Extending the spectral operation of multimode and polarization-independent power splitters through subwavelength nanotechnology
•This paper introduces a pioneering 3-dB power splitter based on a symmetric Y-junction, enhanced by two distinct subwavelength grating metamaterial geometries for the silicon-on-insulator platform.•The device exhibits high performance for multimode and dual-polarization operation with relaxed fabri...
Saved in:
Published in | Optics and laser technology Vol. 181; p. 111921 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This paper introduces a pioneering 3-dB power splitter based on a symmetric Y-junction, enhanced by two distinct subwavelength grating metamaterial geometries for the silicon-on-insulator platform.•The device exhibits high performance for multimode and dual-polarization operation with relaxed fabrication tolerances.•The proposed design, to the best of our knowledge, achieves the broadest simulated bandwidth reported for a multimode and dual-polarization power splitter. It spans over 700 nm (1300 – 2000 nm) for the fundamental and first-order transverse-electric modes, maintaining excess losses below 0.2 dB, and extends over 500 nm (1300 – 1800 nm) for the fundamental transverse-magnetic mode, with losses under 0.3 dB.•Experimental measurements demonstrate losses below 0.2 dB for transverse-electric modes across the 1430 – 1680 nm wavelength range, and under 0.4 dB for the fundamental transverse-magnetic mode within the 1430 – 1630 nm spectrum, even when subject to fabrication deviations of ± 10 nm.
Power splitters play a crucial role in virtually all photonic circuits, enabling precise control of on-chip signal distribution. However, state-of-the-art solutions typically present trade-offs in terms of loss, bandwidth, and fabrication robustness, especially when targeting multimode operation. Here, we present a novel multimode 3-dB power splitter based on a symmetric Y-junction assisted by two regions of subwavelength grating metamaterials with different geometries. The proposed device demonstrates high-performance for multimode and dual-polarization operation with relaxed fabrication tolerances by leveraging the additional degrees of freedom offered by two distinct geometries of subwavelength metamaterials to control mode evolution. Our design achieves, to the best of our knowledge, the widest operational bandwidth reported to date for a nanophotonic multimode silicon power splitter. Simulations for a standard 220-nm-thick silicon-on-insulator platform predict minimal excess loss (< 0.2 dB) for the fundamental and the first-order transverse-electric modes over an ultra-broad 700 nm bandwidth (1300 – 2000 nm). For the fundamental transverse–magnetic mode, losses are less than 0.3 dB in the 1300 – 1800 nm range. Experimental measurements validate these predictions in the 1430 – 1630 nm wavelength range, demonstrating losses < 0.4 dB for all three modes, even in the presence of fabrication deviations of up to ± 10 nm. We believe that this device is suitable for the implementation of advanced photonic applications requiring high–-performance distribution of optical signals, such as programmable photonics, multi-target spectroscopy and quantum key distribution. |
---|---|
AbstractList | NRC publication: Yes •This paper introduces a pioneering 3-dB power splitter based on a symmetric Y-junction, enhanced by two distinct subwavelength grating metamaterial geometries for the silicon-on-insulator platform.•The device exhibits high performance for multimode and dual-polarization operation with relaxed fabrication tolerances.•The proposed design, to the best of our knowledge, achieves the broadest simulated bandwidth reported for a multimode and dual-polarization power splitter. It spans over 700 nm (1300 – 2000 nm) for the fundamental and first-order transverse-electric modes, maintaining excess losses below 0.2 dB, and extends over 500 nm (1300 – 1800 nm) for the fundamental transverse-magnetic mode, with losses under 0.3 dB.•Experimental measurements demonstrate losses below 0.2 dB for transverse-electric modes across the 1430 – 1680 nm wavelength range, and under 0.4 dB for the fundamental transverse-magnetic mode within the 1430 – 1630 nm spectrum, even when subject to fabrication deviations of ± 10 nm. Power splitters play a crucial role in virtually all photonic circuits, enabling precise control of on-chip signal distribution. However, state-of-the-art solutions typically present trade-offs in terms of loss, bandwidth, and fabrication robustness, especially when targeting multimode operation. Here, we present a novel multimode 3-dB power splitter based on a symmetric Y-junction assisted by two regions of subwavelength grating metamaterials with different geometries. The proposed device demonstrates high-performance for multimode and dual-polarization operation with relaxed fabrication tolerances by leveraging the additional degrees of freedom offered by two distinct geometries of subwavelength metamaterials to control mode evolution. Our design achieves, to the best of our knowledge, the widest operational bandwidth reported to date for a nanophotonic multimode silicon power splitter. Simulations for a standard 220-nm-thick silicon-on-insulator platform predict minimal excess loss (< 0.2 dB) for the fundamental and the first-order transverse-electric modes over an ultra-broad 700 nm bandwidth (1300 – 2000 nm). For the fundamental transverse–magnetic mode, losses are less than 0.3 dB in the 1300 – 1800 nm range. Experimental measurements validate these predictions in the 1430 – 1630 nm wavelength range, demonstrating losses < 0.4 dB for all three modes, even in the presence of fabrication deviations of up to ± 10 nm. We believe that this device is suitable for the implementation of advanced photonic applications requiring high–-performance distribution of optical signals, such as programmable photonics, multi-target spectroscopy and quantum key distribution. |
ArticleNumber | 111921 |
Author | Velasco, Aitor V. González–Andrade, David Cheben, Pavel Fernández de Cabo, Raquel |
Author_xml | – sequence: 1 givenname: Raquel surname: Fernández de Cabo fullname: Fernández de Cabo, Raquel email: r.fernandez@csic.es organization: Instituto de Óptica Daza de Valdés, Consejo Superior de Investigaciones Científicas (CSIC), 121 Serrano, Madrid 28006, Spain – sequence: 2 givenname: David surname: González–Andrade fullname: González–Andrade, David organization: Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris–Saclay, Palaiseau 91120, France – sequence: 3 givenname: Pavel surname: Cheben fullname: Cheben, Pavel organization: National Research Council Canada, 1200 Montreal Road, Bldg. M50, Ottawa K1A 0R6, Canada – sequence: 4 givenname: Aitor V. surname: Velasco fullname: Velasco, Aitor V. organization: Instituto de Óptica Daza de Valdés, Consejo Superior de Investigaciones Científicas (CSIC), 121 Serrano, Madrid 28006, Spain |
BookMark | eNqFkctuHCEQRVk4kh_xN4Qf6AmvbpqlZTkPyVI2yRrVQPUMox5oAWPH2eTXw7gtb7OhBMW9tzhck4uYIhLyibMNZ3z4fNikpc5QKrqNYEJtOOdG8AtyxZhknTRGXJLrUg6MMTX08or8ffhdMfoQd7TukZYFXc0w07RghhpSpGmix9NcwzF5pBA9XdIMOfx57XYhelyaAcbaGs-Ym8UcasVcmmFOp92eltP2GZ5wxrirexohpjbfPqY57V4-kg8TzAVv3-oN-fXl4ef9t-7xx9fv93ePnZO9ql0PoACNd1suezENeosDN9J5PmoxoJJCGBj4xDmKEYxWcuy1QWOY11pKJ2-IXn1dTqVknOySwxHyi-XMntnZg31nZ8_s7MquKf2qjNk5iODhXZogWBdKDTaci203rHtdYD2PC7Sd0F7xyTm7BeWtEtJZA1rbQY3tCS1qMmOLuVtjsFF4CphtcQGjQx9y-xPrU_jvqP8A6YuoWg |
Cites_doi | 10.1016/j.ijleo.2018.12.013 10.1016/j.optcom.2012.05.022 10.1109/JPROC.2018.2878686 10.1038/s41586-020-2764-0 10.1109/JLT.2017.2759162 10.1109/JLT.2011.2179976 10.1364/PRJ.446932 10.1364/OL.450719 10.1515/nanoph-2022-0443 10.1364/OL.439320 10.3390/nano11051304 10.1038/35023233 10.1364/OL.35.002526 10.1364/OE.463274 10.1117/12.166932 10.1364/OL.438361 10.1063/5.0099423 10.1002/lpor.201600213 10.1109/JLT.2020.2973663 10.1109/JLT.2023.3264012 10.1364/OE.423882 10.1364/OE.14.004695 10.1364/AO.470157 10.1515/nanoph-2021-0110 10.1016/j.optlastec.2022.108742 10.1364/OL.500240 10.1364/OL.486428 10.1038/s41566-020-00754-y 10.1364/PRJ.470827 10.1007/s11432-020-2872-3 10.3390/nano11112949 10.1038/s41586-018-0421-7 10.1002/inf2.12122 10.1109/LPT.2023.3325660 10.1002/lpor.201700109 10.1038/s41586-022-04415-8 10.1364/OE.21.001310 10.1364/OL.41.002053 10.1039/C0AN00449A 10.1109/LPT.2021.3116439 10.1016/j.optlastec.2020.106297 10.1364/OE.26.029873 10.1109/JLT.2021.3066203 10.1364/PRJ.456772 10.1109/JQE.1978.1069695 10.1364/OL.44.004729 10.1038/s41598-018-37952-2 10.1364/OE.26.014800 10.3390/photonics10040419 10.1364/OE.471397 10.1038/s41598-019-40497-7 10.1364/OPTICA.4.000172 10.1016/j.mejo.2020.104887 10.1038/s41377-023-01195-2 10.1007/978-3-642-10503-6_2 |
ContentType | Journal Article |
Copyright | 2024 The Authors Creative Commons, Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) (http://creativecommons.org/licenses/by-nc/4.0/) Creative Commons, Attribution - Pas d’utilisation commerciale 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/deed.fr) |
Copyright_xml | – notice: 2024 The Authors – notice: Creative Commons, Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) (http://creativecommons.org/licenses/by-nc/4.0/) Creative Commons, Attribution - Pas d’utilisation commerciale 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/deed.fr) |
DBID | 6I. AAFTH -LJ GXV AAYXX CITATION |
DOI | 10.1016/j.optlastec.2024.111921 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access National Research Council Canada Archive CISTI Source CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Sciences |
ExternalDocumentID | 10_1016_j_optlastec_2024_111921 oai_cisti_icist_nrc_cnrc_ca_cistinparc_27d41fcc_ba4d_423c_9a77_64893c024f98 S0030399224013793 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXKI AAXUO ABDPE ABJNI ABMAC ABNEU ABXDB ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ ZMT ~G- -LJ AATTM AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AIGII AIIUN AKBMS AKYEP ANKPU APXCP EFKBS GXV AAYXX ABWVN ACRPL ADNMO AFXIZ AGQPQ AGRNS BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c354t-5aa4ae9dcb1352f67be6193cd18726e43229a61f11e28a97438579e990d7733c3 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Tue Jul 01 01:39:07 EDT 2025 Fri Aug 22 15:33:36 EDT 2025 Sat Nov 23 15:55:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multimode operation Ultra–broadband Power splitter Silicon photonics Dual polarization operation Fabrication tolerant Subwavelength grating metamaterial Y–junction |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-5aa4ae9dcb1352f67be6193cd18726e43229a61f11e28a97438579e990d7733c3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0030399224013793 |
ParticipantIDs | crossref_primary_10_1016_j_optlastec_2024_111921 nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_27d41fcc_ba4d_423c_9a77_64893c024f98 elsevier_sciencedirect_doi_10_1016_j_optlastec_2024_111921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Yao, Chen, Yan, Ming, Cheng, Penty (b0065) 2023; 12 Halir, Cheben, Luque-González, Sarmiento-Merenguel, Schmid, Wangüemert-Pérez, Xu, Wang, Ortega-Moñux, Molina-Fernández (b0090) 2016; 10 Hassan, Chack (b0085) 2020; 104 González-Andrade, Dinh, Guerber, Vulliet, Cremer, Monfray, Cassan, Marris-Morini, Boeuf, Cheben, Vivien, Velasco, Alonso-Ramos (b0035) 2021; 46 Cheben, Halir, Schmid, Atwater, Smith (b0165) 2018; 560 Cheben, Bock, Schmid, Lapointe, Janz, Xu, Densmore, Delâge, Lamontagne, Hall (b0175) 2010; 35 Luque-González, Sánchez-Postigo, Hadij–ElHouati, Ortega-Moñux, Wangüemert-Pérez, Schmid, Cheben, Molina-Fernández, Halir (b0170) 2021; 10 Ye, Dai (b0200) 2020; 38 Xu, Wang, Kumar, El–Fiky, Mao, Tamazin, Jacques, Xing, Saber, Plant (b0205) 2018; 26 González-Andrade, Dias, Wangüemert-Pérez, Ortega-Moñux, Molina-Fernández, Halir, Cheben, Velasco (b0190) 2020; 129 González-Andrade, Lafforgue, Durán-Valdeiglesias, Le Roux, Berciano, Cassan, Marris-Morini, Velasco, Cheben, Vivien, Alonso-Ramos (b0130) 2019; 9 Zhang, Kwon, Henriksson, Luo, Wu (b0025) 2022; 603 Chen, Lin, Li, Wang, Dai, Liu, Yao, Li, Fu, Dai, Yang (b0275) 2022; 30 Duong Dinh, Le Roux, Koompai, Melati, Montesinos-Ballester, González-Andrade, Cheben, Velasco, Cassan, Marris-Morini, Vivien, Alonso-Ramos (b0180) 2022; 47 Sasaki, Anderson (b0255) 1978; 14 Vilas, Fernández de Cabo, Olivares, González-Andrade, Velasco, Dias-Ponte (b0185) 2023; 35 Vakarin, Melati, Dinh, Le Roux, Kan, Dupré, Szelag, Monfray, Boeuf, Cheben, Cassan, Marris-Morini, Vivien, Alonso-Ramos (b0105) 2021; 11 Bogaerts, Pérez, Capmany, Miller, Poon, Englund, Morichetti, Melloni (b0075) 2020; 586 Sun, Zhao, Wang, Du, Huang (b0120) 2019; 180 Liu, Zhao, Zhu, Liu, Gan (b0135) 2023; 10 Pérez-Armenta, Ortega-Moñux, Manuel Luque-González, Halir, Reyes-Iglesias, Schmid, Cheben, Molina-Fernández, Wangüemert-Pérez (b0220) 2022; 10 Washburn, Bailey (b0030) 2011; 136 Bai, Shu, Wang, Zou (b0055) 2020; 63 Zhou, Yin, Liu, Xing, Tang, Liu (b0145) 2022; 61 Ozcan, Mojahedi, Stewart Aitchison (b0115) 2023; 48 Shiran, Zhang, Liboiron-Ladouceur (b0195) 2021; 29 Shi, Zhang, Wan, Yu, Zhang, Hu, Xiao, Xu, Zhang, Pan (b0080) 2022; 10 Yi, Cheng, Yan, Li, Xu, Zou, Li, Sun, Zou, Yu, Shen (b0210) 2023; 48 Y. Zhang, S. Yang, A.E.–J. Lim, G.–Q. Lo, C. Galland, T. Baehr–Jones, M. Hochberg, A compact and low loss Y–junction for submicron silicon waveguide, Opt. Express 21 (2013) 1310. doi: 10.1364/OE.21.001310. Guo, Xiao, Wu (b0215) 2022; 10 Cheben, Xu, Janz, Densmore (b0160) 2006; 14 Gupta, Chandran, Das (b0095) 2017; 35 Garcia-Valenzuela (b0250) 1994; 33 Lu, Liu, Yan, Zhang (b0225) 2019; 44 Paredes, Mohammed, Villegas, Rasras (b0070) 2023; 41 L. Han, B.P.–P. Kuo, N. Alic, S. Radic, Ultra–broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y–branch, Opt. Express 26 (2018) 14800. doi: 10.1364/OE.26.014800. Shastri, Tait, Ferreira de Lima, Pernice, Bhaskaran, Wright, Prucnal (b0040) 2021; 15 Wang, Gao, Wang, Skafidas (b0100) 2016; 41 Xu, Liu, Guo, Song, Xu (b0235) 2022; 30 Fernández de Cabo, González-Andrade, Cheben, Velasco (b0150) 2021; 11 D. Bonneau, J.W. Silverstone, M.G. Thompson, Silicon Quantum Photonics, in: 2016: pp. 41–82. doi: 10.1007/978–3–642–10503–6_2. Gonzalez-Andrade, de Cabo, Vilas, Olivares, Dias, Luque-Gonzalez, Wanguemert-Perez, Ortega-Monux, Molina-Fernandez, Halir, Cheben, Velasco (b0050) 2021; 33 Dai, Li, Wang, Wu, Shi, Wu, Gao, Dai, Yu, Tsang (b0265) 2018; 12 A. Rahim, T. Spuesens, R. Baets, W. Bogaerts, Open–Access Silicon Photonics: Current Status and Emerging Initiatives, Proceedings of the IEEE 106 (2018) 2313–2330. doi: 10.1109/JPROC.2018.2878686. Kumar, Gupta, Pitchappa, Wang, Fujita, Singh (b0060) 2022; 132 Yang, Tian, Ji (b0140) 2012; 285 Fernández de Cabo, Vilas, Cheben, Velasco, González-Andrade (b0155) 2023; 157 Shi, Dong, He, Sun, Zhu, Zhang, Lee (b0020) 2020; 2 Kim, Kim, Yoon, Yoon, Park, Kurt (b0240) 2022; 11 Zhang, Xia, Li, Chang, Zhou, Xu, Zou (b0270) 2021; 46 Ito, Okazaki (b0260) 2000; 406 Love, Riesen (b0245) 2012; 30 Siew, Li, Gao, Zheng, Zhang, Guo, Xie, Song, Dong, Luo, Li, Luo, Lo (b0010) 2021; 39 Sibson, Kennard, Stanisic, Erven, O’Brien, Thompson (b0045) 2017; 4 Tahersima, Kojima, Koike-Akino, Jha, Wang, Lin, Parsons (b0230) 2019; 9 Shi (10.1016/j.optlastec.2024.111921_b0080) 2022; 10 Cheben (10.1016/j.optlastec.2024.111921_b0165) 2018; 560 Garcia-Valenzuela (10.1016/j.optlastec.2024.111921_b0250) 1994; 33 Tahersima (10.1016/j.optlastec.2024.111921_b0230) 2019; 9 Washburn (10.1016/j.optlastec.2024.111921_b0030) 2011; 136 10.1016/j.optlastec.2024.111921_b0125 Shastri (10.1016/j.optlastec.2024.111921_b0040) 2021; 15 10.1016/j.optlastec.2024.111921_b0005 Chen (10.1016/j.optlastec.2024.111921_b0275) 2022; 30 Zhou (10.1016/j.optlastec.2024.111921_b0145) 2022; 61 Zhang (10.1016/j.optlastec.2024.111921_b0025) 2022; 603 Wang (10.1016/j.optlastec.2024.111921_b0100) 2016; 41 Hassan (10.1016/j.optlastec.2024.111921_b0085) 2020; 104 Sibson (10.1016/j.optlastec.2024.111921_b0045) 2017; 4 Dai (10.1016/j.optlastec.2024.111921_b0265) 2018; 12 Love (10.1016/j.optlastec.2024.111921_b0245) 2012; 30 10.1016/j.optlastec.2024.111921_b0110 Duong Dinh (10.1016/j.optlastec.2024.111921_b0180) 2022; 47 Kumar (10.1016/j.optlastec.2024.111921_b0060) 2022; 132 Liu (10.1016/j.optlastec.2024.111921_b0135) 2023; 10 Bai (10.1016/j.optlastec.2024.111921_b0055) 2020; 63 Pérez-Armenta (10.1016/j.optlastec.2024.111921_b0220) 2022; 10 Guo (10.1016/j.optlastec.2024.111921_b0215) 2022; 10 Zhang (10.1016/j.optlastec.2024.111921_b0270) 2021; 46 Ito (10.1016/j.optlastec.2024.111921_b0260) 2000; 406 Shi (10.1016/j.optlastec.2024.111921_b0020) 2020; 2 Ozcan (10.1016/j.optlastec.2024.111921_b0115) 2023; 48 Cheben (10.1016/j.optlastec.2024.111921_b0175) 2010; 35 Shiran (10.1016/j.optlastec.2024.111921_b0195) 2021; 29 Xu (10.1016/j.optlastec.2024.111921_b0235) 2022; 30 Gupta (10.1016/j.optlastec.2024.111921_b0095) 2017; 35 Cheben (10.1016/j.optlastec.2024.111921_b0160) 2006; 14 Vilas (10.1016/j.optlastec.2024.111921_b0185) 2023; 35 Bogaerts (10.1016/j.optlastec.2024.111921_b0075) 2020; 586 Paredes (10.1016/j.optlastec.2024.111921_b0070) 2023; 41 Yao (10.1016/j.optlastec.2024.111921_b0065) 2023; 12 González-Andrade (10.1016/j.optlastec.2024.111921_b0130) 2019; 9 Halir (10.1016/j.optlastec.2024.111921_b0090) 2016; 10 González-Andrade (10.1016/j.optlastec.2024.111921_b0190) 2020; 129 Yi (10.1016/j.optlastec.2024.111921_b0210) 2023; 48 Fernández de Cabo (10.1016/j.optlastec.2024.111921_b0150) 2021; 11 Sasaki (10.1016/j.optlastec.2024.111921_b0255) 1978; 14 Yang (10.1016/j.optlastec.2024.111921_b0140) 2012; 285 Xu (10.1016/j.optlastec.2024.111921_b0205) 2018; 26 Lu (10.1016/j.optlastec.2024.111921_b0225) 2019; 44 Gonzalez-Andrade (10.1016/j.optlastec.2024.111921_b0050) 2021; 33 Sun (10.1016/j.optlastec.2024.111921_b0120) 2019; 180 González-Andrade (10.1016/j.optlastec.2024.111921_b0035) 2021; 46 Ye (10.1016/j.optlastec.2024.111921_b0200) 2020; 38 10.1016/j.optlastec.2024.111921_b0015 Vakarin (10.1016/j.optlastec.2024.111921_b0105) 2021; 11 Fernández de Cabo (10.1016/j.optlastec.2024.111921_b0155) 2023; 157 Luque-González (10.1016/j.optlastec.2024.111921_b0170) 2021; 10 Kim (10.1016/j.optlastec.2024.111921_b0240) 2022; 11 Siew (10.1016/j.optlastec.2024.111921_b0010) 2021; 39 |
References_xml | – volume: 35 start-page: 4916 year: 2017 end-page: 4923 ident: b0095 article-title: Wavelength-Independent Directional Couplers for Integrated Silicon Photonics publication-title: J. Lightwave Technol. – volume: 10 start-page: 1039 year: 2016 end-page: 1046 ident: b0090 article-title: Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial publication-title: Laser Photon. Rev. – volume: 104 year: 2020 ident: b0085 article-title: Design and analysis of polarization independent MMI based power splitter for PICs publication-title: Microelectronics J. – volume: 10 start-page: 2448 year: 2022 ident: b0215 article-title: Ultracompact, polarization–independent, and highly scalable optical power splitting model employing fan–out bending metamaterials publication-title: Photonics Res. – volume: 35 start-page: 2526 year: 2010 ident: b0175 article-title: Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers publication-title: Opt. Lett. – volume: 41 start-page: 2053 year: 2016 ident: b0100 article-title: Ultra–broadband and low–loss 3 dB optical power splitter based on adiabatic tapered silicon waveguides publication-title: Opt. Lett. – volume: 4 start-page: 172 year: 2017 ident: b0045 article-title: Integrated silicon photonics for high–speed quantum key distribution publication-title: Optica – reference: D. Bonneau, J.W. Silverstone, M.G. Thompson, Silicon Quantum Photonics, in: 2016: pp. 41–82. doi: 10.1007/978–3–642–10503–6_2. – volume: 129 year: 2020 ident: b0190 article-title: Experimental demonstration of a broadband mode converter and multiplexer based on subwavelength grating waveguides publication-title: Opt. Laser Technol. – volume: 29 start-page: 23864 year: 2021 ident: b0195 article-title: Dual–mode broadband compact 2 × 2 optical power splitter using sub–wavelength metamaterial structures publication-title: Opt. Express – volume: 15 start-page: 102 year: 2021 end-page: 114 ident: b0040 article-title: Photonics for artificial intelligence and neuromorphic computing publication-title: Nat. Photonics – volume: 10 start-page: 419 year: 2023 ident: b0135 article-title: Particle Swarm Optimized Compact, Low Loss 3–dB Power Splitter Enabled by Silicon Columns in Silicon–on–Insulator publication-title: Photonics – volume: 12 start-page: 156 year: 2023 ident: b0065 article-title: Broadband picometer–scale resolution on–chip spectrometer with reconfigurable photonics publication-title: Light Sci. Appl. – volume: 12 year: 2018 ident: b0265 article-title: 10-Channel Mode (de)multiplexer with Dual Polarizations publication-title: Laser Photon. Rev. – volume: 39 start-page: 4374 year: 2021 end-page: 4389 ident: b0010 article-title: Review of Silicon Photonics Technology and Platform Development publication-title: J. Lightwave Technol. – volume: 61 start-page: 9449 year: 2022 ident: b0145 article-title: Design of an ultra–broadband and low–loss 3 dB power splitter from the 1.25 to 2.04 µm wave band publication-title: Appl. Opt. – volume: 285 start-page: 3752 year: 2012 end-page: 3757 ident: b0140 article-title: High–bandwidth and low–loss photonic crystal power–splitter with parallel output based on the integration of Y–junction and waveguide bends publication-title: Opt. Commun. – volume: 63 year: 2020 ident: b0055 article-title: Towards silicon photonic neural networks for artificial intelligence publication-title: Sci. China Inform. Sci. – volume: 46 start-page: 4021 year: 2021 ident: b0035 article-title: Broadband Fourier–transform silicon nitride spectrometer with wide–area multiaperture input publication-title: Opt. Lett. – volume: 48 start-page: 4901 year: 2023 ident: b0115 article-title: Short, broadband, and polarization–insensitive adiabatic Y–junction power splitters publication-title: Opt. Lett. – volume: 136 start-page: 227 year: 2011 end-page: 236 ident: b0030 article-title: Photonics–on–a–chip: recent advances in integrated waveguides as enabling detection elements for real–world, lab–on–a–chip biosensing applications publication-title: Analyst – volume: 26 start-page: 29873 year: 2018 ident: b0205 article-title: Compact high–performance adiabatic 3–dB coupler enabled by subwavelength grating slot in the silicon–on–insulator platform publication-title: Opt. Express – volume: 11 start-page: 4581 year: 2022 end-page: 4590 ident: b0240 article-title: Experimental demonstration of inverse–designed silicon integrated photonic power splitters publication-title: Nanophotonics – volume: 132 year: 2022 ident: b0060 article-title: Terahertz topological photonic integrated circuits for 6G and beyond: a perspective publication-title: J. Appl. Phys. – volume: 46 start-page: 5000 year: 2021 ident: b0270 article-title: Ultra–compact polarization–independent 3 dB power splitter in silicon publication-title: Opt. Lett. – reference: L. Han, B.P.–P. Kuo, N. Alic, S. Radic, Ultra–broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y–branch, Opt. Express 26 (2018) 14800. doi: 10.1364/OE.26.014800. – volume: 11 start-page: 1304 year: 2021 ident: b0150 article-title: High-Performance On–Chip Silicon Beamsplitter Based on Subwavelength Metamaterials for Enhanced Fabrication Tolerance publication-title: Nanomaterials – volume: 603 start-page: 253 year: 2022 end-page: 258 ident: b0025 article-title: A large–scale microelectromechanical–systems–based silicon photonics LiDAR publication-title: Nature – volume: 33 start-page: 1262 year: 2021 end-page: 1265 ident: b0050 article-title: Mode Converter and Multiplexer With a Subwavelength Phase Shifter for Extended Broadband Operation publication-title: IEEE Photonics Technol. Lett. – volume: 14 start-page: 4695 year: 2006 ident: b0160 article-title: Subwavelength waveguide grating for mode conversion and light coupling in integrated optics publication-title: Opt. Express – volume: 30 start-page: 46236 year: 2022 ident: b0275 article-title: Broadband multimode 3 dB optical power splitter using tapered couplers publication-title: Opt. Express – volume: 406 start-page: 1027 year: 2000 end-page: 1031 ident: b0260 article-title: Pushing the limits of lithography publication-title: Nature – volume: 35 start-page: 1331 year: 2023 end-page: 1334 ident: b0185 article-title: Low-Loss Directional Coupler for the C, L and U Bands Based on Subwavelength Gratings publication-title: IEEE Photonics Technol. Lett. – volume: 33 start-page: 1032 year: 1994 ident: b0250 article-title: Large–angle transmission and mode conversion characteristics of symmetric multimode Y–junction couplers publication-title: Optical Engineering – volume: 11 start-page: 2949 year: 2021 ident: b0105 article-title: Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography publication-title: Nanomaterials – volume: 14 start-page: 883 year: 1978 end-page: 892 ident: b0255 article-title: Theoretical and experimental studies on active Y–junctions in optical waveguides publication-title: IEEE J. Quantum Electron. – volume: 586 start-page: 207 year: 2020 end-page: 216 ident: b0075 article-title: Programmable photonic circuits publication-title: Nature – reference: A. Rahim, T. Spuesens, R. Baets, W. Bogaerts, Open–Access Silicon Photonics: Current Status and Emerging Initiatives, Proceedings of the IEEE 106 (2018) 2313–2330. doi: 10.1109/JPROC.2018.2878686. – volume: 30 start-page: 304 year: 2012 end-page: 309 ident: b0245 article-title: Single–, Few–, and Multimode Y-Junctions publication-title: J. Lightwave Technol. – volume: 560 start-page: 565 year: 2018 end-page: 572 ident: b0165 article-title: Subwavelength integrated photonics publication-title: Nature – volume: 10 start-page: 2765 year: 2021 end-page: 2797 ident: b0170 article-title: A review of silicon subwavelength gratings: building break–through devices with anisotropic metamaterials publication-title: Nanophotonics – volume: 38 start-page: 2370 year: 2020 end-page: 2375 ident: b0200 article-title: Ultra-Compact Broadband 2 × 2 3 dB Power Splitter Using a Subwavelength–Grating–Assisted Asymmetric Directional Coupler publication-title: J. Lightwave Technol. – volume: 10 start-page: A57 year: 2022 ident: b0220 article-title: Polarization–independent multimode interference coupler with anisotropy–engineered bricked metamaterial publication-title: Photonics Res. – volume: 180 start-page: 866 year: 2019 end-page: 872 ident: b0120 article-title: Broadband and high uniformity Y junction optical beam splitter with multimode tapered branch publication-title: Optik (stuttg) – volume: 48 start-page: 1335 year: 2023 ident: b0210 article-title: Silicon MMI–based power splitter for multi–band operation at the 1.55 and 2 µm wave bands publication-title: Opt. Lett. – volume: 2 start-page: 1131 year: 2020 end-page: 1162 ident: b0020 article-title: Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things publication-title: InfoMat – reference: Y. Zhang, S. Yang, A.E.–J. Lim, G.–Q. Lo, C. Galland, T. Baehr–Jones, M. Hochberg, A compact and low loss Y–junction for submicron silicon waveguide, Opt. Express 21 (2013) 1310. doi: 10.1364/OE.21.001310. – volume: 41 start-page: 5412 year: 2023 end-page: 5417 ident: b0070 article-title: Ultra-Compact Ultra–Broadband Two-Mode Transverse–Electric Based SWG Multiplexer Demonstrated at 64 Gbps publication-title: J. Lightwave Technol. – volume: 9 start-page: 3604 year: 2019 ident: b0130 article-title: Polarization– and wavelength–agnostic nanophotonic beam splitter publication-title: Sci. Rep. – volume: 9 start-page: 1368 year: 2019 ident: b0230 article-title: Deep Neural Network Inverse Design of Integrated Photonic Power Splitters publication-title: Sci. Rep. – volume: 30 start-page: 26266 year: 2022 ident: b0235 article-title: Inverse design of a dual–mode 3–dB optical power splitter with a 445 nm bandwidth publication-title: Opt. Express – volume: 10 start-page: A106 year: 2022 ident: b0080 article-title: Silicon photonics for high–capacity data communications publication-title: Photonics Res. – volume: 44 start-page: 4729 year: 2019 ident: b0225 article-title: Subwavelength adiabatic multimode Y–junctions publication-title: Opt. Lett. – volume: 157 year: 2023 ident: b0155 article-title: Experimental characterization of an ultra–broadband dual–mode symmetric Y–junction based on metamaterial waveguides publication-title: Opt. Laser Technol. – volume: 47 start-page: 810 year: 2022 ident: b0180 article-title: Mid–infrared Fourier–transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides publication-title: Opt. Lett. – volume: 180 start-page: 866 year: 2019 ident: 10.1016/j.optlastec.2024.111921_b0120 article-title: Broadband and high uniformity Y junction optical beam splitter with multimode tapered branch publication-title: Optik (stuttg) doi: 10.1016/j.ijleo.2018.12.013 – volume: 285 start-page: 3752 year: 2012 ident: 10.1016/j.optlastec.2024.111921_b0140 article-title: High–bandwidth and low–loss photonic crystal power–splitter with parallel output based on the integration of Y–junction and waveguide bends publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.05.022 – ident: 10.1016/j.optlastec.2024.111921_b0005 doi: 10.1109/JPROC.2018.2878686 – volume: 586 start-page: 207 year: 2020 ident: 10.1016/j.optlastec.2024.111921_b0075 article-title: Programmable photonic circuits publication-title: Nature doi: 10.1038/s41586-020-2764-0 – volume: 35 start-page: 4916 year: 2017 ident: 10.1016/j.optlastec.2024.111921_b0095 article-title: Wavelength-Independent Directional Couplers for Integrated Silicon Photonics publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2759162 – volume: 30 start-page: 304 year: 2012 ident: 10.1016/j.optlastec.2024.111921_b0245 article-title: Single–, Few–, and Multimode Y-Junctions publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2011.2179976 – volume: 10 start-page: A57 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0220 article-title: Polarization–independent multimode interference coupler with anisotropy–engineered bricked metamaterial publication-title: Photonics Res. doi: 10.1364/PRJ.446932 – volume: 47 start-page: 810 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0180 article-title: Mid–infrared Fourier–transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides publication-title: Opt. Lett. doi: 10.1364/OL.450719 – volume: 11 start-page: 4581 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0240 article-title: Experimental demonstration of inverse–designed silicon integrated photonic power splitters publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0443 – volume: 46 start-page: 5000 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0270 article-title: Ultra–compact polarization–independent 3 dB power splitter in silicon publication-title: Opt. Lett. doi: 10.1364/OL.439320 – volume: 11 start-page: 1304 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0150 article-title: High-Performance On–Chip Silicon Beamsplitter Based on Subwavelength Metamaterials for Enhanced Fabrication Tolerance publication-title: Nanomaterials doi: 10.3390/nano11051304 – volume: 406 start-page: 1027 year: 2000 ident: 10.1016/j.optlastec.2024.111921_b0260 article-title: Pushing the limits of lithography publication-title: Nature doi: 10.1038/35023233 – volume: 35 start-page: 2526 year: 2010 ident: 10.1016/j.optlastec.2024.111921_b0175 article-title: Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers publication-title: Opt. Lett. doi: 10.1364/OL.35.002526 – volume: 30 start-page: 26266 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0235 article-title: Inverse design of a dual–mode 3–dB optical power splitter with a 445 nm bandwidth publication-title: Opt. Express doi: 10.1364/OE.463274 – volume: 33 start-page: 1032 year: 1994 ident: 10.1016/j.optlastec.2024.111921_b0250 article-title: Large–angle transmission and mode conversion characteristics of symmetric multimode Y–junction couplers publication-title: Optical Engineering doi: 10.1117/12.166932 – volume: 46 start-page: 4021 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0035 article-title: Broadband Fourier–transform silicon nitride spectrometer with wide–area multiaperture input publication-title: Opt. Lett. doi: 10.1364/OL.438361 – volume: 132 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0060 article-title: Terahertz topological photonic integrated circuits for 6G and beyond: a perspective publication-title: J. Appl. Phys. doi: 10.1063/5.0099423 – volume: 10 start-page: 1039 year: 2016 ident: 10.1016/j.optlastec.2024.111921_b0090 article-title: Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201600213 – volume: 38 start-page: 2370 year: 2020 ident: 10.1016/j.optlastec.2024.111921_b0200 article-title: Ultra-Compact Broadband 2 × 2 3 dB Power Splitter Using a Subwavelength–Grating–Assisted Asymmetric Directional Coupler publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2973663 – volume: 41 start-page: 5412 year: 2023 ident: 10.1016/j.optlastec.2024.111921_b0070 article-title: Ultra-Compact Ultra–Broadband Two-Mode Transverse–Electric Based SWG Multiplexer Demonstrated at 64 Gbps publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2023.3264012 – volume: 29 start-page: 23864 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0195 article-title: Dual–mode broadband compact 2 × 2 optical power splitter using sub–wavelength metamaterial structures publication-title: Opt. Express doi: 10.1364/OE.423882 – volume: 14 start-page: 4695 year: 2006 ident: 10.1016/j.optlastec.2024.111921_b0160 article-title: Subwavelength waveguide grating for mode conversion and light coupling in integrated optics publication-title: Opt. Express doi: 10.1364/OE.14.004695 – volume: 61 start-page: 9449 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0145 article-title: Design of an ultra–broadband and low–loss 3 dB power splitter from the 1.25 to 2.04 µm wave band publication-title: Appl. Opt. doi: 10.1364/AO.470157 – volume: 10 start-page: 2765 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0170 article-title: A review of silicon subwavelength gratings: building break–through devices with anisotropic metamaterials publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0110 – volume: 157 year: 2023 ident: 10.1016/j.optlastec.2024.111921_b0155 article-title: Experimental characterization of an ultra–broadband dual–mode symmetric Y–junction based on metamaterial waveguides publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.108742 – volume: 48 start-page: 4901 year: 2023 ident: 10.1016/j.optlastec.2024.111921_b0115 article-title: Short, broadband, and polarization–insensitive adiabatic Y–junction power splitters publication-title: Opt. Lett. doi: 10.1364/OL.500240 – volume: 48 start-page: 1335 year: 2023 ident: 10.1016/j.optlastec.2024.111921_b0210 article-title: Silicon MMI–based power splitter for multi–band operation at the 1.55 and 2 µm wave bands publication-title: Opt. Lett. doi: 10.1364/OL.486428 – volume: 15 start-page: 102 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0040 article-title: Photonics for artificial intelligence and neuromorphic computing publication-title: Nat. Photonics doi: 10.1038/s41566-020-00754-y – volume: 10 start-page: 2448 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0215 article-title: Ultracompact, polarization–independent, and highly scalable optical power splitting model employing fan–out bending metamaterials publication-title: Photonics Res. doi: 10.1364/PRJ.470827 – volume: 63 year: 2020 ident: 10.1016/j.optlastec.2024.111921_b0055 article-title: Towards silicon photonic neural networks for artificial intelligence publication-title: Sci. China Inform. Sci. doi: 10.1007/s11432-020-2872-3 – volume: 11 start-page: 2949 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0105 article-title: Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography publication-title: Nanomaterials doi: 10.3390/nano11112949 – volume: 560 start-page: 565 year: 2018 ident: 10.1016/j.optlastec.2024.111921_b0165 article-title: Subwavelength integrated photonics publication-title: Nature doi: 10.1038/s41586-018-0421-7 – volume: 2 start-page: 1131 year: 2020 ident: 10.1016/j.optlastec.2024.111921_b0020 article-title: Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 35 start-page: 1331 year: 2023 ident: 10.1016/j.optlastec.2024.111921_b0185 article-title: Low-Loss Directional Coupler for the C, L and U Bands Based on Subwavelength Gratings publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2023.3325660 – volume: 12 year: 2018 ident: 10.1016/j.optlastec.2024.111921_b0265 article-title: 10-Channel Mode (de)multiplexer with Dual Polarizations publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201700109 – volume: 603 start-page: 253 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0025 article-title: A large–scale microelectromechanical–systems–based silicon photonics LiDAR publication-title: Nature doi: 10.1038/s41586-022-04415-8 – ident: 10.1016/j.optlastec.2024.111921_b0110 doi: 10.1364/OE.21.001310 – volume: 41 start-page: 2053 year: 2016 ident: 10.1016/j.optlastec.2024.111921_b0100 article-title: Ultra–broadband and low–loss 3 dB optical power splitter based on adiabatic tapered silicon waveguides publication-title: Opt. Lett. doi: 10.1364/OL.41.002053 – volume: 136 start-page: 227 year: 2011 ident: 10.1016/j.optlastec.2024.111921_b0030 article-title: Photonics–on–a–chip: recent advances in integrated waveguides as enabling detection elements for real–world, lab–on–a–chip biosensing applications publication-title: Analyst doi: 10.1039/C0AN00449A – volume: 33 start-page: 1262 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0050 article-title: Mode Converter and Multiplexer With a Subwavelength Phase Shifter for Extended Broadband Operation publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2021.3116439 – volume: 129 year: 2020 ident: 10.1016/j.optlastec.2024.111921_b0190 article-title: Experimental demonstration of a broadband mode converter and multiplexer based on subwavelength grating waveguides publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106297 – volume: 26 start-page: 29873 year: 2018 ident: 10.1016/j.optlastec.2024.111921_b0205 article-title: Compact high–performance adiabatic 3–dB coupler enabled by subwavelength grating slot in the silicon–on–insulator platform publication-title: Opt. Express doi: 10.1364/OE.26.029873 – volume: 39 start-page: 4374 year: 2021 ident: 10.1016/j.optlastec.2024.111921_b0010 article-title: Review of Silicon Photonics Technology and Platform Development publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3066203 – volume: 10 start-page: A106 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0080 article-title: Silicon photonics for high–capacity data communications publication-title: Photonics Res. doi: 10.1364/PRJ.456772 – volume: 14 start-page: 883 year: 1978 ident: 10.1016/j.optlastec.2024.111921_b0255 article-title: Theoretical and experimental studies on active Y–junctions in optical waveguides publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1978.1069695 – volume: 44 start-page: 4729 year: 2019 ident: 10.1016/j.optlastec.2024.111921_b0225 article-title: Subwavelength adiabatic multimode Y–junctions publication-title: Opt. Lett. doi: 10.1364/OL.44.004729 – volume: 9 start-page: 1368 year: 2019 ident: 10.1016/j.optlastec.2024.111921_b0230 article-title: Deep Neural Network Inverse Design of Integrated Photonic Power Splitters publication-title: Sci. Rep. doi: 10.1038/s41598-018-37952-2 – ident: 10.1016/j.optlastec.2024.111921_b0125 doi: 10.1364/OE.26.014800 – volume: 10 start-page: 419 year: 2023 ident: 10.1016/j.optlastec.2024.111921_b0135 article-title: Particle Swarm Optimized Compact, Low Loss 3–dB Power Splitter Enabled by Silicon Columns in Silicon–on–Insulator publication-title: Photonics doi: 10.3390/photonics10040419 – volume: 30 start-page: 46236 year: 2022 ident: 10.1016/j.optlastec.2024.111921_b0275 article-title: Broadband multimode 3 dB optical power splitter using tapered couplers publication-title: Opt. Express doi: 10.1364/OE.471397 – volume: 9 start-page: 3604 year: 2019 ident: 10.1016/j.optlastec.2024.111921_b0130 article-title: Polarization– and wavelength–agnostic nanophotonic beam splitter publication-title: Sci. Rep. doi: 10.1038/s41598-019-40497-7 – volume: 4 start-page: 172 year: 2017 ident: 10.1016/j.optlastec.2024.111921_b0045 article-title: Integrated silicon photonics for high–speed quantum key distribution publication-title: Optica doi: 10.1364/OPTICA.4.000172 – volume: 104 year: 2020 ident: 10.1016/j.optlastec.2024.111921_b0085 article-title: Design and analysis of polarization independent MMI based power splitter for PICs publication-title: Microelectronics J. doi: 10.1016/j.mejo.2020.104887 – volume: 12 start-page: 156 year: 2023 ident: 10.1016/j.optlastec.2024.111921_b0065 article-title: Broadband picometer–scale resolution on–chip spectrometer with reconfigurable photonics publication-title: Light Sci. Appl. doi: 10.1038/s41377-023-01195-2 – ident: 10.1016/j.optlastec.2024.111921_b0015 doi: 10.1007/978-3-642-10503-6_2 |
SSID | ssj0004653 |
Score | 2.3878765 |
Snippet | •This paper introduces a pioneering 3-dB power splitter based on a symmetric Y-junction, enhanced by two distinct subwavelength grating metamaterial geometries... NRC publication: Yes |
SourceID | crossref nrccanada elsevier |
SourceType | Index Database Publisher |
StartPage | 111921 |
SubjectTerms | Dual polarization operation Fabrication tolerant Multimode operation Power splitter Silicon photonics Subwavelength grating metamaterial Ultra–broadband Y–junction |
Title | Extending the spectral operation of multimode and polarization-independent power splitters through subwavelength nanotechnology |
URI | https://dx.doi.org/10.1016/j.optlastec.2024.111921 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQCLU9oEJb8SryodcU_Egcc0MItC0SJ5C4VJZfabcHJ1qCuJW_zoyTjZYD6oFLIjlxYnmcz99EM98Q8k055WFnF4UQvi6kD6HQvnKFtOIEeuiKx6z2eV3NbuXPu_JujZwvc2EwrHLE_gHTM1qPLcfjbB538znm-AL8oqwqugiwzDCDXSpc5d__sZXcyFGJUgDewN0vYrzargeO2kfUMuQS4UNz9toO9S4tfI7Esis70OVHsjVSR3o2jG6brMW0Qz6sCArukM0c0OnvP5Gni_x3G1opUDyaEyoX0Lvt4mBz2jY0RxNiLRxqU6AderljWmYxn8rj9nDhMS7gEcDYUYuTjrV96P2De7RYuCL97v_QZFPbTz_qP5Pby4ub81kxFlsovChlX5TWSht18I4BJ2sq5SL4VsIHViteRQkfvrYVaxiLvLbghYi6VDrCZhaUAkOLL2Q9tSnuEsotMHbmwLeuShlcAySeO2iULjZO13GPnCwn2HSDpoZZBpv9NZNNDNrEDDbZI6dLQ5gXy8MA8v-_86_JdNMLUVbbI4yaOZ4M3GF8PtihPXWANIarIFnjPZAKGQxwT2-0VcpUKNrj4R2NrvffMrgD8p5jSeEcCH5I1vvFQ_wKPKd3R3khH5GNsx9Xs-tn4XEDXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5REKI9VIW2KqUPH7im4EfiuLcKgbaFcgKJC7L8Srs9ONESxK38dcZONloOqIdeEsmJE8vjfP4mmvkGYF9a6XBn5wXnri6E875QrrKFMPwQe6iKhaz2eV7NLsWPq_JqDY6WuTAprHLE_gHTM1qPLQfjbB5083nK8UX4TbKqyUXAZfYMNgR-vqmMwZe_dCU5cpSi5Ag4ePujIK-265Gk9iGJGTKR8EMx-tQWtRUXLodimZUt6OQVvBy5I_k2DG8b1kLcgRcrioI7sJkjOt3Na7g_zr-3sZUgxyM5o3KBvdsuDEYnbUNyOGEqhkNM9KRLbu6Yl1nMp_q4PV64Cwt8BFL2JMZJxuI-5ObW3plUuSL-6n-TaGLbT3_q38DlyfHF0awYqy0UjpeiL0pjhAnKO0uRlDWVtAGdK-48rSWrgsAvX5mKNpQGVht0Q3hdShVwN_NSoqX5W1iPbQzvgDCDlJ1adK6rUnjbIItnFhuFDY1VddiFw-UE624Q1dDLaLM_erKJTjbRg0124evSEPrR-tAI_f_ufD2Zbnph0tV2CUf1PJ003qFdPpihPXYINZpJL2jjHLIK4TWST6eVkVJXSbXH4TsaVb__n8F9hq3Zxc8zffb9_HQPnrNUXzhHhX-A9X5xGz4i6entp7yoHwC3rgTt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+the+spectral+operation+of+multimode+and+polarization-independent+power+splitters+through+subwavelength+nanotechnology&rft.jtitle=Optics+and+laser+technology&rft.au=Fern%C3%A1ndez+De+Cabo%2C+Raquel&rft.au=Gonz%C3%A1lez%E2%80%93Andrade%2C+David&rft.au=Cheben%2C+Pavel&rft.au=Velasco%2C+Aitor+V&rft.date=2025-02-01&rft.pub=Elsevier&rft.issn=0030-3992&rft_id=info:doi/10.1016%2Fj.optlastec.2024.111921&rft.externalDocID=oai_cisti_icist_nrc_cnrc_ca_cistinparc_27d41fcc_ba4d_423c_9a77_64893c024f98 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |