Electricity Theft Detection in Power Consumption Data Based on Adaptive Tuning Recurrent Neural Network

Electricity theft behavior has serious influence on the normal operation of power grid and the economic benefits of power enterprises. Intelligent anti-power-theft algorithm is required for monitoring the power consumption data to recognize electricity power theft. In this paper, an adaptive time-se...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 9
Main Authors Lin, Guoying, Feng, Haoyang, Feng, Xiaofeng, Wen, Hongwu, Li, Yuanzheng, Hong, Shaoyong, Ni, Zhixian
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 10.11.2021
Subjects
Online AccessGet full text
ISSN2296-598X
2296-598X
DOI10.3389/fenrg.2021.773805

Cover

Loading…
Abstract Electricity theft behavior has serious influence on the normal operation of power grid and the economic benefits of power enterprises. Intelligent anti-power-theft algorithm is required for monitoring the power consumption data to recognize electricity power theft. In this paper, an adaptive time-series recurrent neural network (TSRNN) architecture was built up to detect the abnormal users (i.e., the electricity theft users) in time-series data of the power consumption. In fusion with the synthetic minority oversampling technique (SMOTE) algorithm, a batch of virtual abnormal observations were generated as the implementation for training the TSRNN model. The power consumption record was characterized with the sharp data (ARP), the peak data (PEA), and the shoulder data (SHO). In the TSRNN architectural framework, a basic network unit was formed with three input nodes linked to one hidden neuron for extracting data features from the three characteristic variables. For time-series analysis, the TSRNN structure was re-formed by circulating the basic unit. Each hidden node was designed receiving data from both the current input neurons and the time-former neuron, thus to form a combination of network linking weights for adaptive tuning. The optimization of the TSRNN model is to automatically search for the most suitable values of these linking weights driven by the collected and simulated data. The TSRNN model was trained and optimized with a high discriminant accuracy of 95.1%, and evaluated to have 89.3% accuracy. Finally, the optimized TSRNN model was used to predict the 47 real abnormal samples, resulting in having only three samples false predicted. These experimental results indicated that the proposed adaptive TSRNN architecture combined with SMOTE is feasible to identify the abnormal electricity theft behavior. It is prospective to be applied to online monitoring of distributed analysis of large-scale electricity power consumption data.
AbstractList Electricity theft behavior has serious influence on the normal operation of power grid and the economic benefits of power enterprises. Intelligent anti-power-theft algorithm is required for monitoring the power consumption data to recognize electricity power theft. In this paper, an adaptive time-series recurrent neural network (TSRNN) architecture was built up to detect the abnormal users (i.e., the electricity theft users) in time-series data of the power consumption. In fusion with the synthetic minority oversampling technique (SMOTE) algorithm, a batch of virtual abnormal observations were generated as the implementation for training the TSRNN model. The power consumption record was characterized with the sharp data (ARP), the peak data (PEA), and the shoulder data (SHO). In the TSRNN architectural framework, a basic network unit was formed with three input nodes linked to one hidden neuron for extracting data features from the three characteristic variables. For time-series analysis, the TSRNN structure was re-formed by circulating the basic unit. Each hidden node was designed receiving data from both the current input neurons and the time-former neuron, thus to form a combination of network linking weights for adaptive tuning. The optimization of the TSRNN model is to automatically search for the most suitable values of these linking weights driven by the collected and simulated data. The TSRNN model was trained and optimized with a high discriminant accuracy of 95.1%, and evaluated to have 89.3% accuracy. Finally, the optimized TSRNN model was used to predict the 47 real abnormal samples, resulting in having only three samples false predicted. These experimental results indicated that the proposed adaptive TSRNN architecture combined with SMOTE is feasible to identify the abnormal electricity theft behavior. It is prospective to be applied to online monitoring of distributed analysis of large-scale electricity power consumption data.
Author Lin, Guoying
Wen, Hongwu
Feng, Haoyang
Ni, Zhixian
Feng, Xiaofeng
Li, Yuanzheng
Hong, Shaoyong
Author_xml – sequence: 1
  givenname: Guoying
  surname: Lin
  fullname: Lin, Guoying
– sequence: 2
  givenname: Haoyang
  surname: Feng
  fullname: Feng, Haoyang
– sequence: 3
  givenname: Xiaofeng
  surname: Feng
  fullname: Feng, Xiaofeng
– sequence: 4
  givenname: Hongwu
  surname: Wen
  fullname: Wen, Hongwu
– sequence: 5
  givenname: Yuanzheng
  surname: Li
  fullname: Li, Yuanzheng
– sequence: 6
  givenname: Shaoyong
  surname: Hong
  fullname: Hong, Shaoyong
– sequence: 7
  givenname: Zhixian
  surname: Ni
  fullname: Ni, Zhixian
BookMark eNp1kN1KAzEQRoNUsNY-gHd5gdZkk_27rG3VQlGRCt6F7GZSU7dJyaaWvr1pqyCCVzNz4PsYziXqWGcBoWtKhowV5Y0G65fDhCR0mOesIOkZ6iZJmQ3Ssnjr_NovUL9tV4QQypKUU9JFy2kDdfCmNmGPF--gA55AiMg4i43Fz24HHo-dbbfrzRFOZJD4VragcLxGSkb8CXixtcYu8QvUW-_BBvwIWy-bOMLO-Y8rdK5l00L_e_bQ6910MX4YzJ_uZ-PRfFCzlIcB14TmrEwqSViaSaVTnZUSUkI15GWqOK8qlbGK0IQyprUGRgtG60Qp4AXPWQ_NTr3KyZXYeLOWfi-cNOIInF8K6YOpGxCZ5oRnBHhVE84VLylhVAFEHO9Kxq781FV717YetIiW5EFC8NI0ghJx0C-O-sVBvzjpj0n6J_nzyf-ZLzGLjF4
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3222883
crossref_primary_10_1007_s00202_024_02824_8
crossref_primary_10_1016_j_egyr_2024_06_015
crossref_primary_10_1016_j_ijepes_2025_110461
crossref_primary_10_52589_BJCNIT_K4PVQDAK
crossref_primary_10_1016_j_apenergy_2024_124789
crossref_primary_10_1109_TIA_2023_3262232
crossref_primary_10_3390_su15064868
crossref_primary_10_1016_j_prime_2025_100909
crossref_primary_10_1016_j_prime_2024_100452
crossref_primary_10_1109_ACCESS_2022_3215532
Cites_doi 10.7500/AEPS20160316007
10.1016/j.apm.2019.01.027
10.1016/j.chemolab.2018.09.002
10.14299/ijser.2015.03.001
10.1109/tpwrd.2021.3107534
10.1109/tpwrs.2020.3048359
10.1016/j.renene.2019.08.092
10.1109/tkde.2008.239
10.1109/tsg.2015.2425222
10.1613/jair.953
10.1016/j.jsv.2021.116167
10.3389/fenrg.2019.00130
10.3389/fenrg.2020.607826
10.1109/TIA.2021.3093841
10.1155/2015/931629
10.1109/tii.2017.2696534
10.1016/j.enconman.2020.113487
10.1016/j.neunet.2021.07.021
10.1613/jair.1.12008
10.1016/j.mfglet.2018.10.002
10.1016/j.ijepes.2019.04.005
10.1016/j.mejo.2021.104993
10.1016/j.upstre.2021.100047
10.1155/2019/4136874
10.7540/j.ynu.20170426
10.7500/AEPS20180630013
10.1016/j.ijepes.2020.106162
10.1109/tpwrs.2018.2853162
10.1016/j.saa.2020.119182
10.1613/jair.1.11192
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2021.773805
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_6f40460e4bc044d491031deef40044ba
10_3389_fenrg_2021_773805
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-4f017392ba0356adf5f69ae501fe795d44bbd63b012133fffe31831c2dde48473
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:30:36 EDT 2025
Tue Jul 01 03:00:23 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-4f017392ba0356adf5f69ae501fe795d44bbd63b012133fffe31831c2dde48473
OpenAccessLink https://doaj.org/article/6f40460e4bc044d491031deef40044ba
ParticipantIDs doaj_primary_oai_doaj_org_article_6f40460e4bc044d491031deef40044ba
crossref_citationtrail_10_3389_fenrg_2021_773805
crossref_primary_10_3389_fenrg_2021_773805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-10
PublicationDateYYYYMMDD 2021-11-10
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-10
  day: 10
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cossu (B10) 2021; 143
Li (B23); 36
Ahmad (B1) 2015; 6
Chen (B8) 2018; 182
Al-Dahidi (B2) 2019; 7
Dou (B12) 2018; 55
Hu (B16) 2019; 43
Wang (B28) 2020; 226
Mozaffar (B25) 2018; 18
Alkinani (B3) 2021; 7
Li (B21)
Zhang (B30) 2021
Zhu (B33) 2016; 40
Farjaminezhad (B13) 2021; 112
Zhang (B29) 2019; 43
Ståhl (B27) 2019; 70
Ren (B26) 2020; 8
Liu (B24) 2020; 67
Zhu (B32) 2017; 13
Chen (B9) 2021; 248
Zhang (B31) 2020; 121
Dileep (B11) 2020; 146
Avila (B5) 2018; 33
Li (B19) 2019; 2019
Cao (B6) 2018; 40
Jokar (B18) 2016; 7
Chawla (B7) 2002; 16
He (B15) 2019; 21
Aryanezhad (B4) 2019; 111
Fernández (B14) 2018; 61
Li (B20) 2021; 506
Jin (B17) 2015; 2015
Li (B22) 2016; 53
References_xml – volume: 40
  start-page: 21
  year: 2016
  ident: B33
  article-title: Distributed Clustering Algorithm for Awareness of Electricity Consumption Characteristics of Massive Consumers
  publication-title: Autom. Elec. Power Syst.
  doi: 10.7500/AEPS20160316007
– volume: 70
  start-page: 365
  year: 2019
  ident: B27
  article-title: Using Recurrent Neural Networks with Attention for Detecting Problematic Slab Shapes in Steel Rolling
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.01.027
– volume: 43
  start-page: 1083
  year: 2019
  ident: B29
  article-title: Electricity Theft Detection for Customers in Power Utility Based on Real-Valued Deep Belief Network
  publication-title: Power Syst. Techn.
– volume: 182
  start-page: 101
  year: 2018
  ident: B8
  article-title: A Combination Strategy of Random forest and Back Propagation Network for Variable Selection in Spectral Calibration
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.09.002
– volume: 6
  start-page: 217
  year: 2015
  ident: B1
  article-title: Non-Technical Loss Detection, Prevention and Suppression Issues for AMI in Smart Grid
  publication-title: Ijser
  doi: 10.14299/ijser.2015.03.001
– start-page: 1
  ident: B21
  article-title: Many-objective Distribution Network Reconfiguration via Deep Reinforcement Learning Assisted Optimization Algorithm
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/tpwrd.2021.3107534
– volume: 36
  start-page: 2829
  ident: B23
  article-title: Deep Learning Based Densely Connected Network for Load Forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/tpwrs.2020.3048359
– volume: 146
  start-page: 2589
  year: 2020
  ident: B11
  article-title: A Survey on Smart Grid Technologies and Applications
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2019.08.092
– volume: 21
  start-page: 1263
  year: 2019
  ident: B15
  article-title: Learning from Imbalanced Data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2008.239
– volume: 7
  start-page: 216
  year: 2016
  ident: B18
  article-title: Electricity Theft Detection in AMI Using Customers' Consumption Patterns
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/tsg.2015.2425222
– volume: 16
  start-page: 321
  year: 2002
  ident: B7
  article-title: SMOTE: Synthetic Minority Over-sampling Technique
  publication-title: jair
  doi: 10.1613/jair.953
– volume: 506
  start-page: 116167
  year: 2021
  ident: B20
  article-title: A Recurrent Neural Network Framework with an Adaptive Training Strategy for Long-Time Predictive Modeling of Nonlinear Dynamical Systems
  publication-title: J. Sound Vibration
  doi: 10.1016/j.jsv.2021.116167
– volume: 7
  start-page: 1
  year: 2019
  ident: B2
  article-title: Assessment of Artificial Neural Networks Learning Algorithms and Training Datasets for Solar Photovoltaic Power Production Prediction
  publication-title: Front. Energ. Res.
  doi: 10.3389/fenrg.2019.00130
– volume: 8
  start-page: 1
  year: 2020
  ident: B26
  article-title: Power System Event Classification and Localization Using a Convolutional Neural Network
  publication-title: Front. Energ. Res.
  doi: 10.3389/fenrg.2020.607826
– start-page: 1
  year: 2021
  ident: B30
  article-title: Optimal Coordinated Control of Multi-Renewable-To-Hydrogen Production System for Hydrogen Fueling Stations
  publication-title: IEEE Trans. Ind. Applicat.
  doi: 10.1109/TIA.2021.3093841
– volume: 53
  start-page: 69
  year: 2016
  ident: B22
  article-title: The Intelligent Analysis on the Trend Anomaly of the Electric Energy Meter Based on LOF Algorithm
  publication-title: Elec. Meas. Instrum.
– volume: 2015
  year: 2015
  ident: B17
  article-title: Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/931629
– volume: 13
  start-page: 2533
  year: 2017
  ident: B32
  article-title: Imbalance Learning Machine-Based Power System Short-Term Voltage Stability Assessment
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/tii.2017.2696534
– volume: 55
  start-page: 43
  year: 2018
  ident: B12
  article-title: Research on Electricity Anti-stealing Method Based on Power Consumption Information Acquisition and Big Data
  publication-title: Elec. Meas. Instrum.
– volume: 226
  start-page: 113487
  year: 2020
  ident: B28
  article-title: Solar Irradiance Forecasting Based on Direct Explainable Neural Network
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2020.113487
– volume: 143
  start-page: 607
  year: 2021
  ident: B10
  article-title: Continual Learning for Recurrent Neural Networks: An Empirical Evaluation
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.07.021
– volume: 67
  start-page: 581
  year: 2020
  ident: B24
  article-title: Agreement on Target-Bidirectional Recurrent Neural Networks for Sequence-To-Sequence Learning
  publication-title: jair
  doi: 10.1613/jair.1.12008
– volume: 18
  start-page: 35
  year: 2018
  ident: B25
  article-title: Data-driven Prediction of the High-Dimensional thermal History in Directed Energy Deposition Processes via Recurrent Neural Networks
  publication-title: Manufacturing Lett.
  doi: 10.1016/j.mfglet.2018.10.002
– volume: 111
  start-page: 191
  year: 2019
  ident: B4
  article-title: A Novel Approach to Detection and Prevention of Electricity Pilferage over Power Distribution Network
  publication-title: Int. J. Electr. Power Energ. Syst.
  doi: 10.1016/j.ijepes.2019.04.005
– volume: 112
  start-page: 104993
  year: 2021
  ident: B13
  article-title: Recurrent Neural Networks Models for Analyzing Single and Multiple Transient Faults in Combinational Circuits
  publication-title: Microelectronics J.
  doi: 10.1016/j.mejo.2021.104993
– volume: 7
  start-page: 100047
  year: 2021
  ident: B3
  article-title: Data-driven Recurrent Neural Network Model to Predict the Rate of Penetration
  publication-title: Upstream Oil Gas Techn.
  doi: 10.1016/j.upstre.2021.100047
– volume: 2019
  start-page: 4136874
  year: 2019
  ident: B19
  article-title: Electricity Theft Detection in Power Grids with Deep Learning and Random Forests
  publication-title: J. Electr. Comput. Eng.
  doi: 10.1155/2019/4136874
– volume: 40
  start-page: 872
  year: 2018
  ident: B6
  article-title: Detection of Power Theft Behavior of Distribution Network Based on RBF Neural Network
  publication-title: J. Yunnan Univ. Nat. Sci. Ed.
  doi: 10.7540/j.ynu.20170426
– volume: 43
  start-page: 119
  year: 2019
  ident: B16
  article-title: Nontechnical Loss Detection Based on Stacked Uncorrelating Autoencoder and Support Vector Machine
  publication-title: Autom. Elec. Power Syst.
  doi: 10.7500/AEPS20180630013
– volume: 121
  start-page: 106162
  year: 2020
  ident: B31
  article-title: Energy Theft Detection in an Edge Data center Using Threshold-Based Abnormality Detector
  publication-title: Int. J. Electr. Power Energ. Syst.
  doi: 10.1016/j.ijepes.2020.106162
– volume: 33
  start-page: 7171
  year: 2018
  ident: B5
  article-title: NTL Detection in Electric Distribution Systems Using the Maximal Overlap Discrete Wavelet-Packet Transform and Random Undersampling Boosting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/tpwrs.2018.2853162
– volume: 248
  start-page: 119182
  year: 2021
  ident: B9
  article-title: A Hybrid Optimization Method for Sample Partitioning in Near-Infrared Analysis
  publication-title: Spectrochimica Acta A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.119182
– volume: 61
  start-page: 863
  year: 2018
  ident: B14
  article-title: SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary
  publication-title: jair
  doi: 10.1613/jair.1.11192
SSID ssj0001325410
Score 2.2431285
Snippet Electricity theft behavior has serious influence on the normal operation of power grid and the economic benefits of power enterprises. Intelligent...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms adaptive parameter tuning
electricity theft
intelligent learning
power consumption data
SMOTE
TSRNN
Title Electricity Theft Detection in Power Consumption Data Based on Adaptive Tuning Recurrent Neural Network
URI https://doaj.org/article/6f40460e4bc044d491031deef40044ba
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9uBJiE2ym9exrS1FsIi00FvY15SCxCLp_3dmE0tOevGYsHkwM7sz3-zsN4w9CEi1VZEKQrB5IJWxgVIxghWTK5vFuUkNHXB-naezpXxZJatOqy-qCWvogRvBDVKQtHfnpDahlFYW1JfAOgdkfFL70Ah9XgdM-eyKQOATtduYiMKKAaA61ogH4-gpy0RO7eo6jqjD1-8dy_SEHbcRIR82f3LKDlx1xo46PIHnbD3xzWo2BkNmjoqFmj-72hdRVXxT8TdqdcbH_jSlXwL4s6oVH6GHshyvhlZtaVnjix2lQfg7JdmJlokTNwd-fN4Ug1-w5XSyGM-CtkNCYEQi60ACTiiMcLQKRZIqCwmkhXJJGIHLisSigLRNhfbEbQIAKOMpIhPjoibRL4lL1qs-K3fFOAI7LULIFZGLagU54GSFxBmBWnbS9ln4I67StPTh1MXio0QYQRIuvYRLknDZSLjPHvePbBvujN8Gj0gH-4FEe-1voDGUrTGUfxnD9X-85IYd0n8FvtbvlvXqr527w8ij1vfeyL4BTCLXww
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+Theft+Detection+in+Power+Consumption+Data+Based+on+Adaptive+Tuning+Recurrent+Neural+Network&rft.jtitle=Frontiers+in+energy+research&rft.au=Guoying+Lin&rft.au=Guoying+Lin&rft.au=Haoyang+Feng&rft.au=Xiaofeng+Feng&rft.date=2021-11-10&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.773805&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f40460e4bc044d491031deef40044ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon