Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model

We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) ad...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 32; no. 10; pp. 100303 - 229
Main Authors Li, Yue, Fang, Panpan, Wang, Zhe, Zhang, Panpan, Xu, Yuliang, Kong, Xiangmu
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) adding the DM interaction suddenly and (ii) rotating the spins around x axis are considered to drive the dynamics of the system, respectively. By comparing the behaviors of entanglement in both types of quench protocols, the effects of quench on dynamics of entanglement are studied. It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors. Especially, the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system. In addition, the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
AbstractList We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) adding the DM interaction suddenly and (ii) rotating the spins around x axis are considered to drive the dynamics of the system, respectively. By comparing the behaviors of entanglement in both types of quench protocols, the effects of quench on dynamics of entanglement are studied. It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors. Especially, the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system. In addition, the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
We study the relationship between quench dynamics of entanglement and quantum phase transition in the antifer-romagnetic Ising model with the Dzyaloshinskii-Moriya(DM)interaction by using the quantum renormalization-group method and the definition of negativity.Two types of quench protocols(i)adding the DM interaction suddenly and(ii)rotating the spins around x axis are considered to drive the dynamics of the system,respectively.By comparing the behav-iors of entanglement in both types of quench protocols,the effects of quench on dynamics of entanglement are studied.It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors.Especially,the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system.In addition,the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
Author Wang, Zhe
Li, Yue
Fang, Panpan
Zhang, Panpan
Xu, Yuliang
Kong, Xiangmu
Author_xml – sequence: 1
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  organization: School of Physics and Optoelectronic Engineering, Institute of Theoretical Physics, Ludong University , China
– sequence: 2
  givenname: Panpan
  surname: Fang
  fullname: Fang, Panpan
  organization: College of Physics and Engineering, Qufu Normal University , China
– sequence: 3
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: College of Physics and Engineering, Qufu Normal University , China
– sequence: 4
  givenname: Panpan
  surname: Zhang
  fullname: Zhang, Panpan
  organization: Department of Physics, Beijing Normal University , China
– sequence: 5
  givenname: Yuliang
  surname: Xu
  fullname: Xu, Yuliang
  organization: School of Physics and Optoelectronic Engineering, Institute of Theoretical Physics, Ludong University , China
– sequence: 6
  givenname: Xiangmu
  surname: Kong
  fullname: Kong, Xiangmu
  organization: College of Physics and Engineering, Qufu Normal University , China
BookMark eNp9kEFLAzEQhYNUsK3ePebmxbXJZpMmRylVC4IH9Ryy2aSm7CY12VLqrzdlRUHQ0wzM92bevAkY-eANAJcY3WDE-QyzeVVgRNlMaYOpPgHjElFeEE6qERh_j8_AJKUNQgyjkozB89Jao_sEg4XvO-X7XZer8foNBg-N75Vft6bLDWwOXnVOJ-g8zKCzJsbQqbU3vdNwlZxfwy40pj0Hp1a1yVx81Sl4vVu-LB6Kx6f71eL2sdCEVn1BmaKIcEVFSRlDqi6x0XaOs_0a15wSy-e0RJoJgTXDVdPUSoiGccKxqIUgU3A17N0rb7NPuQm76PNF-bHet9KU-UOMUEkziQZSx5BSNFZuo-tUPEiM5DE-ecxHHvORQ3xZwn5JtOtV74Lvo3Ltf8LrQejC9sfRn_gnfJ-FAg
CitedBy_id crossref_primary_10_1016_j_rinp_2024_107417
Cites_doi 10.1088/1674-1056/ab84d0
10.1103/PhysRevA.90.063622
10.1103/PhysRevB.78.214414
10.1103/PhysRevA.104.042412
10.1103/PhysRevLett.90.227902
10.1088/1674-1056/27/6/060301
10.1088/1674-1056/ab84de
10.1103/PhysRevB.87.195104
10.1088/1674-1056/22/2/020308
10.1088/0256-307X/33/5/050302
10.1103/PhysRevB.69.100402
10.1103/PhysRevLett.126.040602
10.1103/PhysRevB.4.3184
10.1103/PhysRevA.79.042319
10.1126/science.aam9288
10.7498/aps.61.210502
10.1103/PhysRevA.84.042302
10.1103/PhysRevA.75.052321
10.1088/1674-1056/ac4a6e
10.7498/aps.50.1340
10.1038/s41598-019-49805-7
10.1103/PhysRev.120.91
10.1103/PhysRevA.83.062309
10.1103/PhysRevB.90.075144
10.1103/PhysRevB.105.L241114
10.1016/j.physa.2021.126205
10.1103/PhysRevA.66.032110
10.1103/RevModPhys.80.885
10.1103/RevModPhys.47.773
10.1103/PhysRevA.95.042327
10.1103/PhysRevLett.93.250404
10.1103/PhysRevB.38.905
10.1103/PhysRevLett.67.661
10.1103/PhysRevA.101.062105
10.1103/PhysRevLett.77.1413
10.1103/RevModPhys.81.865
10.1103/PhysRevA.82.052317
10.1103/PhysRevA.65.032314
10.1038/415039a
10.1103/PhysRevA.76.060304
10.1103/PhysRevA.77.032346
10.1103/PhysRevB.4.3174
10.1016/0022-3697(58)90076-3
10.1146/conmatphys.2018.9.issue-1
10.1038/nature05094
10.1103/PhysRevA.106.052410
10.1038/416608a
10.1140/epjd/s10053-022-00485-5
10.1103/PhysRevA.92.012318
ContentType Journal Article
Copyright 2023 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ace15c
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 229
ExternalDocumentID zgwl_e202310025
10_1088_1674_1056_ace15c
cpb_32_10_100303
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c354t-56a5038a5925660ab21ecf71ce1b1b853f87520c6991c614ddba99d683819b993
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:10 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Sun Aug 18 14:40:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords quantum entanglement
quantum phase transition
quantum quench
quantum renormalization group
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-56a5038a5925660ab21ecf71ce1b1b853f87520c6991c614ddba99d683819b993
OpenAccessLink https://iopscience.iop.org/article/10.1088/1674-1056/ace15c/pdf
PageCount 6
ParticipantIDs wanfang_journals_zgwl_e202310025
iop_journals_10_1088_1674_1056_ace15c
crossref_primary_10_1088_1674_1056_ace15c
crossref_citationtrail_10_1088_1674_1056_ace15c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2023
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Ma (cpb_32_10_100303bib25) 2011; 84
Greiner (cpb_32_10_100303bib28) 2002; 415
Zhao (cpb_32_10_100303bib18) 2012; 61
Kargarian (cpb_32_10_100303bib20) 2007; 76
Moriya (cpb_32_10_100303bib45) 1960; 120
Mooney (cpb_32_10_100303bib6) 2019; 9
De Nicola (cpb_32_10_100303bib15) 2021; 126
Osterloh (cpb_32_10_100303bib11) 2002; 416
Sachdev (cpb_32_10_100303bib9) 2011
Chen (cpb_32_10_100303bib31) 2001; 50
Vidal (cpb_32_10_100303bib12) 2003; 90
Horodecki (cpb_32_10_100303bib2) 2009; 81
Ma (cpb_32_10_100303bib22) 2011; 83
Ekert (cpb_32_10_100303bib1) 1991; 67
Kargarian (cpb_32_10_100303bib24) 2009; 79
Cheong (cpb_32_10_100303bib5) 2022; 106
Yang (cpb_32_10_100303bib8) 2020; 29
Schachenmayer (cpb_32_10_100303bib35) 2013; 3
Xu (cpb_32_10_100303bib26) 2017; 95
Alba (cpb_32_10_100303bib36) 2014; 90
Jafari (cpb_32_10_100303bib30) 2020; 101
Wilson (cpb_32_10_100303bib47) 1971; 4
Pfeuty (cpb_32_10_100303bib19) 1982
Jafari (cpb_32_10_100303bib23) 2008; 78
Li (cpb_32_10_100303bib33) 2020; 29
Kargarian (cpb_32_10_100303bib21) 2008; 77
Yan (cpb_32_10_100303bib42) 2022; 76
Vidal (cpb_32_10_100303bib52) 2002; 65
Xu (cpb_32_10_100303bib3) 2015; 92
Mitra (cpb_32_10_100303bib40) 2018; 9
Sadler (cpb_32_10_100303bib29) 2006; 443
Wilson (cpb_32_10_100303bib48) 1971; 4
Wu (cpb_32_10_100303bib13) 2004; 93
Wang (cpb_32_10_100303bib41) 2021; 581
Tan (cpb_32_10_100303bib14) 2013; 22
Zhu (cpb_32_10_100303bib32) 2016; 33
Langari (cpb_32_10_100303bib50) 2004; 69
Turkeshi (cpb_32_10_100303bib16) 2022; 105
Osborne (cpb_32_10_100303bib10) 2002; 66
Wehner (cpb_32_10_100303bib4) 2018; 362
Wilson (cpb_32_10_100303bib49) 1975; 47
Qin (cpb_32_10_100303bib17) 2018; 27
Jafari (cpb_32_10_100303bib34) 2010; 82
Karrasch (cpb_32_10_100303bib37) 2013; 87
Xu (cpb_32_10_100303bib7) 2021; 104
Cao (cpb_32_10_100303bib43) 2022; 31
Cincio (cpb_32_10_100303bib39) 2007; 75
Dzyaloshinsky (cpb_32_10_100303bib44) 1958; 4
Bloch (cpb_32_10_100303bib27) 2008; 80
Peres (cpb_32_10_100303bib51) 1996; 77
Hazzard (cpb_32_10_100303bib38) 2014; 90
Picone (cpb_32_10_100303bib46) 1988; 38
References_xml – volume: 29
  year: 2020
  ident: cpb_32_10_100303bib33
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab84d0
– volume: 90
  year: 2014
  ident: cpb_32_10_100303bib38
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.063622
– volume: 78
  year: 2008
  ident: cpb_32_10_100303bib23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.214414
– volume: 104
  year: 2021
  ident: cpb_32_10_100303bib7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.042412
– volume: 90
  year: 2003
  ident: cpb_32_10_100303bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.227902
– volume: 27
  year: 2018
  ident: cpb_32_10_100303bib17
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/6/060301
– volume: 29
  year: 2020
  ident: cpb_32_10_100303bib8
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab84de
– volume: 3
  year: 2013
  ident: cpb_32_10_100303bib35
  publication-title: Phys. Rev. X
– volume: 87
  year: 2013
  ident: cpb_32_10_100303bib37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.195104
– volume: 22
  year: 2013
  ident: cpb_32_10_100303bib14
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/22/2/020308
– volume: 33
  year: 2016
  ident: cpb_32_10_100303bib32
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/33/5/050302
– volume: 69
  year: 2004
  ident: cpb_32_10_100303bib50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.100402
– year: 2011
  ident: cpb_32_10_100303bib9
– volume: 126
  year: 2021
  ident: cpb_32_10_100303bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.040602
– volume: 4
  start-page: 3184
  year: 1971
  ident: cpb_32_10_100303bib48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.4.3184
– volume: 79
  year: 2009
  ident: cpb_32_10_100303bib24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.042319
– volume: 362
  start-page: 6412
  year: 2018
  ident: cpb_32_10_100303bib4
  publication-title: Science
  doi: 10.1126/science.aam9288
– volume: 61
  year: 2012
  ident: cpb_32_10_100303bib18
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.61.210502
– volume: 84
  year: 2011
  ident: cpb_32_10_100303bib25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.042302
– volume: 75
  year: 2007
  ident: cpb_32_10_100303bib39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.052321
– volume: 31
  year: 2022
  ident: cpb_32_10_100303bib43
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac4a6e
– volume: 50
  start-page: 1340
  year: 2001
  ident: cpb_32_10_100303bib31
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.50.1340
– volume: 9
  year: 2019
  ident: cpb_32_10_100303bib6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49805-7
– volume: 120
  start-page: 91
  year: 1960
  ident: cpb_32_10_100303bib45
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.91
– volume: 83
  year: 2011
  ident: cpb_32_10_100303bib22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.062309
– volume: 90
  year: 2014
  ident: cpb_32_10_100303bib36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.075144
– volume: 105
  year: 2022
  ident: cpb_32_10_100303bib16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.L241114
– volume: 581
  year: 2021
  ident: cpb_32_10_100303bib41
  publication-title: Physica A
  doi: 10.1016/j.physa.2021.126205
– volume: 66
  year: 2002
  ident: cpb_32_10_100303bib10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.66.032110
– volume: 80
  start-page: 885
  year: 2008
  ident: cpb_32_10_100303bib27
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.885
– volume: 47
  start-page: 773
  year: 1975
  ident: cpb_32_10_100303bib49
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.47.773
– volume: 95
  year: 2017
  ident: cpb_32_10_100303bib26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.042327
– volume: 93
  year: 2004
  ident: cpb_32_10_100303bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.250404
– year: 1982
  ident: cpb_32_10_100303bib19
– volume: 38
  start-page: 905
  year: 1988
  ident: cpb_32_10_100303bib46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.38.905
– volume: 67
  start-page: 661
  year: 1991
  ident: cpb_32_10_100303bib1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.661
– volume: 101
  year: 2020
  ident: cpb_32_10_100303bib30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.062105
– volume: 77
  start-page: 1413
  year: 1996
  ident: cpb_32_10_100303bib51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.1413
– volume: 81
  start-page: 865
  year: 2009
  ident: cpb_32_10_100303bib2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.865
– volume: 82
  year: 2010
  ident: cpb_32_10_100303bib34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.052317
– volume: 65
  year: 2002
  ident: cpb_32_10_100303bib52
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.032314
– volume: 415
  start-page: 39
  year: 2002
  ident: cpb_32_10_100303bib28
  publication-title: Nature
  doi: 10.1038/415039a
– volume: 76
  year: 2007
  ident: cpb_32_10_100303bib20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.060304
– volume: 77
  year: 2008
  ident: cpb_32_10_100303bib21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.032346
– volume: 4
  start-page: 3174
  year: 1971
  ident: cpb_32_10_100303bib47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.4.3174
– volume: 4
  start-page: 241
  year: 1958
  ident: cpb_32_10_100303bib44
  publication-title: J. Phys Chem. Solids
  doi: 10.1016/0022-3697(58)90076-3
– volume: 9
  start-page: 245
  year: 2018
  ident: cpb_32_10_100303bib40
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/conmatphys.2018.9.issue-1
– volume: 443
  start-page: 312
  year: 2006
  ident: cpb_32_10_100303bib29
  publication-title: Nature
  doi: 10.1038/nature05094
– volume: 106
  year: 2022
  ident: cpb_32_10_100303bib5
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.106.052410
– volume: 416
  start-page: 608
  year: 2002
  ident: cpb_32_10_100303bib11
  publication-title: Nature
  doi: 10.1038/416608a
– volume: 76
  start-page: 146
  year: 2022
  ident: cpb_32_10_100303bib42
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/s10053-022-00485-5
– volume: 92
  year: 2015
  ident: cpb_32_10_100303bib3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.012318
SSID ssj0061023
Score 2.3211741
Snippet We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the...
We study the relationship between quench dynamics of entanglement and quantum phase transition in the antifer-romagnetic Ising model with the...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100303
SubjectTerms quantum entanglement
quantum phase transition
quantum quench
quantum renormalization group
Title Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
URI https://iopscience.iop.org/article/10.1088/1674-1056/ace15c
https://d.wanfangdata.com.cn/periodical/zgwl-e202310025
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5tRfDiW6wvctCDh227u82axZOIooIP0EIPwpJMslVss9oHQn-9mc22PpAi3vYwyWYn2ZlJ8s03hOxLDkFDqtiLFYReM5DMi2MAj4d-eqS4CrXC847rm-ii1bxqs3aJHE9zYbLXwvTX7KMjCnYqLABxvI64eQ8LxtcFaJ9BmcyF3DpOzN67vZuY4Qg5CXC3NZEu7ih_6-GbTyrb9-YZPCYVpvPF2ZwvkcfJMB3G5KU2GsoajH8wOP7zO5bJYhGE0hMnukJK2qyS-RwMCoM1cu8ojQc0S-nbyKp-1KM54PqJZoYi2Nx0HOqcKlfQfkCfDRWIO9L9ftYTHYO5kfQSDyJoXmxnnbTOzx5OL7yi-IIHIWsOPRYJZIoRLLZBUdQQMvA1pEe-Har0pXXyqd3pBA2IbIAJ1scrJUUcq4jjFlDaqGeDVExm9CahTKVgLQOEEIqmjFisRGADI9-PuPZDEFVSn6g_gYKZHAtkdJP8hpzzBFWVoKoSp6oqOZy2eHWsHDNkD-wMJMWvOZghR4s5_5Qdd967icYK88hUy7b-2NU2WcA2LmVxh1SG_ZHetbHLUO7la_QDkBfmpg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhCX8qxoeflADxyyu0nWaXzggCirLoVSCSr1FuyxsyC6zrIPVe2f4q_wk5iJveUhVHHpgVsOtmV7JjNj-5tvAJ6aErOesSpRFvOknxmZKIWYlHlab9vS5s7yfcfb_WL3sP_6SB6twLfzXJhmEk1_hz4DUXDYwgiIK7uMm0-4YHxXo0sldie2jqjKPXd6Qme22fPhDgl4K8sGrz683E1iWYEEc9mfJ7LQzIGipSJ3X_S0yVKH9XZKg5nUkPuqKYbPelhQ6ITkvaw1WilblHy4MYrZl8jmX5U5-WrOGHx3sDT9BfMg8AlvOcP4Lvq3Wf_mB6_QWtusIV9rP_rFwQ1uwvfl1gRcy5fOYm46ePYHa-R_tHe3YC0G2-JFmN5tWHH-DlxrQa84uwvvA3XzTDS1-LogFVuMRQss_yQaLxhU70cBXS_sqddj6iQ-e6EZX-Wm02asR55zQMWQL1xEW1ToHhxeyorWYdU33t0HIW2NZAExx1z3TSGV1RkFgGlalC7NUW9AdynyCiMDOxcCOa5aJEBZViyeisVTBfFswLPzHpPAPnJB2y2SehVN0OyCdiLq2c-2Z6OT48plzAXIQfDmPw71BK4f7AyqN8P9vQdwg7uHLM2HsDqfLtwjCtfm5nH7iwj4eNl69QNvf0Pt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+quantum+quench+on+entanglement+dynamics+in+antiferromagnetic+Ising+model&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Yue&rft.au=Fang%2C+Panpan&rft.au=Wang%2C+Zhe&rft.au=Zhang%2C+Panpan&rft.date=2023-11-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=32&rft.issue=10&rft_id=info:doi/10.1088%2F1674-1056%2Face15c&rft.externalDocID=cpb_32_10_100303
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg