Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries
"Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may b...
Saved in:
Published in | Nano Research Energy Vol. 1; no. 3; p. e9120026 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tsinghua University Press
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | "Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may be revealed by constructing highly ordered vacancy structures. Herein, we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies (Mo1.33CTx), by utilizing selective etching strategies. Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of +4.44 compared with the control Mo2CTx. Benefited from the introduced atomic active sites and high valence of Mo, Mo1.33CTx achieves an outstanding capacity of 603 mAh·g−1 at 0.2 A·g−1, superior to most original MXenes. Li+ storage kinetics analysis and density functional theory (DFT) simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process, which enhances Faraday reaction compared with pure Mo2CTx. This vacancy manipulation provides an efficient way to realize MXene's potential as promising electrodes. |
---|---|
AbstractList | "Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may be revealed by constructing highly ordered vacancy structures. Herein, we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies (Mo1.33CTx), by utilizing selective etching strategies. Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of +4.44 compared with the control Mo2CTx. Benefited from the introduced atomic active sites and high valence of Mo, Mo1.33CTx achieves an outstanding capacity of 603 mAh·g−1 at 0.2 A·g−1, superior to most original MXenes. Li+ storage kinetics analysis and density functional theory (DFT) simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process, which enhances Faraday reaction compared with pure Mo2CTx. This vacancy manipulation provides an efficient way to realize MXene's potential as promising electrodes. |
Author | Zhou, Quan Chen, Shuangming Liu, Xiaosong Wei, Shiqiang Wang, Wenjie Song, Li Xu, Wenjie Wang, Changda Wang, Yixiu Zhang, Pengjun Liu, Zhanfeng Yang, Xiya Guo, Xin Zhu, Kefu Cao, Yuyang Wu, Xiaojun |
Author_xml | – sequence: 1 givenname: Xin surname: Guo fullname: Guo, Xin – sequence: 2 givenname: Changda surname: Wang fullname: Wang, Changda – sequence: 3 givenname: Wenjie surname: Wang fullname: Wang, Wenjie – sequence: 4 givenname: Quan surname: Zhou fullname: Zhou, Quan – sequence: 5 givenname: Wenjie surname: Xu fullname: Xu, Wenjie – sequence: 6 givenname: Pengjun surname: Zhang fullname: Zhang, Pengjun – sequence: 7 givenname: Shiqiang surname: Wei fullname: Wei, Shiqiang – sequence: 8 givenname: Yuyang surname: Cao fullname: Cao, Yuyang – sequence: 9 givenname: Kefu surname: Zhu fullname: Zhu, Kefu – sequence: 10 givenname: Zhanfeng surname: Liu fullname: Liu, Zhanfeng – sequence: 11 givenname: Xiya surname: Yang fullname: Yang, Xiya – sequence: 12 givenname: Yixiu surname: Wang fullname: Wang, Yixiu – sequence: 13 givenname: Xiaojun surname: Wu fullname: Wu, Xiaojun – sequence: 14 givenname: Li surname: Song fullname: Song, Li – sequence: 15 givenname: Shuangming surname: Chen fullname: Chen, Shuangming – sequence: 16 givenname: Xiaosong surname: Liu fullname: Liu, Xiaosong |
BookMark | eNp1kd1q3DAQhUVJoPl7gN7pBbzVjy1ZlyUkaSBtILSld2IkjXcVbGmRtZB9-3g36U0hzMUMwzmHGb5zcpJyQkK-cLYSqjPm68-nm5VgQqwMF4wJ9YmcCW1Y03NuTo4zbxgz_DO5mudntkh6I7XRZ-TlD3hIfk8nSHG7G6HGtKZ5oFMe9y5g2k3UQ3ExIP3xFxPOtGaKabOYkN5CgQB7WhB8jTnRIRe6iesN3WJZ5umoGmPdxN3UHAQOasUScb4kpwOMM1699wvy-_bm1_X35uHx7v7620PjZdfWptPc-1Yxx0CC8J55A1IFZxAQWuFUkEMX2tBDL53UblA6OKa5dsH3gw_ygty_5YYMz3Zb4gRlbzNEe1zksrZQavQjWlAsmCCgHYxslWQ9Kt6FfilpILTdkqXfsnzJ81xwsD5WODxeC8TRcmaPPOzCwx542Hcei5P_5_x3yceeV08ZkmA |
CitedBy_id | crossref_primary_10_1002_smll_202207249 crossref_primary_10_1016_j_apsusc_2023_156511 crossref_primary_10_26599_NRE_2023_9120049 crossref_primary_10_1016_j_chempr_2023_09_021 crossref_primary_10_3390_inorganics11040148 crossref_primary_10_1021_acs_est_4c06263 crossref_primary_10_1016_j_apmate_2023_100154 crossref_primary_10_1039_D2NR05702F crossref_primary_10_3390_molecules28041541 crossref_primary_10_1021_acsnano_2c09122 crossref_primary_10_1021_acsnano_3c08889 crossref_primary_10_3390_molecules28073134 crossref_primary_10_1002_aenm_202303165 crossref_primary_10_1016_j_jallcom_2023_173041 crossref_primary_10_26599_NRE_2023_9120051 crossref_primary_10_1002_admi_202201144 crossref_primary_10_1016_j_cis_2023_103077 crossref_primary_10_1039_D4TA07376B crossref_primary_10_1007_s40820_023_01039_z crossref_primary_10_1088_1361_6528_acd702 crossref_primary_10_1039_D2TA06401D crossref_primary_10_1039_D2NR05129J crossref_primary_10_1016_j_ces_2025_121499 crossref_primary_10_1039_D2QI02680E crossref_primary_10_1002_aenm_202204014 crossref_primary_10_1016_j_matlet_2022_133469 crossref_primary_10_1155_2023_6353894 crossref_primary_10_3390_nano13111744 crossref_primary_10_1002_smtd_202300190 crossref_primary_10_1021_acsnano_3c07306 crossref_primary_10_1007_s12274_023_5798_4 crossref_primary_10_1002_smll_202303165 crossref_primary_10_1039_D3EE03740A crossref_primary_10_1002_batt_202200461 crossref_primary_10_1007_s12274_022_4929_7 crossref_primary_10_1021_acsaem_4c02750 crossref_primary_10_1021_acs_inorgchem_3c01700 crossref_primary_10_1515_ntrev_2023_0179 crossref_primary_10_1002_smm2_1207 crossref_primary_10_1039_D2NA00782G crossref_primary_10_1088_2515_7655_ac9f6c crossref_primary_10_1016_j_electacta_2022_141363 crossref_primary_10_1088_1361_6528_acd121 crossref_primary_10_1007_s12274_022_5247_9 crossref_primary_10_3390_molecules28052108 crossref_primary_10_1021_acsomega_2c07689 crossref_primary_10_1016_j_jallcom_2023_172773 crossref_primary_10_3390_electronics13163316 crossref_primary_10_1007_s12274_023_6386_3 crossref_primary_10_1039_D3TA00555K crossref_primary_10_1002_smll_202307716 crossref_primary_10_1016_j_jelechem_2022_117096 crossref_primary_10_1016_j_matlet_2022_133411 crossref_primary_10_1002_cey2_333 crossref_primary_10_1021_acsami_2c20385 crossref_primary_10_1039_D2TA07435D crossref_primary_10_1007_s12274_022_5136_2 crossref_primary_10_1016_j_jpowsour_2025_236814 crossref_primary_10_1039_D3DT00960B crossref_primary_10_1007_s12274_023_6011_5 crossref_primary_10_1016_j_jechem_2022_12_052 crossref_primary_10_1109_JSEN_2023_3267490 crossref_primary_10_1016_j_inoche_2024_113493 crossref_primary_10_1002_smll_202207852 crossref_primary_10_1039_D2TA08777D crossref_primary_10_1039_D3NR00866E crossref_primary_10_1007_s12274_023_5982_6 crossref_primary_10_1039_D3MA00563A crossref_primary_10_1007_s12274_023_6134_8 crossref_primary_10_1016_j_rser_2023_113861 crossref_primary_10_1002_smll_202400099 crossref_primary_10_1039_D2QI01418A crossref_primary_10_1002_smtd_202201448 crossref_primary_10_1002_adfm_202209806 crossref_primary_10_1016_j_matlet_2022_133368 crossref_primary_10_1039_D2TA09493B crossref_primary_10_1021_acs_jpcc_3c07472 crossref_primary_10_1016_j_jallcom_2023_172780 crossref_primary_10_1002_smll_202305009 crossref_primary_10_1038_s41699_023_00377_1 crossref_primary_10_1088_2053_1583_acc341 |
Cites_doi | 10.1126/science.abf1581 10.1002/smll.201703676 10.1103/PhysRevD.13.5 10.1039/C8CS00324F 10.1021/nl3004286 10.1126/science.aba8311 10.1021/acsnano.8b01774 10.1039/C5DT01247C 10.1002/aenm.201703155 10.1002/smll.202102300 10.1038/ncomms14949 10.1021/ar200238w 10.1021/acsnano.8b01549 10.1126/science.aan2556 10.1002/adfm.202008033 10.1039/D0NR07045A 10.1016/j.carbon.2021.03.062 10.1016/j.xcrp.2022.100877 10.1038/natrevmats.2016.98 10.1016/j.ccr.2021.214147 10.1021/jacs.6b11263 10.1039/c0ee00819b 10.1007/BF00540934 10.1016/0375-9601(70)90614-6 10.1016/j.scriptamat.2022.114605 10.1107/S0909049597019298 10.1103/PhysRevMaterials.1.044002 10.1002/adma.201102306 10.1103/PhysRevMaterials.3.113607 10.1002/adma.202101015 10.1016/j.ssi.2005.02.025 10.1103/PhysRevB.58.7565 10.1002/adma.202108809 10.1021/acsnano.0c02658 10.1021/jacs.6b05958 10.1002/adfm.202000894 10.1002/adma.201807658 10.1126/sciadv.abd6647 10.1021/acs.inorgchem.5b00906 10.1002/adma.201802525 10.1002/anie.201805924 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.26599/NRE.2022.9120026 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2790-8119 |
ExternalDocumentID | oai_doaj_org_article_a60d9d2a4f9346308e615d8d8d39ad45 10_26599_NRE_2022_9120026 |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c354t-571cc460b0a3a2cc0c9a36db9eaea42b6d3f5d4d8a83b37bf67db0717bdc8fcd3 |
IEDL.DBID | DOA |
ISSN | 2791-0091 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Tue Jul 01 01:07:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-571cc460b0a3a2cc0c9a36db9eaea42b6d3f5d4d8a83b37bf67db0717bdc8fcd3 |
OpenAccessLink | https://doaj.org/article/a60d9d2a4f9346308e615d8d8d39ad45 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a60d9d2a4f9346308e615d8d8d39ad45 crossref_citationtrail_10_26599_NRE_2022_9120026 crossref_primary_10_26599_NRE_2022_9120026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-00 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Nano Research Energy |
PublicationYear | 2022 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | P. M. Ajayan (ref16) 2018; 30 X. J. Wu (ref36) 2021; 33 Z. L. Liu (ref1) 2021; 17 M. H. Rummeli (ref15) 2019; 48 F. McLarnon (ref38) 2001; 97–98 S. L. Suib (ref8) 2015; 54 W. B. Cui (ref19) 2021; 179 J. Rosen (ref21) 2019; 3 A. Herve (ref32) 1970; 33 J. Chen (ref9) 2016; 138 P. O. Å. Persson (ref30) 2018; 14 J. Rosen (ref20) 2018; 12 J. Rosen (ref18) 2017; 1 S. X. Dou (ref41) 2020; 14 D. V. Talapin (ref17) 2020; 369 W. S. Chu (ref28) 2022; 34 T. Ressler (ref24) 1998; 5 S. D. Conradson (ref25) 1998; 58 H. El Sayed (ref12) 1976; 11 E. V. Shevchenko (ref37) 2012; 12 Z. W. Dai (ref40) 2021; 31 M. X. Huang (ref3) 2017; 357 L. Li (ref42) 2022; 213 S. Q. Liang (ref4) 2018; 8 P. O. Å. Persson (ref26) 2017; 8 M. W. Barsoum (ref29) 2011; 23 H. W. Huang (ref2) 2021; 448 Y. Gogotsi (ref13) 2017; 2 L. Li (ref34) 2018; 12 D. R. Rolison (ref10) 2011; 4 Z. C. Lai (ref7) 2021; 7 P. Schultz (ref31) 1976; 13 T. Wakihara (ref33) 2018; 57 Z. Ogumi (ref39) 2005; 176 B. J. Ye (ref5) 2017; 139 D. R. Rolison (ref11) 2013; 46 J. Rosen (ref22) 2020; 30 J. Nanda (ref27) 2015; 44 H. N. Alshareef (ref35) 2019; 31 J. Rosen (ref23) 2021; 13 D. W. Tang (ref6) 2022; 3 Y. Gogotsi (ref14) 2021; 372 |
References_xml | – volume: 372 start-page: eabf1581 year: 2021 ident: ref14 publication-title: Science doi: 10.1126/science.abf1581 – volume: 14 start-page: 1703676 year: 2018 ident: ref30 publication-title: Small doi: 10.1002/smll.201703676 – volume: 13 start-page: 5 year: 1976 ident: ref31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.13.5 – volume: 48 start-page: 72 year: 2019 ident: ref15 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00324F – volume: 12 start-page: 2429 year: 2012 ident: ref37 publication-title: Nano Lett. doi: 10.1021/nl3004286 – volume: 369 start-page: 979 year: 2020 ident: ref17 publication-title: Science doi: 10.1126/science.aba8311 – volume: 12 start-page: 7761 year: 2018 ident: ref20 publication-title: ACS Nano doi: 10.1021/acsnano.8b01774 – volume: 44 start-page: 9353 year: 2015 ident: ref27 publication-title: Dalton Trans. doi: 10.1039/C5DT01247C – volume: 8 start-page: 1703155 year: 2018 ident: ref4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703155 – volume: 17 start-page: 2102300 year: 2021 ident: ref1 publication-title: Small doi: 10.1002/smll.202102300 – volume: 8 start-page: 14949 year: 2017 ident: ref26 publication-title: Nat. Commun. doi: 10.1038/ncomms14949 – volume: 46 start-page: 1181 year: 2013 ident: ref11 publication-title: Acc. Chem. Res. doi: 10.1021/ar200238w – volume: 12 start-page: 4824 year: 2018 ident: ref34 publication-title: ACS Nano doi: 10.1021/acsnano.8b01549 – volume: 357 start-page: 1029 year: 2017 ident: ref3 publication-title: Science doi: 10.1126/science.aan2556 – volume: 31 start-page: 2008033 year: 2021 ident: ref40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008033 – volume: 13 start-page: 311 year: 2021 ident: ref23 publication-title: Nanoscale doi: 10.1039/D0NR07045A – volume: 179 start-page: 104 year: 2021 ident: ref19 publication-title: Carbon doi: 10.1016/j.carbon.2021.03.062 – volume: 3 start-page: 100877 year: 2022 ident: ref6 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.100877 – volume: 2 start-page: 16098 year: 2017 ident: ref13 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 448 start-page: 214147 year: 2021 ident: ref2 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214147 – volume: 139 start-page: 3438 year: 2017 ident: ref5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11263 – volume: 4 start-page: 1495 year: 2011 ident: ref10 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00819b – volume: 11 start-page: 529 year: 1976 ident: ref12 publication-title: J. Mater. Sci. doi: 10.1007/BF00540934 – volume: 33 start-page: 1 year: 1970 ident: ref32 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(70)90614-6 – volume: 213 start-page: 114605 year: 2022 ident: ref42 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114605 – volume: 5 start-page: 118 year: 1998 ident: ref24 publication-title: J Synchrotron Radiat doi: 10.1107/S0909049597019298 – volume: 1 start-page: 044002 year: 2017 ident: ref18 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.044002 – volume: 23 start-page: 4248 year: 2011 ident: ref29 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 3 start-page: 113607 year: 2019 ident: ref21 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.113607 – volume: 33 start-page: 2101015 year: 2021 ident: ref36 publication-title: Adv. Mater. doi: 10.1002/adma.202101015 – volume: 176 start-page: 2371 year: 2005 ident: ref39 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2005.02.025 – volume: 58 start-page: 7565 year: 1998 ident: ref25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.7565 – volume: 97–98 start-page: 58 year: 2001 ident: ref38 publication-title: J. Power Sources – volume: 34 start-page: 2108809 year: 2022 ident: ref28 publication-title: Adv. Mater. doi: 10.1002/adma.202108809 – volume: 14 start-page: 7328 year: 2020 ident: ref41 publication-title: ACS Nano doi: 10.1021/acsnano.0c02658 – volume: 138 start-page: 12894 year: 2016 ident: ref9 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 30 start-page: 2000894 year: 2020 ident: ref22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000894 – volume: 31 start-page: 1807658 year: 2019 ident: ref35 publication-title: Adv. Mater. doi: 10.1002/adma.201807658 – volume: 7 start-page: eabd6647 year: 2021 ident: ref7 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd6647 – volume: 54 start-page: 10163 year: 2015 ident: ref8 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00906 – volume: 30 start-page: e1802525 year: 2018 ident: ref16 publication-title: Adv. Mater. doi: 10.1002/adma.201802525 – volume: 57 start-page: 11952 year: 2018 ident: ref33 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805924 |
SSID | ssj0002893797 |
Score | 2.5079582 |
Snippet | "Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | e9120026 |
SubjectTerms | lithium-ion storage mechanism mxenes ordered vacancies x-ray absorption fine structure (xafs) |
Title | Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries |
URI | https://doaj.org/article/a60d9d2a4f9346308e615d8d8d39ad45 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS-UwEA7iyYvsosu6rpKDJ6HaJmmaHFd5j4fwPCy-5d1KkklWRfvk8QS9-Nt3Ju26by96kUIPZVLKzJCZaWa-j7Ej3OCUiU5TpxoWKJWqCmNqKIJOBmpIsUk0Ozy91JOZupjX8zWqL-oJ6-GBe8WdOl2CBeFUslJpWZqIMRgMXtI6UBm9FGPeWjF12x-fySYzq4iGWntQoj_SFLq29vTy5whLQyFObEVNCvq_oLSG3Z-DzPgT2x6yQ_6j_6rPbCN2O-zplwu0B3KCqujptrrffJH4_eLu2QP1svPglv4GIp_Oae_iqwWP3TUZlI_d0oF75pgc5hEGjlkqJ5Bi_vBvZoBjMn5983hfkIDPkJtYQe-y2Xh0dT4pBsKEIsharYq6qUJQuvSlk06EUAbrpAZvo4tOCa9BphoUGGekl41PugFPBZ2HYFIA-YVtdosufmVcNb4KgNlAtFF5r9GAMfkkfELDRiH3WPlXY20Y0MSJ1OKuxaoiK7lFJbek5HZQ8h47fl3y0ENpvCV8RmZ4FSQU7PwAfaMdfKN9zze-fcRL9tlWZoDJv12-s83V8jEeYCKy8ofZ5_A-fRn9AY_a3AI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacancy+manipulating+of+molybdenum+carbide+MXenes+to+enhance+Faraday+reaction+for+high+performance+lithium-ion+batteries&rft.jtitle=Nano+Research+Energy&rft.au=Guo%2C+Xin&rft.au=Wang%2C+Changda&rft.au=Wang%2C+Wenjie&rft.au=Zhou%2C+Quan&rft.date=2022-12-01&rft.issn=2791-0091&rft.volume=1&rft.spage=e9120026&rft_id=info:doi/10.26599%2FNRE.2022.9120026&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_NRE_2022_9120026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2791-0091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2791-0091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2791-0091&client=summon |