Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries

"Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may b...

Full description

Saved in:
Bibliographic Details
Published inNano Research Energy Vol. 1; no. 3; p. e9120026
Main Authors Guo, Xin, Wang, Changda, Wang, Wenjie, Zhou, Quan, Xu, Wenjie, Zhang, Pengjun, Wei, Shiqiang, Cao, Yuyang, Zhu, Kefu, Liu, Zhanfeng, Yang, Xiya, Wang, Yixiu, Wu, Xiaojun, Song, Li, Chen, Shuangming, Liu, Xiaosong
Format Journal Article
LanguageEnglish
Published Tsinghua University Press 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract "Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may be revealed by constructing highly ordered vacancy structures. Herein, we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies (Mo1.33CTx), by utilizing selective etching strategies. Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of +4.44 compared with the control Mo2CTx. Benefited from the introduced atomic active sites and high valence of Mo, Mo1.33CTx achieves an outstanding capacity of 603 mAh·g−1 at 0.2 A·g−1, superior to most original MXenes. Li+ storage kinetics analysis and density functional theory (DFT) simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process, which enhances Faraday reaction compared with pure Mo2CTx. This vacancy manipulation provides an efficient way to realize MXene's potential as promising electrodes.
AbstractList "Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may be revealed by constructing highly ordered vacancy structures. Herein, we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies (Mo1.33CTx), by utilizing selective etching strategies. Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of +4.44 compared with the control Mo2CTx. Benefited from the introduced atomic active sites and high valence of Mo, Mo1.33CTx achieves an outstanding capacity of 603 mAh·g−1 at 0.2 A·g−1, superior to most original MXenes. Li+ storage kinetics analysis and density functional theory (DFT) simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process, which enhances Faraday reaction compared with pure Mo2CTx. This vacancy manipulation provides an efficient way to realize MXene's potential as promising electrodes.
Author Zhou, Quan
Chen, Shuangming
Liu, Xiaosong
Wei, Shiqiang
Wang, Wenjie
Song, Li
Xu, Wenjie
Wang, Changda
Wang, Yixiu
Zhang, Pengjun
Liu, Zhanfeng
Yang, Xiya
Guo, Xin
Zhu, Kefu
Cao, Yuyang
Wu, Xiaojun
Author_xml – sequence: 1
  givenname: Xin
  surname: Guo
  fullname: Guo, Xin
– sequence: 2
  givenname: Changda
  surname: Wang
  fullname: Wang, Changda
– sequence: 3
  givenname: Wenjie
  surname: Wang
  fullname: Wang, Wenjie
– sequence: 4
  givenname: Quan
  surname: Zhou
  fullname: Zhou, Quan
– sequence: 5
  givenname: Wenjie
  surname: Xu
  fullname: Xu, Wenjie
– sequence: 6
  givenname: Pengjun
  surname: Zhang
  fullname: Zhang, Pengjun
– sequence: 7
  givenname: Shiqiang
  surname: Wei
  fullname: Wei, Shiqiang
– sequence: 8
  givenname: Yuyang
  surname: Cao
  fullname: Cao, Yuyang
– sequence: 9
  givenname: Kefu
  surname: Zhu
  fullname: Zhu, Kefu
– sequence: 10
  givenname: Zhanfeng
  surname: Liu
  fullname: Liu, Zhanfeng
– sequence: 11
  givenname: Xiya
  surname: Yang
  fullname: Yang, Xiya
– sequence: 12
  givenname: Yixiu
  surname: Wang
  fullname: Wang, Yixiu
– sequence: 13
  givenname: Xiaojun
  surname: Wu
  fullname: Wu, Xiaojun
– sequence: 14
  givenname: Li
  surname: Song
  fullname: Song, Li
– sequence: 15
  givenname: Shuangming
  surname: Chen
  fullname: Chen, Shuangming
– sequence: 16
  givenname: Xiaosong
  surname: Liu
  fullname: Liu, Xiaosong
BookMark eNp1kd1q3DAQhUVJoPl7gN7pBbzVjy1ZlyUkaSBtILSld2IkjXcVbGmRtZB9-3g36U0hzMUMwzmHGb5zcpJyQkK-cLYSqjPm68-nm5VgQqwMF4wJ9YmcCW1Y03NuTo4zbxgz_DO5mudntkh6I7XRZ-TlD3hIfk8nSHG7G6HGtKZ5oFMe9y5g2k3UQ3ExIP3xFxPOtGaKabOYkN5CgQB7WhB8jTnRIRe6iesN3WJZ5umoGmPdxN3UHAQOasUScb4kpwOMM1699wvy-_bm1_X35uHx7v7620PjZdfWptPc-1Yxx0CC8J55A1IFZxAQWuFUkEMX2tBDL53UblA6OKa5dsH3gw_ygty_5YYMz3Zb4gRlbzNEe1zksrZQavQjWlAsmCCgHYxslWQ9Kt6FfilpILTdkqXfsnzJ81xwsD5WODxeC8TRcmaPPOzCwx542Hcei5P_5_x3yceeV08ZkmA
CitedBy_id crossref_primary_10_1002_smll_202207249
crossref_primary_10_1016_j_apsusc_2023_156511
crossref_primary_10_26599_NRE_2023_9120049
crossref_primary_10_1016_j_chempr_2023_09_021
crossref_primary_10_3390_inorganics11040148
crossref_primary_10_1021_acs_est_4c06263
crossref_primary_10_1016_j_apmate_2023_100154
crossref_primary_10_1039_D2NR05702F
crossref_primary_10_3390_molecules28041541
crossref_primary_10_1021_acsnano_2c09122
crossref_primary_10_1021_acsnano_3c08889
crossref_primary_10_3390_molecules28073134
crossref_primary_10_1002_aenm_202303165
crossref_primary_10_1016_j_jallcom_2023_173041
crossref_primary_10_26599_NRE_2023_9120051
crossref_primary_10_1002_admi_202201144
crossref_primary_10_1016_j_cis_2023_103077
crossref_primary_10_1039_D4TA07376B
crossref_primary_10_1007_s40820_023_01039_z
crossref_primary_10_1088_1361_6528_acd702
crossref_primary_10_1039_D2TA06401D
crossref_primary_10_1039_D2NR05129J
crossref_primary_10_1016_j_ces_2025_121499
crossref_primary_10_1039_D2QI02680E
crossref_primary_10_1002_aenm_202204014
crossref_primary_10_1016_j_matlet_2022_133469
crossref_primary_10_1155_2023_6353894
crossref_primary_10_3390_nano13111744
crossref_primary_10_1002_smtd_202300190
crossref_primary_10_1021_acsnano_3c07306
crossref_primary_10_1007_s12274_023_5798_4
crossref_primary_10_1002_smll_202303165
crossref_primary_10_1039_D3EE03740A
crossref_primary_10_1002_batt_202200461
crossref_primary_10_1007_s12274_022_4929_7
crossref_primary_10_1021_acsaem_4c02750
crossref_primary_10_1021_acs_inorgchem_3c01700
crossref_primary_10_1515_ntrev_2023_0179
crossref_primary_10_1002_smm2_1207
crossref_primary_10_1039_D2NA00782G
crossref_primary_10_1088_2515_7655_ac9f6c
crossref_primary_10_1016_j_electacta_2022_141363
crossref_primary_10_1088_1361_6528_acd121
crossref_primary_10_1007_s12274_022_5247_9
crossref_primary_10_3390_molecules28052108
crossref_primary_10_1021_acsomega_2c07689
crossref_primary_10_1016_j_jallcom_2023_172773
crossref_primary_10_3390_electronics13163316
crossref_primary_10_1007_s12274_023_6386_3
crossref_primary_10_1039_D3TA00555K
crossref_primary_10_1002_smll_202307716
crossref_primary_10_1016_j_jelechem_2022_117096
crossref_primary_10_1016_j_matlet_2022_133411
crossref_primary_10_1002_cey2_333
crossref_primary_10_1021_acsami_2c20385
crossref_primary_10_1039_D2TA07435D
crossref_primary_10_1007_s12274_022_5136_2
crossref_primary_10_1016_j_jpowsour_2025_236814
crossref_primary_10_1039_D3DT00960B
crossref_primary_10_1007_s12274_023_6011_5
crossref_primary_10_1016_j_jechem_2022_12_052
crossref_primary_10_1109_JSEN_2023_3267490
crossref_primary_10_1016_j_inoche_2024_113493
crossref_primary_10_1002_smll_202207852
crossref_primary_10_1039_D2TA08777D
crossref_primary_10_1039_D3NR00866E
crossref_primary_10_1007_s12274_023_5982_6
crossref_primary_10_1039_D3MA00563A
crossref_primary_10_1007_s12274_023_6134_8
crossref_primary_10_1016_j_rser_2023_113861
crossref_primary_10_1002_smll_202400099
crossref_primary_10_1039_D2QI01418A
crossref_primary_10_1002_smtd_202201448
crossref_primary_10_1002_adfm_202209806
crossref_primary_10_1016_j_matlet_2022_133368
crossref_primary_10_1039_D2TA09493B
crossref_primary_10_1021_acs_jpcc_3c07472
crossref_primary_10_1016_j_jallcom_2023_172780
crossref_primary_10_1002_smll_202305009
crossref_primary_10_1038_s41699_023_00377_1
crossref_primary_10_1088_2053_1583_acc341
Cites_doi 10.1126/science.abf1581
10.1002/smll.201703676
10.1103/PhysRevD.13.5
10.1039/C8CS00324F
10.1021/nl3004286
10.1126/science.aba8311
10.1021/acsnano.8b01774
10.1039/C5DT01247C
10.1002/aenm.201703155
10.1002/smll.202102300
10.1038/ncomms14949
10.1021/ar200238w
10.1021/acsnano.8b01549
10.1126/science.aan2556
10.1002/adfm.202008033
10.1039/D0NR07045A
10.1016/j.carbon.2021.03.062
10.1016/j.xcrp.2022.100877
10.1038/natrevmats.2016.98
10.1016/j.ccr.2021.214147
10.1021/jacs.6b11263
10.1039/c0ee00819b
10.1007/BF00540934
10.1016/0375-9601(70)90614-6
10.1016/j.scriptamat.2022.114605
10.1107/S0909049597019298
10.1103/PhysRevMaterials.1.044002
10.1002/adma.201102306
10.1103/PhysRevMaterials.3.113607
10.1002/adma.202101015
10.1016/j.ssi.2005.02.025
10.1103/PhysRevB.58.7565
10.1002/adma.202108809
10.1021/acsnano.0c02658
10.1021/jacs.6b05958
10.1002/adfm.202000894
10.1002/adma.201807658
10.1126/sciadv.abd6647
10.1021/acs.inorgchem.5b00906
10.1002/adma.201802525
10.1002/anie.201805924
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.26599/NRE.2022.9120026
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2790-8119
ExternalDocumentID oai_doaj_org_article_a60d9d2a4f9346308e615d8d8d39ad45
10_26599_NRE_2022_9120026
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c354t-571cc460b0a3a2cc0c9a36db9eaea42b6d3f5d4d8a83b37bf67db0717bdc8fcd3
IEDL.DBID DOA
ISSN 2791-0091
IngestDate Wed Aug 27 01:27:40 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Tue Jul 01 01:07:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-571cc460b0a3a2cc0c9a36db9eaea42b6d3f5d4d8a83b37bf67db0717bdc8fcd3
OpenAccessLink https://doaj.org/article/a60d9d2a4f9346308e615d8d8d39ad45
ParticipantIDs doaj_primary_oai_doaj_org_article_a60d9d2a4f9346308e615d8d8d39ad45
crossref_citationtrail_10_26599_NRE_2022_9120026
crossref_primary_10_26599_NRE_2022_9120026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-00
PublicationDecade 2020
PublicationTitle Nano Research Energy
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References P. M. Ajayan (ref16) 2018; 30
X. J. Wu (ref36) 2021; 33
Z. L. Liu (ref1) 2021; 17
M. H. Rummeli (ref15) 2019; 48
F. McLarnon (ref38) 2001; 97–98
S. L. Suib (ref8) 2015; 54
W. B. Cui (ref19) 2021; 179
J. Rosen (ref21) 2019; 3
A. Herve (ref32) 1970; 33
J. Chen (ref9) 2016; 138
P. O. Å. Persson (ref30) 2018; 14
J. Rosen (ref20) 2018; 12
J. Rosen (ref18) 2017; 1
S. X. Dou (ref41) 2020; 14
D. V. Talapin (ref17) 2020; 369
W. S. Chu (ref28) 2022; 34
T. Ressler (ref24) 1998; 5
S. D. Conradson (ref25) 1998; 58
H. El Sayed (ref12) 1976; 11
E. V. Shevchenko (ref37) 2012; 12
Z. W. Dai (ref40) 2021; 31
M. X. Huang (ref3) 2017; 357
L. Li (ref42) 2022; 213
S. Q. Liang (ref4) 2018; 8
P. O. Å. Persson (ref26) 2017; 8
M. W. Barsoum (ref29) 2011; 23
H. W. Huang (ref2) 2021; 448
Y. Gogotsi (ref13) 2017; 2
L. Li (ref34) 2018; 12
D. R. Rolison (ref10) 2011; 4
Z. C. Lai (ref7) 2021; 7
P. Schultz (ref31) 1976; 13
T. Wakihara (ref33) 2018; 57
Z. Ogumi (ref39) 2005; 176
B. J. Ye (ref5) 2017; 139
D. R. Rolison (ref11) 2013; 46
J. Rosen (ref22) 2020; 30
J. Nanda (ref27) 2015; 44
H. N. Alshareef (ref35) 2019; 31
J. Rosen (ref23) 2021; 13
D. W. Tang (ref6) 2022; 3
Y. Gogotsi (ref14) 2021; 372
References_xml – volume: 372
  start-page: eabf1581
  year: 2021
  ident: ref14
  publication-title: Science
  doi: 10.1126/science.abf1581
– volume: 14
  start-page: 1703676
  year: 2018
  ident: ref30
  publication-title: Small
  doi: 10.1002/smll.201703676
– volume: 13
  start-page: 5
  year: 1976
  ident: ref31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.13.5
– volume: 48
  start-page: 72
  year: 2019
  ident: ref15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00324F
– volume: 12
  start-page: 2429
  year: 2012
  ident: ref37
  publication-title: Nano Lett.
  doi: 10.1021/nl3004286
– volume: 369
  start-page: 979
  year: 2020
  ident: ref17
  publication-title: Science
  doi: 10.1126/science.aba8311
– volume: 12
  start-page: 7761
  year: 2018
  ident: ref20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01774
– volume: 44
  start-page: 9353
  year: 2015
  ident: ref27
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01247C
– volume: 8
  start-page: 1703155
  year: 2018
  ident: ref4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703155
– volume: 17
  start-page: 2102300
  year: 2021
  ident: ref1
  publication-title: Small
  doi: 10.1002/smll.202102300
– volume: 8
  start-page: 14949
  year: 2017
  ident: ref26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14949
– volume: 46
  start-page: 1181
  year: 2013
  ident: ref11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200238w
– volume: 12
  start-page: 4824
  year: 2018
  ident: ref34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01549
– volume: 357
  start-page: 1029
  year: 2017
  ident: ref3
  publication-title: Science
  doi: 10.1126/science.aan2556
– volume: 31
  start-page: 2008033
  year: 2021
  ident: ref40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008033
– volume: 13
  start-page: 311
  year: 2021
  ident: ref23
  publication-title: Nanoscale
  doi: 10.1039/D0NR07045A
– volume: 179
  start-page: 104
  year: 2021
  ident: ref19
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.03.062
– volume: 3
  start-page: 100877
  year: 2022
  ident: ref6
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2022.100877
– volume: 2
  start-page: 16098
  year: 2017
  ident: ref13
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 448
  start-page: 214147
  year: 2021
  ident: ref2
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214147
– volume: 139
  start-page: 3438
  year: 2017
  ident: ref5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11263
– volume: 4
  start-page: 1495
  year: 2011
  ident: ref10
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00819b
– volume: 11
  start-page: 529
  year: 1976
  ident: ref12
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00540934
– volume: 33
  start-page: 1
  year: 1970
  ident: ref32
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(70)90614-6
– volume: 213
  start-page: 114605
  year: 2022
  ident: ref42
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2022.114605
– volume: 5
  start-page: 118
  year: 1998
  ident: ref24
  publication-title: J Synchrotron Radiat
  doi: 10.1107/S0909049597019298
– volume: 1
  start-page: 044002
  year: 2017
  ident: ref18
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.044002
– volume: 23
  start-page: 4248
  year: 2011
  ident: ref29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 3
  start-page: 113607
  year: 2019
  ident: ref21
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.113607
– volume: 33
  start-page: 2101015
  year: 2021
  ident: ref36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101015
– volume: 176
  start-page: 2371
  year: 2005
  ident: ref39
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2005.02.025
– volume: 58
  start-page: 7565
  year: 1998
  ident: ref25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.7565
– volume: 97–98
  start-page: 58
  year: 2001
  ident: ref38
  publication-title: J. Power Sources
– volume: 34
  start-page: 2108809
  year: 2022
  ident: ref28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108809
– volume: 14
  start-page: 7328
  year: 2020
  ident: ref41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02658
– volume: 138
  start-page: 12894
  year: 2016
  ident: ref9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 30
  start-page: 2000894
  year: 2020
  ident: ref22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000894
– volume: 31
  start-page: 1807658
  year: 2019
  ident: ref35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807658
– volume: 7
  start-page: eabd6647
  year: 2021
  ident: ref7
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd6647
– volume: 54
  start-page: 10163
  year: 2015
  ident: ref8
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00906
– volume: 30
  start-page: e1802525
  year: 2018
  ident: ref16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802525
– volume: 57
  start-page: 11952
  year: 2018
  ident: ref33
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805924
SSID ssj0002893797
Score 2.5079582
Snippet "Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage e9120026
SubjectTerms lithium-ion storage
mechanism
mxenes
ordered vacancies
x-ray absorption fine structure (xafs)
Title Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries
URI https://doaj.org/article/a60d9d2a4f9346308e615d8d8d39ad45
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS-UwEA7iyYvsosu6rpKDJ6HaJmmaHFd5j4fwPCy-5d1KkklWRfvk8QS9-Nt3Ju26by96kUIPZVLKzJCZaWa-j7Ej3OCUiU5TpxoWKJWqCmNqKIJOBmpIsUk0Ozy91JOZupjX8zWqL-oJ6-GBe8WdOl2CBeFUslJpWZqIMRgMXtI6UBm9FGPeWjF12x-fySYzq4iGWntQoj_SFLq29vTy5whLQyFObEVNCvq_oLSG3Z-DzPgT2x6yQ_6j_6rPbCN2O-zplwu0B3KCqujptrrffJH4_eLu2QP1svPglv4GIp_Oae_iqwWP3TUZlI_d0oF75pgc5hEGjlkqJ5Bi_vBvZoBjMn5983hfkIDPkJtYQe-y2Xh0dT4pBsKEIsharYq6qUJQuvSlk06EUAbrpAZvo4tOCa9BphoUGGekl41PugFPBZ2HYFIA-YVtdosufmVcNb4KgNlAtFF5r9GAMfkkfELDRiH3WPlXY20Y0MSJ1OKuxaoiK7lFJbek5HZQ8h47fl3y0ENpvCV8RmZ4FSQU7PwAfaMdfKN9zze-fcRL9tlWZoDJv12-s83V8jEeYCKy8ofZ5_A-fRn9AY_a3AI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacancy+manipulating+of+molybdenum+carbide+MXenes+to+enhance+Faraday+reaction+for+high+performance+lithium-ion+batteries&rft.jtitle=Nano+Research+Energy&rft.au=Guo%2C+Xin&rft.au=Wang%2C+Changda&rft.au=Wang%2C+Wenjie&rft.au=Zhou%2C+Quan&rft.date=2022-12-01&rft.issn=2791-0091&rft.volume=1&rft.spage=e9120026&rft_id=info:doi/10.26599%2FNRE.2022.9120026&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_NRE_2022_9120026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2791-0091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2791-0091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2791-0091&client=summon