Layer-dependent Dzyaloshinskii–Moriya interaction and field-free topological magnetism in two-dimensional Janus MnSTe
Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic devices. Recently, much effort has been devoted to searching for skyrmion host materials in two-dimensional (2D) systems, where intrinsic invers...
Saved in:
Published in | 2d materials Vol. 10; no. 3; pp. 35020 - 35028 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic devices. Recently, much effort has been devoted to searching for skyrmion host materials in two-dimensional (2D) systems, where intrinsic inversion symmetry breaking and a large Dzyaloshinskii–Moriya interaction (DMI) are desirable to realize a field-free skyrmion state. Among these systems, 2D magnetic Janus materials have become important candidates for inducing a sizable DMI and chiral spin textures. Herein, we demonstrate that layer-dependent DMI and field-free magnetic skyrmions can exist in multilayer MnSTe. Moreover, strong interlayer exchange coupling and Bethe–Slater curve-like behaviors arising from the Mn–Mn double exchange mechanism are found in bilayer MnSTe. We also uncover that the distribution of DMIs in multilayer MnSTe can be understood as making a significant contribution to the intermediate DMI using the three-site Fert–Lévy model. Our results unveil great potential for designing skyrmion-based spintronic devices in multilayer 2D materials. |
---|---|
AbstractList | Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic devices. Recently, much effort has been devoted to searching for skyrmion host materials in two-dimensional (2D) systems, where intrinsic inversion symmetry breaking and a large Dzyaloshinskii–Moriya interaction (DMI) are desirable to realize a field-free skyrmion state. Among these systems, 2D magnetic Janus materials have become important candidates for inducing a sizable DMI and chiral spin textures. Herein, we demonstrate that layer-dependent DMI and field-free magnetic skyrmions can exist in multilayer MnSTe. Moreover, strong interlayer exchange coupling and Bethe–Slater curve-like behaviors arising from the Mn–Mn double exchange mechanism are found in bilayer MnSTe. We also uncover that the distribution of DMIs in multilayer MnSTe can be understood as making a significant contribution to the intermediate DMI using the three-site Fert–Lévy model. Our results unveil great potential for designing skyrmion-based spintronic devices in multilayer 2D materials. |
Author | Ga, Yonglong Yang, Hongxin Li, Peng Liang, Jinghua Wang, Liming Yu, Dongxing |
Author_xml | – sequence: 1 givenname: Yonglong surname: Ga fullname: Ga, Yonglong organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China – sequence: 2 givenname: Dongxing surname: Yu fullname: Yu, Dongxing organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China – sequence: 3 givenname: Liming surname: Wang fullname: Wang, Liming organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China – sequence: 4 givenname: Peng orcidid: 0000-0003-0852-1604 surname: Li fullname: Li, Peng organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China – sequence: 5 givenname: Jinghua surname: Liang fullname: Liang, Jinghua organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, People’s Republic of China – sequence: 6 givenname: Hongxin surname: Yang fullname: Yang, Hongxin organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China |
BookMark | eNp9kE9LxDAQxYMoqKt3j715sW7amqQ9yvqfXTyo5zCbTDXaJiWJLOvJ7-A39JPYsiIi6mkeM-_3YN42WbfOIiF7GT3MaFmOc8qKNGNlMQalc6zWyNbXav2b3iS7ITxSSjPBi6OMb5HFFJboU40dWo02JicvS2hceDA2PBnz_vo2c94sITE2ogcVjbMJWJ3UBhud1h4xia5zjbs3CpqkhXuL0YS2B5K4cKk2LdrQU_3xCuxzSGb25hZ3yEYNTcDdzzkid2ent5OLdHp9fjk5nqaqYEcxZWpOxTwTNed5LkAIWpWaIdeVQg2l5kyLealqJnrNK0DOIRcZZVVJFQNVjAhd5SrvQvBYy86bFvxSZlQO3cmhHDmUI1fd9Qj_gSgTYXg8ejDNf-D-CjSuk4_u2fc_B5nrdkAKSQtGcyo7XffOg1-cfwZ_AFphlME |
CitedBy_id | crossref_primary_10_1088_1674_1056_ad6a0e crossref_primary_10_1103_PhysRevResearch_6_043158 crossref_primary_10_1103_PhysRevB_108_184424 crossref_primary_10_1002_pssr_202300316 |
Cites_doi | 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.102.220409 10.1126/sciadv.aaw5685 10.1038/s41565-018-0063-9 10.1103/PhysRevB.107.054408 10.1038/s41563-021-00927-2 10.1038/nnano.2017.100 10.1038/nmat2916 10.1103/PhysRevResearch.3.013027 10.1209/0295-5075/100/57002 10.1038/s41467-020-19779-6 10.1103/PhysRevB.102.241107 10.1021/jacs.0c07051 10.1126/science.aav4450 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.99.060407 10.1038/nnano.2013.29 10.1103/PhysRevLett.44.1538 10.1103/PhysRevB.103.174422 10.1063/1.3562445 10.1038/s41524-022-00809-4 10.1103/PhysRevB.104.174433 10.1021/acs.nanolett.2c00836 10.1021/acs.jpclett.7b02841 10.1088/0953-8984/9/4/002 10.1038/s41467-020-17566-x 10.1038/s41565-019-0438-6 10.1103/PhysRevB.101.060404 10.1021/acs.nanolett.8b03315 10.1103/PhysRevB.100.104410 10.1103/PhysRevB.102.020402 10.1038/nnano.2015.315 10.1038/s41565-021-00936-x 10.1016/0022-3697(58)90076-3 10.1038/nature22060 10.1063/1.4876128 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.130.056701 10.1038/nature22391 10.1103/PhysRevB.106.024419 10.1021/acsnano.7b03313 10.1103/PhysRevLett.128.177202 10.1021/acs.nanolett.8b03321 10.4028/www.scientific.net/MSF.59-60.439 10.1063/1.3382344 10.1088/0953-8984/20/31/315203 10.1038/natrevmats.2017.31 10.1038/s41586-019-1840-9 10.1038/s41563-018-0149-7 10.1103/PhysRevB.101.184401 10.1103/PhysRevB.106.054426 10.1103/PhysRevB.102.094425 10.1103/PhysRevLett.115.267210 10.1021/acsnano.7b03186 10.1016/j.jmmm.2015.07.026 10.1103/PhysRevB.103.L140406 10.1038/ncomms5030 10.1103/PhysRevLett.122.257202 10.1103/PhysRevB.47.558 10.1103/PhysRevB.96.024450 10.1016/j.physb.2009.06.070 10.1021/acs.nanolett.8b00683 10.1103/PhysRev.120.91 10.1021/acsnano.1c09150 10.1093/nsr/nwac021 10.1002/pssb.202100562 10.1103/PhysRevB.84.224429 10.1038/s41586-021-03219-6 10.1038/s41563-018-0204-4 10.1103/PhysRevB.96.041410 10.1103/PhysRevB.103.104410 10.1103/PhysRevB.99.144401 10.1038/s41586-022-04768-0 10.1038/s42254-022-00529-0 10.1103/PhysRevLett.125.037203 10.1103/PhysRevResearch.3.L012026 10.1103/PhysRevMaterials.3.031001 10.1126/science.aax8156 10.1021/acs.nanolett.1c02096 |
ContentType | Journal Article |
Copyright | 2023 IOP Publishing Ltd |
Copyright_xml | – notice: 2023 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/2053-1583/acd2e9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2053-1583 |
ExternalDocumentID | 10_1088_2053_1583_acd2e9 tdmacd2e9 |
GrantInformation_xml | – fundername: Ningbo Key Scientific and Technological Project grantid: 2021000215 – fundername: Beijing National Laboratory for Condensed Matter Physics grantid: 2021000123 – fundername: Zhejiang Provincial Natural Science Foundation grantid: LR19A040002 – fundername: Key Research Program of Frontier Sciences, CAS grantid: ZDBS-LY-7021 – fundername: National Natural Science Foundation of China grantid: 11874059; 12174405 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Program of Zhejiang Province grantid: 2022C01053 |
GroupedDBID | 5VS AAGCD AAJIO AATNI ABHWH ABVAM ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT CEBXE CJUJL CRLBU EBS IIPPG IJHAN IOP IZVLO KOT N5L PJBAE RIN ROL RPA AAYXX ABJNI ADEQX CITATION |
ID | FETCH-LOGICAL-c354t-5cb07b17f66227a77098d5e6d9ceda8d65d7b8cf578d669ae66a27105980c5ac3 |
IEDL.DBID | IOP |
ISSN | 2053-1583 |
IngestDate | Thu Apr 24 22:51:51 EDT 2025 Tue Jul 01 02:04:01 EDT 2025 Wed Aug 21 03:34:49 EDT 2024 Wed Jun 07 11:19:00 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-5cb07b17f66227a77098d5e6d9ceda8d65d7b8cf578d669ae66a27105980c5ac3 |
Notes | 2DM-108382.R1 |
ORCID | 0000-0003-0852-1604 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/2053-1583/acd2e9/pdf |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1088_2053_1583_acd2e9 crossref_citationtrail_10_1088_2053_1583_acd2e9 iop_journals_10_1088_2053_1583_acd2e9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 2d materials |
PublicationTitleAbbrev | 2DM |
PublicationTitleAlternate | 2D Mater |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Gibertini (tdmacd2e9bib4) 2019; 14 Yang (tdmacd2e9bib44) 2015; 115 Perdew (tdmacd2e9bib67) 1996; 77 Ma (tdmacd2e9bib78) 2014; 104 Bonilla (tdmacd2e9bib13) 2018; 13 Jani (tdmacd2e9bib19) 2021; 590 Fert (tdmacd2e9bib75) 1990; 59–60 Sun (tdmacd2e9bib32) 2020; 11 Li (tdmacd2e9bib61) 2017; 8 Skomski (tdmacd2e9bib77) 2011; 109 Sierra (tdmacd2e9bib5) 2021; 16 Jang (tdmacd2e9bib49) 2019; 3 Yang (tdmacd2e9bib2) 2022; 606 Dong (tdmacd2e9bib58) 2017; 11 Xu (tdmacd2e9bib56) 2020; 101 Fei (tdmacd2e9bib10) 2018; 17 Yu (tdmacd2e9bib27) 2023; 130 Wang (tdmacd2e9bib7) 2022; 10 Huang (tdmacd2e9bib9) 2017; 546 Yu (tdmacd2e9bib6) 2022; 9 Deng (tdmacd2e9bib51) 2020; 367 Zhang (tdmacd2e9bib59) 2020; 142 Fert (tdmacd2e9bib74) 1980; 44 Kresse (tdmacd2e9bib65) 1993; 47 Heide (tdmacd2e9bib40) 2009; 404 Yu (tdmacd2e9bib37) 2019; 100 Yu (tdmacd2e9bib16) 2011; 10 Dupe (tdmacd2e9bib72) 2014; 5 Moriya (tdmacd2e9bib39) 1960; 120 Anisimov (tdmacd2e9bib68) 1997; 9 Skubic (tdmacd2e9bib80) 2008; 20 Borisov (tdmacd2e9bib42) 2021; 103 Bogdanov (tdmacd2e9bib15) 1989; 95 Cui (tdmacd2e9bib54) 2020; 102 Liang (tdmacd2e9bib25) 2020; 102 Boulle (tdmacd2e9bib73) 2016; 11 Dzyaloshinsky (tdmacd2e9bib38) 1958; 4 Du (tdmacd2e9bib22) 2022; 22 Akram (tdmacd2e9bib31) 2021; 21 Gong (tdmacd2e9bib3) 2019; 363 Zhang (tdmacd2e9bib63) 2017; 11 Fert (tdmacd2e9bib17) 2017; 2 Li (tdmacd2e9bib52) 2019; 5 Zhang (tdmacd2e9bib57) 2020; 102 Sivadas (tdmacd2e9bib46) 2018; 18 Kresse (tdmacd2e9bib64) 1996; 54 Kresse (tdmacd2e9bib66) 1996; 6 Zhou (tdmacd2e9bib70) 2015; 395 Li (tdmacd2e9bib12) 2021; 20 Ga (tdmacd2e9bib21) 2022; 106 Wang (tdmacd2e9bib36) 2018; 17 Wang (tdmacd2e9bib79) 2020; 102 Thiaville (tdmacd2e9bib14) 2012; 100 Xu (tdmacd2e9bib26) 2020; 125 Zhang (tdmacd2e9bib47) 2021; 104 Yang (tdmacd2e9bib45) 2023; 5 Liang (tdmacd2e9bib53) 2020; 101 Li (tdmacd2e9bib33) 2021; 3 Gong (tdmacd2e9bib8) 2017; 546 Akram (tdmacd2e9bib30) 2021; 103 Xiang (tdmacd2e9bib43) 2011; 84 Fert (tdmacd2e9bib1) 2013; 8 Edstrom (tdmacd2e9bib20) 2022; 128 Park (tdmacd2e9bib35) 2021; 103 Sandratskii (tdmacd2e9bib41) 2017; 96 Ga (tdmacd2e9bib24) 2022; 8 Göbel (tdmacd2e9bib18) 2019; 99 Lu (tdmacd2e9bib62) 2017; 12 Tong (tdmacd2e9bib28) 2018; 18 Li (tdmacd2e9bib55) 2023; 107 Grimme (tdmacd2e9bib71) 2010; 132 Li (tdmacd2e9bib23) 2022; 106 Sui (tdmacd2e9bib69) 2017; 96 Jiang (tdmacd2e9bib48) 2019; 99 Tang (tdmacd2e9bib60) 2022; 259 O’Hara (tdmacd2e9bib11) 2018; 18 Xiao (tdmacd2e9bib29) 2021; 3 Otrokov (tdmacd2e9bib50) 2019; 576 Wu (tdmacd2e9bib34) 2020; 11 Vedmedenko (tdmacd2e9bib76) 2019; 122 |
References_xml | – volume: 77 start-page: 3865 year: 1996 ident: tdmacd2e9bib67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 102 year: 2020 ident: tdmacd2e9bib25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.220409 – volume: 5 start-page: eaaw5685 year: 2019 ident: tdmacd2e9bib52 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw5685 – volume: 13 start-page: 289 year: 2018 ident: tdmacd2e9bib13 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0063-9 – volume: 107 year: 2023 ident: tdmacd2e9bib55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.054408 – volume: 20 start-page: 818 year: 2021 ident: tdmacd2e9bib12 publication-title: Nat. Mater. doi: 10.1038/s41563-021-00927-2 – volume: 12 start-page: 744 year: 2017 ident: tdmacd2e9bib62 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.100 – volume: 10 start-page: 106 year: 2011 ident: tdmacd2e9bib16 publication-title: Nat. Mater. doi: 10.1038/nmat2916 – volume: 3 year: 2021 ident: tdmacd2e9bib29 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.013027 – volume: 100 year: 2012 ident: tdmacd2e9bib14 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/100/57002 – volume: 11 start-page: 5930 year: 2020 ident: tdmacd2e9bib32 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19779-6 – volume: 102 year: 2020 ident: tdmacd2e9bib57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.241107 – volume: 142 start-page: 17499 year: 2020 ident: tdmacd2e9bib59 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07051 – volume: 363 start-page: eaav4450 year: 2019 ident: tdmacd2e9bib3 publication-title: Science doi: 10.1126/science.aav4450 – volume: 6 start-page: 15 year: 1996 ident: tdmacd2e9bib66 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 99 year: 2019 ident: tdmacd2e9bib18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.060407 – volume: 8 start-page: 152 year: 2013 ident: tdmacd2e9bib1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.29 – volume: 44 start-page: 1538 year: 1980 ident: tdmacd2e9bib74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.44.1538 – volume: 103 year: 2021 ident: tdmacd2e9bib42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.174422 – volume: 109 start-page: 07E143 year: 2011 ident: tdmacd2e9bib77 publication-title: J. Appl. Phys. doi: 10.1063/1.3562445 – volume: 8 start-page: 128 year: 2022 ident: tdmacd2e9bib24 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00809-4 – volume: 104 year: 2021 ident: tdmacd2e9bib47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.174433 – volume: 22 start-page: 3440 year: 2022 ident: tdmacd2e9bib22 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00836 – volume: 8 start-page: 5959 year: 2017 ident: tdmacd2e9bib61 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02841 – volume: 9 start-page: 767 year: 1997 ident: tdmacd2e9bib68 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/9/4/002 – volume: 11 start-page: 3860 year: 2020 ident: tdmacd2e9bib34 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17566-x – volume: 14 start-page: 408 year: 2019 ident: tdmacd2e9bib4 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0438-6 – volume: 101 year: 2020 ident: tdmacd2e9bib56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.060404 – volume: 18 start-page: 7194 year: 2018 ident: tdmacd2e9bib28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03315 – volume: 100 year: 2019 ident: tdmacd2e9bib37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.104410 – volume: 102 year: 2020 ident: tdmacd2e9bib79 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.020402 – volume: 11 start-page: 449 year: 2016 ident: tdmacd2e9bib73 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.315 – volume: 16 start-page: 856 year: 2021 ident: tdmacd2e9bib5 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00936-x – volume: 4 start-page: 241 year: 1958 ident: tdmacd2e9bib38 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(58)90076-3 – volume: 546 start-page: 265 year: 2017 ident: tdmacd2e9bib8 publication-title: Nature doi: 10.1038/nature22060 – volume: 104 year: 2014 ident: tdmacd2e9bib78 publication-title: App. Phys. Lett. doi: 10.1063/1.4876128 – volume: 54 start-page: 11169 year: 1996 ident: tdmacd2e9bib64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 130 year: 2023 ident: tdmacd2e9bib27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.056701 – volume: 546 start-page: 270 year: 2017 ident: tdmacd2e9bib9 publication-title: Nature doi: 10.1038/nature22391 – volume: 95 start-page: 178 year: 1989 ident: tdmacd2e9bib15 publication-title: Sov. Phys. JETP – volume: 106 year: 2022 ident: tdmacd2e9bib23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.024419 – volume: 11 start-page: 8242 year: 2017 ident: tdmacd2e9bib58 publication-title: ACS Nano doi: 10.1021/acsnano.7b03313 – volume: 128 year: 2022 ident: tdmacd2e9bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.177202 – volume: 18 start-page: 7658 year: 2018 ident: tdmacd2e9bib46 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03321 – volume: 59–60 start-page: 439 year: 1990 ident: tdmacd2e9bib75 publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.59-60.439 – volume: 132 year: 2010 ident: tdmacd2e9bib71 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 20 year: 2008 ident: tdmacd2e9bib80 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/20/31/315203 – volume: 2 year: 2017 ident: tdmacd2e9bib17 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.31 – volume: 576 start-page: 416 year: 2019 ident: tdmacd2e9bib50 publication-title: Nature doi: 10.1038/s41586-019-1840-9 – volume: 17 start-page: 778 year: 2018 ident: tdmacd2e9bib10 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0149-7 – volume: 101 year: 2020 ident: tdmacd2e9bib53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.184401 – volume: 106 year: 2022 ident: tdmacd2e9bib21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.054426 – volume: 102 year: 2020 ident: tdmacd2e9bib54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.094425 – volume: 115 year: 2015 ident: tdmacd2e9bib44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.267210 – volume: 11 start-page: 8192 year: 2017 ident: tdmacd2e9bib63 publication-title: ACS Nano doi: 10.1021/acsnano.7b03186 – volume: 395 start-page: 166 year: 2015 ident: tdmacd2e9bib70 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.07.026 – volume: 103 year: 2021 ident: tdmacd2e9bib30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.L140406 – volume: 5 start-page: 4030 year: 2014 ident: tdmacd2e9bib72 publication-title: Nat. Commun. doi: 10.1038/ncomms5030 – volume: 122 year: 2019 ident: tdmacd2e9bib76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.257202 – volume: 47 start-page: 558 year: 1993 ident: tdmacd2e9bib65 publication-title: Phy. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 96 year: 2017 ident: tdmacd2e9bib41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.024450 – volume: 404 start-page: 2678 year: 2009 ident: tdmacd2e9bib40 publication-title: Physica B doi: 10.1016/j.physb.2009.06.070 – volume: 18 start-page: 3125 year: 2018 ident: tdmacd2e9bib11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00683 – volume: 120 start-page: 91 year: 1960 ident: tdmacd2e9bib39 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.91 – volume: 10 year: 2022 ident: tdmacd2e9bib7 publication-title: ACS Nano doi: 10.1021/acsnano.1c09150 – volume: 9 start-page: nwac021 year: 2022 ident: tdmacd2e9bib6 publication-title: Nat. Sci. Rev. doi: 10.1093/nsr/nwac021 – volume: 259 year: 2022 ident: tdmacd2e9bib60 publication-title: Phys. Status Solidi b doi: 10.1002/pssb.202100562 – volume: 84 year: 2011 ident: tdmacd2e9bib43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.224429 – volume: 590 start-page: 74 year: 2021 ident: tdmacd2e9bib19 publication-title: Nature doi: 10.1038/s41586-021-03219-6 – volume: 17 start-page: 1087 year: 2018 ident: tdmacd2e9bib36 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0204-4 – volume: 96 year: 2017 ident: tdmacd2e9bib69 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.041410 – volume: 103 year: 2021 ident: tdmacd2e9bib35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.104410 – volume: 99 year: 2019 ident: tdmacd2e9bib48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.144401 – volume: 606 start-page: 663 year: 2022 ident: tdmacd2e9bib2 publication-title: Nature doi: 10.1038/s41586-022-04768-0 – volume: 5 start-page: 43 year: 2023 ident: tdmacd2e9bib45 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-022-00529-0 – volume: 125 year: 2020 ident: tdmacd2e9bib26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.037203 – volume: 3 year: 2021 ident: tdmacd2e9bib33 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L012026 – volume: 3 year: 2019 ident: tdmacd2e9bib49 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.031001 – volume: 367 start-page: 895 year: 2020 ident: tdmacd2e9bib51 publication-title: Science doi: 10.1126/science.aax8156 – volume: 21 start-page: 6633 year: 2021 ident: tdmacd2e9bib31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02096 |
SSID | ssj0001763416 |
Score | 2.3041387 |
Snippet | Magnetic skyrmions, as topologically protected whirl-like solitons, have been the subject of growing interest in non-volatile spintronic memories and logic... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 35020 |
SubjectTerms | 2D magnets Dzyaloshinskii-Moriya field-free topological magnetism |
Title | Layer-dependent Dzyaloshinskii–Moriya interaction and field-free topological magnetism in two-dimensional Janus MnSTe |
URI | https://iopscience.iop.org/article/10.1088/2053-1583/acd2e9 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6uXrz4QMX1RQ568JDdbrN54Ul8IIurggoehJImqZR126XbRfTkf_Af-ktMNl1fiIi3HmbSMJPpfM28ANhmFsJLTl2SFItRG6sECU4MijELAiViio2L6HbP6Ml1u3NDbqbA3nstTD6oPv0N--gbBXsRVglx3P6uE4xahOOmVDo0ogZmMLeO01XvnV98XLBYy7FoowpN_sT4xRXV7Os-eZbjeXA72ZNPKOk1RmXcUE_f2jX-c9MLYK5CnHDfky6CKZMtgYdTabE2mozALeHh06O8z9191LCXpq_PL928SB8ldO0kCl_8AGWm4TjjDSWFMbD08xWclmFf3mWmTId9ywDLhxxpNzXAd_yAHZmNhrCbXV6ZZXB9fHR1cIKqGQxIYdIuEVFxwOIWSygNQyYZCwTXxFAtlNGSa0o0i7lKrOFrSoU0lMqQOdDGA0WkwitgOsszswqgYMKel5bFhzyxXlAKExhNNRMqwDqUpg6aE3VEqmpQ7uZk3EfjQDnnkRNi5IQYeSHWwe47x8A35_iFdsfqJqosdPgLHfxCF-q-o8WRC8GGQTTQydofl1oHs244vU_u3QDTZTEymxbClPHW-Ki-AYCr7hY |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA4uIF5cUHE3Bz14SDudNNtR1OJWFVTwFjNJRop2prRTRE_-B_-hv8SkmbohInibw8tMeC_J-yZv-QDYZA7CK059khRLUB3rFAlOLEowiyItEoqtj-g2T-nBVf3omlyXPKeDWpi8Ux79FfcYGgUHFZYJcdz9rhOMaoTjqtImtqLaMekoGCfY-U5fwXd2_nHJ4naPQxxlePKnwV_c0aj75Cfv0pgGN8N5haSSu0q_SCr66VvLxn9MfAZMlcgT7gTxWTBisznwcKIc5kZDKtwC7j09qvvc30v17lqt1-eXZt5tPSro20p0QxEEVJmBg8w3lHathUXgWfDWhm11m9mi1Wu7AbB4yJHx7AGh8wc8Ulm_B5vZxaWdB1eN_cvdA1RyMSCNSb1ARCcRS2ospTSOmWIsEtwQS43Q1ihuKDEs4Tp1B4ChVChLqYqZB2880kRpvADGsjyziwAKJty6qTmcyFPnDZWwkTXUMKEjbGJll0B1aBKpy0blni_jXg4C5pxLr0jpFSmDIpfA9vuITmjS8YvslrOPLHdq7xc5-EUuNm0vi6UPxcaRdLZb_uOrNsDE-V5DnhyeHq-ASc9XH_J9V8FY0e3bNYdqimR9sHLfAG9783o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-dependent+Dzyaloshinskii%E2%80%93Moriya+interaction+and+field-free+topological+magnetism+in+two-dimensional+Janus+MnSTe&rft.jtitle=2d+materials&rft.au=Ga%2C+Yonglong&rft.au=Yu%2C+Dongxing&rft.au=Wang%2C+Liming&rft.au=Li%2C+Peng&rft.date=2023-07-01&rft.pub=IOP+Publishing&rft.eissn=2053-1583&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1088%2F2053-1583%2Facd2e9&rft.externalDocID=tdmacd2e9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-1583&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-1583&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-1583&client=summon |