Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors

Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 26; no. 3; pp. 114 - 120
Main Author 王建禄 胡伟达
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.03.2017
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/26/3/037106

Cover

Abstract Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.
AbstractList Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.
Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.
Author 王建禄 胡伟达
AuthorAffiliation National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Author_xml – sequence: 1
  fullname: 王建禄 胡伟达
BookMark eNqFkcFq3DAQQEVJoJukn1AQvfTk7siyZZueSmiaQKBQ2rPQSqNdhbXkjtSG_H21bAihBHLS5b1B8-aMncQUkbH3Aj4JGMe1UEPXCOjVulVruQY5CFBv2KqFfmzkKLsTtnpi3rKznO8AlIBWrhj9QIux8IXSljBnniIPseCWTAlxy8t9alyYMeaQotnz2RSkYPaZ34ey4x6JEu7RFgo2c5-IzzgneuAO_waLmZvo-LJLJTksFUuUL9iprwPw3eN7zn5dff15ed3cfv92c_nltrGy70rTtX5wdth03prN0EuH6ACg3xiYANxkxGjrPspWzNhpMp0QHix42_ZmUlaes_4411LKmdDrhcJs6EEL0Idw-hBFH6LoVmmpj-Gq9_k_z4ZSa6RYyIT9q7Y42iEt-i79oVotv-p8fMGxy-Y5pRfnK_nh8W-7FLe_64WellKD6MZWCpD_AKICoHo
CitedBy_id crossref_primary_10_1002_smll_202205347
crossref_primary_10_1063_5_0035515
crossref_primary_10_1063_5_0060218
crossref_primary_10_1002_pssr_202000473
crossref_primary_10_1515_nanoph_2022_0439
crossref_primary_10_1088_1674_1056_abd7db
crossref_primary_10_1021_acsnano_2c07281
crossref_primary_10_1002_pssr_201800310
crossref_primary_10_1002_adfm_202201359
crossref_primary_10_1002_aelm_201900818
crossref_primary_10_3390_coatings12050609
crossref_primary_10_1021_acsami_9b15457
crossref_primary_10_1002_inf2_12290
crossref_primary_10_1007_s11432_019_1472_6
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1088_1361_6528_aa9172
crossref_primary_10_1063_5_0035306
crossref_primary_10_1002_smll_202100655
crossref_primary_10_1021_acsami_3c00092
crossref_primary_10_1016_j_isci_2021_103729
crossref_primary_10_1088_1674_1056_28_1_017302
crossref_primary_10_1021_acs_chemrev_1c00924
crossref_primary_10_7498_aps_67_20172710
crossref_primary_10_3390_solids5010004
crossref_primary_10_1039_C8NH00150B
Cites_doi 10.1109/T-ED.1967.16115
10.1021/nn2024557
10.1038/ncomms7136
10.1126/science.280.5372.2101
10.1038/nmat1710
10.1038/srep03826
10.1038/nphoton.2010.40
10.1063/1.322014
10.1126/science.1218461
10.1002/smll.201201224
10.1038/nature04233
10.1103/RevModPhys.81.109
10.1021/nn1003937
10.1016/j.physleta.2011.02.064
10.1088/0957-4484/25/36/365202
10.1038/nnano.2013.206
10.1063/1.351910
10.1002/adma.201301244
10.1038/nnano.2009.292
10.1021/nl502669v
10.1038/nnano.2012.193
10.1038/nphoton.2008.94
10.1021/nn3059136
10.1038/nature04235
10.1038/nmat1329
10.1007/s11433-014-5627-6
10.1103/PhysRevLett.105.166602
10.1002/smll.201200752
10.1126/science.1158877
10.1021/acs.nanolett.6b00104
10.1038/530144a
10.1038/nphoton.2010.186
10.1103/RevModPhys.83.407
10.1038/nmat1849
10.1038/nnano.2012.224
10.1109/LED.2015.2440249
10.1103/RevModPhys.77.1083
10.1021/nl301335q
10.1126/science.1235547
10.1039/C4NR02311K
10.1103/PhysRev.17.475
10.1038/36069
10.1021/nl301485q
10.1038/nnano.2013.100
10.1002/adfm.201603152
10.1016/j.tsf.2013.11.106
10.1126/science.1102896
10.1126/science.1127798
10.1002/adma.201503340
ContentType Journal Article
Copyright 2017 Chinese Physical Society and IOP Publishing Ltd
Copyright_xml – notice: 2017 Chinese Physical Society and IOP Publishing Ltd
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/26/3/037106
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors
EISSN 2058-3834
EndPage 120
ExternalDocumentID 10_1088_1674_1056_26_3_037106
cpb_26_3_037106
671482310
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAXDM
AOAED
CAJEA
Q--
U1G
U5K
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
ARNYC
CITATION
ID FETCH-LOGICAL-c354t-42f7dc7b4fcab753deed0005ba0900d9a18c0566cf7dac99a411f0c0fc25a96c3
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu Apr 24 23:08:15 EDT 2025
Tue Jul 01 02:55:19 EDT 2025
Wed Aug 21 03:40:42 EDT 2024
Thu Jan 07 13:50:38 EST 2021
Wed Feb 14 10:03:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-42f7dc7b4fcab753deed0005ba0900d9a18c0566cf7dac99a411f0c0fc25a96c3
Notes Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.
11-5639/O4
two-dimensional materials, ferroelectrics, FeFET, PVDF, photodetector
Jianlu Wangand Weida Hu(National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)
PageCount 7
ParticipantIDs crossref_citationtrail_10_1088_1674_1056_26_3_037106
chongqing_primary_671482310
iop_journals_10_1088_1674_1056_26_3_037106
crossref_primary_10_1088_1674_1056_26_3_037106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2017
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Wu G J (69) 2016; 27
Dawber M (29) 2005; 77
Ducharme S (38) 1998; 391
Avouris P (9) 2008; 2
Novoselov K S (25) 2005; 102
Das Sarma S (21) 2011; 83
Wang X R (23) 2013; 22
Lopez-Sanchez O (63) 2013; 8
Waldrop M M (2) 2016; 530
Kamat P V (11) 2008; 112
Xia J (18) 2014; 6
He Q Y (6) 2012; 8
Fang H H (74) 2017; 60
Dai Y H (48) 2016; 65
Bonaccorso F (62) 2010; 4
Abderrahmane A (17) 2014; 25
Tian B B (32) 2013; 103
Pu J (7) 2012; 12
Castro Neto A H (20) 2009; 81
Huang H (68) 2016; 6
Lopez-Sanchez O (12) 2013; 8
Sugibuchi K (42) 1975; 46
Zhang Q M (36) 1998; 280
Chu B J (37) 2006; 313
Zhang Y (22) 2005; 438
Xia F (53) 2009; 4
Yin Z Y (64) 2012; 6
Wang Q H (5) 2012; 7
Bertolazzi S (27) 2013; 7
Liu S (49) 2016
Song E B (58) 2011; 99
Roy K (13) 2013; 8
Raghavan S (59) 2012; 100
Lee H S (56) 2012; 8
Doh Y J (61) 2010; 21
Qiu W C (66) 2015; 58
Miller S L (43) 1992; 72
Zheng Y (55) 2010; 105
Lee C (26) 2010; 4
Wang J L (31) 2011; 98
Scholes G D (10) 2006; 5
Georgiou T (16) 2013; 8
Wang X D (46) 2015; 27
Zhang W (14) 2014; 4
Valasek J (28) 1921; 17
Zheng D S (72) 2016; 26
Zheng D S (71) 2016; 16
Zhao X L (35) 2014; 104
Ghausi M S (40) 2001
Zhang W (15) 2013; 25
Millman J (1) 1985
Hu W D (67) 2016; 35
Baeumer C (70) 2015; 6
Novoselov K S (3) 2004; 306
Yuan S Z (30) 2011; 375
Wang J L (33) 2014; 104
Naber R C G (41) 2005; 4
Britnell L (19) 2013; 340
Geim A K (50) 2007; 6
Britnell L (8) 2012; 335
Chen Y (73) 2016; 8
Zhao X L (34) 2014; 551
Norbert R (39) 1995
Novoselov K S (4) 2005; 438
Geim A K (51) 2009; 324
Mak KF (24) 2010; 105
Mueller T (52) 2010; 4
Yusuf M H (60) 2014; 14
Zhang X W (57) 2015; 36
Perlman S S (45) 1967; ED14
Hong X (54) 2009; 102
Lee H S (65) 2012; 12
Lu N (47) 2016; 25
Aziz A (44) 2016; 37
References_xml – volume: ED14
  start-page: 816
  year: 1967
  ident: 45
  publication-title: IEEE Transactions on Electron Devices
  doi: 10.1109/T-ED.1967.16115
– volume: 6
  start-page: 74
  year: 2012
  ident: 64
  publication-title: ACS Nano
  doi: 10.1021/nn2024557
– volume: 6
  start-page: 6136
  year: 2015
  ident: 70
  publication-title: Nat Commun.
  doi: 10.1038/ncomms7136
– volume: 280
  start-page: 2101
  year: 1998
  ident: 36
  publication-title: Science
  doi: 10.1126/science.280.5372.2101
– volume: 5
  start-page: 683
  year: 2006
  ident: 10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1710
– volume: 22
  year: 2013
  ident: 23
  publication-title: Chin. Phys.
– volume: 4
  start-page: 3826
  year: 2014
  ident: 14
  publication-title: Sci. Rep.
  doi: 10.1038/srep03826
– volume: 100
  year: 2012
  ident: 59
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 297
  year: 2010
  ident: 52
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.40
– volume: 46
  start-page: 2877
  year: 1975
  ident: 42
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.322014
– volume: 335
  start-page: 947
  year: 2012
  ident: 8
  publication-title: Science
  doi: 10.1126/science.1218461
– volume: 8
  start-page: 2994
  year: 2012
  ident: 6
  publication-title: Small
  doi: 10.1002/smll.201201224
– volume: 438
  start-page: 7065
  year: 2005
  ident: 4
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 60
  year: 2017
  ident: 74
  publication-title: Science China-Physics Mechanics & Astronomy
– volume: 81
  start-page: 109
  year: 2009
  ident: 20
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 4
  start-page: 2695
  year: 2010
  ident: 26
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 375
  start-page: 1612
  year: 2011
  ident: 30
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2011.02.064
– volume: 25
  year: 2014
  ident: 17
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/36/365202
– volume: 8
  start-page: 826
  year: 2013
  ident: 13
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2013.206
– volume: 98
  year: 2011
  ident: 31
  publication-title: Appl. Phys. Lett.
– start-page: 397
  year: 1985
  ident: 1
  publication-title: Electronic Devices and Circuits
– volume: 72
  start-page: 5999
  year: 1992
  ident: 43
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351910
– volume: 25
  start-page: 3456
  year: 2013
  ident: 15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301244
– volume: 4
  start-page: 839
  year: 2009
  ident: 53
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2009.292
– volume: 14
  start-page: 5437
  year: 2014
  ident: 60
  publication-title: Nano Lett.
  doi: 10.1021/nl502669v
– volume: 7
  start-page: 699
  year: 2012
  ident: 5
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2012.193
– volume: 2
  start-page: 341
  year: 2008
  ident: 9
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2008.94
– volume: 7
  start-page: 3246
  year: 2013
  ident: 27
  publication-title: ACS Nano
  doi: 10.1021/nn3059136
– year: 2016
  ident: 49
  publication-title: Adv. Mater.
– volume: 99
  year: 2011
  ident: 58
  publication-title: Appl. Phys. Lett.
– volume: 438
  start-page: 201
  year: 2005
  ident: 22
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 4
  start-page: 243
  year: 2005
  ident: 41
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1329
– volume: 58
  start-page: 1
  year: 2015
  ident: 66
  publication-title: Science China-Physics Mechanics & Astronomy
  doi: 10.1007/s11433-014-5627-6
– volume: 105
  year: 2010
  ident: 55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.166602
– volume: 8
  start-page: 3111
  year: 2012
  ident: 56
  publication-title: Small
  doi: 10.1002/smll.201200752
– volume: 112
  year: 2008
  ident: 11
  publication-title: J. Phys. Chem.
– start-page: 102
  year: 2001
  ident: 40
  publication-title: Microelectronic Circuits
– volume: 104
  year: 2014
  ident: 33
  publication-title: Appl. Phys. Lett.
– volume: 324
  start-page: 1530
  year: 2009
  ident: 51
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 21
  year: 2010
  ident: 61
  publication-title: Nanotechnology
– volume: 35
  start-page: 25
  year: 2016
  ident: 67
  publication-title: Journal of Infrared and Millimeter Waves
– volume: 16
  start-page: 2548
  year: 2016
  ident: 71
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00104
– volume: 530
  start-page: 7589
  year: 2016
  ident: 2
  publication-title: Nature
  doi: 10.1038/530144a
– volume: 4
  start-page: 611
  year: 2010
  ident: 62
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.186
– volume: 102
  year: 2009
  ident: 54
  publication-title: Phys. Rev. Lett.
– start-page: 315
  year: 1995
  ident: 39
  publication-title: Electronic Circuits: Analysis, Simulation, and Design
– volume: 104
  year: 2014
  ident: 35
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 407
  year: 2011
  ident: 21
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.407
– volume: 6
  start-page: 183
  year: 2007
  ident: 50
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 8
  start-page: 100
  year: 2013
  ident: 16
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2012.224
– volume: 36
  start-page: 784
  year: 2015
  ident: 57
  publication-title: IEEE Electron Dev. Lett.
  doi: 10.1109/LED.2015.2440249
– volume: 77
  start-page: 1083
  year: 2005
  ident: 29
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.1083
– volume: 103
  year: 2013
  ident: 32
  publication-title: Appl. Phys. Lett.
– volume: 37
  start-page: 805
  year: 2016
  ident: 44
  publication-title: IEEE Electron Dev. Lett.
– volume: 12
  start-page: 4013
  year: 2012
  ident: 7
  publication-title: Nano Lett.
  doi: 10.1021/nl301335q
– volume: 340
  start-page: 1311
  year: 2013
  ident: 19
  publication-title: Science
  doi: 10.1126/science.1235547
– volume: 8
  year: 2016
  ident: 73
  publication-title: ACS Applied Materials & Interfaces
– volume: 6
  start-page: 8949
  year: 2014
  ident: 18
  publication-title: Nanoscale
  doi: 10.1039/C4NR02311K
– volume: 17
  start-page: 475
  year: 1921
  ident: 28
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.17.475
– volume: 391
  start-page: 874
  year: 1998
  ident: 38
  publication-title: Nature
  doi: 10.1038/36069
– volume: 25
  year: 2016
  ident: 47
  publication-title: Chin. Phy.
– volume: 12
  start-page: 3695
  year: 2012
  ident: 65
  publication-title: Nano Lett.
  doi: 10.1021/nl301485q
– volume: 8
  start-page: 497
  year: 2013
  ident: 63
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.100
– volume: 26
  start-page: 7690
  year: 2016
  ident: 72
  publication-title: Adv. Function. Mater.
  doi: 10.1002/adfm.201603152
– volume: 27
  year: 2016
  ident: 69
  publication-title: Nanotechnology
– volume: 551
  start-page: 171
  year: 2014
  ident: 34
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.11.106
– volume: 8
  start-page: 497
  year: 2013
  ident: 12
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2013.100
– volume: 306
  start-page: 5696
  year: 2004
  ident: 3
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 6
  year: 2016
  ident: 68
  publication-title: RSC Adv.
– volume: 65
  year: 2016
  ident: 48
  publication-title: Acta Phys. Sin.
– volume: 313
  start-page: 334
  year: 2006
  ident: 37
  publication-title: Science
  doi: 10.1126/science.1127798
– volume: 102
  year: 2005
  ident: 25
  publication-title: Proceedings of the National Academy of Sciencesof the United States of America
– volume: 27
  start-page: 6575
  year: 2015
  ident: 46
  publication-title: Adv Mater.
  doi: 10.1002/adma.201503340
– volume: 105
  year: 2010
  ident: 24
  publication-title: Phys. Rev. Lett.
SSID ssj0061023
Score 2.228904
Snippet Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential...
Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential...
SourceID crossref
iop
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms FeFET
ferroelectrics
photodetector
PVDF
two-dimensional materials
Title Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors
URI http://lib.cqvip.com/qk/85823A/201703/671482310.html
https://iopscience.iop.org/article/10.1088/1674-1056/26/3/037106
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZpQiCXNo-GbF7o0FNAu37IWulYSpckkMehC7kJWZKbksR2dr2U9Nd3xrLDJlBC6M3g0WCNpJlP1ugbQr6YOMmNzwRTNjKMK2-YyWzMPIRDLyUSjuBG8eJSnE75-U12s3SL_1dVd65_CI-BKDiYsEuIkyPMm2dYMH6UiFE6Qs455Nxew-qVOMfPrq57XyyQmAC3XH2T_g7Pv9Qgw8JtVf58hLjxIlJ9gK9ZCjyTT8T0nxzyTe6GiyYf2j-v2Bz_p0-b5GOHSunXIL9FVny5Tdbb7FA73yEzAJcQnGibzAWukVYl7XkmoAu0-V0xh2UCAsUHBRQcJjbF37y08LNZFertgDoKMJk-YILvE3W-dVTUlI7Wt1VTOd-0xwjzz2Q6-f7j2ynrijUwm2a8YTwpxs6Oc15Yk8MeyEHwRUCYm0hFkVMmlhb6JyyIGauU4XFcRDYqbJIZJWy6S1bLqvR7hEopZKKcklnhOS8yA26IuyR1Wcq9Sv2AHDwPkq4DKYcWY2Q0BbA6ILwfNm07nnMst3Gv2_N2KTUaW6OxdSJ0qoOxB2T43KzX-UaDExhN3S35-VvC9IWwrfPl17p2xf579B2QjQTxRZsMd0hWm9nCHwE6avLjdgH8BQ-qAX4
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RaBeeCOW8vCBE1I2L9trHxFl1fIoPVCpN8uxHSoBSbqbCsGvZyZOVi0SqhC3SPGMbE888zkefwPw0uZFZYOQiXaZTbgONrHC5UnAcBiUIsIR2ih-PJIHJ_zdqTjdgv3NXZi2G13_HB8jUXCcwjEhTqWUN59Qwfi0kGmZEudcJtPO19twQ6A_psSuw0_Hkz-WRE5A265JbLrH8zdVxLJw1jZfzjF2XIlW29ijS8FneQfC1O2Yc_J1ftFXc_frD0bH_x3XXbg9olP2Osrcg63Q3IebQ5aoWz-AFYJMDFJsSOpCF8nahk18EzgM1v9oE0_lAiLVB0M0HD9wRr97WR1WqzbW3UF1DOEy-06Jvj-ZD4PDYrbxrDtr-9aHfjhOWD-Ek-Xbz28OkrFoQ-JKwfuEF_XCu0XFa2cr3At5DMIEDCub6Szz2ubK4Rilw2bWaW15nteZy2pXCKulKx_BTtM24TEwpaQqtNdK1IHzWlh0R9wXpRclD7oMM9jbGMp0kZzDyAUxmyJonQGfTGfcyHdOZTe-meHcXSlDE25owk0hTWnihM9gvhGbdF4j8Aotasalv76uMbvS2HXV5dcGrf3kX_S9gFvH-0vz4fDo_R7sFgQ5hvy4p7DTry7CMwRMffV8WA-_AbZsBuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+integrating+two-dimensional+materials+with+ferroelectrics+for+memory+devices+and+photodetectors&rft.jtitle=Chinese+physics+B&rft.au=Wang%2C+Jianlu&rft.au=Hu%2C+Weida&rft.date=2017-03-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=26&rft.issue=3&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F3%2F037106&rft.externalDocID=cpb_26_3_037106
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg