Multi-Tube Helmholtz Resonator Based Triboelectric Nanogenerator for Broadband Acoustic Energy Harvesting

Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a multi-tube parallel Helmholtz resonator-based triboelectric nanogenerator (MH-TENG) is investigated to reap sound energy in low-frequency noise env...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in materials Vol. 9
Main Authors Zhang, Qiqi, Xi, Ziyue, Wang, Yawei, Liu, Ling, Yu, Hongyong, Wang, Hao, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 26.04.2022
Subjects
Online AccessGet full text
ISSN2296-8016
2296-8016
DOI10.3389/fmats.2022.896953

Cover

Loading…
Abstract Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a multi-tube parallel Helmholtz resonator-based triboelectric nanogenerator (MH-TENG) is investigated to reap sound energy in low-frequency noise environments. The designed MH-TENG consists of a modified Helmholtz resonator and a thin-film TENG transducer. The core materials of the TENG transducer are aluminum, FEP film, and carbon. To further clarify the influence of the modified Helmholtz resonator on the conversion performance of MH-TENG, the acoustic characteristics of the improved resonators are systematically studied. A series of experiments show that the multi-tube parallel Helmholtz resonator structure has a better sound wave collection effect. Meanwhile, the flexible film TENG can reduce the optimal output frequency of the device. The power generation performance and the bandwidth of the MH-TENG are significantly improved by adopting a multi-tube Helmholtz resonator. Within the frequency bandwidth range of 230 Hz, MH-TENG can effectively improve the efficiency of acoustic energy harvesting. 110 LEDs and an electronic thermometer can be powered by the sound-driven MH-TENG. In addition, the MH-TENG has a good capacitor charging performance, which is conducive to its application in ambient sound energy harvesting.
AbstractList Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a multi-tube parallel Helmholtz resonator-based triboelectric nanogenerator (MH-TENG) is investigated to reap sound energy in low-frequency noise environments. The designed MH-TENG consists of a modified Helmholtz resonator and a thin-film TENG transducer. The core materials of the TENG transducer are aluminum, FEP film, and carbon. To further clarify the influence of the modified Helmholtz resonator on the conversion performance of MH-TENG, the acoustic characteristics of the improved resonators are systematically studied. A series of experiments show that the multi-tube parallel Helmholtz resonator structure has a better sound wave collection effect. Meanwhile, the flexible film TENG can reduce the optimal output frequency of the device. The power generation performance and the bandwidth of the MH-TENG are significantly improved by adopting a multi-tube Helmholtz resonator. Within the frequency bandwidth range of 230 Hz, MH-TENG can effectively improve the efficiency of acoustic energy harvesting. 110 LEDs and an electronic thermometer can be powered by the sound-driven MH-TENG. In addition, the MH-TENG has a good capacitor charging performance, which is conducive to its application in ambient sound energy harvesting.
Author Xi, Ziyue
Wang, Yawei
Liu, Ling
Yu, Hongyong
Xu, Minyi
Zhang, Qiqi
Wang, Hao
Author_xml – sequence: 1
  givenname: Qiqi
  surname: Zhang
  fullname: Zhang, Qiqi
– sequence: 2
  givenname: Ziyue
  surname: Xi
  fullname: Xi, Ziyue
– sequence: 3
  givenname: Yawei
  surname: Wang
  fullname: Wang, Yawei
– sequence: 4
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
– sequence: 5
  givenname: Hongyong
  surname: Yu
  fullname: Yu, Hongyong
– sequence: 6
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 7
  givenname: Minyi
  surname: Xu
  fullname: Xu, Minyi
BookMark eNp1UV1rGzEQFMGFpIl_QN7uD5yrr5N0j25Ia0PSQnCfxUq358icT0WSC-6vz9luIRT6tMvszDDLfCSzMY5IyD2jCyFM-6nfQ8kLTjlfmFa1jbgiN5y3qjaUqdm7_ZrMc95RSpngjWT8hoTnw1BCvTk4rFY47F_jUH5XL5jjCCWm6jNk7KpNCi7igL6k4KtvMMYtjpjOjP7EShE6B2NXLX085DKRHqf79litIP3CCRi3d-RDD0PG-Z95S358edw8rOqn71_XD8un2otGllo6r7xupyd6j84pTlknQUHDUWjFmNGNEdp46qSWTCsppHMCW-YNVU5rcUvWF98uws7-TGEP6WgjBHsGYtpaSFPCAW1DDYqOcqV5Jz14Z4xTTCJlreokayYvffHyKeacsLc-FCghjiVBGCyj9lSAPRdgTwXYSwGTkv2j_Jvk_5o3IgGMoA
CitedBy_id crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1002_admt_202400451
crossref_primary_10_20535_2523_4455_mea_314535
crossref_primary_10_3390_nano13101676
crossref_primary_10_1063_5_0158079
crossref_primary_10_1155_2023_5568046
Cites_doi 10.1039/c5nr09087c
10.1016/j.nanoen.2020.105303
10.1002/adfm.202103081
10.1088/1361-665x/ab6697
10.1039/c9ta06525c
10.1016/j.ymssp.2004.03.007
10.1002/admt.202000916
10.1016/j.nanoen.2021.105962
10.3390/mi11010007
10.1134/s1063771019050014
10.1177/1687814018785058
10.1021/nn4063616
10.1016/j.apacoust.2017.02.006
10.3390/s20247275
10.1088/1757-899x/439/3/032072
10.1039/c5ee01532d
10.1108/sr-04-2017-0062
10.1016/j.nanoen.2018.11.029
10.1016/j.apacoust.2017.09.026
10.1016/j.ast.2014.12.011
10.1016/j.apacoust.2010.11.001
10.1121/1.2996328
10.1016/j.nanoen.2021.106531
10.1038/s41467-019-09461-x
10.1063/1.3095471
10.1007/s12541-014-0422-x
10.1002/aenm.201902824
10.1021/acsami.5b02762
10.1016/j.nanoen.2020.104543
10.1007/s12046-016-0476-9
10.1002/eom2.12059
10.3390/nano11123431
10.1016/j.nanoen.2015.04.008
10.1063/1.5042683
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fmats.2022.896953
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-8016
ExternalDocumentID oai_doaj_org_article_508e3d02672d4cacb88b614e0196d415
10_3389_fmats_2022_896953
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-4bc6c79953fcebb6201d4a6a52e376118758378c0b474176434bb3e91c806b773
IEDL.DBID DOA
ISSN 2296-8016
IngestDate Wed Aug 27 01:29:07 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 04:30:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-4bc6c79953fcebb6201d4a6a52e376118758378c0b474176434bb3e91c806b773
OpenAccessLink https://doaj.org/article/508e3d02672d4cacb88b614e0196d415
ParticipantIDs doaj_primary_oai_doaj_org_article_508e3d02672d4cacb88b614e0196d415
crossref_citationtrail_10_3389_fmats_2022_896953
crossref_primary_10_3389_fmats_2022_896953
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-26
PublicationDateYYYYMMDD 2022-04-26
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-26
  day: 26
PublicationDecade 2020
PublicationTitle Frontiers in materials
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wang (B22) 2021; 31
Kim (B12) 2015; 7
Yuan (B28) 2020; 29
Zou (B34) 2021; 6
Iftikhar Ahmad (B7) 2019; 65
Li (B13) 2019; 7
Luo (B16) 2020; 2
Huabing (B6) 2018; 439
Yuan (B26) 2018; 8
Zhang (B29) 2015; 41
Cui (B4) 2015; 15
Noh (B17) 2018; 10
Ali (B1) 2011; 72
Li (B14) 2018; 56
Yuan (B25) 2021; 11
Pillai (B18) 2014; 15
Song (B20) 2021; 90
Wang (B21) 2015; 8
Zou (B32) 2019; 10
Jun Hong (B10) 2005; 19
Qiu (B19) 2020; 70
Zou (B33) 2020; 77
Cai (B2) 2018; 130
Ji (B9) 2020; 20
Khan (B11) 2016; 41
Zhao (B30) 2019; 9
Izhar (B8) 2018; 38
Dukhin (B5) 2009; 130
Cai (B3) 2017; 122
Yu (B24) 2008; 124
Yuan (B27) 2021; 85
Liu (B15) 2016; 8
Yang (B23) 2014; 8
Zhu (B31) 2019; 11
References_xml – volume: 8
  start-page: 4938
  year: 2016
  ident: B15
  article-title: A Three-Dimensional Integrated Nanogenerator for Effectively Harvesting Sound Energy from the Environment
  publication-title: Nanoscale
  doi: 10.1039/c5nr09087c
– volume: 77
  start-page: 105303
  year: 2020
  ident: B33
  article-title: Wearable Triboelectric Nanogenerators for Biomechanical Energy Harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105303
– volume: 31
  start-page: 2103081
  year: 2021
  ident: B22
  article-title: A Universal Power Management Strategy Based on Novel Sound‐Driven Triboelectric Nanogenerator and its Fully Self‐Powered Wireless System Applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103081
– volume: 29
  start-page: 035012
  year: 2020
  ident: B28
  article-title: Joint Acoustic Energy Harvesting and Noise Suppression Using Deep-Subwavelength Acoustic Device
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665x/ab6697
– volume: 7
  start-page: 19485
  year: 2019
  ident: B13
  article-title: A Universal Method for Quantitative Analysis of Triboelectric Nanogenerators
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/c9ta06525c
– volume: 19
  start-page: 213
  year: 2005
  ident: B10
  article-title: Analysis of Engine Front Noise Using Sound Intensity Techniques
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.03.007
– volume: 6
  start-page: 2000916
  year: 2021
  ident: B34
  article-title: Advances in Nanostructures for High‐Performance Triboelectric Nanogenerators
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000916
– volume: 85
  start-page: 105962
  year: 2021
  ident: B27
  article-title: A 3D-Printed Acoustic Triboelectric Nanogenerator for Quarter-Wavelength Acoustic Energy Harvesting and Self-Powered Edge Sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105962
– volume: 11
  start-page: 7
  year: 2019
  ident: B31
  article-title: Development Trends and Perspectives of Future Sensors and MEMS/NEMS
  publication-title: Micromachines
  doi: 10.3390/mi11010007
– volume: 65
  start-page: 471
  year: 2019
  ident: B7
  article-title: Ambient Acoustic Energy Harvesting Using Two Connected Resonators with Piezoelement for Wireless Distributed Sensor Network
  publication-title: Acoust. Phys.
  doi: 10.1134/s1063771019050014
– volume: 10
  start-page: 168781401878505
  year: 2018
  ident: B17
  article-title: Acoustic Energy Harvesting Using Piezoelectric Generator for Railway Environmental Noise
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814018785058
– volume: 8
  start-page: 2649
  year: 2014
  ident: B23
  article-title: Triboelectrification-based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing
  publication-title: ACS Nano
  doi: 10.1021/nn4063616
– volume: 122
  start-page: 8
  year: 2017
  ident: B3
  article-title: Noise Attenuation Performance Improvement by Adding Helmholtz Resonators on the Periodic Ducted Helmholtz Resonator System
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2017.02.006
– volume: 20
  start-page: 7275
  year: 2020
  ident: B9
  article-title: Enhanced Quarter Spherical Acoustic Energy Harvester Based on Dual Helmholtz Resonators
  publication-title: Sensors
  doi: 10.3390/s20247275
– volume: 439
  start-page: 032072
  year: 2018
  ident: B6
  article-title: Noise Prediction and Control in a Cruise Ship
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899x/439/3/032072
– volume: 8
  start-page: 2250
  year: 2015
  ident: B21
  article-title: Progress in Triboelectric Nanogenerators as a New Energy Technology and Self-Powered Sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c5ee01532d
– volume: 38
  start-page: 298
  year: 2018
  ident: B8
  article-title: Electromagnetic Based Acoustic Energy Harvester for Low Power Wireless Autonomous Sensor Applications
  publication-title: Sr
  doi: 10.1108/sr-04-2017-0062
– volume: 56
  start-page: 40
  year: 2018
  ident: B14
  article-title: Standardization of Triboelectric Nanogenerators: Progress and Perspectives
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.029
– volume: 130
  start-page: 204
  year: 2018
  ident: B2
  article-title: Acoustic Performance of Different Helmholtz Resonator Array Configurations
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2017.09.026
– volume: 41
  start-page: 55
  year: 2015
  ident: B29
  article-title: Control of Combustion Instability with a Tunable Helmholtz Resonator
  publication-title: Aerospace Sci. Techn.
  doi: 10.1016/j.ast.2014.12.011
– volume: 72
  start-page: 221
  year: 2011
  ident: B1
  article-title: Industrial Noise Levels and Annoyance in Egypt
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2010.11.001
– volume: 124
  start-page: 3534
  year: 2008
  ident: B24
  article-title: Effect of Internal Resistance of a Helmholtz Resonator on Acoustic Energy Reduction in Enclosures
  publication-title: The J. Acoust. Soc. America
  doi: 10.1121/1.2996328
– volume: 90
  start-page: 106531
  year: 2021
  ident: B20
  article-title: Sliding Mode Direct Current Triboelectric Nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106531
– volume: 10
  start-page: 1427
  year: 2019
  ident: B32
  article-title: Quantifying the Triboelectric Series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 130
  start-page: 124519
  year: 2009
  ident: B5
  article-title: Bulk Viscosity and Compressibility Measurement Using Acoustic Spectroscopy
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3095471
– volume: 15
  start-page: 949
  year: 2014
  ident: B18
  article-title: A Review of Acoustic Energy Harvesting
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-014-0422-x
– volume: 9
  start-page: 1902824
  year: 2019
  ident: B30
  article-title: Dual‐Tube Helmholtz Resonator‐Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201902824
– volume: 7
  start-page: 16279
  year: 2015
  ident: B12
  article-title: PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.5b02762
– volume: 70
  start-page: 104543
  year: 2020
  ident: B19
  article-title: Sandwich-like Sound-Driven Triboelectric Nanogenerator for Energy Harvesting and Electrochromic Based on Cu Foam
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104543
– volume: 41
  start-page: 397
  year: 2016
  ident: B11
  article-title: Electromagnetic Energy Harvester for Harvesting Acoustic Energy
  publication-title: Sādhanā
  doi: 10.1007/s12046-016-0476-9
– volume: 2
  start-page: e12059
  year: 2020
  ident: B16
  article-title: Recent Progress of Triboelectric Nanogenerators: From Fundamental Theory to Practical Applications
  publication-title: Ecomat
  doi: 10.1002/eom2.12059
– volume: 11
  start-page: 3431
  year: 2021
  ident: B25
  article-title: A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting
  publication-title: Nanomaterials
  doi: 10.3390/nano11123431
– volume: 15
  start-page: 321
  year: 2015
  ident: B4
  article-title: High Performance Sound Driven Triboelectric Nanogenerator for Harvesting Noise Energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.04.008
– volume: 8
  start-page: 085012
  year: 2018
  ident: B26
  article-title: Low Frequency Acoustic Energy Harvester Based on a Planar Helmholtz Resonator
  publication-title: AIP Adv.
  doi: 10.1063/1.5042683
SSID ssj0001325412
Score 2.2479336
Snippet Acoustic energy, especially broadband low-frequency sound energy is part of the environmental mechanical energy acquisition cannot be ignored. Herein, a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms acoustic energy harvesting
broadband
fluorinated ethylene propylene
Helmholtz resonator
triboelectric nanogenerator
Title Multi-Tube Helmholtz Resonator Based Triboelectric Nanogenerator for Broadband Acoustic Energy Harvesting
URI https://doaj.org/article/508e3d02672d4cacb88b614e0196d415
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFEgcx07GFrWqkGBqpW6RX6kqQYKqdOHXc2eHKiywsEaXyDpf_N3Zvu8j5M5aHiurZKS4yiKewT-nJI8jLUWVcMtlnGM38surmC348zJb9qS-8E5YoAcOjnuEBMKlFnWSmOVGGZ3nGiDFIa-LDe3lDDCvV0z53ZUUCp-EhWNMqMIKmCbVIj03Yw95IYos_QFEPb5-DyzTI3LYZYR0FEZyTPZcfUIOejyBp2Tt22Sj-VY7CjjxDitW-0lx573GmpmOAYosRRKQJsjarA2FZbNZeU5ptKjQatMoq1Vt6cg0XsSLTnznH0WBIGTbqFdnZDGdzJ9mUaeREJk0423EtREGSd3SyjitBeC55UqojDlYOlBLPEPKeBNrDrmDhPyDa526IjF5LLSU6TkZ1E3tLghVMs_yyiaxQrHvQkNlZipZccWFKpjhQxJ_O6w0HYE46li8lVBIoI9L7-MSfVwGHw_J_e6Vj8Ce8ZvxGGdhZ4jE1_4BhEPZhUP5Vzhc_sdHrsg-jgsPjZi4JoN2s3U3kHu0-taH2RdAbdZV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Tube+Helmholtz+Resonator+Based+Triboelectric+Nanogenerator+for+Broadband+Acoustic+Energy+Harvesting&rft.jtitle=Frontiers+in+materials&rft.au=Zhang%2C+Qiqi&rft.au=Xi%2C+Ziyue&rft.au=Wang%2C+Yawei&rft.au=Liu%2C+Ling&rft.date=2022-04-26&rft.issn=2296-8016&rft.eissn=2296-8016&rft.volume=9&rft_id=info:doi/10.3389%2Ffmats.2022.896953&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmats_2022_896953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-8016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-8016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-8016&client=summon