Multi-Tube Helmholtz Resonator Based Triboelectric Nanogenerator for Broadband Acoustic Energy Harvesting
Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a multi-tube parallel Helmholtz resonator-based triboelectric nanogenerator (MH-TENG) is investigated to reap sound energy in low-frequency noise env...
Saved in:
Published in | Frontiers in materials Vol. 9 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
26.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-8016 2296-8016 |
DOI | 10.3389/fmats.2022.896953 |
Cover
Loading…
Abstract | Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a multi-tube parallel Helmholtz resonator-based triboelectric nanogenerator (MH-TENG) is investigated to reap sound energy in low-frequency noise environments. The designed MH-TENG consists of a modified Helmholtz resonator and a thin-film TENG transducer. The core materials of the TENG transducer are aluminum, FEP film, and carbon. To further clarify the influence of the modified Helmholtz resonator on the conversion performance of MH-TENG, the acoustic characteristics of the improved resonators are systematically studied. A series of experiments show that the multi-tube parallel Helmholtz resonator structure has a better sound wave collection effect. Meanwhile, the flexible film TENG can reduce the optimal output frequency of the device. The power generation performance and the bandwidth of the MH-TENG are significantly improved by adopting a multi-tube Helmholtz resonator. Within the frequency bandwidth range of 230 Hz, MH-TENG can effectively improve the efficiency of acoustic energy harvesting. 110 LEDs and an electronic thermometer can be powered by the sound-driven MH-TENG. In addition, the MH-TENG has a good capacitor charging performance, which is conducive to its application in ambient sound energy harvesting. |
---|---|
AbstractList | Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a multi-tube parallel Helmholtz resonator-based triboelectric nanogenerator (MH-TENG) is investigated to reap sound energy in low-frequency noise environments. The designed MH-TENG consists of a modified Helmholtz resonator and a thin-film TENG transducer. The core materials of the TENG transducer are aluminum, FEP film, and carbon. To further clarify the influence of the modified Helmholtz resonator on the conversion performance of MH-TENG, the acoustic characteristics of the improved resonators are systematically studied. A series of experiments show that the multi-tube parallel Helmholtz resonator structure has a better sound wave collection effect. Meanwhile, the flexible film TENG can reduce the optimal output frequency of the device. The power generation performance and the bandwidth of the MH-TENG are significantly improved by adopting a multi-tube Helmholtz resonator. Within the frequency bandwidth range of 230 Hz, MH-TENG can effectively improve the efficiency of acoustic energy harvesting. 110 LEDs and an electronic thermometer can be powered by the sound-driven MH-TENG. In addition, the MH-TENG has a good capacitor charging performance, which is conducive to its application in ambient sound energy harvesting. |
Author | Xi, Ziyue Wang, Yawei Liu, Ling Yu, Hongyong Xu, Minyi Zhang, Qiqi Wang, Hao |
Author_xml | – sequence: 1 givenname: Qiqi surname: Zhang fullname: Zhang, Qiqi – sequence: 2 givenname: Ziyue surname: Xi fullname: Xi, Ziyue – sequence: 3 givenname: Yawei surname: Wang fullname: Wang, Yawei – sequence: 4 givenname: Ling surname: Liu fullname: Liu, Ling – sequence: 5 givenname: Hongyong surname: Yu fullname: Yu, Hongyong – sequence: 6 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 7 givenname: Minyi surname: Xu fullname: Xu, Minyi |
BookMark | eNp1UV1rGzEQFMGFpIl_QN7uD5yrr5N0j25Ia0PSQnCfxUq358icT0WSC-6vz9luIRT6tMvszDDLfCSzMY5IyD2jCyFM-6nfQ8kLTjlfmFa1jbgiN5y3qjaUqdm7_ZrMc95RSpngjWT8hoTnw1BCvTk4rFY47F_jUH5XL5jjCCWm6jNk7KpNCi7igL6k4KtvMMYtjpjOjP7EShE6B2NXLX085DKRHqf79litIP3CCRi3d-RDD0PG-Z95S358edw8rOqn71_XD8un2otGllo6r7xupyd6j84pTlknQUHDUWjFmNGNEdp46qSWTCsppHMCW-YNVU5rcUvWF98uws7-TGEP6WgjBHsGYtpaSFPCAW1DDYqOcqV5Jz14Z4xTTCJlreokayYvffHyKeacsLc-FCghjiVBGCyj9lSAPRdgTwXYSwGTkv2j_Jvk_5o3IgGMoA |
CitedBy_id | crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1002_admt_202400451 crossref_primary_10_20535_2523_4455_mea_314535 crossref_primary_10_3390_nano13101676 crossref_primary_10_1063_5_0158079 crossref_primary_10_1155_2023_5568046 |
Cites_doi | 10.1039/c5nr09087c 10.1016/j.nanoen.2020.105303 10.1002/adfm.202103081 10.1088/1361-665x/ab6697 10.1039/c9ta06525c 10.1016/j.ymssp.2004.03.007 10.1002/admt.202000916 10.1016/j.nanoen.2021.105962 10.3390/mi11010007 10.1134/s1063771019050014 10.1177/1687814018785058 10.1021/nn4063616 10.1016/j.apacoust.2017.02.006 10.3390/s20247275 10.1088/1757-899x/439/3/032072 10.1039/c5ee01532d 10.1108/sr-04-2017-0062 10.1016/j.nanoen.2018.11.029 10.1016/j.apacoust.2017.09.026 10.1016/j.ast.2014.12.011 10.1016/j.apacoust.2010.11.001 10.1121/1.2996328 10.1016/j.nanoen.2021.106531 10.1038/s41467-019-09461-x 10.1063/1.3095471 10.1007/s12541-014-0422-x 10.1002/aenm.201902824 10.1021/acsami.5b02762 10.1016/j.nanoen.2020.104543 10.1007/s12046-016-0476-9 10.1002/eom2.12059 10.3390/nano11123431 10.1016/j.nanoen.2015.04.008 10.1063/1.5042683 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fmats.2022.896953 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-8016 |
ExternalDocumentID | oai_doaj_org_article_508e3d02672d4cacb88b614e0196d415 10_3389_fmats_2022_896953 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-4bc6c79953fcebb6201d4a6a52e376118758378c0b474176434bb3e91c806b773 |
IEDL.DBID | DOA |
ISSN | 2296-8016 |
IngestDate | Wed Aug 27 01:29:07 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 04:30:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-4bc6c79953fcebb6201d4a6a52e376118758378c0b474176434bb3e91c806b773 |
OpenAccessLink | https://doaj.org/article/508e3d02672d4cacb88b614e0196d415 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_508e3d02672d4cacb88b614e0196d415 crossref_citationtrail_10_3389_fmats_2022_896953 crossref_primary_10_3389_fmats_2022_896953 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-26 |
PublicationDateYYYYMMDD | 2022-04-26 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in materials |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Wang (B22) 2021; 31 Kim (B12) 2015; 7 Yuan (B28) 2020; 29 Zou (B34) 2021; 6 Iftikhar Ahmad (B7) 2019; 65 Li (B13) 2019; 7 Luo (B16) 2020; 2 Huabing (B6) 2018; 439 Yuan (B26) 2018; 8 Zhang (B29) 2015; 41 Cui (B4) 2015; 15 Noh (B17) 2018; 10 Ali (B1) 2011; 72 Li (B14) 2018; 56 Yuan (B25) 2021; 11 Pillai (B18) 2014; 15 Song (B20) 2021; 90 Wang (B21) 2015; 8 Zou (B32) 2019; 10 Jun Hong (B10) 2005; 19 Qiu (B19) 2020; 70 Zou (B33) 2020; 77 Cai (B2) 2018; 130 Ji (B9) 2020; 20 Khan (B11) 2016; 41 Zhao (B30) 2019; 9 Izhar (B8) 2018; 38 Dukhin (B5) 2009; 130 Cai (B3) 2017; 122 Yu (B24) 2008; 124 Yuan (B27) 2021; 85 Liu (B15) 2016; 8 Yang (B23) 2014; 8 Zhu (B31) 2019; 11 |
References_xml | – volume: 8 start-page: 4938 year: 2016 ident: B15 article-title: A Three-Dimensional Integrated Nanogenerator for Effectively Harvesting Sound Energy from the Environment publication-title: Nanoscale doi: 10.1039/c5nr09087c – volume: 77 start-page: 105303 year: 2020 ident: B33 article-title: Wearable Triboelectric Nanogenerators for Biomechanical Energy Harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105303 – volume: 31 start-page: 2103081 year: 2021 ident: B22 article-title: A Universal Power Management Strategy Based on Novel Sound‐Driven Triboelectric Nanogenerator and its Fully Self‐Powered Wireless System Applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103081 – volume: 29 start-page: 035012 year: 2020 ident: B28 article-title: Joint Acoustic Energy Harvesting and Noise Suppression Using Deep-Subwavelength Acoustic Device publication-title: Smart Mater. Struct. doi: 10.1088/1361-665x/ab6697 – volume: 7 start-page: 19485 year: 2019 ident: B13 article-title: A Universal Method for Quantitative Analysis of Triboelectric Nanogenerators publication-title: J. Mater. Chem. A. doi: 10.1039/c9ta06525c – volume: 19 start-page: 213 year: 2005 ident: B10 article-title: Analysis of Engine Front Noise Using Sound Intensity Techniques publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2004.03.007 – volume: 6 start-page: 2000916 year: 2021 ident: B34 article-title: Advances in Nanostructures for High‐Performance Triboelectric Nanogenerators publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000916 – volume: 85 start-page: 105962 year: 2021 ident: B27 article-title: A 3D-Printed Acoustic Triboelectric Nanogenerator for Quarter-Wavelength Acoustic Energy Harvesting and Self-Powered Edge Sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105962 – volume: 11 start-page: 7 year: 2019 ident: B31 article-title: Development Trends and Perspectives of Future Sensors and MEMS/NEMS publication-title: Micromachines doi: 10.3390/mi11010007 – volume: 65 start-page: 471 year: 2019 ident: B7 article-title: Ambient Acoustic Energy Harvesting Using Two Connected Resonators with Piezoelement for Wireless Distributed Sensor Network publication-title: Acoust. Phys. doi: 10.1134/s1063771019050014 – volume: 10 start-page: 168781401878505 year: 2018 ident: B17 article-title: Acoustic Energy Harvesting Using Piezoelectric Generator for Railway Environmental Noise publication-title: Adv. Mech. Eng. doi: 10.1177/1687814018785058 – volume: 8 start-page: 2649 year: 2014 ident: B23 article-title: Triboelectrification-based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing publication-title: ACS Nano doi: 10.1021/nn4063616 – volume: 122 start-page: 8 year: 2017 ident: B3 article-title: Noise Attenuation Performance Improvement by Adding Helmholtz Resonators on the Periodic Ducted Helmholtz Resonator System publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2017.02.006 – volume: 20 start-page: 7275 year: 2020 ident: B9 article-title: Enhanced Quarter Spherical Acoustic Energy Harvester Based on Dual Helmholtz Resonators publication-title: Sensors doi: 10.3390/s20247275 – volume: 439 start-page: 032072 year: 2018 ident: B6 article-title: Noise Prediction and Control in a Cruise Ship publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899x/439/3/032072 – volume: 8 start-page: 2250 year: 2015 ident: B21 article-title: Progress in Triboelectric Nanogenerators as a New Energy Technology and Self-Powered Sensors publication-title: Energy Environ. Sci. doi: 10.1039/c5ee01532d – volume: 38 start-page: 298 year: 2018 ident: B8 article-title: Electromagnetic Based Acoustic Energy Harvester for Low Power Wireless Autonomous Sensor Applications publication-title: Sr doi: 10.1108/sr-04-2017-0062 – volume: 56 start-page: 40 year: 2018 ident: B14 article-title: Standardization of Triboelectric Nanogenerators: Progress and Perspectives publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.029 – volume: 130 start-page: 204 year: 2018 ident: B2 article-title: Acoustic Performance of Different Helmholtz Resonator Array Configurations publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2017.09.026 – volume: 41 start-page: 55 year: 2015 ident: B29 article-title: Control of Combustion Instability with a Tunable Helmholtz Resonator publication-title: Aerospace Sci. Techn. doi: 10.1016/j.ast.2014.12.011 – volume: 72 start-page: 221 year: 2011 ident: B1 article-title: Industrial Noise Levels and Annoyance in Egypt publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2010.11.001 – volume: 124 start-page: 3534 year: 2008 ident: B24 article-title: Effect of Internal Resistance of a Helmholtz Resonator on Acoustic Energy Reduction in Enclosures publication-title: The J. Acoust. Soc. America doi: 10.1121/1.2996328 – volume: 90 start-page: 106531 year: 2021 ident: B20 article-title: Sliding Mode Direct Current Triboelectric Nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106531 – volume: 10 start-page: 1427 year: 2019 ident: B32 article-title: Quantifying the Triboelectric Series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 130 start-page: 124519 year: 2009 ident: B5 article-title: Bulk Viscosity and Compressibility Measurement Using Acoustic Spectroscopy publication-title: J. Chem. Phys. doi: 10.1063/1.3095471 – volume: 15 start-page: 949 year: 2014 ident: B18 article-title: A Review of Acoustic Energy Harvesting publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-014-0422-x – volume: 9 start-page: 1902824 year: 2019 ident: B30 article-title: Dual‐Tube Helmholtz Resonator‐Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201902824 – volume: 7 start-page: 16279 year: 2015 ident: B12 article-title: PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.5b02762 – volume: 70 start-page: 104543 year: 2020 ident: B19 article-title: Sandwich-like Sound-Driven Triboelectric Nanogenerator for Energy Harvesting and Electrochromic Based on Cu Foam publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104543 – volume: 41 start-page: 397 year: 2016 ident: B11 article-title: Electromagnetic Energy Harvester for Harvesting Acoustic Energy publication-title: Sādhanā doi: 10.1007/s12046-016-0476-9 – volume: 2 start-page: e12059 year: 2020 ident: B16 article-title: Recent Progress of Triboelectric Nanogenerators: From Fundamental Theory to Practical Applications publication-title: Ecomat doi: 10.1002/eom2.12059 – volume: 11 start-page: 3431 year: 2021 ident: B25 article-title: A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting publication-title: Nanomaterials doi: 10.3390/nano11123431 – volume: 15 start-page: 321 year: 2015 ident: B4 article-title: High Performance Sound Driven Triboelectric Nanogenerator for Harvesting Noise Energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.008 – volume: 8 start-page: 085012 year: 2018 ident: B26 article-title: Low Frequency Acoustic Energy Harvester Based on a Planar Helmholtz Resonator publication-title: AIP Adv. doi: 10.1063/1.5042683 |
SSID | ssj0001325412 |
Score | 2.2479336 |
Snippet | Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | acoustic energy harvesting broadband fluorinated ethylene propylene Helmholtz resonator triboelectric nanogenerator |
Title | Multi-Tube Helmholtz Resonator Based Triboelectric Nanogenerator for Broadband Acoustic Energy Harvesting |
URI | https://doaj.org/article/508e3d02672d4cacb88b614e0196d415 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFEgcx07GFrWqkGBqpW6RX6kqQYKqdOHXc2eHKiywsEaXyDpf_N3Zvu8j5M5aHiurZKS4yiKewT-nJI8jLUWVcMtlnGM38surmC348zJb9qS-8E5YoAcOjnuEBMKlFnWSmOVGGZ3nGiDFIa-LDe3lDDCvV0z53ZUUCp-EhWNMqMIKmCbVIj03Yw95IYos_QFEPb5-DyzTI3LYZYR0FEZyTPZcfUIOejyBp2Tt22Sj-VY7CjjxDitW-0lx573GmpmOAYosRRKQJsjarA2FZbNZeU5ptKjQatMoq1Vt6cg0XsSLTnznH0WBIGTbqFdnZDGdzJ9mUaeREJk0423EtREGSd3SyjitBeC55UqojDlYOlBLPEPKeBNrDrmDhPyDa526IjF5LLSU6TkZ1E3tLghVMs_yyiaxQrHvQkNlZipZccWFKpjhQxJ_O6w0HYE46li8lVBIoI9L7-MSfVwGHw_J_e6Vj8Ce8ZvxGGdhZ4jE1_4BhEPZhUP5Vzhc_sdHrsg-jgsPjZi4JoN2s3U3kHu0-taH2RdAbdZV |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Tube+Helmholtz+Resonator+Based+Triboelectric+Nanogenerator+for+Broadband+Acoustic+Energy+Harvesting&rft.jtitle=Frontiers+in+materials&rft.au=Zhang%2C+Qiqi&rft.au=Xi%2C+Ziyue&rft.au=Wang%2C+Yawei&rft.au=Liu%2C+Ling&rft.date=2022-04-26&rft.issn=2296-8016&rft.eissn=2296-8016&rft.volume=9&rft_id=info:doi/10.3389%2Ffmats.2022.896953&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmats_2022_896953 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-8016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-8016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-8016&client=summon |