Layer-dependent Dzyaloshinskii–Moriya interaction and field-free topological magnetism in two-dimensional Janus MnSTe

Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic devices. Recently, much effort has been devoted to searching for skyrmion host materials in two-dimensional (2D) systems, where intrinsic invers...

Full description

Saved in:
Bibliographic Details
Published in2d materials Vol. 10; no. 3; pp. 35020 - 35028
Main Authors Ga, Yonglong, Yu, Dongxing, Wang, Liming, Li, Peng, Liang, Jinghua, Yang, Hongxin
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic devices. Recently, much effort has been devoted to searching for skyrmion host materials in two-dimensional (2D) systems, where intrinsic inversion symmetry breaking and a large Dzyaloshinskii–Moriya interaction (DMI) are desirable to realize a field-free skyrmion state. Among these systems, 2D magnetic Janus materials have become important candidates for inducing a sizable DMI and chiral spin textures. Herein, we demonstrate that layer-dependent DMI and field-free magnetic skyrmions can exist in multilayer MnSTe. Moreover, strong interlayer exchange coupling and Bethe–Slater curve-like behaviors arising from the Mn–Mn double exchange mechanism are found in bilayer MnSTe. We also uncover that the distribution of DMIs in multilayer MnSTe can be understood as making a significant contribution to the intermediate DMI using the three-site Fert–Lévy model. Our results unveil great potential for designing skyrmion-based spintronic devices in multilayer 2D materials.
AbstractList Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic devices. Recently, much effort has been devoted to searching for skyrmion host materials in two-dimensional (2D) systems, where intrinsic inversion symmetry breaking and a large Dzyaloshinskii–Moriya interaction (DMI) are desirable to realize a field-free skyrmion state. Among these systems, 2D magnetic Janus materials have become important candidates for inducing a sizable DMI and chiral spin textures. Herein, we demonstrate that layer-dependent DMI and field-free magnetic skyrmions can exist in multilayer MnSTe. Moreover, strong interlayer exchange coupling and Bethe–Slater curve-like behaviors arising from the Mn–Mn double exchange mechanism are found in bilayer MnSTe. We also uncover that the distribution of DMIs in multilayer MnSTe can be understood as making a significant contribution to the intermediate DMI using the three-site Fert–Lévy model. Our results unveil great potential for designing skyrmion-based spintronic devices in multilayer 2D materials.
Author Ga, Yonglong
Yang, Hongxin
Li, Peng
Liang, Jinghua
Wang, Liming
Yu, Dongxing
Author_xml – sequence: 1
  givenname: Yonglong
  surname: Ga
  fullname: Ga, Yonglong
  organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China
– sequence: 2
  givenname: Dongxing
  surname: Yu
  fullname: Yu, Dongxing
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China
– sequence: 3
  givenname: Liming
  surname: Wang
  fullname: Wang, Liming
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China
– sequence: 4
  givenname: Peng
  orcidid: 0000-0003-0852-1604
  surname: Li
  fullname: Li, Peng
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China
– sequence: 5
  givenname: Jinghua
  surname: Liang
  fullname: Liang, Jinghua
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China
– sequence: 6
  givenname: Hongxin
  surname: Yang
  fullname: Yang, Hongxin
  organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China
BookMark eNp9kE9LxDAQxYMoqKt3j715sW7amqQ9yvqfXTyo5zCbTDXaJiWJLOvJ7-A39JPYsiIi6mkeM-_3YN42WbfOIiF7GT3MaFmOc8qKNGNlMQalc6zWyNbXav2b3iS7ITxSSjPBi6OMb5HFFJboU40dWo02JicvS2hceDA2PBnz_vo2c94sITE2ogcVjbMJWJ3UBhud1h4xia5zjbs3CpqkhXuL0YS2B5K4cKk2LdrQU_3xCuxzSGb25hZ3yEYNTcDdzzkid2ent5OLdHp9fjk5nqaqYEcxZWpOxTwTNed5LkAIWpWaIdeVQg2l5kyLealqJnrNK0DOIRcZZVVJFQNVjAhd5SrvQvBYy86bFvxSZlQO3cmhHDmUI1fd9Qj_gSgTYXg8ejDNf-D-CjSuk4_u2fc_B5nrdkAKSQtGcyo7XffOg1-cfwZ_AFphlME
CitedBy_id crossref_primary_10_1088_1674_1056_ad6a0e
crossref_primary_10_1103_PhysRevResearch_6_043158
crossref_primary_10_1103_PhysRevB_108_184424
crossref_primary_10_1002_pssr_202300316
Cites_doi 10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.102.220409
10.1126/sciadv.aaw5685
10.1038/s41565-018-0063-9
10.1103/PhysRevB.107.054408
10.1038/s41563-021-00927-2
10.1038/nnano.2017.100
10.1038/nmat2916
10.1103/PhysRevResearch.3.013027
10.1209/0295-5075/100/57002
10.1038/s41467-020-19779-6
10.1103/PhysRevB.102.241107
10.1021/jacs.0c07051
10.1126/science.aav4450
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.99.060407
10.1038/nnano.2013.29
10.1103/PhysRevLett.44.1538
10.1103/PhysRevB.103.174422
10.1063/1.3562445
10.1038/s41524-022-00809-4
10.1103/PhysRevB.104.174433
10.1021/acs.nanolett.2c00836
10.1021/acs.jpclett.7b02841
10.1088/0953-8984/9/4/002
10.1038/s41467-020-17566-x
10.1038/s41565-019-0438-6
10.1103/PhysRevB.101.060404
10.1021/acs.nanolett.8b03315
10.1103/PhysRevB.100.104410
10.1103/PhysRevB.102.020402
10.1038/nnano.2015.315
10.1038/s41565-021-00936-x
10.1016/0022-3697(58)90076-3
10.1038/nature22060
10.1063/1.4876128
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.130.056701
10.1038/nature22391
10.1103/PhysRevB.106.024419
10.1021/acsnano.7b03313
10.1103/PhysRevLett.128.177202
10.1021/acs.nanolett.8b03321
10.4028/www.scientific.net/MSF.59-60.439
10.1063/1.3382344
10.1088/0953-8984/20/31/315203
10.1038/natrevmats.2017.31
10.1038/s41586-019-1840-9
10.1038/s41563-018-0149-7
10.1103/PhysRevB.101.184401
10.1103/PhysRevB.106.054426
10.1103/PhysRevB.102.094425
10.1103/PhysRevLett.115.267210
10.1021/acsnano.7b03186
10.1016/j.jmmm.2015.07.026
10.1103/PhysRevB.103.L140406
10.1038/ncomms5030
10.1103/PhysRevLett.122.257202
10.1103/PhysRevB.47.558
10.1103/PhysRevB.96.024450
10.1016/j.physb.2009.06.070
10.1021/acs.nanolett.8b00683
10.1103/PhysRev.120.91
10.1021/acsnano.1c09150
10.1093/nsr/nwac021
10.1002/pssb.202100562
10.1103/PhysRevB.84.224429
10.1038/s41586-021-03219-6
10.1038/s41563-018-0204-4
10.1103/PhysRevB.96.041410
10.1103/PhysRevB.103.104410
10.1103/PhysRevB.99.144401
10.1038/s41586-022-04768-0
10.1038/s42254-022-00529-0
10.1103/PhysRevLett.125.037203
10.1103/PhysRevResearch.3.L012026
10.1103/PhysRevMaterials.3.031001
10.1126/science.aax8156
10.1021/acs.nanolett.1c02096
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd
Copyright_xml – notice: 2023 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/2053-1583/acd2e9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2053-1583
ExternalDocumentID 10_1088_2053_1583_acd2e9
tdmacd2e9
GrantInformation_xml – fundername: Ningbo Key Scientific and Technological Project
  grantid: 2021000215
– fundername: Beijing National Laboratory for Condensed Matter Physics
  grantid: 2021000123
– fundername: Zhejiang Provincial Natural Science Foundation
  grantid: LR19A040002
– fundername: Key Research Program of Frontier Sciences, CAS
  grantid: ZDBS-LY-7021
– fundername: National Natural Science Foundation of China
  grantid: 11874059; 12174405
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Program of Zhejiang Province
  grantid: 2022C01053
GroupedDBID 5VS
AAGCD
AAJIO
AATNI
ABHWH
ABVAM
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
CEBXE
CJUJL
CRLBU
EBS
IIPPG
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
ROL
RPA
AAYXX
ABJNI
ADEQX
CITATION
ID FETCH-LOGICAL-c354t-5cb07b17f66227a77098d5e6d9ceda8d65d7b8cf578d669ae66a27105980c5ac3
IEDL.DBID IOP
ISSN 2053-1583
IngestDate Thu Apr 24 22:51:51 EDT 2025
Tue Jul 01 02:04:01 EDT 2025
Wed Aug 21 03:34:49 EDT 2024
Wed Jun 07 11:19:00 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-5cb07b17f66227a77098d5e6d9ceda8d65d7b8cf578d669ae66a27105980c5ac3
Notes 2DM-108382.R1
ORCID 0000-0003-0852-1604
OpenAccessLink https://iopscience.iop.org/article/10.1088/2053-1583/acd2e9/pdf
PageCount 9
ParticipantIDs crossref_primary_10_1088_2053_1583_acd2e9
crossref_citationtrail_10_1088_2053_1583_acd2e9
iop_journals_10_1088_2053_1583_acd2e9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle 2d materials
PublicationTitleAbbrev 2DM
PublicationTitleAlternate 2D Mater
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Gibertini (tdmacd2e9bib4) 2019; 14
Yang (tdmacd2e9bib44) 2015; 115
Perdew (tdmacd2e9bib67) 1996; 77
Ma (tdmacd2e9bib78) 2014; 104
Bonilla (tdmacd2e9bib13) 2018; 13
Jani (tdmacd2e9bib19) 2021; 590
Fert (tdmacd2e9bib75) 1990; 59–60
Sun (tdmacd2e9bib32) 2020; 11
Li (tdmacd2e9bib61) 2017; 8
Skomski (tdmacd2e9bib77) 2011; 109
Sierra (tdmacd2e9bib5) 2021; 16
Jang (tdmacd2e9bib49) 2019; 3
Yang (tdmacd2e9bib2) 2022; 606
Dong (tdmacd2e9bib58) 2017; 11
Xu (tdmacd2e9bib56) 2020; 101
Fei (tdmacd2e9bib10) 2018; 17
Yu (tdmacd2e9bib27) 2023; 130
Wang (tdmacd2e9bib7) 2022; 10
Huang (tdmacd2e9bib9) 2017; 546
Yu (tdmacd2e9bib6) 2022; 9
Deng (tdmacd2e9bib51) 2020; 367
Zhang (tdmacd2e9bib59) 2020; 142
Fert (tdmacd2e9bib74) 1980; 44
Kresse (tdmacd2e9bib65) 1993; 47
Heide (tdmacd2e9bib40) 2009; 404
Yu (tdmacd2e9bib37) 2019; 100
Yu (tdmacd2e9bib16) 2011; 10
Dupe (tdmacd2e9bib72) 2014; 5
Moriya (tdmacd2e9bib39) 1960; 120
Anisimov (tdmacd2e9bib68) 1997; 9
Skubic (tdmacd2e9bib80) 2008; 20
Borisov (tdmacd2e9bib42) 2021; 103
Bogdanov (tdmacd2e9bib15) 1989; 95
Cui (tdmacd2e9bib54) 2020; 102
Liang (tdmacd2e9bib25) 2020; 102
Boulle (tdmacd2e9bib73) 2016; 11
Dzyaloshinsky (tdmacd2e9bib38) 1958; 4
Du (tdmacd2e9bib22) 2022; 22
Akram (tdmacd2e9bib31) 2021; 21
Gong (tdmacd2e9bib3) 2019; 363
Zhang (tdmacd2e9bib63) 2017; 11
Fert (tdmacd2e9bib17) 2017; 2
Li (tdmacd2e9bib52) 2019; 5
Zhang (tdmacd2e9bib57) 2020; 102
Sivadas (tdmacd2e9bib46) 2018; 18
Kresse (tdmacd2e9bib64) 1996; 54
Kresse (tdmacd2e9bib66) 1996; 6
Zhou (tdmacd2e9bib70) 2015; 395
Li (tdmacd2e9bib12) 2021; 20
Ga (tdmacd2e9bib21) 2022; 106
Wang (tdmacd2e9bib36) 2018; 17
Wang (tdmacd2e9bib79) 2020; 102
Thiaville (tdmacd2e9bib14) 2012; 100
Xu (tdmacd2e9bib26) 2020; 125
Zhang (tdmacd2e9bib47) 2021; 104
Yang (tdmacd2e9bib45) 2023; 5
Liang (tdmacd2e9bib53) 2020; 101
Li (tdmacd2e9bib33) 2021; 3
Gong (tdmacd2e9bib8) 2017; 546
Akram (tdmacd2e9bib30) 2021; 103
Xiang (tdmacd2e9bib43) 2011; 84
Fert (tdmacd2e9bib1) 2013; 8
Edstrom (tdmacd2e9bib20) 2022; 128
Park (tdmacd2e9bib35) 2021; 103
Sandratskii (tdmacd2e9bib41) 2017; 96
Ga (tdmacd2e9bib24) 2022; 8
Göbel (tdmacd2e9bib18) 2019; 99
Lu (tdmacd2e9bib62) 2017; 12
Tong (tdmacd2e9bib28) 2018; 18
Li (tdmacd2e9bib55) 2023; 107
Grimme (tdmacd2e9bib71) 2010; 132
Li (tdmacd2e9bib23) 2022; 106
Sui (tdmacd2e9bib69) 2017; 96
Jiang (tdmacd2e9bib48) 2019; 99
Tang (tdmacd2e9bib60) 2022; 259
O’Hara (tdmacd2e9bib11) 2018; 18
Xiao (tdmacd2e9bib29) 2021; 3
Otrokov (tdmacd2e9bib50) 2019; 576
Wu (tdmacd2e9bib34) 2020; 11
Vedmedenko (tdmacd2e9bib76) 2019; 122
References_xml – volume: 77
  start-page: 3865
  year: 1996
  ident: tdmacd2e9bib67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 102
  year: 2020
  ident: tdmacd2e9bib25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.220409
– volume: 5
  start-page: eaaw5685
  year: 2019
  ident: tdmacd2e9bib52
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw5685
– volume: 13
  start-page: 289
  year: 2018
  ident: tdmacd2e9bib13
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0063-9
– volume: 107
  year: 2023
  ident: tdmacd2e9bib55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.054408
– volume: 20
  start-page: 818
  year: 2021
  ident: tdmacd2e9bib12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00927-2
– volume: 12
  start-page: 744
  year: 2017
  ident: tdmacd2e9bib62
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.100
– volume: 10
  start-page: 106
  year: 2011
  ident: tdmacd2e9bib16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2916
– volume: 3
  year: 2021
  ident: tdmacd2e9bib29
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.013027
– volume: 100
  year: 2012
  ident: tdmacd2e9bib14
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/100/57002
– volume: 11
  start-page: 5930
  year: 2020
  ident: tdmacd2e9bib32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19779-6
– volume: 102
  year: 2020
  ident: tdmacd2e9bib57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.241107
– volume: 142
  start-page: 17499
  year: 2020
  ident: tdmacd2e9bib59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07051
– volume: 363
  start-page: eaav4450
  year: 2019
  ident: tdmacd2e9bib3
  publication-title: Science
  doi: 10.1126/science.aav4450
– volume: 6
  start-page: 15
  year: 1996
  ident: tdmacd2e9bib66
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 99
  year: 2019
  ident: tdmacd2e9bib18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.060407
– volume: 8
  start-page: 152
  year: 2013
  ident: tdmacd2e9bib1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.29
– volume: 44
  start-page: 1538
  year: 1980
  ident: tdmacd2e9bib74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.44.1538
– volume: 103
  year: 2021
  ident: tdmacd2e9bib42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.174422
– volume: 109
  start-page: 07E143
  year: 2011
  ident: tdmacd2e9bib77
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3562445
– volume: 8
  start-page: 128
  year: 2022
  ident: tdmacd2e9bib24
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00809-4
– volume: 104
  year: 2021
  ident: tdmacd2e9bib47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.174433
– volume: 22
  start-page: 3440
  year: 2022
  ident: tdmacd2e9bib22
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00836
– volume: 8
  start-page: 5959
  year: 2017
  ident: tdmacd2e9bib61
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02841
– volume: 9
  start-page: 767
  year: 1997
  ident: tdmacd2e9bib68
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/9/4/002
– volume: 11
  start-page: 3860
  year: 2020
  ident: tdmacd2e9bib34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17566-x
– volume: 14
  start-page: 408
  year: 2019
  ident: tdmacd2e9bib4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0438-6
– volume: 101
  year: 2020
  ident: tdmacd2e9bib56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.060404
– volume: 18
  start-page: 7194
  year: 2018
  ident: tdmacd2e9bib28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03315
– volume: 100
  year: 2019
  ident: tdmacd2e9bib37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.104410
– volume: 102
  year: 2020
  ident: tdmacd2e9bib79
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.020402
– volume: 11
  start-page: 449
  year: 2016
  ident: tdmacd2e9bib73
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.315
– volume: 16
  start-page: 856
  year: 2021
  ident: tdmacd2e9bib5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00936-x
– volume: 4
  start-page: 241
  year: 1958
  ident: tdmacd2e9bib38
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(58)90076-3
– volume: 546
  start-page: 265
  year: 2017
  ident: tdmacd2e9bib8
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 104
  year: 2014
  ident: tdmacd2e9bib78
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.4876128
– volume: 54
  start-page: 11169
  year: 1996
  ident: tdmacd2e9bib64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 130
  year: 2023
  ident: tdmacd2e9bib27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.056701
– volume: 546
  start-page: 270
  year: 2017
  ident: tdmacd2e9bib9
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 95
  start-page: 178
  year: 1989
  ident: tdmacd2e9bib15
  publication-title: Sov. Phys. JETP
– volume: 106
  year: 2022
  ident: tdmacd2e9bib23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.024419
– volume: 11
  start-page: 8242
  year: 2017
  ident: tdmacd2e9bib58
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03313
– volume: 128
  year: 2022
  ident: tdmacd2e9bib20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.177202
– volume: 18
  start-page: 7658
  year: 2018
  ident: tdmacd2e9bib46
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03321
– volume: 59–60
  start-page: 439
  year: 1990
  ident: tdmacd2e9bib75
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.59-60.439
– volume: 132
  year: 2010
  ident: tdmacd2e9bib71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 20
  year: 2008
  ident: tdmacd2e9bib80
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/31/315203
– volume: 2
  year: 2017
  ident: tdmacd2e9bib17
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.31
– volume: 576
  start-page: 416
  year: 2019
  ident: tdmacd2e9bib50
  publication-title: Nature
  doi: 10.1038/s41586-019-1840-9
– volume: 17
  start-page: 778
  year: 2018
  ident: tdmacd2e9bib10
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0149-7
– volume: 101
  year: 2020
  ident: tdmacd2e9bib53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.184401
– volume: 106
  year: 2022
  ident: tdmacd2e9bib21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.054426
– volume: 102
  year: 2020
  ident: tdmacd2e9bib54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.094425
– volume: 115
  year: 2015
  ident: tdmacd2e9bib44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.267210
– volume: 11
  start-page: 8192
  year: 2017
  ident: tdmacd2e9bib63
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03186
– volume: 395
  start-page: 166
  year: 2015
  ident: tdmacd2e9bib70
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.07.026
– volume: 103
  year: 2021
  ident: tdmacd2e9bib30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.L140406
– volume: 5
  start-page: 4030
  year: 2014
  ident: tdmacd2e9bib72
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5030
– volume: 122
  year: 2019
  ident: tdmacd2e9bib76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.257202
– volume: 47
  start-page: 558
  year: 1993
  ident: tdmacd2e9bib65
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 96
  year: 2017
  ident: tdmacd2e9bib41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.024450
– volume: 404
  start-page: 2678
  year: 2009
  ident: tdmacd2e9bib40
  publication-title: Physica B
  doi: 10.1016/j.physb.2009.06.070
– volume: 18
  start-page: 3125
  year: 2018
  ident: tdmacd2e9bib11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00683
– volume: 120
  start-page: 91
  year: 1960
  ident: tdmacd2e9bib39
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.91
– volume: 10
  year: 2022
  ident: tdmacd2e9bib7
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09150
– volume: 9
  start-page: nwac021
  year: 2022
  ident: tdmacd2e9bib6
  publication-title: Nat. Sci. Rev.
  doi: 10.1093/nsr/nwac021
– volume: 259
  year: 2022
  ident: tdmacd2e9bib60
  publication-title: Phys. Status Solidi b
  doi: 10.1002/pssb.202100562
– volume: 84
  year: 2011
  ident: tdmacd2e9bib43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.224429
– volume: 590
  start-page: 74
  year: 2021
  ident: tdmacd2e9bib19
  publication-title: Nature
  doi: 10.1038/s41586-021-03219-6
– volume: 17
  start-page: 1087
  year: 2018
  ident: tdmacd2e9bib36
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0204-4
– volume: 96
  year: 2017
  ident: tdmacd2e9bib69
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.041410
– volume: 103
  year: 2021
  ident: tdmacd2e9bib35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.104410
– volume: 99
  year: 2019
  ident: tdmacd2e9bib48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.144401
– volume: 606
  start-page: 663
  year: 2022
  ident: tdmacd2e9bib2
  publication-title: Nature
  doi: 10.1038/s41586-022-04768-0
– volume: 5
  start-page: 43
  year: 2023
  ident: tdmacd2e9bib45
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-022-00529-0
– volume: 125
  year: 2020
  ident: tdmacd2e9bib26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.037203
– volume: 3
  year: 2021
  ident: tdmacd2e9bib33
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L012026
– volume: 3
  year: 2019
  ident: tdmacd2e9bib49
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.031001
– volume: 367
  start-page: 895
  year: 2020
  ident: tdmacd2e9bib51
  publication-title: Science
  doi: 10.1126/science.aax8156
– volume: 21
  start-page: 6633
  year: 2021
  ident: tdmacd2e9bib31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02096
SSID ssj0001763416
Score 2.3041387
Snippet Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 35020
SubjectTerms 2D magnets
Dzyaloshinskii-Moriya
field-free
topological magnetism
Title Layer-dependent Dzyaloshinskii–Moriya interaction and field-free topological magnetism in two-dimensional Janus MnSTe
URI https://iopscience.iop.org/article/10.1088/2053-1583/acd2e9
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6uXrz4QMX1RQ568JDdbrN54Ul8IIurggoehJImqZR126XbRfTkf_Af-ktMNl1fiIi3HmbSMJPpfM28ANhmFsJLTl2SFItRG6sECU4MijELAiViio2L6HbP6Ml1u3NDbqbA3nstTD6oPv0N--gbBXsRVglx3P6uE4xahOOmVDo0ogZmMLeO01XvnV98XLBYy7FoowpN_sT4xRXV7Os-eZbjeXA72ZNPKOk1RmXcUE_f2jX-c9MLYK5CnHDfky6CKZMtgYdTabE2mozALeHh06O8z9191LCXpq_PL928SB8ldO0kCl_8AGWm4TjjDSWFMbD08xWclmFf3mWmTId9ywDLhxxpNzXAd_yAHZmNhrCbXV6ZZXB9fHR1cIKqGQxIYdIuEVFxwOIWSygNQyYZCwTXxFAtlNGSa0o0i7lKrOFrSoU0lMqQOdDGA0WkwitgOsszswqgYMKel5bFhzyxXlAKExhNNRMqwDqUpg6aE3VEqmpQ7uZk3EfjQDnnkRNi5IQYeSHWwe47x8A35_iFdsfqJqosdPgLHfxCF-q-o8WRC8GGQTTQydofl1oHs244vU_u3QDTZTEymxbClPHW-Ki-AYCr7hY
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA4uIF5cUHE3Bz14SDudNNtR1OJWFVTwFjNJRop2prRTRE_-B_-hv8SkmbohInibw8tMeC_J-yZv-QDYZA7CK059khRLUB3rFAlOLEowiyItEoqtj-g2T-nBVf3omlyXPKeDWpi8Ux79FfcYGgUHFZYJcdz9rhOMaoTjqtImtqLaMekoGCfY-U5fwXd2_nHJ4naPQxxlePKnwV_c0aj75Cfv0pgGN8N5haSSu0q_SCr66VvLxn9MfAZMlcgT7gTxWTBisznwcKIc5kZDKtwC7j09qvvc30v17lqt1-eXZt5tPSro20p0QxEEVJmBg8w3lHathUXgWfDWhm11m9mi1Wu7AbB4yJHx7AGh8wc8Ulm_B5vZxaWdB1eN_cvdA1RyMSCNSb1ARCcRS2ospTSOmWIsEtwQS43Q1ihuKDEs4Tp1B4ChVChLqYqZB2880kRpvADGsjyziwAKJty6qTmcyFPnDZWwkTXUMKEjbGJll0B1aBKpy0blni_jXg4C5pxLr0jpFSmDIpfA9vuITmjS8YvslrOPLHdq7xc5-EUuNm0vi6UPxcaRdLZb_uOrNsDE-V5DnhyeHq-ASc9XH_J9V8FY0e3bNYdqimR9sHLfAG9783o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-dependent+Dzyaloshinskii%E2%80%93Moriya+interaction+and+field-free+topological+magnetism+in+two-dimensional+Janus+MnSTe&rft.jtitle=2d+materials&rft.au=Ga%2C+Yonglong&rft.au=Yu%2C+Dongxing&rft.au=Wang%2C+Liming&rft.au=Li%2C+Peng&rft.date=2023-07-01&rft.pub=IOP+Publishing&rft.eissn=2053-1583&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1088%2F2053-1583%2Facd2e9&rft.externalDocID=tdmacd2e9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-1583&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-1583&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-1583&client=summon