossref_primary_10_1021_acsnano_3c02952 crossref_primary_10_1002_adom_202302407 crossref_primary_10_1039_D3NJ00126A crossref_primary_10_26599_NR_2025_94907035 crossref_primary_10_1007_s12274_023_6205_x crossref_primary_10_26599_NR_2025_94907111 crossref_primary_10_1063_5_0211610 crossref_primary_10_1103_PhysRevB_108_054433 crossref_primary_10_4274_tjh_galenos_2024_2024_0099 crossref_primary_10_1007_s11467_023_1355_6 crossref_primary_10_1007_s12274_023_5822_8 crossref_primary_10_1088_2515_7639_ad2b7b crossref_primary_10_1007_s11082_025_08106_2 crossref_primary_10_1007_s12274_024_6638_x crossref_primary_10_1063_5_0252189 crossref_primary_10_1063_5_0201698 crossref_primary_10_1038_s41377_023_01171_w |
Cites_doi | 10.1038/s41586-019-0957-1 10.1038/nnano.2012.193 10.1007/s12274-021-3728-x 10.1021/acs.nanolett.1c01207 10.1103/PhysRevB.105.L081108 10.1021/nn1003937 10.1038/s41586-019-0976-y 10.1007/s12274-014-0425-z 10.1039/C7CS00887B 10.1038/srep12718 10.1126/sciadv.1701696 10.1103/PhysRevB.97.035306 10.1038/s41586-020-2085-3 10.1038/nature26160 10.1038/s41565-020-0728-z 10.1038/nnano.2015.78 10.1038/s41567-020-0845-5 10.1364/OE.392052 10.1103/PhysRevB.81.205312 10.1038/s41586-019-0986-9 10.1088/1361-6633/abdb98 10.1007/s12274-019-2497-2 10.1038/s41467-019-14207-w 10.1021/nl4030648 10.1126/science.1158877 10.1007/s12274-020-3193-y 10.1007/s12274-020-3126-9 10.1002/adma.202008333 10.1038/s41377-022-00854-0 10.1007/s12274-022-4579-9 10.1038/s41467-021-21267-4 10.1038/s41586-020-2191-2 10.1038/s41565-020-0744-z 10.1007/s12274-021-3360-9 10.1143/JJAP.37.550 10.1007/s12274-022-4580-3 |
ContentType | Journal Article |
Copyright | Tsinghua University Press 2022 |
Copyright_xml | – notice: Tsinghua University Press 2022 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12274-022-4964-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 3434 |
ExternalDocumentID | 10_1007_s12274_022_4964_4 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP |
ID | FETCH-LOGICAL-c354t-62d3d2a7cc4ddeb65dd29a51b91db40871b4a70c327eb7ddf156862f528e6a7e3 |
IEDL.DBID | U2A |
ISSN | 1998-0124 |
IngestDate | Tue Jul 01 01:47:06 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Fri Feb 21 02:46:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | moiré excitons interlayer coupling moiré potential moiré superlattices |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-62d3d2a7cc4ddeb65dd29a51b91db40871b4a70c327eb7ddf156862f528e6a7e3 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1007_s12274_022_4964_4 crossref_primary_10_1007_s12274_022_4964_4 springer_journals_10_1007_s12274_022_4964_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2023 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Sung, Zhou, Scuri, Zólyomi, Andersen, Yoo, Wild, Joe, Gelly, Heo (CR21) 2020; 15 Seyler, Rivera, Yu, Wilson, Ray, Mandrus, Yan, Yao, Xu (CR13) 2019; 567 Yu, Liu, Tang, Xu, Yao (CR26) 2017; 3 Shimazaki, Schwartz, Watanabe, Taniguchi, Kroner, Imamoğlu (CR11) 2020; 580 Shibata (CR32) 1998; 37 Wu, Cong, Shang, Yang, Chen, Zhou, Ai, Wang, Feng, Zhang (CR6) 2021; 14 Wu, Zheng, Li, Ding, He, Zeng, Chen, Liu, Chen, Pan (CR10) 2022; 11 Cai, Duan, Liu, Wang, Tan, Hu, Hu, Sun, Yan (CR23) 2021; 14 Kang, Li, Li, Xia, Wang (CR30) 2013; 13 CR17 Scrace, Tsai, Barman, Schweidenback, Petrou, Kioseoglou, Ozfidan, Korkusinski, Hawrylak (CR1) 2015; 10 Bekenstein, Pikovski, Pichler, Shahmoon, Yelin, Lukin (CR19) 2020; 16 Kundu, Naik, Krishnamurthy, Jain (CR36) 2022; 105 Zhu, Sun, Tang, Fu, Lu (CR2) 2021; 14 Yu, Kuang, Zhong, Cao, Zeng, Ding, Cong, Wang, Dai, Yue (CR35) 2020; 28 Plochocka (CR15) 2020; 15 Chen, Zhang, Duan, Duan (CR7) 2018; 47 Marcellina, Liu, Hu, Fieramosca, Huang, Du, Liu, Zhao, Watanabe, Taniguchi (CR14) 2021; 21 Li, Zheng, Ding, Wu, He, Liu, Liu (CR22) 2022; 15 Zhao, Li, Dong, Wang, Wang, Zhang, Han, Zhang (CR34) 2021; 84 Wu, Lovorn, MacDonald (CR25) 2018; 97 Castellanos-Gomez, van der Zant, Steele (CR18) 2014; 7 Jin, Regan, Yan, Iqbal Bakti Utama, Wang, Zhao, Qin, Yang, Zheng, Shi (CR24) 2019; 567 Yu, Kuang, Li, Zhong, Zeng, Cao, Liu, Zeng, Luo, He (CR27) 2021; 12 Shi, Zhan, Qi, Huang, van Veen, Silva-Guillén, Zhang, Li, Xie, Ji (CR12) 2020; 11 Geim (CR3) 2009; 324 Fang, Wang, Sun, Lu, Deng, Ma, Jiang, Jia, Wang, Zhou (CR33) 2015; 5 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR4) 2012; 7 Wu, Wang, Zhong, Zeng, Madoune, Zhu, Liu, Liu (CR8) 2022; 15 Byrnes, Recher, Yamamoto (CR20) 2010; 81 Tang, Li, Li, Xu, Liu, Barmak, Watanabe, Taniguchi, MacDonald, Shan (CR9) 2020; 579 Alexeev, Ruiz-Tijerina, Danovich, Hamer, Terry, Nayak, Ahn, Pak, Lee, Sohn (CR16) 2019; 567 Lee, Yan, Brus, Heinz, Hone, Ryu (CR28) 2010; 4 Lin, Holler, Bauer, Parzefall, Scheuck, Peng, Korn, Bange, Lupton, Schüller (CR29) 2021; 33 Liu, Gao, Zhang, He, Yu, Liu (CR5) 2019; 12 Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, Jarillo-Herrero (CR31) 2018; 556 S Kundu (4964_CR36) 2022; 105 C H Jin (4964_CR24) 2019; 567 Y Zhu (4964_CR2) 2021; 14 J Yu (4964_CR27) 2021; 12 H Y Yu (4964_CR26) 2017; 3 B Wu (4964_CR8) 2022; 15 F C Wu (4964_CR25) 2018; 97 A Castellanos-Gomez (4964_CR18) 2014; 7 Q H Wang (4964_CR4) 2012; 7 Y H Tang (4964_CR9) 2020; 579 J Sung (4964_CR21) 2020; 15 E M Alexeev (4964_CR16) 2019; 567 T Byrnes (4964_CR20) 2010; 81 H Shibata (4964_CR32) 1998; 37 Y P Liu (4964_CR5) 2019; 12 K L Seyler (4964_CR13) 2019; 567 4964_CR17 J Yu (4964_CR35) 2020; 28 R Bekenstein (4964_CR19) 2020; 16 E Marcellina (4964_CR14) 2021; 21 A K Geim (4964_CR3) 2009; 324 P Plochocka (4964_CR15) 2020; 15 J Kang (4964_CR30) 2013; 13 Y T Fang (4964_CR33) 2015; 5 H H Shi (4964_CR12) 2020; 11 S F Li (4964_CR22) 2022; 15 B Wu (4964_CR10) 2022; 11 Y Shimazaki (4964_CR11) 2020; 580 C Lee (4964_CR28) 2010; 4 Y Cao (4964_CR31) 2018; 556 L Cai (4964_CR23) 2021; 14 T Scrace (4964_CR1) 2015; 10 L S Wu (4964_CR6) 2021; 14 K Q Lin (4964_CR29) 2021; 33 P Chen (4964_CR7) 2018; 47 S W Zhao (4964_CR34) 2021; 84 |
References_xml | – volume: 567 start-page: 66 year: 2019 end-page: 70 ident: CR13 article-title: Signatures of moiré-trapped valley excitons in MoSe /WSe heterobilayers publication-title: Nature doi: 10.1038/s41586-019-0957-1 – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR4 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 15 start-page: 2661 year: 2022 end-page: 2666 ident: CR8 article-title: Observation of double indirect interlayer exciton in MoSe /WSe heterostructure publication-title: Nano Res. doi: 10.1007/s12274-021-3728-x – volume: 21 start-page: 4461 year: 2021 end-page: 4468 ident: CR14 article-title: Evidence for moiré trions in twisted MoSe homobilayers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01207 – volume: 105 start-page: L081108 year: 2022 ident: CR36 article-title: Moiré induced topology and flat bands in twisted bilayer WSe : A first-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.L081108 – volume: 4 start-page: 2695 year: 2010 end-page: 2700 ident: CR28 article-title: Anomalous lattice vibrations of single- and few-layer MoS publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 567 start-page: 76 year: 2019 end-page: 80 ident: CR24 article-title: Observation of moiré excitons in WSe /WS heterostructure superlattices publication-title: Nature doi: 10.1038/s41586-019-0976-y – volume: 7 start-page: 572 year: 2014 end-page: 578 ident: CR18 article-title: Folded MoS layers with reduced interlayer coupling publication-title: Nano Res. doi: 10.1007/s12274-014-0425-z – volume: 47 start-page: 3129 year: 2018 end-page: 3151 ident: CR7 article-title: Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00887B – volume: 5 start-page: 12718 year: 2015 ident: CR33 article-title: Investigation of temperature-dependent photoluminescence in multi-quantum wells publication-title: Sci. Rep. doi: 10.1038/srep12718 – volume: 3 start-page: e1701696 year: 2017 ident: CR26 article-title: Moiré excitons: From programmable quantum emitter arrays to spin-orbitcoupled artificial lattices publication-title: Sci. Adv. doi: 10.1126/sciadv.1701696 – volume: 97 start-page: 035306 year: 2018 ident: CR25 article-title: Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035306 – volume: 579 start-page: 353 year: 2020 end-page: 358 ident: CR9 article-title: Simulation of Hubbard model physics in WSe /WS moiré superlattices publication-title: Nature doi: 10.1038/s41586-020-2085-3 – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR31 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 15 start-page: 750 year: 2020 end-page: 754 ident: CR21 article-title: Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe /MoSe bilayers publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0728-z – volume: 10 start-page: 603 year: 2015 end-page: 607 ident: CR1 article-title: Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS monolayers publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.78 – volume: 16 start-page: 676 year: 2020 end-page: 681 ident: CR19 article-title: Quantum metasurfaces with atom arrays publication-title: Nat. Phys. doi: 10.1038/s41567-020-0845-5 – volume: 28 start-page: 13260 year: 2020 end-page: 13268 ident: CR35 article-title: Observation of double indirect interlayer exciton in WSe /WS heterostructure publication-title: Opt. Express doi: 10.1364/OE.392052 – volume: 81 start-page: 205312 year: 2010 ident: CR20 article-title: Mott transitions of exciton polaritons and indirect excitons in a periodic potential publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.205312 – volume: 567 start-page: 81 year: 2019 end-page: 86 ident: CR16 article-title: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures publication-title: Nature doi: 10.1038/s41586-019-0986-9 – volume: 84 start-page: 026401 year: 2021 ident: CR34 article-title: Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/abdb98 – volume: 12 start-page: 2695 year: 2019 end-page: 2711 ident: CR5 article-title: Valleytronics in transition metal dichalcogenides materials publication-title: Nano Res. doi: 10.1007/s12274-019-2497-2 – volume: 11 start-page: 371 year: 2020 ident: CR12 article-title: Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene publication-title: Nat. Commun. doi: 10.1038/s41467-019-14207-w – ident: CR17 – volume: 13 start-page: 5485 year: 2013 end-page: 5490 ident: CR30 article-title: Electronic structural moiré pattern effects on MoS /MoSe 2D heterostructures publication-title: Nano Lett. doi: 10.1021/nl4030648 – volume: 324 start-page: 1530 year: 2009 end-page: 1534 ident: CR3 article-title: Graphene: Status and prospects publication-title: Science doi: 10.1126/science.1158877 – volume: 14 start-page: 2215 year: 2021 end-page: 2223 ident: CR6 article-title: Raman scattering investigation of twisted WS /MoS heterostructures: Interlayer mechanical coupling versus charge transfer publication-title: Nano Res. doi: 10.1007/s12274-020-3193-y – volume: 14 start-page: 1912 year: 2021 end-page: 1936 ident: CR2 article-title: Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives publication-title: Nano Res. doi: 10.1007/s12274-020-3126-9 – volume: 33 start-page: 2008333 year: 2021 ident: CR29 article-title: Large-scale mapping of moiré superlattices by hyperspectral Raman imaging publication-title: Adv. Mater. doi: 10.1002/adma.202008333 – volume: 11 start-page: 166 year: 2022 ident: CR10 article-title: Evidence for moiré intralayer excitons in twisted WSe /WSe homobilayer superlattices publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00854-0 – volume: 15 start-page: 7688 year: 2022 end-page: 7694 ident: CR22 article-title: Dynamic control of moiré potential in twisted WS -WSe heterostructures publication-title: Nano Res. doi: 10.1007/s12274-022-4579-9 – volume: 12 start-page: 1083 year: 2021 ident: CR27 article-title: Giant nonlinear optical activity in two-dimensional palladium diselenide publication-title: Nat. Commun. doi: 10.1038/s41467-021-21267-4 – volume: 580 start-page: 472 year: 2020 end-page: 477 ident: CR11 article-title: Strongly correlated electrons and hybrid excitons in a moiré heterostructure publication-title: Nature doi: 10.1038/s41586-020-2191-2 – volume: 15 start-page: 727 year: 2020 end-page: 729 ident: CR15 article-title: Excitons in a twisted world publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0744-z – volume: 14 start-page: 4182 year: 2021 end-page: 4187 ident: CR23 article-title: Ultrahigh-temperature ferromagnetism in MoS Moiré superlattice/graphene hybrid heterostructures publication-title: Nano Res. doi: 10.1007/s12274-021-3360-9 – volume: 37 start-page: 550 year: 1998 ident: CR32 article-title: Negative thermal quenching curves in photoluminescence of solids publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.37.550 – volume: 12 start-page: 1083 year: 2021 ident: 4964_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21267-4 – volume: 7 start-page: 699 year: 2012 ident: 4964_CR4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 33 start-page: 2008333 year: 2021 ident: 4964_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.202008333 – volume: 14 start-page: 1912 year: 2021 ident: 4964_CR2 publication-title: Nano Res. doi: 10.1007/s12274-020-3126-9 – volume: 7 start-page: 572 year: 2014 ident: 4964_CR18 publication-title: Nano Res. doi: 10.1007/s12274-014-0425-z – volume: 15 start-page: 2661 year: 2022 ident: 4964_CR8 publication-title: Nano Res. doi: 10.1007/s12274-021-3728-x – volume: 15 start-page: 7688 year: 2022 ident: 4964_CR22 publication-title: Nano Res. doi: 10.1007/s12274-022-4579-9 – volume: 105 start-page: L081108 year: 2022 ident: 4964_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.L081108 – volume: 567 start-page: 76 year: 2019 ident: 4964_CR24 publication-title: Nature doi: 10.1038/s41586-019-0976-y – volume: 13 start-page: 5485 year: 2013 ident: 4964_CR30 publication-title: Nano Lett. doi: 10.1021/nl4030648 – volume: 12 start-page: 2695 year: 2019 ident: 4964_CR5 publication-title: Nano Res. doi: 10.1007/s12274-019-2497-2 – volume: 16 start-page: 676 year: 2020 ident: 4964_CR19 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0845-5 – volume: 28 start-page: 13260 year: 2020 ident: 4964_CR35 publication-title: Opt. Express doi: 10.1364/OE.392052 – volume: 15 start-page: 727 year: 2020 ident: 4964_CR15 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0744-z – volume: 11 start-page: 371 year: 2020 ident: 4964_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14207-w – volume: 97 start-page: 035306 year: 2018 ident: 4964_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035306 – volume: 37 start-page: 550 year: 1998 ident: 4964_CR32 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.37.550 – volume: 11 start-page: 166 year: 2022 ident: 4964_CR10 publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00854-0 – volume: 21 start-page: 4461 year: 2021 ident: 4964_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01207 – volume: 4 start-page: 2695 year: 2010 ident: 4964_CR28 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 10 start-page: 603 year: 2015 ident: 4964_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.78 – volume: 15 start-page: 750 year: 2020 ident: 4964_CR21 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0728-z – ident: 4964_CR17 doi: 10.1007/s12274-022-4580-3 – volume: 3 start-page: e1701696 year: 2017 ident: 4964_CR26 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701696 – volume: 5 start-page: 12718 year: 2015 ident: 4964_CR33 publication-title: Sci. Rep. doi: 10.1038/srep12718 – volume: 84 start-page: 026401 year: 2021 ident: 4964_CR34 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/abdb98 – volume: 47 start-page: 3129 year: 2018 ident: 4964_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00887B – volume: 324 start-page: 1530 year: 2009 ident: 4964_CR3 publication-title: Science doi: 10.1126/science.1158877 – volume: 579 start-page: 353 year: 2020 ident: 4964_CR9 publication-title: Nature doi: 10.1038/s41586-020-2085-3 – volume: 567 start-page: 81 year: 2019 ident: 4964_CR16 publication-title: Nature doi: 10.1038/s41586-019-0986-9 – volume: 14 start-page: 4182 year: 2021 ident: 4964_CR23 publication-title: Nano Res. doi: 10.1007/s12274-021-3360-9 – volume: 556 start-page: 43 year: 2018 ident: 4964_CR31 publication-title: Nature doi: 10.1038/nature26160 – volume: 567 start-page: 66 year: 2019 ident: 4964_CR13 publication-title: Nature doi: 10.1038/s41586-019-0957-1 – volume: 14 start-page: 2215 year: 2021 ident: 4964_CR6 publication-title: Nano Res. doi: 10.1007/s12274-020-3193-y – volume: 81 start-page: 205312 year: 2010 ident: 4964_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.205312 – volume: 580 start-page: 472 year: 2020 ident: 4964_CR11 publication-title: Nature doi: 10.1038/s41586-020-2191-2 |
SSID | ssj0062148 |
Score | 2.4614277 |
Snippet | The formation of moiré superlattices in twisted van der Waals (vdW) homostructures provides a versatile platform for designing the electronic band structure of... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3429 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Materials Science Nanotechnology Research Article |
Title | Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices |
URI | https://link.springer.com/article/10.1007/s12274-022-4964-4 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPvFNDp6UYJtN0va4yuqiuIi6qKeSV1VYW9l20b_k7_CPOenDVVDBQ8hlksNMMg9m5huEdiNrpOGSkUCHgjCuI6KENgTEH2odSc9PXHPyeV_0Buz0lt_Wfdx5U-3epCRLTT1pdqMQQRFXfc4iwQibRjPche7wiAe006hfQf1yZFbVOwbWq0ll_nTFd2P0PRNaGpjjBTRfe4a4U4lyEU3ZdAnNfcELXEa6mQGKwdXEDulhNJTgM2OdjV1n7T2WqcFP2ePo_Q3bVw2_Nc2BDhcvTpoG31zRA1j4IXvKKuTY8cjifPzsLipcHVy-ggbH3eujHqmnJBDd5qwggpq2oTLQmoGqUoIbQyPJfRX5RjEPAiLFZODpNg2sCoxJIGKDMCbhNLRCBra9ilpplto1hHkE8gwYlwqMVpIESjIbJtY3PBRMinAdeQ27Yl1DiLtJFsN4An7sOBwDh2PH4Zito73PI88VfsZfxPuNDOL6K-W_U2_8i3oTzbpJ8VXB9RZqAY_tNvgThdpBM52Tu7Mu7Ifd_sXlTvmePgBpZcd8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIry9MAEsmhc20nGClEVaLvQCrbIrwBSm1RNK_hL_A7-GOcmoVQCJIZsFw939j10332H0FlojTRcMuLrQBDGdUiU0IaA-QOtQ1nzYjec3OmKVp_dPvLHYo47K9HuZUty5qnnw24UKiji0OcsFIywZbQCuUDgcFx92ijdr6DebGVWPjsG0atsZf50xGIwWuyEzgJMcxNtFJkhbuSm3EJLNtlG69_4AneQLneAYkg1sWN6GA8k5MxYp1M3WfuEZWLwMH0Zf7xj-6bhtSYZyOHJq7OmwQ_39BI-_JwO05w5djq2OJuO3EETh4PLdlG_ed27apFiSwLRdc4mRFBTN1T6WjNwVUpwY2gouadCzyhWg4JIMenXdJ36VvnGxFCxQRkTcxpYIX1b30OVJE3sPsI8BHv6jEsFQSuOfSWZDWLrGR4IJkVQRbVSXZEuKMTdJotBNCc_dhqOQMOR03DEquj865dRzp_xl_BFaYOoeErZ79IH_5I-RautXqcdtW-6d4dozW2Nz8HXR6gC-rbHkFtM1MnsLn0CczzHQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGJ97sGTsrTZ7m6SY1FLfRVBi97CvqJCm5QmRf-Sv8M_5myT-AAVPOQ22cPM7jyYme9D6CC0RhouGfF1IAjjOiRKaEPA_IHWoWx6sVtOvuqJbp-d3_P7kuc0q6bdq5ZksdPgUJqSvDEyceNz8Y1CNUXcJDoLBSNsFs2BN_bcte7TduWKBfWm9FnFHhlEsqqt-dMR3wPT967oNNh0ltFSmSXidmHWFTRjk1W0-AU7cA3pig8UQ9qJHerDeCAhf8Y6nbgt2wcsE4OH6dP47RXbFw0vN8lADufPzrIG393QBnz4MR2mBYrsZGxxNhm5g3I3E5eto37n9Pa4S0rGBKJbnOVEUNMyVPpaM3BbSnBjaCi5p0LPKNaE4kgx6Td1i_pW-cbEUL1BSRNzGlghfdvaQLUkTewmwjwE2_qMSwUBLI59JZkNYusZHggmRVBHzUpdkS7hxB2rxSD6BEJ2Go5Aw5HTcMTq6PDjl1GBpfGX8FFlg6h8Vtnv0lv_kt5H89cnnejyrHexjRYcgXwxh72DaqBuuwtpRq72plfpHRgBy30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+interlayer+coupling+and+moir%C3%A9+excitons+in+twisted+WS2%2FWS2+homostructure+superlattices&rft.jtitle=Nano+research&rft.au=Zheng%2C+Haihong&rft.au=Wu%2C+Biao&rft.au=Li%2C+Shaofei&rft.au=He%2C+Jun&rft.date=2023-02-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=16&rft.issue=2&rft.spage=3429&rft.epage=3434&rft_id=info:doi/10.1007%2Fs12274-022-4964-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_022_4964_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |