Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors
Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be...
Saved in:
Published in | Chinese physics B Vol. 26; no. 3; pp. 114 - 120 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/26/3/037106 |
Cover
Abstract | Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET. |
---|---|
AbstractList | Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET. Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET. |
Author | 王建禄 胡伟达 |
AuthorAffiliation | National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
Author_xml | – sequence: 1 fullname: 王建禄 胡伟达 |
BookMark | eNqFkcFq3DAQQEVJoJukn1AQvfTk7siyZZueSmiaQKBQ2rPQSqNdhbXkjtSG_H21bAihBHLS5b1B8-aMncQUkbH3Aj4JGMe1UEPXCOjVulVruQY5CFBv2KqFfmzkKLsTtnpi3rKznO8AlIBWrhj9QIux8IXSljBnniIPseCWTAlxy8t9alyYMeaQotnz2RSkYPaZ34ey4x6JEu7RFgo2c5-IzzgneuAO_waLmZvo-LJLJTksFUuUL9iprwPw3eN7zn5dff15ed3cfv92c_nltrGy70rTtX5wdth03prN0EuH6ACg3xiYANxkxGjrPspWzNhpMp0QHix42_ZmUlaes_4411LKmdDrhcJs6EEL0Idw-hBFH6LoVmmpj-Gq9_k_z4ZSa6RYyIT9q7Y42iEt-i79oVotv-p8fMGxy-Y5pRfnK_nh8W-7FLe_64WellKD6MZWCpD_AKICoHo |
CitedBy_id | crossref_primary_10_1002_smll_202205347 crossref_primary_10_1063_5_0035515 crossref_primary_10_1063_5_0060218 crossref_primary_10_1002_pssr_202000473 crossref_primary_10_1515_nanoph_2022_0439 crossref_primary_10_1088_1674_1056_abd7db crossref_primary_10_1021_acsnano_2c07281 crossref_primary_10_1002_pssr_201800310 crossref_primary_10_1002_adfm_202201359 crossref_primary_10_1002_aelm_201900818 crossref_primary_10_3390_coatings12050609 crossref_primary_10_1021_acsami_9b15457 crossref_primary_10_1002_inf2_12290 crossref_primary_10_1007_s11432_019_1472_6 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1088_1361_6528_aa9172 crossref_primary_10_1063_5_0035306 crossref_primary_10_1002_smll_202100655 crossref_primary_10_1021_acsami_3c00092 crossref_primary_10_1016_j_isci_2021_103729 crossref_primary_10_1088_1674_1056_28_1_017302 crossref_primary_10_1021_acs_chemrev_1c00924 crossref_primary_10_7498_aps_67_20172710 crossref_primary_10_3390_solids5010004 crossref_primary_10_1039_C8NH00150B |
Cites_doi | 10.1109/T-ED.1967.16115 10.1021/nn2024557 10.1038/ncomms7136 10.1126/science.280.5372.2101 10.1038/nmat1710 10.1038/srep03826 10.1038/nphoton.2010.40 10.1063/1.322014 10.1126/science.1218461 10.1002/smll.201201224 10.1038/nature04233 10.1103/RevModPhys.81.109 10.1021/nn1003937 10.1016/j.physleta.2011.02.064 10.1088/0957-4484/25/36/365202 10.1038/nnano.2013.206 10.1063/1.351910 10.1002/adma.201301244 10.1038/nnano.2009.292 10.1021/nl502669v 10.1038/nnano.2012.193 10.1038/nphoton.2008.94 10.1021/nn3059136 10.1038/nature04235 10.1038/nmat1329 10.1007/s11433-014-5627-6 10.1103/PhysRevLett.105.166602 10.1002/smll.201200752 10.1126/science.1158877 10.1021/acs.nanolett.6b00104 10.1038/530144a 10.1038/nphoton.2010.186 10.1103/RevModPhys.83.407 10.1038/nmat1849 10.1038/nnano.2012.224 10.1109/LED.2015.2440249 10.1103/RevModPhys.77.1083 10.1021/nl301335q 10.1126/science.1235547 10.1039/C4NR02311K 10.1103/PhysRev.17.475 10.1038/36069 10.1021/nl301485q 10.1038/nnano.2013.100 10.1002/adfm.201603152 10.1016/j.tsf.2013.11.106 10.1126/science.1102896 10.1126/science.1127798 10.1002/adma.201503340 |
ContentType | Journal Article |
Copyright | 2017 Chinese Physical Society and IOP Publishing Ltd |
Copyright_xml | – notice: 2017 Chinese Physical Society and IOP Publishing Ltd |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/26/3/037106 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors |
EISSN | 2058-3834 |
EndPage | 120 |
ExternalDocumentID | 10_1088_1674_1056_26_3_037106 cpb_26_3_037106 671482310 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAXDM AOAED CAJEA Q-- U1G U5K AAYXX ACARI ADEQX AERVB AGQPQ ARNYC CITATION |
ID | FETCH-LOGICAL-c354t-42f7dc7b4fcab753deed0005ba0900d9a18c0566cf7dac99a411f0c0fc25a96c3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu Apr 24 23:08:15 EDT 2025 Tue Jul 01 02:55:19 EDT 2025 Wed Aug 21 03:40:42 EDT 2024 Thu Jan 07 13:50:38 EST 2021 Wed Feb 14 10:03:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-42f7dc7b4fcab753deed0005ba0900d9a18c0566cf7dac99a411f0c0fc25a96c3 |
Notes | Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET. 11-5639/O4 two-dimensional materials, ferroelectrics, FeFET, PVDF, photodetector Jianlu Wangand Weida Hu(National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China) |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1088_1674_1056_26_3_037106 chongqing_primary_671482310 iop_journals_10_1088_1674_1056_26_3_037106 crossref_primary_10_1088_1674_1056_26_3_037106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2017 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Wu G J (69) 2016; 27 Dawber M (29) 2005; 77 Ducharme S (38) 1998; 391 Avouris P (9) 2008; 2 Novoselov K S (25) 2005; 102 Das Sarma S (21) 2011; 83 Wang X R (23) 2013; 22 Lopez-Sanchez O (63) 2013; 8 Waldrop M M (2) 2016; 530 Kamat P V (11) 2008; 112 Xia J (18) 2014; 6 He Q Y (6) 2012; 8 Fang H H (74) 2017; 60 Dai Y H (48) 2016; 65 Bonaccorso F (62) 2010; 4 Abderrahmane A (17) 2014; 25 Tian B B (32) 2013; 103 Pu J (7) 2012; 12 Castro Neto A H (20) 2009; 81 Huang H (68) 2016; 6 Lopez-Sanchez O (12) 2013; 8 Sugibuchi K (42) 1975; 46 Zhang Q M (36) 1998; 280 Chu B J (37) 2006; 313 Zhang Y (22) 2005; 438 Xia F (53) 2009; 4 Yin Z Y (64) 2012; 6 Wang Q H (5) 2012; 7 Bertolazzi S (27) 2013; 7 Liu S (49) 2016 Song E B (58) 2011; 99 Roy K (13) 2013; 8 Raghavan S (59) 2012; 100 Lee H S (56) 2012; 8 Doh Y J (61) 2010; 21 Qiu W C (66) 2015; 58 Miller S L (43) 1992; 72 Zheng Y (55) 2010; 105 Lee C (26) 2010; 4 Wang J L (31) 2011; 98 Scholes G D (10) 2006; 5 Georgiou T (16) 2013; 8 Wang X D (46) 2015; 27 Zhang W (14) 2014; 4 Valasek J (28) 1921; 17 Zheng D S (72) 2016; 26 Zheng D S (71) 2016; 16 Zhao X L (35) 2014; 104 Ghausi M S (40) 2001 Zhang W (15) 2013; 25 Millman J (1) 1985 Hu W D (67) 2016; 35 Baeumer C (70) 2015; 6 Novoselov K S (3) 2004; 306 Yuan S Z (30) 2011; 375 Wang J L (33) 2014; 104 Naber R C G (41) 2005; 4 Britnell L (19) 2013; 340 Geim A K (50) 2007; 6 Britnell L (8) 2012; 335 Chen Y (73) 2016; 8 Zhao X L (34) 2014; 551 Norbert R (39) 1995 Novoselov K S (4) 2005; 438 Geim A K (51) 2009; 324 Mak KF (24) 2010; 105 Mueller T (52) 2010; 4 Yusuf M H (60) 2014; 14 Zhang X W (57) 2015; 36 Perlman S S (45) 1967; ED14 Hong X (54) 2009; 102 Lee H S (65) 2012; 12 Lu N (47) 2016; 25 Aziz A (44) 2016; 37 |
References_xml | – volume: ED14 start-page: 816 year: 1967 ident: 45 publication-title: IEEE Transactions on Electron Devices doi: 10.1109/T-ED.1967.16115 – volume: 6 start-page: 74 year: 2012 ident: 64 publication-title: ACS Nano doi: 10.1021/nn2024557 – volume: 6 start-page: 6136 year: 2015 ident: 70 publication-title: Nat Commun. doi: 10.1038/ncomms7136 – volume: 280 start-page: 2101 year: 1998 ident: 36 publication-title: Science doi: 10.1126/science.280.5372.2101 – volume: 5 start-page: 683 year: 2006 ident: 10 publication-title: Nat. Mater. doi: 10.1038/nmat1710 – volume: 22 year: 2013 ident: 23 publication-title: Chin. Phys. – volume: 4 start-page: 3826 year: 2014 ident: 14 publication-title: Sci. Rep. doi: 10.1038/srep03826 – volume: 100 year: 2012 ident: 59 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 297 year: 2010 ident: 52 publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.40 – volume: 46 start-page: 2877 year: 1975 ident: 42 publication-title: J. Appl. Phys. doi: 10.1063/1.322014 – volume: 335 start-page: 947 year: 2012 ident: 8 publication-title: Science doi: 10.1126/science.1218461 – volume: 8 start-page: 2994 year: 2012 ident: 6 publication-title: Small doi: 10.1002/smll.201201224 – volume: 438 start-page: 7065 year: 2005 ident: 4 publication-title: Nature doi: 10.1038/nature04233 – volume: 60 year: 2017 ident: 74 publication-title: Science China-Physics Mechanics & Astronomy – volume: 81 start-page: 109 year: 2009 ident: 20 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 4 start-page: 2695 year: 2010 ident: 26 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 375 start-page: 1612 year: 2011 ident: 30 publication-title: Phys. Lett. doi: 10.1016/j.physleta.2011.02.064 – volume: 25 year: 2014 ident: 17 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/36/365202 – volume: 8 start-page: 826 year: 2013 ident: 13 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2013.206 – volume: 98 year: 2011 ident: 31 publication-title: Appl. Phys. Lett. – start-page: 397 year: 1985 ident: 1 publication-title: Electronic Devices and Circuits – volume: 72 start-page: 5999 year: 1992 ident: 43 publication-title: J. Appl. Phys. doi: 10.1063/1.351910 – volume: 25 start-page: 3456 year: 2013 ident: 15 publication-title: Adv. Mater. doi: 10.1002/adma.201301244 – volume: 4 start-page: 839 year: 2009 ident: 53 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2009.292 – volume: 14 start-page: 5437 year: 2014 ident: 60 publication-title: Nano Lett. doi: 10.1021/nl502669v – volume: 7 start-page: 699 year: 2012 ident: 5 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2012.193 – volume: 2 start-page: 341 year: 2008 ident: 9 publication-title: Nat. Photon. doi: 10.1038/nphoton.2008.94 – volume: 7 start-page: 3246 year: 2013 ident: 27 publication-title: ACS Nano doi: 10.1021/nn3059136 – year: 2016 ident: 49 publication-title: Adv. Mater. – volume: 99 year: 2011 ident: 58 publication-title: Appl. Phys. Lett. – volume: 438 start-page: 201 year: 2005 ident: 22 publication-title: Nature doi: 10.1038/nature04235 – volume: 4 start-page: 243 year: 2005 ident: 41 publication-title: Nat. Mater. doi: 10.1038/nmat1329 – volume: 58 start-page: 1 year: 2015 ident: 66 publication-title: Science China-Physics Mechanics & Astronomy doi: 10.1007/s11433-014-5627-6 – volume: 105 year: 2010 ident: 55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.166602 – volume: 8 start-page: 3111 year: 2012 ident: 56 publication-title: Small doi: 10.1002/smll.201200752 – volume: 112 year: 2008 ident: 11 publication-title: J. Phys. Chem. – start-page: 102 year: 2001 ident: 40 publication-title: Microelectronic Circuits – volume: 104 year: 2014 ident: 33 publication-title: Appl. Phys. Lett. – volume: 324 start-page: 1530 year: 2009 ident: 51 publication-title: Science doi: 10.1126/science.1158877 – volume: 21 year: 2010 ident: 61 publication-title: Nanotechnology – volume: 35 start-page: 25 year: 2016 ident: 67 publication-title: Journal of Infrared and Millimeter Waves – volume: 16 start-page: 2548 year: 2016 ident: 71 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00104 – volume: 530 start-page: 7589 year: 2016 ident: 2 publication-title: Nature doi: 10.1038/530144a – volume: 4 start-page: 611 year: 2010 ident: 62 publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.186 – volume: 102 year: 2009 ident: 54 publication-title: Phys. Rev. Lett. – start-page: 315 year: 1995 ident: 39 publication-title: Electronic Circuits: Analysis, Simulation, and Design – volume: 104 year: 2014 ident: 35 publication-title: Appl. Phys. Lett. – volume: 83 start-page: 407 year: 2011 ident: 21 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.407 – volume: 6 start-page: 183 year: 2007 ident: 50 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 8 start-page: 100 year: 2013 ident: 16 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2012.224 – volume: 36 start-page: 784 year: 2015 ident: 57 publication-title: IEEE Electron Dev. Lett. doi: 10.1109/LED.2015.2440249 – volume: 77 start-page: 1083 year: 2005 ident: 29 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.1083 – volume: 103 year: 2013 ident: 32 publication-title: Appl. Phys. Lett. – volume: 37 start-page: 805 year: 2016 ident: 44 publication-title: IEEE Electron Dev. Lett. – volume: 12 start-page: 4013 year: 2012 ident: 7 publication-title: Nano Lett. doi: 10.1021/nl301335q – volume: 340 start-page: 1311 year: 2013 ident: 19 publication-title: Science doi: 10.1126/science.1235547 – volume: 8 year: 2016 ident: 73 publication-title: ACS Applied Materials & Interfaces – volume: 6 start-page: 8949 year: 2014 ident: 18 publication-title: Nanoscale doi: 10.1039/C4NR02311K – volume: 17 start-page: 475 year: 1921 ident: 28 publication-title: Phys. Rev. doi: 10.1103/PhysRev.17.475 – volume: 391 start-page: 874 year: 1998 ident: 38 publication-title: Nature doi: 10.1038/36069 – volume: 25 year: 2016 ident: 47 publication-title: Chin. Phy. – volume: 12 start-page: 3695 year: 2012 ident: 65 publication-title: Nano Lett. doi: 10.1021/nl301485q – volume: 8 start-page: 497 year: 2013 ident: 63 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.100 – volume: 26 start-page: 7690 year: 2016 ident: 72 publication-title: Adv. Function. Mater. doi: 10.1002/adfm.201603152 – volume: 27 year: 2016 ident: 69 publication-title: Nanotechnology – volume: 551 start-page: 171 year: 2014 ident: 34 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.11.106 – volume: 8 start-page: 497 year: 2013 ident: 12 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2013.100 – volume: 306 start-page: 5696 year: 2004 ident: 3 publication-title: Science doi: 10.1126/science.1102896 – volume: 6 year: 2016 ident: 68 publication-title: RSC Adv. – volume: 65 year: 2016 ident: 48 publication-title: Acta Phys. Sin. – volume: 313 start-page: 334 year: 2006 ident: 37 publication-title: Science doi: 10.1126/science.1127798 – volume: 102 year: 2005 ident: 25 publication-title: Proceedings of the National Academy of Sciencesof the United States of America – volume: 27 start-page: 6575 year: 2015 ident: 46 publication-title: Adv Mater. doi: 10.1002/adma.201503340 – volume: 105 year: 2010 ident: 24 publication-title: Phys. Rev. Lett. |
SSID | ssj0061023 |
Score | 2.228904 |
Snippet | Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential... Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential... |
SourceID | crossref iop chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114 |
SubjectTerms | FeFET ferroelectrics photodetector PVDF two-dimensional materials |
Title | Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors |
URI | http://lib.cqvip.com/qk/85823A/201703/671482310.html https://iopscience.iop.org/article/10.1088/1674-1056/26/3/037106 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZpQiCXNo-GbF7o0FNAu37IWulYSpckkMehC7kJWZKbksR2dr2U9Nd3xrLDJlBC6M3g0WCNpJlP1ugbQr6YOMmNzwRTNjKMK2-YyWzMPIRDLyUSjuBG8eJSnE75-U12s3SL_1dVd65_CI-BKDiYsEuIkyPMm2dYMH6UiFE6Qs455Nxew-qVOMfPrq57XyyQmAC3XH2T_g7Pv9Qgw8JtVf58hLjxIlJ9gK9ZCjyTT8T0nxzyTe6GiyYf2j-v2Bz_p0-b5GOHSunXIL9FVny5Tdbb7FA73yEzAJcQnGibzAWukVYl7XkmoAu0-V0xh2UCAsUHBRQcJjbF37y08LNZFertgDoKMJk-YILvE3W-dVTUlI7Wt1VTOd-0xwjzz2Q6-f7j2ynrijUwm2a8YTwpxs6Oc15Yk8MeyEHwRUCYm0hFkVMmlhb6JyyIGauU4XFcRDYqbJIZJWy6S1bLqvR7hEopZKKcklnhOS8yA26IuyR1Wcq9Sv2AHDwPkq4DKYcWY2Q0BbA6ILwfNm07nnMst3Gv2_N2KTUaW6OxdSJ0qoOxB2T43KzX-UaDExhN3S35-VvC9IWwrfPl17p2xf579B2QjQTxRZsMd0hWm9nCHwE6avLjdgH8BQ-qAX4 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RaBeeCOW8vCBE1I2L9trHxFl1fIoPVCpN8uxHSoBSbqbCsGvZyZOVi0SqhC3SPGMbE888zkefwPw0uZFZYOQiXaZTbgONrHC5UnAcBiUIsIR2ih-PJIHJ_zdqTjdgv3NXZi2G13_HB8jUXCcwjEhTqWUN59Qwfi0kGmZEudcJtPO19twQ6A_psSuw0_Hkz-WRE5A265JbLrH8zdVxLJw1jZfzjF2XIlW29ijS8FneQfC1O2Yc_J1ftFXc_frD0bH_x3XXbg9olP2Osrcg63Q3IebQ5aoWz-AFYJMDFJsSOpCF8nahk18EzgM1v9oE0_lAiLVB0M0HD9wRr97WR1WqzbW3UF1DOEy-06Jvj-ZD4PDYrbxrDtr-9aHfjhOWD-Ek-Xbz28OkrFoQ-JKwfuEF_XCu0XFa2cr3At5DMIEDCub6Szz2ubK4Rilw2bWaW15nteZy2pXCKulKx_BTtM24TEwpaQqtNdK1IHzWlh0R9wXpRclD7oMM9jbGMp0kZzDyAUxmyJonQGfTGfcyHdOZTe-meHcXSlDE25owk0hTWnihM9gvhGbdF4j8Aotasalv76uMbvS2HXV5dcGrf3kX_S9gFvH-0vz4fDo_R7sFgQ5hvy4p7DTry7CMwRMffV8WA-_AbZsBuI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+integrating+two-dimensional+materials+with+ferroelectrics+for+memory+devices+and+photodetectors&rft.jtitle=Chinese+physics+B&rft.au=Wang%2C+Jianlu&rft.au=Hu%2C+Weida&rft.date=2017-03-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=26&rft.issue=3&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F3%2F037106&rft.externalDocID=cpb_26_3_037106 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |