Development of Licorice Flavonoids Loaded Microemulsion for Transdermal Delivery Using CCD-Optimal Experimental Approach: Formulation Development and Characterization

In this research, we sought to surmount the poor dissolvability and transdermal absorption rate of licorice flavonoids (LFs) by fabricating a LFs microemulsion. LFs content was determined using high performance liquid chromatography. Initial studies such as dissolution testing, emulsification testin...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in nanotechnology Vol. 3
Main Authors Xin, Yang, Yun, Shi, Yuhe, Lu, Yinxue, Mao, Shurui, Niu, Yue, Zhou, Kunming, Qin, Weidong, Li
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 18.11.2021
Subjects
Online AccessGet full text
ISSN2673-3013
2673-3013
DOI10.3389/fnano.2021.748791

Cover

Abstract In this research, we sought to surmount the poor dissolvability and transdermal absorption rate of licorice flavonoids (LFs) by fabricating a LFs microemulsion. LFs content was determined using high performance liquid chromatography. Initial studies such as dissolution testing, emulsification testing, and pseudo ternary phase diagram generation were implemented for screening components and optimized adopting the central composite design. While the tested responses were solubility, droplet size and PDI, thirteen trials were performed using two different variables, oil percentage and optimized emulsifier and co-emulsifier ratio. Microemulsions were then characterized for droplet size, PDI, transmission electron microscopy, viscosity, electrical conductivity, pH, entrapment efficiency, drug content and stability. Additionally, skin release profile, percutaneous absorption and retention were investigated adopting Franz diffusion cell. The optimal formulation was found to compose of laureth-9 (emulsifier, 6.72 g), propylene glycol (co-emulsifier, 1.80 g), isopropyl myristate (IPM, oil, 1.48 g), LFs (1.50 g) and at least more than 85% deionized water. The optimized and storage for 3 months of microemulsion was found to clear, light yellow color without phase separation or precipitation indicated the stability of the preparation to long-term placement. The mean droplet size, PDI, entrapment efficiency and drug content were discovered as 12.68 ± 0.12 nm, 0.049 ± 0.005, 97.28 ± 0.13% and 122.67 ± 0.40 mg·g −1 , respectively. Furthermore, the optimal formulation sustained release LFs, remarkably deliver more LFs through the skin layer (644.95 ± 6.73 μg cm −2 ) and significantly retained LFs in the skin layer (9.98 μg cm −2 ). The study concluded that optimized microemulsion has potential and enhanced the dissolvability and cumulative penetration amount of LFs.
AbstractList In this research, we sought to surmount the poor dissolvability and transdermal absorption rate of licorice flavonoids (LFs) by fabricating a LFs microemulsion. LFs content was determined using high performance liquid chromatography. Initial studies such as dissolution testing, emulsification testing, and pseudo ternary phase diagram generation were implemented for screening components and optimized adopting the central composite design. While the tested responses were solubility, droplet size and PDI, thirteen trials were performed using two different variables, oil percentage and optimized emulsifier and co-emulsifier ratio. Microemulsions were then characterized for droplet size, PDI, transmission electron microscopy, viscosity, electrical conductivity, pH, entrapment efficiency, drug content and stability. Additionally, skin release profile, percutaneous absorption and retention were investigated adopting Franz diffusion cell. The optimal formulation was found to compose of laureth-9 (emulsifier, 6.72 g), propylene glycol (co-emulsifier, 1.80 g), isopropyl myristate (IPM, oil, 1.48 g), LFs (1.50 g) and at least more than 85% deionized water. The optimized and storage for 3 months of microemulsion was found to clear, light yellow color without phase separation or precipitation indicated the stability of the preparation to long-term placement. The mean droplet size, PDI, entrapment efficiency and drug content were discovered as 12.68 ± 0.12 nm, 0.049 ± 0.005, 97.28 ± 0.13% and 122.67 ± 0.40 mg·g−1, respectively. Furthermore, the optimal formulation sustained release LFs, remarkably deliver more LFs through the skin layer (644.95 ± 6.73 μg cm−2) and significantly retained LFs in the skin layer (9.98 μg cm−2). The study concluded that optimized microemulsion has potential and enhanced the dissolvability and cumulative penetration amount of LFs.
In this research, we sought to surmount the poor dissolvability and transdermal absorption rate of licorice flavonoids (LFs) by fabricating a LFs microemulsion. LFs content was determined using high performance liquid chromatography. Initial studies such as dissolution testing, emulsification testing, and pseudo ternary phase diagram generation were implemented for screening components and optimized adopting the central composite design. While the tested responses were solubility, droplet size and PDI, thirteen trials were performed using two different variables, oil percentage and optimized emulsifier and co-emulsifier ratio. Microemulsions were then characterized for droplet size, PDI, transmission electron microscopy, viscosity, electrical conductivity, pH, entrapment efficiency, drug content and stability. Additionally, skin release profile, percutaneous absorption and retention were investigated adopting Franz diffusion cell. The optimal formulation was found to compose of laureth-9 (emulsifier, 6.72 g), propylene glycol (co-emulsifier, 1.80 g), isopropyl myristate (IPM, oil, 1.48 g), LFs (1.50 g) and at least more than 85% deionized water. The optimized and storage for 3 months of microemulsion was found to clear, light yellow color without phase separation or precipitation indicated the stability of the preparation to long-term placement. The mean droplet size, PDI, entrapment efficiency and drug content were discovered as 12.68 ± 0.12 nm, 0.049 ± 0.005, 97.28 ± 0.13% and 122.67 ± 0.40 mg·g −1 , respectively. Furthermore, the optimal formulation sustained release LFs, remarkably deliver more LFs through the skin layer (644.95 ± 6.73 μg cm −2 ) and significantly retained LFs in the skin layer (9.98 μg cm −2 ). The study concluded that optimized microemulsion has potential and enhanced the dissolvability and cumulative penetration amount of LFs.
Author Weidong, Li
Xin, Yang
Kunming, Qin
Yinxue, Mao
Shurui, Niu
Yuhe, Lu
Yun, Shi
Yue, Zhou
Author_xml – sequence: 1
  givenname: Yang
  surname: Xin
  fullname: Xin, Yang
– sequence: 2
  givenname: Shi
  surname: Yun
  fullname: Yun, Shi
– sequence: 3
  givenname: Lu
  surname: Yuhe
  fullname: Yuhe, Lu
– sequence: 4
  givenname: Mao
  surname: Yinxue
  fullname: Yinxue, Mao
– sequence: 5
  givenname: Niu
  surname: Shurui
  fullname: Shurui, Niu
– sequence: 6
  givenname: Zhou
  surname: Yue
  fullname: Yue, Zhou
– sequence: 7
  givenname: Qin
  surname: Kunming
  fullname: Kunming, Qin
– sequence: 8
  givenname: Li
  surname: Weidong
  fullname: Weidong, Li
BookMark eNp1kcFu3CAQhlGUSk3SPEBvvIA3YLCxc4u82TbSRrkkZzSGISHyggXuqukD9Tlr77ZSVCknBob_mx_-c3IaYkBCvnK2EqJpr1yAEFclK_lKyUa1_ISclbUShWBcnL6rP5PLnF8ZY6VqJGfVGfm9xj0OcdxhmGh0dOtNTN4g3QywjyF6m-k2gkVL771JEXc_huxjoC4m-pggZItpBwNd4-D3mN7oU_bhmXbdungYJ7-0bn-OmPwyYd7cjGOKYF6u6SamGQbTQnvvAoKl3QskMNMs-3W48IV8cjBkvPy7XpCnze1j973YPny76262hRGVnIqa95wLK51gsrc9slrVora9NdxxhxJbxk0tWA9YNk42jWi5MRbrVhrTKhAX5O7ItRFe9Ti7hvSmI3h9OIjpWUOavBlQK2w4cFtZyUppRNujLCsupcDKoDJmZqkja_62nBM6bfx0eM2UwA-aM72kpw_p6SU9fUxvVvL_lP-cfKz5AzplpUM
CitedBy_id crossref_primary_10_3390_plants12142661
crossref_primary_10_3390_gels9060491
crossref_primary_10_1016_j_ijpharm_2022_121830
crossref_primary_10_22159_ijap_2024v16i5_51471
crossref_primary_10_46860_cgcijctr_2024_06_10_400
Cites_doi 10.1016/j.biopha.2018.10.021
10.1016/j.ijpharm.2015.09.066
10.1016/j.cmrp.2017.02.001
10.1016/j.jddst.2018.10.006
10.1016/j.jddst.2017.05.006
10.1016/j.jddst.2020.101641
10.1016/j.aimed.2019.01.006
10.1016/j.molliq.2019.03.159
10.1016/j.molliq.2008.05.006
10.1016/j.ijpharm.2017.04.020
10.1016/j.eujim.2020.101115
10.1016/j.jff.2019.04.010
10.16155/j.0254-1793.2020.12.04
10.1016/j.bcab.2020.101810
10.1016/j.ijpharm.2021.120766
10.1016/j.ijpharm.2020.119312
10.1016/j.matpr.2021.01.210
10.1016/j.addr.2020.02.002
10.1016/j.molliq.2021.116881
10.1016/j.phytol.2015.05.015
10.1016/j.psj.2021.101266
10.1016/j.jep.2013.02.004
10.1016/j.mpmed.2021.04.010
10.1016/j.colsurfb.2021.111652
10.1016/j.jchromb.2019.01.026
10.1016/j.jff.2020.103968
10.1016/j.colsurfb.2013.05.007
10.1016/j.jddst.2020.102110
10.1016/j.jtv.2020.03.004
10.1016/j.chroma.2008.07.072
10.1016/j.jddst.2020.101521
10.1016/j.ijpharm.2020.119887
10.1016/j.jiec.2020.04.019
10.1016/j.molstruc.2020.128295
10.1016/j.isci.2020.101358
10.1016/j.jep.2019.112439
10.1016/j.carbpol.2015.08.037
10.1016/j.colsurfa.2019.01.041
10.1016/j.ijpharm.2011.12.037
10.1016/j.jddst.2021.102320
10.1016/j.ijpharm.2014.02.012
10.1016/j.ijpharm.2020.119052
10.1016/j.meatsci.2019.107921
10.1016/j.ijbiomac.2017.10.039
10.1016/j.molliq.2018.10.034
10.1016/j.ijpharm.2017.05.005
10.1016/j.cocis.2016.05.011
10.1016/j.jddst.2020.102158
10.1016/j.jddst.2020.102008
10.1016/j.biopha.2018.12.006
10.1016/j.jep.2020.113216
10.1016/j.ijpharm.2017.06.050
10.1016/j.jddst.2019.101331
10.1016/j.molliq.2016.03.013
10.1016/j.foodchem.2013.03.089
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fnano.2021.748791
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-3013
ExternalDocumentID oai_doaj_org_article_7e81a1d5d4024c39be4251443e5ce7cc
10_3389_fnano_2021_748791
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c354t-61b113d4f304bdbe067636dbdc1f1fe4e901c630bae28f488391ccde694cc97a3
IEDL.DBID DOA
ISSN 2673-3013
IngestDate Wed Aug 27 01:29:00 EDT 2025
Tue Jul 01 02:14:29 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-61b113d4f304bdbe067636dbdc1f1fe4e901c630bae28f488391ccde694cc97a3
OpenAccessLink https://doaj.org/article/7e81a1d5d4024c39be4251443e5ce7cc
ParticipantIDs doaj_primary_oai_doaj_org_article_7e81a1d5d4024c39be4251443e5ce7cc
crossref_citationtrail_10_3389_fnano_2021_748791
crossref_primary_10_3389_fnano_2021_748791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-18
PublicationDateYYYYMMDD 2021-11-18
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-18
  day: 18
PublicationDecade 2020
PublicationTitle Frontiers in nanotechnology
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zewail (B52) 2021; 61
Hasil (B22) 2020; 1216
Liu (B30) 2013; 146
Zhang (B53) 2009; 1216
Guo (B21) 2019; 567
Shewaiter (B44) 2021; 61
Dal Bosco (B10) 2019; 158
Jiang (B24) 2020; 249
Kazemi (B26) 2020; 29
El Khayat (B11) 2018; 48
Rainforest (B40) 2019; 6
Buyuktimkin (B7) 2020; 56
Park (B36) 2021; 604
Luo (B32) 2019
Akilu (B3) 2019; 284
Amuti (B5) 2021; 336
Wang (B49) 2019; 57
Lakhan (B28) 2021; 49
Fu (B16) 2013; 141
Bharatiya (B6) 2016; 218
Hathout (B23) 2013; 110
Ruan (B42) 2020; 70
Agrawal (B2) 2021; 201
Liu (B31) 2020; 590
Kuchlyan (B27) 2016; 25
Mandpe (B33) 2021; 45
Castangia (B9) 2015; 134
Franklyne (B15) 2021; 61
Poh (B38) 2019; 273
Migas (B34) 2015; 13
Yang (B50) 2020; 263
Saeedi (B43) 2019; 110
Goindi (B19) 2015; 495
Fanun (B14) 2008; 142
Ghadiri (B18) 2012; 424
Kaur (B25) 2017; 39
Zhang (B54) 2020; 88
Ge (B17) 2014; 465
Agrawal (B1) 2017; 7
Villanueva-Martínez (B47) 2020; 582
You (B51) 2019; 54
Sun (B46) 2020; 36
Faccio (B13) 2020; 23
Zhou Gang (B55) 2020; 40
Laothaweerungsawat (B29) 2020; 579
Patel (B37) 2020; 29
Mishra (B35) 2018; 107
Reda (B41) 2021; 100
Callender (B8) 2017; 526
Ephrem (B12) 2017; 526
Rachmin (B39) 2020; 153
Alves (B4) 2020; 60
Wan (B48) 2017; 528
Gull (B20) 2020; 57
Shukla (B45) 2018; 108
References_xml – volume: 108
  start-page: 1477
  year: 2018
  ident: B45
  article-title: Biomedical Applications of Microemulsion through Dermal and Transdermal Route
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.10.021
– volume: 495
  start-page: 913
  year: 2015
  ident: B19
  article-title: An Ionic Liquid-In-Water Microemulsion as a Potential Carrier for Topical Delivery of Poorly Water Soluble Drug: Development, Ex-Vivo and In-Vivo Evaluation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.09.066
– volume: 7
  start-page: 47
  year: 2017
  ident: B1
  article-title: Current Status of Mercury Level in Skin Whitening Creams
  publication-title: Curr. Med. Res. Pract.
  doi: 10.1016/j.cmrp.2017.02.001
– volume: 48
  start-page: 311
  year: 2018
  ident: B11
  article-title: Optimization of Eugenol Microemulsion for Transdermal Delivery of Indomethacin
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2018.10.006
– volume: 39
  start-page: 523
  year: 2017
  ident: B25
  article-title: Oral Microemulsion of Phytoconstituent Found in Licorice as Chemopreventive against Benzo( a )pyrene Induced Forestomach Tumors in Experimental Mice Model
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2017.05.006
– volume: 57
  start-page: 101641
  year: 2020
  ident: B20
  article-title: Effect of Polyherbal Microemulsion on Staphylococcus Epidermidis: Formulation Development, CCD Based Optimization, Characterization, and Antibacterial Activity by Scanning Electron Microscopy
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2020.101641
– volume: 6
  start-page: 95
  year: 2019
  ident: B40
  article-title: Natural Products Regulation - Getting the Balance Right. The Case of Arbutin
  publication-title: Adv. Integr. Med.
  doi: 10.1016/j.aimed.2019.01.006
– volume: 284
  start-page: 780
  year: 2019
  ident: B3
  article-title: Viscosity, Electrical and thermal Conductivities of Ethylene and Propylene Glycol-Based β-SiC Nanofluids
  publication-title: J. Mol. Liquids
  doi: 10.1016/j.molliq.2019.03.159
– volume: 142
  start-page: 103
  year: 2008
  ident: B14
  article-title: A Study of the Properties of Mixed Nonionic Surfactants Microemulsions by NMR, SAXS, Viscosity and Conductivity
  publication-title: J. Mol. Liquids
  doi: 10.1016/j.molliq.2008.05.006
– volume: 526
  start-page: 50
  year: 2017
  ident: B12
  article-title: Improvement of Skin Whitening Agents Efficiency through Encapsulation: Current State of Knowledge
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.04.020
– volume: 36
  start-page: 101115
  year: 2020
  ident: B46
  article-title: Comparison of Chinese Licorice (Glycyrrhiza Uralensis) Granules and Water Extracts and Investigation of Their Antibacterial Activities for Veterinary Application
  publication-title: Eur. J. Integr. Med.
  doi: 10.1016/j.eujim.2020.101115
– volume: 57
  start-page: 190
  year: 2019
  ident: B49
  article-title: Licorice Flavonoids Nanoparticles Prepared by Liquid Antisolvent Re-crystallization Exhibit Higher Oral Bioavailability and Antioxidant Activity in Rat
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2019.04.010
– volume: 40
  start-page: 2126
  year: 2020
  ident: B55
  article-title: In Vitro Transdermal Permeation Consistency Investigation of Two Tacrolimus Ointments by Franz Cell Diffusion
  publication-title: Chin. J. Pharm. Anal.
  doi: 10.16155/j.0254-1793.2020.12.04
– volume: 29
  start-page: 101810
  year: 2020
  ident: B37
  article-title: Etodolac Loaded Solid Lipid Nanoparticle Based Topical Gel for Enhanced Skin Delivery
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2020.101810
– volume: 604
  start-page: 120766
  year: 2021
  ident: B36
  article-title: Development of a Novel Cannabinoid-Loaded Microemulsion towards an Improved Stability and Transdermal Delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120766
– volume: 582
  start-page: 119312
  year: 2020
  ident: B47
  article-title: Evaluating Two Nanocarrier Systems for the Transdermal Delivery of Sodium Alendronate
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119312
– volume: 45
  start-page: 4777
  year: 2021
  ident: B33
  article-title: Method Optimization and Analysis of Flurbiprofen Loaded Eudragit L100 Nanoparticles Using RP-HPLC Technique: A central Composite Design Approach
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.01.210
– volume: 153
  start-page: 65
  year: 2020
  ident: B39
  article-title: Topical Treatment Strategies to Manipulate Human Skin Pigmentation
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.02.002
– volume: 336
  start-page: 116881
  year: 2021
  ident: B5
  article-title: Formulation and Characterization of Curcumin-Loaded Microemulsions: Evaluation of Antioxidant Stability and In Vitro Release
  publication-title: J. Mol. Liquids
  doi: 10.1016/j.molliq.2021.116881
– volume: 13
  start-page: 35
  year: 2015
  ident: B34
  article-title: The Significance of Arbutin and its Derivatives in Therapy and Cosmetics
  publication-title: Phytochem. Lett.
  doi: 10.1016/j.phytol.2015.05.015
– volume: 100
  start-page: 101266
  year: 2021
  ident: B41
  article-title: Dietary Effect of Licorice (Glycyrrhiza Glabra) on Quail Performance, Carcass, Blood Metabolites and Intestinal Microbiota
  publication-title: Poult. Sci.
  doi: 10.1016/j.psj.2021.101266
– volume: 146
  start-page: 773
  year: 2013
  ident: B30
  article-title: Systems Approaches and Polypharmacology for Drug Discovery from Herbal Medicines: An Example Using Licorice
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2013.02.004
– volume: 49
  start-page: 447
  year: 2021
  ident: B28
  article-title: Skin Pigmentation
  publication-title: Medicine
  doi: 10.1016/j.mpmed.2021.04.010
– volume: 201
  start-page: 111652
  year: 2021
  ident: B2
  article-title: Design and Evaluation of Microemulsion-Based Efinaconazole Formulations for Targeted Treatment of Onychomycosis Through Transungual Route: Ex Vivo and Nail Clipping Studies
  publication-title: Colloids Surf. B: Biointerf.
  doi: 10.1016/j.colsurfb.2021.111652
– start-page: 134
  year: 2019
  ident: B32
  article-title: Enrichment of Total Flavones and Licochalcone A from Licorice Residues and its Hypoglycemic Activity
  publication-title: J. Chromatogr. B.
  doi: 10.1016/j.jchromb.2019.01.026
– volume: 70
  start-page: 103968
  year: 2020
  ident: B42
  article-title: Potential Role of mTORC1 and the PI3K-Akt Pathway in Anti-acne Properties of Licorice Flavonoids
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2020.103968
– volume: 110
  start-page: 254
  year: 2013
  ident: B23
  article-title: Transdermal Delivery of Betahistine Hydrochloride Using Microemulsions: Physical Characterization, Biophysical Assessment, Confocal Imaging and Permeation Studies
  publication-title: Colloids Surf. B: Biointerf.
  doi: 10.1016/j.colsurfb.2013.05.007
– volume: 61
  start-page: 102110
  year: 2021
  ident: B44
  article-title: Formulation and Characterization of Leflunomide/diclofenac Sodium Microemulsion Base-Gel for the Transdermal Treatment of Inflammatory Joint Diseases
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2020.102110
– volume: 29
  start-page: 116
  year: 2020
  ident: B26
  article-title: Deep Skin Wound Healing Potential of Lavender Essential Oil and Licorice Extract in a Nanoemulsion Form: Biochemical, Histopathological and Gene Expression Evidences
  publication-title: J. Tissue Viability
  doi: 10.1016/j.jtv.2020.03.004
– volume: 1216
  start-page: 1954
  year: 2009
  ident: B53
  article-title: Chemical Analysis of the Chinese Herbal Medicine Gan-Cao (Licorice)
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2008.07.072
– volume: 56
  start-page: 101521
  year: 2020
  ident: B7
  article-title: Water Titration Studies on Microemulsions with a Nonionic Surfactant Derived from castor Oil and a Series of Polar Oils
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2020.101521
– volume: 590
  start-page: 119887
  year: 2020
  ident: B31
  article-title: Enhanced Oral Bioavailability of Bisdemethoxycurcumin-Loaded Self-Microemulsifying Drug Delivery System: Formulation Design, In Vitro and In Vivo Evaluation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119887
– volume: 88
  start-page: 241
  year: 2020
  ident: B54
  article-title: Codelivery of Hydrophilic and Hydrophobic Drugs in a Microneedle Patch for the Treatment of Skin Pigmentation
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.04.019
– volume: 1216
  start-page: 128295
  year: 2020
  ident: B22
  article-title: Experimental and Theoretical Charge Density Analysis of Skin Whitening Agent Kojic Acid
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2020.128295
– volume: 23
  start-page: 101358
  year: 2020
  ident: B13
  article-title: Plant Complexity and Cosmetic Innovation
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101358
– volume: 249
  start-page: 112439
  year: 2020
  ident: B24
  article-title: An "essential Herbal Medicine"-Licorice: A Review of Phytochemicals and its Effects in Combination Preparations
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2019.112439
– volume: 134
  start-page: 657
  year: 2015
  ident: B9
  article-title: Delivery of Liquorice Extract by Liposomes and Hyalurosomes to Protect the Skin against Oxidative Stress Injuries
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.08.037
– volume: 567
  start-page: 288
  year: 2019
  ident: B21
  article-title: Microstructural Transitions in β-carotene Loaded Nonionic Microemulsions upon Aqueous Phase Dilution
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2019.01.041
– volume: 424
  start-page: 128
  year: 2012
  ident: B18
  article-title: Loading Hydrophilic Drug in Solid Lipid media as Nanoparticles: Statistical Modeling of Entrapment Efficiency and Particle Size
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.12.037
– volume: 61
  start-page: 102320
  year: 2021
  ident: B52
  article-title: Preparation and In Vitro Characterization of a Novel Self-Nano Emulsifying Drug Delivery System for a Fixed-Dose Combination of Candesartan Cilexetil and Hydrochlorothiazide
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2021.102320
– volume: 465
  start-page: 120
  year: 2014
  ident: B17
  article-title: Percutaneous Delivery of Econazole Using Microemulsion as Vehicle: Formulation, Evaluation and Vesicle-Skin Interaction
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.02.012
– volume: 579
  start-page: 119052
  year: 2020
  ident: B29
  article-title: Transdermal Delivery Enhancement of Carvacrol from Origanum Vulgare L. Essential Oil by Microemulsion
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119052
– volume: 158
  start-page: 107921
  year: 2019
  ident: B10
  article-title: The Antioxidant Effectiveness of Liquorice (Glycyrrhiza Glabra L.) Extract Administered as Dietary Supplementation And/or as a Burger Additive in Rabbit Meat
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2019.107921
– volume: 107
  start-page: 1717
  year: 2018
  ident: B35
  article-title: Liranaftate Loaded Xanthan Gum Based Hydrogel for Topical Delivery: Physical Properties and Ex-Vivo Permeability
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.10.039
– volume: 273
  start-page: 339
  year: 2019
  ident: B38
  article-title: Formulation and Characterisation of 1-Ethyl-3-Methylimidazolium Acetate-In-Oil Microemulsions as the Potential Vehicle for Drug Delivery across the Skin Barrier
  publication-title: J. Mol. Liquids
  doi: 10.1016/j.molliq.2018.10.034
– volume: 526
  start-page: 425
  year: 2017
  ident: B8
  article-title: Microemulsion Utility in Pharmaceuticals: Implications for Multi-Drug Delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.05.005
– volume: 25
  start-page: 27
  year: 2016
  ident: B27
  article-title: Ionic Liquids in Microemulsions: Formulation and Characterization
  publication-title: Curr. Opin. Colloid Interf. Sci.
  doi: 10.1016/j.cocis.2016.05.011
– volume: 61
  start-page: 102158
  year: 2021
  ident: B15
  article-title: Role of Triclosan Microemulsion against Triclosan Resistant Clones of Bacterial Pathogens
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2020.102158
– volume: 60
  start-page: 102008
  year: 2020
  ident: B4
  article-title: A Review on Developments and Prospects of Anti-Inflammatory in Microemulsions
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2020.102008
– volume: 110
  start-page: 582
  year: 2019
  ident: B43
  article-title: Kojic Acid Applications in Cosmetic and Pharmaceutical Preparations
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.12.006
– volume: 263
  start-page: 113216
  year: 2020
  ident: B50
  article-title: The Anti-diabetic Activity of Licorice, a Widely Used Chinese Herb
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2020.113216
– volume: 528
  start-page: 511
  year: 2017
  ident: B48
  article-title: Dual Roles of TPGS Based Microemulsion for Tacrolimus: Enhancing the Percutaneous Delivery and Anti-psoriatic Efficacy
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.06.050
– volume: 54
  start-page: 101331
  year: 2019
  ident: B51
  article-title: Development and Application of an Osthole Microemulsion Hydrogel for External Drug Evaluation
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2019.101331
– volume: 218
  start-page: 586
  year: 2016
  ident: B6
  article-title: Formulation of Pyridinium Based RTIL-In-Cyclohexane Microemulsions: Investigations on Size, Conductivity and Molecular Interactions
  publication-title: J. Mol. Liquids
  doi: 10.1016/j.molliq.2016.03.013
– volume: 141
  start-page: 1063
  year: 2013
  ident: B16
  article-title: Antioxidant and Anti-inflammatory Activities of Six Flavonoids Separated from Licorice
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.03.089
SSID ssj0002784105
Score 2.1925695
Snippet In this research, we sought to surmount the poor dissolvability and transdermal absorption rate of licorice flavonoids (LFs) by fabricating a LFs...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms central composite design
formulation evaluation
licorice flavonoids
microemulsion
pseudo ternary phase diagram
transdermal delivery
Title Development of Licorice Flavonoids Loaded Microemulsion for Transdermal Delivery Using CCD-Optimal Experimental Approach: Formulation Development and Characterization
URI https://doaj.org/article/7e81a1d5d4024c39be4251443e5ce7cc
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqPgmB09CNWnSduNt3QeLuHpR8FbymIBSW9FdwYs_x9_ppK1LvejFSw9pGsLMJPNNM_mGkGPtBeepyyJIMxbJOPaRgsxG6KuAWQFa1sTzs-t0eicv75P7TqmvkBPW0AM3gjvLoM81d4nDQEdaoQyglWEUICCxOKgNuy9TrBNMPX4fp7GkOcbEKEyd-VKX4bJfzE8zBOmK_3BEHb7-2rFM1slaiwjpoJnJBlmBcpN8dpJ5aOXpFSos0P_QSaHfqrJ6cK_0qtIOHJ2FlDp4WhThvxdFDEpr_-PCllvQERQh8-Kd1rkBdDgcRTe4S4RX4w65Px203OLndIIotq3pRbuz0KWjwyW9c3N7c4vcTca3w2nUllSIrEjkHANFw7lw0gsmjTOAvioVqTPOcs89SEB4YFPBjIa473FxC8WtdZAqaa3KtNgmvbIqYYdQBGrYjss_tgajQpQx9JXWRjsVW-3ZLmHf8s1tyzceyl4UOcYdQSV5rZI8qCRvVLJLTpafPDdkG791vghKW3YMPNl1A1pP3lpP_pf17P3HIPtkNcwr3FDk_QPSm78s4BChytwc1VaJz9nH-Atjl-ye
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Licorice+Flavonoids+Loaded+Microemulsion+for+Transdermal+Delivery+Using+CCD-Optimal+Experimental+Approach%3A+Formulation+Development+and+Characterization&rft.jtitle=Frontiers+in+nanotechnology&rft.au=Xin%2C+Yang&rft.au=Yun%2C+Shi&rft.au=Yuhe%2C+Lu&rft.au=Yinxue%2C+Mao&rft.date=2021-11-18&rft.issn=2673-3013&rft.eissn=2673-3013&rft.volume=3&rft_id=info:doi/10.3389%2Ffnano.2021.748791&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnano_2021_748791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3013&client=summon