Enhanced energy transfer in a Dicke quantum battery
We theoretically investigate the enhancement of the charging power in a Dicke quantum battery which consists of an array of N two-level systems (TLS)coupled to a single mode of cavity photons. In the limit of small N , we analytically solve the time evolution for the full charging process. The eigen...
Saved in:
Published in | Frontiers in physics Vol. 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
09.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-424X 2296-424X |
DOI | 10.3389/fphy.2022.1097564 |
Cover
Abstract | We theoretically investigate the enhancement of the charging power in a Dicke quantum battery which consists of an array of
N
two-level systems (TLS)coupled to a single mode of cavity photons. In the limit of small
N
, we analytically solve the time evolution for the full charging process. The eigenvectors of the driving Hamiltonian are found to be pseudo-Hermite polynomials and the evolution is thus interpreted as harmonic oscillator like behaviour. Then we demonstrate the average charging power using a collective protocol is
N
times larger than that of the parallel protocol when transferring the same amount of energy. Unlike previous studies, we point out that such quantum advantage does not originate from entanglement but is due to the coherent cooperative interactions among the TLSs. Our results provide intuitive quantitative insight into the dynamic charging process of a Dicke battery and can be observed under realistic experimental conditions. |
---|---|
AbstractList | We theoretically investigate the enhancement of the charging power in a Dicke quantum battery which consists of an array of N two-level systems (TLS)coupled to a single mode of cavity photons. In the limit of small N, we analytically solve the time evolution for the full charging process. The eigenvectors of the driving Hamiltonian are found to be pseudo-Hermite polynomials and the evolution is thus interpreted as harmonic oscillator like behaviour. Then we demonstrate the average charging power using a collective protocol is N times larger than that of the parallel protocol when transferring the same amount of energy. Unlike previous studies, we point out that such quantum advantage does not originate from entanglement but is due to the coherent cooperative interactions among the TLSs. Our results provide intuitive quantitative insight into the dynamic charging process of a Dicke battery and can be observed under realistic experimental conditions. We theoretically investigate the enhancement of the charging power in a Dicke quantum battery which consists of an array of N two-level systems (TLS)coupled to a single mode of cavity photons. In the limit of small N , we analytically solve the time evolution for the full charging process. The eigenvectors of the driving Hamiltonian are found to be pseudo-Hermite polynomials and the evolution is thus interpreted as harmonic oscillator like behaviour. Then we demonstrate the average charging power using a collective protocol is N times larger than that of the parallel protocol when transferring the same amount of energy. Unlike previous studies, we point out that such quantum advantage does not originate from entanglement but is due to the coherent cooperative interactions among the TLSs. Our results provide intuitive quantitative insight into the dynamic charging process of a Dicke battery and can be observed under realistic experimental conditions. |
Author | Blaauboer, Miriam Zhang, Xiang |
Author_xml | – sequence: 1 givenname: Xiang surname: Zhang fullname: Zhang, Xiang – sequence: 2 givenname: Miriam surname: Blaauboer fullname: Blaauboer, Miriam |
BookMark | eNp9kE1PAjEQQBuDiYj8AG_7B8B-bXd7NIhKQuJFE2_NtDuFInSxuxz237sIMcaDp5nM5L3DuyaDWEck5JbRqRClvvP7dTfllPMpo7rIlbwgQ861mkgu3we_9isybpoNpZTxXJdcDomYxzVEh1WGEdOqy9oEsfGYshAzyB6C-8Ds8wCxPewyC22Lqbshlx62DY7Pc0TeHuevs-fJ8uVpMbtfTpzIZTuRioEqvXUOqWVUMoqcW-dZDlSVpQNhuWbagVPgQWiuSyr7v7YOlOJMjMji5K1q2Jh9CjtInakhmO9DnVYGUhvcFo2ktCiUBV-pSuZWWBSlY1VhFSqFKHsXO7lcqpsmof_xMWqOEc0xojlGNOeIPVP8YVxooQ117COF7T_kF4P4ebA |
CitedBy_id | crossref_primary_10_1103_PhysRevA_110_022425 crossref_primary_10_1088_1402_4896_ad95c5 crossref_primary_10_1103_PhysRevA_109_032201 crossref_primary_10_1103_PhysRevLett_133_243602 crossref_primary_10_1103_PhysRevA_110_052601 crossref_primary_10_1103_RevModPhys_96_031001 crossref_primary_10_1103_PhysRevE_111_014121 crossref_primary_10_1103_PhysRevA_109_012204 crossref_primary_10_1103_PhysRevA_110_012227 crossref_primary_10_1103_PhysRevLett_132_240401 crossref_primary_10_1088_1402_4896_ad2efd crossref_primary_10_1103_PhysRevA_111_022222 crossref_primary_10_1103_PhysRevB_109_235432 crossref_primary_10_1088_1674_1056_ad9a9d crossref_primary_10_1103_PhysRevE_111_024125 |
Cites_doi | 10.1103/PhysRevA.95.013843 10.1038/s41467-017-01634-w 10.1103/PhysRevA.49.4972 10.1103/PhysRevA.104.032207 10.1103/PhysRevA.94.023819 10.1103/PhysRevLett.104.077202 10.1103/PhysRevLett.120.117702 10.1103/PhysRevB.82.104413 10.1103/PhysRevLett.122.047702 10.1103/PhysRevLett.124.013601 10.1209/0295-5075/81/30007 10.1103/PhysRevResearch.2.023113 10.1088/1367-2630/17/7/075015 10.1103/PhysRevLett.80.5243 10.1088/1367-2630/ab91fc 10.1103/PhysRevA.101.032115 10.1103/PhysRevLett.105.140502 10.1103/PhysRev.93.99 10.1103/PhysRevE.87.042123 10.1103/PhysRevB.98.205423 10.1103/PhysRevLett.122.210601 10.1103/PhysRevA.67.052109 10.1103/PhysRevA.42.1762 10.1364/OME.7.001514 10.1021/acs.jpcc.9b06373 10.1103/PhysRevA.97.022106 10.1103/PhysRev.58.1098 10.1007/978-1-4757-0576-8 10.1209/epl/i2003-00418-8 10.1103/PhysRevB.82.024413 10.1088/1751-8113/49/14/143001 10.1103/PhysRevLett.96.060503 10.1126/science.1192739 10.1103/PhysRevE.67.066203 10.1103/PhysRevLett.89.270401 10.1088/1367-2630/ab9ee2 10.1103/PhysRevA.46.7220 10.1103/PhysRevResearch.2.023095 10.1103/PhysRevA.97.052333 10.1103/PhysRevE.97.062105 10.1103/PhysRevB.99.205437 10.1103/PhysRevLett.98.040403 10.1103/PhysRevLett.112.140402 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fphy.2022.1097564 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2296-424X |
ExternalDocumentID | oai_doaj_org_article_400776bafd6d45b3be38c1d7b6e66ee4 10_3389_fphy_2022_1097564 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-461a68fbcce0b10410e22bcf15a0688ca3b2919cac6afa3929804bcf9bca66213 |
IEDL.DBID | DOA |
ISSN | 2296-424X |
IngestDate | Wed Aug 27 01:23:35 EDT 2025 Tue Jul 01 01:03:06 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-461a68fbcce0b10410e22bcf15a0688ca3b2919cac6afa3929804bcf9bca66213 |
OpenAccessLink | https://doaj.org/article/400776bafd6d45b3be38c1d7b6e66ee4 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_400776bafd6d45b3be38c1d7b6e66ee4 crossref_primary_10_3389_fphy_2022_1097564 crossref_citationtrail_10_3389_fphy_2022_1097564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-09 |
PublicationDateYYYYMMDD | 2023-01-09 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in physics |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bender (B38) 2002; 89 Giovannetti (B8) 2003; 62 Zhang (B16) 2018; 97 Wolfe (B22) 2014; 112 Giovannetti (B31) 2003; 67 Barra (B3) 2019; 122 Alicki (B6) 2013; 87 Henao (B11) 2018; 97 Holstein (B25) 1940; 58 Liu (B39) 2017; 95 Schröder (B36) 2017; 7 Kamin (B43) 2020; 22 Emary (B21) 2003; 67 Goold (B7) 2016; 49 Dicke (B19) 1954; 93 Chumakov (B27) 1994; 49 Crescente (B1) 2020; 22 dos Santos (B10) 2016; 94 Caravelli (B2) 2020; 2 Carlini (B34) 2006; 96 Liu (B4) 2019; 123 Chiorescu (B28) 2010; 82 de Lange (B35) 2010; 330 Ghosh (B5) 2020; 101 Andolina (B14) 2019; 99 Bender (B40) 1998; 80 Bender (B42) 2007; 98 Ghosh (B44) 2021; 104 Kozierowski (B26) 1990; 42 Le (B18) 2018; 97 Soykal (B33) 2010; 82 Julià-Farré (B15) 2020; 2 Zhang (B41) 2017; 8 Ferraro (B20) 2018; 120 Binder (B17) 2015; 17 Andolina (B12) 2018; 98 Shankar (B29) 1994 Kozierowski (B30) 1992; 46 Wang (B23) 2020; 124 Andolina (B13) 2019; 122 Soykal (B24) 2010; 104 Binder (B32) 2016 Kubo (B37) 2010; 105 Borras (B9) 2008; 81 |
References_xml | – volume: 95 start-page: 013843 year: 2017 ident: B39 article-title: Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system publication-title: Phys Rev A doi: 10.1103/PhysRevA.95.013843 – volume: 8 start-page: 1368 year: 2017 ident: B41 article-title: Observation of the exceptional point in cavity magnon-polaritons publication-title: Nat Commun doi: 10.1038/s41467-017-01634-w – volume: 49 start-page: 4972 year: 1994 ident: B27 article-title: General properties of quantum optical systems in a strong-field limit publication-title: Phys Rev A doi: 10.1103/PhysRevA.49.4972 – volume: 104 start-page: 032207 year: 2021 ident: B44 article-title: Fast charging of a quantum battery assisted by noise publication-title: Phys Rev A doi: 10.1103/PhysRevA.104.032207 – volume: 94 start-page: 023819 year: 2016 ident: B10 article-title: Elucidating dicke superradiance by quantum uncertainty publication-title: Phys Rev A doi: 10.1103/PhysRevA.94.023819 – volume: 104 start-page: 077202 year: 2010 ident: B24 article-title: Strong field interactions between a nanomagnet and a photonic cavity publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.104.077202 – volume: 120 start-page: 117702 year: 2018 ident: B20 article-title: High-power collective charging of a solid-state quantum battery publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.120.117702 – volume: 82 start-page: 104413 year: 2010 ident: B33 article-title: Size dependence of strong coupling between nanomagnets and photonic cavities publication-title: Phys Rev B doi: 10.1103/PhysRevB.82.104413 – volume: 122 start-page: 047702 year: 2019 ident: B13 article-title: Extractable work, the role of correlations, and asymptotic freedom in quantum batteries publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.047702 – volume: 124 start-page: 013601 year: 2020 ident: B23 article-title: Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.124.013601 – volume: 81 start-page: 30007 year: 2008 ident: B9 article-title: Entanglement and the quantum brachistochrone problem publication-title: Europhys Lett doi: 10.1209/0295-5075/81/30007 – volume: 2 start-page: 023113 year: 2020 ident: B15 article-title: Bounds on the capacity and power of quantum batteries publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.2.023113 – volume: 17 start-page: 075015 year: 2015 ident: B17 article-title: Quantacell: Powerful charging of quantum batteries publication-title: New J Phys doi: 10.1088/1367-2630/17/7/075015 – volume: 80 start-page: 5243 year: 1998 ident: B40 article-title: Real spectra in non-hermitian Hamiltonians HavingPTSymmetry publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.80.5243 – volume: 22 start-page: 063057 year: 2020 ident: B1 article-title: Charging and energy fluctuations of a driven quantum battery publication-title: New J Phys doi: 10.1088/1367-2630/ab91fc – volume: 101 start-page: 032115 year: 2020 ident: B5 article-title: Enhancement in the performance of a quantum battery by ordered and disordered interactions publication-title: Phys Rev A doi: 10.1103/PhysRevA.101.032115 – volume: 105 start-page: 140502 year: 2010 ident: B37 article-title: Strong coupling of a spin ensemble to a superconducting resonator publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.105.140502 – volume: 93 start-page: 99 year: 1954 ident: B19 article-title: Coherence in spontaneous radiation processes publication-title: Phys Rev doi: 10.1103/PhysRev.93.99 – volume: 87 start-page: 042123 year: 2013 ident: B6 article-title: Entanglement boost for extractable work from ensembles of quantum batteries publication-title: Phys Rev E doi: 10.1103/PhysRevE.87.042123 – volume: 98 start-page: 205423 year: 2018 ident: B12 article-title: Charger-mediated energy transfer in exactly solvable models for quantum batteries publication-title: Phys Rev B doi: 10.1103/PhysRevB.98.205423 – volume: 122 start-page: 210601 year: 2019 ident: B3 article-title: Dissipative charging of a quantum battery publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.210601 – volume: 67 start-page: 052109 year: 2003 ident: B31 article-title: Quantum limits to dynamical evolution publication-title: Phys Rev A doi: 10.1103/PhysRevA.67.052109 – volume: 42 start-page: 1762 year: 1990 ident: B26 article-title: Spontaneous emission by a system of n two-level atoms in terms of the su(2)-group representations publication-title: Phys Rev A doi: 10.1103/PhysRevA.42.1762 – volume: 7 start-page: 1514 year: 2017 ident: B36 article-title: Scalable fabrication of coupled nv center - photonic crystal cavity systems by self-aligned n ion implantation publication-title: Opt Mater Express doi: 10.1364/OME.7.001514 – volume: 123 start-page: 18303 year: 2019 ident: B4 article-title: Loss-free excitonic quantum battery publication-title: The J Phys Chem C doi: 10.1021/acs.jpcc.9b06373 – volume: 97 start-page: 022106 year: 2018 ident: B18 article-title: Spin-chain model of a many-body quantum battery publication-title: Phys Rev A doi: 10.1103/PhysRevA.97.022106 – volume: 58 start-page: 1098 year: 1940 ident: B25 article-title: Field dependence of the intrinsic domain magnetization of a ferromagnet publication-title: Phys Rev doi: 10.1103/PhysRev.58.1098 – volume-title: Principles of quantum mechanics year: 1994 ident: B29 doi: 10.1007/978-1-4757-0576-8 – volume: 62 start-page: 615 year: 2003 ident: B8 article-title: The role of entanglement in dynamical evolution publication-title: Europhys Lett doi: 10.1209/epl/i2003-00418-8 – volume: 82 start-page: 024413 year: 2010 ident: B28 article-title: Magnetic strong coupling in a spin-photon system and transition to classical regime publication-title: Phys Rev B doi: 10.1103/PhysRevB.82.024413 – volume: 49 start-page: 143001 year: 2016 ident: B7 article-title: The role of quantum information in thermodynamics–a topical review publication-title: J Phys A: Math Theor doi: 10.1088/1751-8113/49/14/143001 – volume: 96 start-page: 060503 year: 2006 ident: B34 article-title: Time-optimal quantum evolution publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.96.060503 – volume: 330 start-page: 60 year: 2010 ident: B35 article-title: Universal dynamical decoupling of a single solid-state spin from a spin bath publication-title: Science doi: 10.1126/science.1192739 – volume: 67 start-page: 066203 year: 2003 ident: B21 article-title: Chaos and the quantum phase transition in the dicke model publication-title: Phys Rev E doi: 10.1103/PhysRevE.67.066203 – volume: 89 start-page: 270401 year: 2002 ident: B38 article-title: Complex extension of quantum mechanics publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.89.270401 – volume: 22 start-page: 083007 year: 2020 ident: B43 article-title: Non-markovian effects on charging and self-discharging process of quantum batteries publication-title: New J Phys doi: 10.1088/1367-2630/ab9ee2 – volume: 46 start-page: 7220 year: 1992 ident: B30 article-title: Collective collapses and revivals in spontaneous emission of a partially inverted system of two-level atoms: Analytical solution publication-title: Phys Rev A doi: 10.1103/PhysRevA.46.7220 – volume: 2 start-page: 023095 year: 2020 ident: B2 article-title: Random quantum batteries publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.2.023095 – volume: 97 start-page: 052333 year: 2018 ident: B16 article-title: Automatic spin-chain learning to explore the quantum speed limit publication-title: Phys Rev A doi: 10.1103/PhysRevA.97.052333 – volume: 97 start-page: 062105 year: 2018 ident: B11 article-title: Role of quantum coherence in the thermodynamics of energy transfer publication-title: Phys Rev E doi: 10.1103/PhysRevE.97.062105 – volume: 99 start-page: 205437 year: 2019 ident: B14 article-title: Quantum versus classical many-body batteries publication-title: Phys Rev B doi: 10.1103/PhysRevB.99.205437 – volume: 98 start-page: 040403 year: 2007 ident: B42 article-title: Faster than hermitian quantum mechanics publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.98.040403 – volume: 112 start-page: 140402 year: 2014 ident: B22 article-title: Certifying separability in symmetric mixed states of n qubits, and superradiance publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.112.140402 – volume-title: Work, heat, and power of quantum processes year: 2016 ident: B32 |
SSID | ssj0001259824 |
Score | 2.3883417 |
Snippet | We theoretically investigate the enhancement of the charging power in a Dicke quantum battery which consists of an array of
N
two-level systems (TLS)coupled to... We theoretically investigate the enhancement of the charging power in a Dicke quantum battery which consists of an array of N two-level systems (TLS)coupled to... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | Dicke model pseudo-Hermite polynomials quantum battery quantum speedup Tavis-Cumming Hamiltonian |
Title | Enhanced energy transfer in a Dicke quantum battery |
URI | https://doaj.org/article/400776bafd6d45b3be38c1d7b6e66ee4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQERIL4inKo_LAhBQ1dhw3HgstqhBlgUrdIj-uRSUIUNqBv-faCVVZYGGNHcs5N5bv8eMcQi64404x8IlV1iVCFlmiDRJXIzE5ktY7zsJ95_G9HE3E7TSfrll9hTNhtTxwDVxXRMEZo72TTuQmM5AVlrmekSAlQFQCTVW6Rqbq1ZUgTCfqbUxkYarrsddIBzmPoo25FD8mojW9_jix3OySnSYjpP26J3tkA6p9shVPZtqPA5INq6e4S08hXtOji5hqwpzOKqrpYIbDkL4vEaDlCzVRLfPzkExuho_Xo6RxOkhslosFYsS0LLyxFlKDBImlwLmxnuU6mMJYnRmumLLaSu11SGmKVGC5MlZLyVl2RFrVawXHhALgoCoy6a1lAtkDogC6cD2X-lzlINsk_f7s0jYy4MGN4rlEOhCQKgNSZUCqbJBqk8vVK2-1BsZvla8ClquKQb46PsCglk1Qy7-CevIfjZyS7eANH9dL1BlpLeZLOMcMYmE6ZLM_GN89dOJP8wXoG8Vm |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+energy+transfer+in+a+Dicke+quantum+battery&rft.jtitle=Frontiers+in+physics&rft.au=Zhang%2C+Xiang&rft.au=Blaauboer%2C+Miriam&rft.date=2023-01-09&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphy.2022.1097564&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphy_2022_1097564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |