Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) ad...
Saved in:
Published in | Chinese physics B Vol. 32; no. 10; pp. 100303 - 229 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) adding the DM interaction suddenly and (ii) rotating the spins around
x
axis are considered to drive the dynamics of the system, respectively. By comparing the behaviors of entanglement in both types of quench protocols, the effects of quench on dynamics of entanglement are studied. It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors. Especially, the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system. In addition, the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time. |
---|---|
AbstractList | We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) adding the DM interaction suddenly and (ii) rotating the spins around
x
axis are considered to drive the dynamics of the system, respectively. By comparing the behaviors of entanglement in both types of quench protocols, the effects of quench on dynamics of entanglement are studied. It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors. Especially, the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system. In addition, the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time. We study the relationship between quench dynamics of entanglement and quantum phase transition in the antifer-romagnetic Ising model with the Dzyaloshinskii-Moriya(DM)interaction by using the quantum renormalization-group method and the definition of negativity.Two types of quench protocols(i)adding the DM interaction suddenly and(ii)rotating the spins around x axis are considered to drive the dynamics of the system,respectively.By comparing the behav-iors of entanglement in both types of quench protocols,the effects of quench on dynamics of entanglement are studied.It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors.Especially,the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system.In addition,the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time. |
Author | Wang, Zhe Li, Yue Fang, Panpan Zhang, Panpan Xu, Yuliang Kong, Xiangmu |
Author_xml | – sequence: 1 givenname: Yue surname: Li fullname: Li, Yue organization: School of Physics and Optoelectronic Engineering, Institute of Theoretical Physics, Ludong University , China – sequence: 2 givenname: Panpan surname: Fang fullname: Fang, Panpan organization: College of Physics and Engineering, Qufu Normal University , China – sequence: 3 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: College of Physics and Engineering, Qufu Normal University , China – sequence: 4 givenname: Panpan surname: Zhang fullname: Zhang, Panpan organization: Department of Physics, Beijing Normal University , China – sequence: 5 givenname: Yuliang surname: Xu fullname: Xu, Yuliang organization: School of Physics and Optoelectronic Engineering, Institute of Theoretical Physics, Ludong University , China – sequence: 6 givenname: Xiangmu surname: Kong fullname: Kong, Xiangmu organization: College of Physics and Engineering, Qufu Normal University , China |
BookMark | eNp9kEFLAzEQhYNUsK3ePebmxbXJZpMmRylVC4IH9Ryy2aSm7CY12VLqrzdlRUHQ0wzM92bevAkY-eANAJcY3WDE-QyzeVVgRNlMaYOpPgHjElFeEE6qERh_j8_AJKUNQgyjkozB89Jao_sEg4XvO-X7XZer8foNBg-N75Vft6bLDWwOXnVOJ-g8zKCzJsbQqbU3vdNwlZxfwy40pj0Hp1a1yVx81Sl4vVu-LB6Kx6f71eL2sdCEVn1BmaKIcEVFSRlDqi6x0XaOs_0a15wSy-e0RJoJgTXDVdPUSoiGccKxqIUgU3A17N0rb7NPuQm76PNF-bHet9KU-UOMUEkziQZSx5BSNFZuo-tUPEiM5DE-ecxHHvORQ3xZwn5JtOtV74Lvo3Ltf8LrQejC9sfRn_gnfJ-FAg |
CitedBy_id | crossref_primary_10_1016_j_rinp_2024_107417 |
Cites_doi | 10.1088/1674-1056/ab84d0 10.1103/PhysRevA.90.063622 10.1103/PhysRevB.78.214414 10.1103/PhysRevA.104.042412 10.1103/PhysRevLett.90.227902 10.1088/1674-1056/27/6/060301 10.1088/1674-1056/ab84de 10.1103/PhysRevB.87.195104 10.1088/1674-1056/22/2/020308 10.1088/0256-307X/33/5/050302 10.1103/PhysRevB.69.100402 10.1103/PhysRevLett.126.040602 10.1103/PhysRevB.4.3184 10.1103/PhysRevA.79.042319 10.1126/science.aam9288 10.7498/aps.61.210502 10.1103/PhysRevA.84.042302 10.1103/PhysRevA.75.052321 10.1088/1674-1056/ac4a6e 10.7498/aps.50.1340 10.1038/s41598-019-49805-7 10.1103/PhysRev.120.91 10.1103/PhysRevA.83.062309 10.1103/PhysRevB.90.075144 10.1103/PhysRevB.105.L241114 10.1016/j.physa.2021.126205 10.1103/PhysRevA.66.032110 10.1103/RevModPhys.80.885 10.1103/RevModPhys.47.773 10.1103/PhysRevA.95.042327 10.1103/PhysRevLett.93.250404 10.1103/PhysRevB.38.905 10.1103/PhysRevLett.67.661 10.1103/PhysRevA.101.062105 10.1103/PhysRevLett.77.1413 10.1103/RevModPhys.81.865 10.1103/PhysRevA.82.052317 10.1103/PhysRevA.65.032314 10.1038/415039a 10.1103/PhysRevA.76.060304 10.1103/PhysRevA.77.032346 10.1103/PhysRevB.4.3174 10.1016/0022-3697(58)90076-3 10.1146/conmatphys.2018.9.issue-1 10.1038/nature05094 10.1103/PhysRevA.106.052410 10.1038/416608a 10.1140/epjd/s10053-022-00485-5 10.1103/PhysRevA.92.012318 |
ContentType | Journal Article |
Copyright | 2023 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ace15c |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 229 |
ExternalDocumentID | zgwl_e202310025 10_1088_1674_1056_ace15c cpb_32_10_100303 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c354t-56a5038a5925660ab21ecf71ce1b1b853f87520c6991c614ddba99d683819b993 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:10 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Sun Aug 18 14:40:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | quantum entanglement quantum phase transition quantum quench quantum renormalization group |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-56a5038a5925660ab21ecf71ce1b1b853f87520c6991c614ddba99d683819b993 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1674-1056/ace15c/pdf |
PageCount | 6 |
ParticipantIDs | wanfang_journals_zgwl_e202310025 iop_journals_10_1088_1674_1056_ace15c crossref_primary_10_1088_1674_1056_ace15c crossref_citationtrail_10_1088_1674_1056_ace15c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2023 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Ma (cpb_32_10_100303bib25) 2011; 84 Greiner (cpb_32_10_100303bib28) 2002; 415 Zhao (cpb_32_10_100303bib18) 2012; 61 Kargarian (cpb_32_10_100303bib20) 2007; 76 Moriya (cpb_32_10_100303bib45) 1960; 120 Mooney (cpb_32_10_100303bib6) 2019; 9 De Nicola (cpb_32_10_100303bib15) 2021; 126 Osterloh (cpb_32_10_100303bib11) 2002; 416 Sachdev (cpb_32_10_100303bib9) 2011 Chen (cpb_32_10_100303bib31) 2001; 50 Vidal (cpb_32_10_100303bib12) 2003; 90 Horodecki (cpb_32_10_100303bib2) 2009; 81 Ma (cpb_32_10_100303bib22) 2011; 83 Ekert (cpb_32_10_100303bib1) 1991; 67 Kargarian (cpb_32_10_100303bib24) 2009; 79 Cheong (cpb_32_10_100303bib5) 2022; 106 Yang (cpb_32_10_100303bib8) 2020; 29 Schachenmayer (cpb_32_10_100303bib35) 2013; 3 Xu (cpb_32_10_100303bib26) 2017; 95 Alba (cpb_32_10_100303bib36) 2014; 90 Jafari (cpb_32_10_100303bib30) 2020; 101 Wilson (cpb_32_10_100303bib47) 1971; 4 Pfeuty (cpb_32_10_100303bib19) 1982 Jafari (cpb_32_10_100303bib23) 2008; 78 Li (cpb_32_10_100303bib33) 2020; 29 Kargarian (cpb_32_10_100303bib21) 2008; 77 Yan (cpb_32_10_100303bib42) 2022; 76 Vidal (cpb_32_10_100303bib52) 2002; 65 Xu (cpb_32_10_100303bib3) 2015; 92 Mitra (cpb_32_10_100303bib40) 2018; 9 Sadler (cpb_32_10_100303bib29) 2006; 443 Wilson (cpb_32_10_100303bib48) 1971; 4 Wu (cpb_32_10_100303bib13) 2004; 93 Wang (cpb_32_10_100303bib41) 2021; 581 Tan (cpb_32_10_100303bib14) 2013; 22 Zhu (cpb_32_10_100303bib32) 2016; 33 Langari (cpb_32_10_100303bib50) 2004; 69 Turkeshi (cpb_32_10_100303bib16) 2022; 105 Osborne (cpb_32_10_100303bib10) 2002; 66 Wehner (cpb_32_10_100303bib4) 2018; 362 Wilson (cpb_32_10_100303bib49) 1975; 47 Qin (cpb_32_10_100303bib17) 2018; 27 Jafari (cpb_32_10_100303bib34) 2010; 82 Karrasch (cpb_32_10_100303bib37) 2013; 87 Xu (cpb_32_10_100303bib7) 2021; 104 Cao (cpb_32_10_100303bib43) 2022; 31 Cincio (cpb_32_10_100303bib39) 2007; 75 Dzyaloshinsky (cpb_32_10_100303bib44) 1958; 4 Bloch (cpb_32_10_100303bib27) 2008; 80 Peres (cpb_32_10_100303bib51) 1996; 77 Hazzard (cpb_32_10_100303bib38) 2014; 90 Picone (cpb_32_10_100303bib46) 1988; 38 |
References_xml | – volume: 29 year: 2020 ident: cpb_32_10_100303bib33 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab84d0 – volume: 90 year: 2014 ident: cpb_32_10_100303bib38 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.063622 – volume: 78 year: 2008 ident: cpb_32_10_100303bib23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.214414 – volume: 104 year: 2021 ident: cpb_32_10_100303bib7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.042412 – volume: 90 year: 2003 ident: cpb_32_10_100303bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.227902 – volume: 27 year: 2018 ident: cpb_32_10_100303bib17 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/6/060301 – volume: 29 year: 2020 ident: cpb_32_10_100303bib8 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab84de – volume: 3 year: 2013 ident: cpb_32_10_100303bib35 publication-title: Phys. Rev. X – volume: 87 year: 2013 ident: cpb_32_10_100303bib37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.195104 – volume: 22 year: 2013 ident: cpb_32_10_100303bib14 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/22/2/020308 – volume: 33 year: 2016 ident: cpb_32_10_100303bib32 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/33/5/050302 – volume: 69 year: 2004 ident: cpb_32_10_100303bib50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.100402 – year: 2011 ident: cpb_32_10_100303bib9 – volume: 126 year: 2021 ident: cpb_32_10_100303bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.040602 – volume: 4 start-page: 3184 year: 1971 ident: cpb_32_10_100303bib48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.4.3184 – volume: 79 year: 2009 ident: cpb_32_10_100303bib24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.042319 – volume: 362 start-page: 6412 year: 2018 ident: cpb_32_10_100303bib4 publication-title: Science doi: 10.1126/science.aam9288 – volume: 61 year: 2012 ident: cpb_32_10_100303bib18 publication-title: Acta Phys. Sin. doi: 10.7498/aps.61.210502 – volume: 84 year: 2011 ident: cpb_32_10_100303bib25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.042302 – volume: 75 year: 2007 ident: cpb_32_10_100303bib39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.052321 – volume: 31 year: 2022 ident: cpb_32_10_100303bib43 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac4a6e – volume: 50 start-page: 1340 year: 2001 ident: cpb_32_10_100303bib31 publication-title: Acta Phys. Sin. doi: 10.7498/aps.50.1340 – volume: 9 year: 2019 ident: cpb_32_10_100303bib6 publication-title: Sci. Rep. doi: 10.1038/s41598-019-49805-7 – volume: 120 start-page: 91 year: 1960 ident: cpb_32_10_100303bib45 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.91 – volume: 83 year: 2011 ident: cpb_32_10_100303bib22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.062309 – volume: 90 year: 2014 ident: cpb_32_10_100303bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.075144 – volume: 105 year: 2022 ident: cpb_32_10_100303bib16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.L241114 – volume: 581 year: 2021 ident: cpb_32_10_100303bib41 publication-title: Physica A doi: 10.1016/j.physa.2021.126205 – volume: 66 year: 2002 ident: cpb_32_10_100303bib10 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.66.032110 – volume: 80 start-page: 885 year: 2008 ident: cpb_32_10_100303bib27 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.885 – volume: 47 start-page: 773 year: 1975 ident: cpb_32_10_100303bib49 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.47.773 – volume: 95 year: 2017 ident: cpb_32_10_100303bib26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.042327 – volume: 93 year: 2004 ident: cpb_32_10_100303bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.250404 – year: 1982 ident: cpb_32_10_100303bib19 – volume: 38 start-page: 905 year: 1988 ident: cpb_32_10_100303bib46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.38.905 – volume: 67 start-page: 661 year: 1991 ident: cpb_32_10_100303bib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.661 – volume: 101 year: 2020 ident: cpb_32_10_100303bib30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.062105 – volume: 77 start-page: 1413 year: 1996 ident: cpb_32_10_100303bib51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.1413 – volume: 81 start-page: 865 year: 2009 ident: cpb_32_10_100303bib2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.865 – volume: 82 year: 2010 ident: cpb_32_10_100303bib34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.052317 – volume: 65 year: 2002 ident: cpb_32_10_100303bib52 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032314 – volume: 415 start-page: 39 year: 2002 ident: cpb_32_10_100303bib28 publication-title: Nature doi: 10.1038/415039a – volume: 76 year: 2007 ident: cpb_32_10_100303bib20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.060304 – volume: 77 year: 2008 ident: cpb_32_10_100303bib21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.032346 – volume: 4 start-page: 3174 year: 1971 ident: cpb_32_10_100303bib47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.4.3174 – volume: 4 start-page: 241 year: 1958 ident: cpb_32_10_100303bib44 publication-title: J. Phys Chem. Solids doi: 10.1016/0022-3697(58)90076-3 – volume: 9 start-page: 245 year: 2018 ident: cpb_32_10_100303bib40 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/conmatphys.2018.9.issue-1 – volume: 443 start-page: 312 year: 2006 ident: cpb_32_10_100303bib29 publication-title: Nature doi: 10.1038/nature05094 – volume: 106 year: 2022 ident: cpb_32_10_100303bib5 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.106.052410 – volume: 416 start-page: 608 year: 2002 ident: cpb_32_10_100303bib11 publication-title: Nature doi: 10.1038/416608a – volume: 76 start-page: 146 year: 2022 ident: cpb_32_10_100303bib42 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/s10053-022-00485-5 – volume: 92 year: 2015 ident: cpb_32_10_100303bib3 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.012318 |
SSID | ssj0061023 |
Score | 2.3211741 |
Snippet | We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the... We study the relationship between quench dynamics of entanglement and quantum phase transition in the antifer-romagnetic Ising model with the... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100303 |
SubjectTerms | quantum entanglement quantum phase transition quantum quench quantum renormalization group |
Title | Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ace15c https://d.wanfangdata.com.cn/periodical/zgwl-e202310025 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5tRfDiW6wvctCDh227u82axZOIooIP0EIPwpJMslVss9oHQn-9mc22PpAi3vYwyWYn2ZlJ8s03hOxLDkFDqtiLFYReM5DMi2MAj4d-eqS4CrXC847rm-ii1bxqs3aJHE9zYbLXwvTX7KMjCnYqLABxvI64eQ8LxtcFaJ9BmcyF3DpOzN67vZuY4Qg5CXC3NZEu7ih_6-GbTyrb9-YZPCYVpvPF2ZwvkcfJMB3G5KU2GsoajH8wOP7zO5bJYhGE0hMnukJK2qyS-RwMCoM1cu8ojQc0S-nbyKp-1KM54PqJZoYi2Nx0HOqcKlfQfkCfDRWIO9L9ftYTHYO5kfQSDyJoXmxnnbTOzx5OL7yi-IIHIWsOPRYJZIoRLLZBUdQQMvA1pEe-Har0pXXyqd3pBA2IbIAJ1scrJUUcq4jjFlDaqGeDVExm9CahTKVgLQOEEIqmjFisRGADI9-PuPZDEFVSn6g_gYKZHAtkdJP8hpzzBFWVoKoSp6oqOZy2eHWsHDNkD-wMJMWvOZghR4s5_5Qdd967icYK88hUy7b-2NU2WcA2LmVxh1SG_ZHetbHLUO7la_QDkBfmpg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhCX8qxoeflADxyyu0nWaXzggCirLoVSCSr1FuyxsyC6zrIPVe2f4q_wk5iJveUhVHHpgVsOtmV7JjNj-5tvAJ6aErOesSpRFvOknxmZKIWYlHlab9vS5s7yfcfb_WL3sP_6SB6twLfzXJhmEk1_hz4DUXDYwgiIK7uMm0-4YHxXo0sldie2jqjKPXd6Qme22fPhDgl4K8sGrz683E1iWYEEc9mfJ7LQzIGipSJ3X_S0yVKH9XZKg5nUkPuqKYbPelhQ6ITkvaw1WilblHy4MYrZl8jmX5U5-WrOGHx3sDT9BfMg8AlvOcP4Lvq3Wf_mB6_QWtusIV9rP_rFwQ1uwvfl1gRcy5fOYm46ePYHa-R_tHe3YC0G2-JFmN5tWHH-DlxrQa84uwvvA3XzTDS1-LogFVuMRQss_yQaLxhU70cBXS_sqddj6iQ-e6EZX-Wm02asR55zQMWQL1xEW1ToHhxeyorWYdU33t0HIW2NZAExx1z3TSGV1RkFgGlalC7NUW9AdynyCiMDOxcCOa5aJEBZViyeisVTBfFswLPzHpPAPnJB2y2SehVN0OyCdiLq2c-2Z6OT48plzAXIQfDmPw71BK4f7AyqN8P9vQdwg7uHLM2HsDqfLtwjCtfm5nH7iwj4eNl69QNvf0Pt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+quantum+quench+on+entanglement+dynamics+in+antiferromagnetic+Ising+model&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Yue&rft.au=Fang%2C+Panpan&rft.au=Wang%2C+Zhe&rft.au=Zhang%2C+Panpan&rft.date=2023-11-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=32&rft.issue=10&rft_id=info:doi/10.1088%2F1674-1056%2Face15c&rft.externalDocID=cpb_32_10_100303 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |