A Review on Functionalized Gold Nanoparticles for Biosensing Applications
Nanoparticle technology plays a key role in providing opportunities and possibilities for the development of new generation of sensing tools. The targeted sensing of selective biomolecules using functionalized gold nanoparticles (Au NPs) has become a major research thrust in the last decade. Au NP-b...
Saved in:
Published in | Plasmonics (Norwell, Mass.) Vol. 6; no. 3; pp. 491 - 506 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoparticle technology plays a key role in providing opportunities and possibilities for the development of new generation of sensing tools. The targeted sensing of selective biomolecules using functionalized gold nanoparticles (Au NPs) has become a major research thrust in the last decade. Au NP-based sensors are expected to change the very foundations of sensing and detecting biomolecules. In this review, we will discuss the use of surface functionalized Au NPs for smart sensor fabrication leading to detection of specific biomolecules and heavy metal ions. |
---|---|
AbstractList | Nanoparticle technology plays a key role in providing opportunities and possibilities for the development of new generation of sensing tools. The targeted sensing of selective biomolecules using functionalized gold nanoparticles (Au NPs) has become a major research thrust in the last decade. Au NP-based sensors are expected to change the very foundations of sensing and detecting biomolecules. In this review, we will discuss the use of surface functionalized Au NPs for smart sensor fabrication leading to detection of specific biomolecules and heavy metal ions. |
Author | Dinh, Xuan-Quyen Yong, Ken-Tye Zeng, Shuwen Yu, Xia Roy, Indrajit Luan, Feng |
Author_xml | – sequence: 1 givenname: Shuwen surname: Zeng fullname: Zeng, Shuwen organization: School of Electrical and Electronic Engineering, Nanyang Technological University, CINTRA CNRS/NTU/THALES UMI 3288, Singapore Institute of Manufacturing Technology – sequence: 2 givenname: Ken-Tye surname: Yong fullname: Yong, Ken-Tye email: ktyong@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 3 givenname: Indrajit surname: Roy fullname: Roy, Indrajit organization: Department of Chemistry, University of Delhi – sequence: 4 givenname: Xuan-Quyen surname: Dinh fullname: Dinh, Xuan-Quyen organization: CINTRA CNRS/NTU/THALES UMI 3288 – sequence: 5 givenname: Xia surname: Yu fullname: Yu, Xia organization: Singapore Institute of Manufacturing Technology – sequence: 6 givenname: Feng surname: Luan fullname: Luan, Feng organization: School of Electrical and Electronic Engineering, Nanyang Technological University |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DzDwQ8sZ3HslS0VKpAQrC2HGdSuQp2ZKcg-HoSiliw6OrezZm5OjMycd4hIdfAboCx_DYCiKxIGEBSpmmRwBmZgpR5AmXGJ39dygsyi3HPmBAiE1OyWdBnfLf4Qb2jq4MzvfVOt_YLa7r2bU0ftfOdDr01LUba-EDvrI_oonU7uui61ho9MvGSnDe6jXj1m3Pyurp_WT4k26f1ZrnYJoZL0SfcVDJrGoaM6xKEAcwQTcMhE8M6lFVaVFpqU2o0ec54oWue8qIuMcdGVAWfEzjeNcHHGLBRXbBvOnwqYGp0oY4u1OBCjS4UDEz-jzG2_5ndB23bk2R6JOPwxe0wqL0_hMFQPAF9A3Y6dlc |
CitedBy_id | crossref_primary_10_1149_2_0291708jss crossref_primary_10_1021_acsami_8b03567 crossref_primary_10_3390_chemengineering5040069 crossref_primary_10_1016_j_snb_2016_09_003 crossref_primary_10_3390_s18030777 crossref_primary_10_1021_acsabm_3c00223 crossref_primary_10_1007_s12161_014_0042_1 crossref_primary_10_1016_j_msec_2012_08_043 crossref_primary_10_1016_j_jelechem_2018_01_027 crossref_primary_10_1039_C5RA21634F crossref_primary_10_1021_jp411483x crossref_primary_10_1039_C7CP04033D crossref_primary_10_1088_2053_1591_aad0d5 crossref_primary_10_1080_03602559_2014_995268 crossref_primary_10_1016_j_sna_2021_112563 crossref_primary_10_1016_j_vibspec_2022_103468 crossref_primary_10_1155_2013_327435 crossref_primary_10_2174_0929867328666210714154051 crossref_primary_10_1016_j_ijpharm_2013_05_031 crossref_primary_10_1002_smll_202306394 crossref_primary_10_1016_j_ijbiomac_2017_12_069 crossref_primary_10_1039_D1MA01062J crossref_primary_10_1021_acs_analchem_9b04012 crossref_primary_10_1016_j_bios_2019_02_006 crossref_primary_10_1016_j_nantod_2014_02_005 crossref_primary_10_3390_ijms22052543 crossref_primary_10_1016_j_ccr_2022_214723 crossref_primary_10_1109_JSEN_2021_3060965 crossref_primary_10_1088_1757_899X_454_1_012091 crossref_primary_10_1002_elan_201700188 crossref_primary_10_1016_j_snb_2020_127660 crossref_primary_10_1002_ange_202218369 crossref_primary_10_1039_D0EN00963F crossref_primary_10_1007_s12034_024_03395_x crossref_primary_10_1016_j_dyepig_2018_06_036 crossref_primary_10_3390_antibiotics10030229 crossref_primary_10_1063_1_4884022 crossref_primary_10_1016_j_jim_2018_08_013 crossref_primary_10_1002_marc_202401027 crossref_primary_10_1088_1361_648X_aa60f3 crossref_primary_10_1002_slct_202001564 crossref_primary_10_1016_j_optlastec_2019_01_038 crossref_primary_10_1016_j_colsurfb_2015_06_004 crossref_primary_10_1021_acsami_8b17876 crossref_primary_10_1016_j_apsusc_2016_01_047 crossref_primary_10_1039_c3an36828a crossref_primary_10_1093_bjps_axw022 crossref_primary_10_1016_j_teac_2021_e00117 crossref_primary_10_1039_C4CC09346A crossref_primary_10_1039_C6SM02586B crossref_primary_10_1039_C7RA11393E crossref_primary_10_4028_www_scientific_net_AMR_1109_439 crossref_primary_10_1016_j_ccr_2024_216250 crossref_primary_10_1016_j_molliq_2020_114736 crossref_primary_10_1142_S1793292019500711 crossref_primary_10_1007_s11468_022_01684_x crossref_primary_10_1016_j_apcatb_2016_05_013 crossref_primary_10_3390_bioengineering7040129 crossref_primary_10_1021_acs_macromol_0c00778 crossref_primary_10_1007_s11468_014_9758_4 crossref_primary_10_1039_D1NR01081F crossref_primary_10_1088_1757_899X_454_1_012079 crossref_primary_10_1021_acsami_1c11620 crossref_primary_10_1007_s10876_020_01945_x crossref_primary_10_1016_j_jmgm_2017_03_023 crossref_primary_10_1016_j_apcatb_2014_11_036 crossref_primary_10_2174_1568026619666191023123407 crossref_primary_10_1007_s12274_012_0193_6 crossref_primary_10_1039_D1RA07510A crossref_primary_10_3390_s20071966 crossref_primary_10_1002_jemt_23225 crossref_primary_10_1016_j_bios_2019_03_061 crossref_primary_10_1038_s41598_020_80529_1 crossref_primary_10_1007_s12011_021_03078_2 crossref_primary_10_1063_5_0053045 crossref_primary_10_1039_C7ME00128B crossref_primary_10_1016_j_trac_2020_115943 crossref_primary_10_1039_C4CY01545B crossref_primary_10_1179_1753555714Y_0000000212 crossref_primary_10_1007_s11696_024_03704_y crossref_primary_10_1021_acs_jpcc_9b10898 crossref_primary_10_1088_1757_899X_454_1_012181 crossref_primary_10_1016_j_apcata_2014_11_022 crossref_primary_10_1088_1757_899X_454_1_012183 crossref_primary_10_1021_acs_analchem_6b04687 crossref_primary_10_1088_2053_1591_aaedd8 crossref_primary_10_1002_elan_202100312 crossref_primary_10_1039_c2nr30640a crossref_primary_10_1016_j_optcom_2016_07_059 crossref_primary_10_1002_elan_201500646 crossref_primary_10_1021_acssuschemeng_3c06403 crossref_primary_10_1007_s00449_021_02647_y crossref_primary_10_3390_diagnostics13040656 crossref_primary_10_3389_fchem_2019_00085 crossref_primary_10_1016_j_colsurfb_2024_114097 crossref_primary_10_1016_j_talanta_2018_02_088 crossref_primary_10_1016_j_bios_2020_112403 crossref_primary_10_1021_am401998m crossref_primary_10_1007_s00604_021_04821_1 crossref_primary_10_1007_s11468_016_0472_2 crossref_primary_10_1016_j_cis_2022_102616 crossref_primary_10_1007_s13204_023_02869_4 crossref_primary_10_1155_2019_5805609 crossref_primary_10_1021_acsami_7b03937 crossref_primary_10_1557_opl_2013_606 crossref_primary_10_1039_D0RA05271J crossref_primary_10_1039_C9MH00013E crossref_primary_10_1039_D1AN01540K crossref_primary_10_3390_bios12080619 crossref_primary_10_1021_acsanm_3c05211 crossref_primary_10_1016_j_carbon_2013_12_048 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_1007_s11468_014_9854_5 crossref_primary_10_1007_s12668_021_00849_y crossref_primary_10_1021_acsami_1c19411 crossref_primary_10_1016_j_materresbull_2019_110563 crossref_primary_10_3390_ijms20246306 crossref_primary_10_1021_acs_analchem_6b02251 crossref_primary_10_1039_C4NR01600A crossref_primary_10_1021_acs_jpcc_6b12858 crossref_primary_10_1002_smsc_202300154 crossref_primary_10_1007_s11468_012_9334_8 crossref_primary_10_1016_j_bios_2014_08_022 crossref_primary_10_1002_anie_201712921 crossref_primary_10_3390_ma11091626 crossref_primary_10_3390_polym14081592 crossref_primary_10_1021_am300809q crossref_primary_10_1007_s00216_016_9990_1 crossref_primary_10_1021_acsomega_0c01605 crossref_primary_10_1021_acsomega_8b03512 crossref_primary_10_3390_mi8110338 crossref_primary_10_1016_j_colsurfb_2018_12_001 crossref_primary_10_1002_asia_202200897 crossref_primary_10_1016_j_bioelechem_2017_07_002 crossref_primary_10_1016_j_btre_2015_10_001 crossref_primary_10_1002_ange_201712921 crossref_primary_10_1039_D1TB00232E crossref_primary_10_1002_tcr_202300303 crossref_primary_10_1007_s11468_016_0240_3 crossref_primary_10_1016_j_envres_2021_112644 crossref_primary_10_1016_j_talo_2023_100188 crossref_primary_10_1080_10408347_2022_2162331 crossref_primary_10_1103_PhysRevB_105_165408 crossref_primary_10_1016_j_envres_2021_112407 crossref_primary_10_1016_j_optcom_2019_124328 crossref_primary_10_1364_PRJ_382567 crossref_primary_10_1016_j_microc_2019_05_061 crossref_primary_10_1021_acs_jpcb_6b01323 crossref_primary_10_1016_j_bios_2015_10_094 crossref_primary_10_22144_ctu_jsi_2020_106 crossref_primary_10_1021_acs_analchem_0c02361 crossref_primary_10_1680_gmat_14_00010 crossref_primary_10_3390_bioengineering7030068 crossref_primary_10_1007_s00604_018_2737_2 crossref_primary_10_1088_1758_5090_ac39a9 crossref_primary_10_3390_polym7121529 crossref_primary_10_1021_acsnano_5b04580 crossref_primary_10_3390_app12157815 crossref_primary_10_1021_acssensors_5b00241 crossref_primary_10_1021_acs_langmuir_9b02199 crossref_primary_10_1039_C6RA03348B crossref_primary_10_1515_nanoph_2016_0101 crossref_primary_10_1016_j_jcis_2020_12_067 crossref_primary_10_3390_s18103295 crossref_primary_10_1021_acsanm_9b01641 crossref_primary_10_1021_acsnano_0c02899 crossref_primary_10_1016_j_snb_2017_06_160 crossref_primary_10_1021_jp407105v crossref_primary_10_1007_s00604_015_1546_0 crossref_primary_10_3390_s150715684 crossref_primary_10_1016_j_sintl_2020_100028 crossref_primary_10_1039_C5CP00375J crossref_primary_10_1016_j_sna_2019_06_038 crossref_primary_10_1016_j_snb_2017_11_190 crossref_primary_10_1039_D0CP04018E crossref_primary_10_1016_j_cej_2021_129069 crossref_primary_10_3390_nano9081072 crossref_primary_10_1038_s41524_023_01128_y crossref_primary_10_1016_j_snb_2016_04_022 crossref_primary_10_1007_s12161_020_01901_5 crossref_primary_10_1016_j_talanta_2017_01_073 crossref_primary_10_1109_JSEN_2014_2331459 crossref_primary_10_3390_biomimetics9030146 crossref_primary_10_1016_j_addr_2017_12_004 crossref_primary_10_1039_D2NA00188H crossref_primary_10_1007_s11468_013_9496_z crossref_primary_10_1016_j_colsurfa_2017_04_036 crossref_primary_10_1016_j_molstruc_2022_133447 crossref_primary_10_1002_adma_201704442 crossref_primary_10_1016_j_jmgm_2020_107823 crossref_primary_10_1088_1757_899X_783_1_012023 crossref_primary_10_1016_j_colsurfa_2020_125927 crossref_primary_10_1134_S2070205116070030 crossref_primary_10_1002_elan_201900216 crossref_primary_10_1021_acs_langmuir_3c01973 crossref_primary_10_1021_am505275a crossref_primary_10_1021_acsabm_0c00249 crossref_primary_10_1039_C5TC01820J crossref_primary_10_1016_j_optlastec_2020_106306 crossref_primary_10_1016_j_snb_2014_09_095 crossref_primary_10_1088_2053_1591_ac4b75 crossref_primary_10_1007_s10103_015_1847_x crossref_primary_10_1016_j_cmpb_2021_105958 crossref_primary_10_1007_s11468_014_9694_3 crossref_primary_10_3390_nano12091486 crossref_primary_10_1007_s11696_024_03501_7 crossref_primary_10_1039_c3ra46752j crossref_primary_10_1186_s42269_019_0070_5 crossref_primary_10_1007_s10853_012_6811_6 crossref_primary_10_1016_j_radmeas_2020_106317 crossref_primary_10_1021_acs_chemrev_9b00099 crossref_primary_10_1021_acs_jpcc_7b09108 crossref_primary_10_1038_srep28190 crossref_primary_10_1186_s12951_022_01477_8 crossref_primary_10_1021_acs_chemrev_6b00290 crossref_primary_10_1038_srep15729 crossref_primary_10_1039_D0SM00485E crossref_primary_10_1016_j_matchemphys_2021_125053 crossref_primary_10_2174_1573413716666191230154316 crossref_primary_10_1016_j_photonics_2022_101016 crossref_primary_10_1021_acs_chemmater_3c01162 crossref_primary_10_3390_bios13040439 crossref_primary_10_1116_1_4994286 crossref_primary_10_1016_j_spmi_2015_08_030 crossref_primary_10_3390_bios14110551 crossref_primary_10_1016_j_snb_2020_129197 crossref_primary_10_1002_biot_201300556 crossref_primary_10_35848_1347_4065_ad4656 crossref_primary_10_1002_elan_201900286 crossref_primary_10_1021_acs_analchem_7b04251 crossref_primary_10_2147_IJN_S322900 crossref_primary_10_3390_s24072315 crossref_primary_10_1021_acs_jpcc_6b01897 crossref_primary_10_1016_j_bios_2015_10_065 crossref_primary_10_1016_j_snb_2017_05_040 crossref_primary_10_1021_bm401613h crossref_primary_10_3390_foods13010095 crossref_primary_10_3390_ijms16010907 crossref_primary_10_1002_tcr_202000087 crossref_primary_10_12693_APhysPolA_121_888 crossref_primary_10_3390_s16081175 crossref_primary_10_1021_acssensors_9b00301 crossref_primary_10_1039_C6AN00193A crossref_primary_10_1063_5_0213692 crossref_primary_10_1016_j_jallcom_2023_171075 crossref_primary_10_1088_2053_1591_ab29bf crossref_primary_10_1002_pi_4695 crossref_primary_10_1021_acsami_6b09668 crossref_primary_10_1016_j_inoche_2021_108923 crossref_primary_10_1149_2_0241913jes crossref_primary_10_1016_j_mseb_2022_116152 crossref_primary_10_1016_j_jphotobiol_2017_02_019 crossref_primary_10_3390_s17122765 crossref_primary_10_1002_cphc_201200394 crossref_primary_10_1016_j_bios_2015_10_033 crossref_primary_10_1016_j_vacuum_2020_109497 crossref_primary_10_1186_s42490_022_00062_2 crossref_primary_10_1364_PRJ_5_000027 crossref_primary_10_1016_j_bios_2012_08_048 crossref_primary_10_1002_adma_202300875 crossref_primary_10_1016_j_mtadv_2020_100073 crossref_primary_10_3390_s18051621 crossref_primary_10_1007_s11468_011_9290_8 crossref_primary_10_1016_j_vacuum_2022_110951 crossref_primary_10_1016_j_ijbiomac_2020_01_108 crossref_primary_10_1088_1361_6528_ab5d83 crossref_primary_10_1021_acs_langmuir_3c00429 crossref_primary_10_1016_j_pquantelec_2013_02_001 crossref_primary_10_1042_ETLS20200332 crossref_primary_10_3390_mi11040356 crossref_primary_10_1007_s41061_024_00473_w crossref_primary_10_1038_s41598_019_44088_4 crossref_primary_10_1002_adfm_202415507 crossref_primary_10_1016_j_snb_2017_04_028 crossref_primary_10_1039_C4RA14876B crossref_primary_10_1007_s00604_013_0960_4 crossref_primary_10_1016_j_nanoso_2020_100580 crossref_primary_10_1007_s00604_015_1659_5 crossref_primary_10_1021_nn204830b crossref_primary_10_1007_s10971_014_3317_5 crossref_primary_10_3762_bjnano_10_248 crossref_primary_10_1002_ejoc_201403664 crossref_primary_10_6023_cjoc202111024 crossref_primary_10_1007_s11051_020_05132_x crossref_primary_10_1016_j_snb_2014_10_124 crossref_primary_10_1016_j_molliq_2021_117508 crossref_primary_10_1016_j_sna_2019_04_017 crossref_primary_10_1039_D3CP01549A crossref_primary_10_3390_s22010099 crossref_primary_10_1016_j_trac_2024_117654 crossref_primary_10_1088_2632_959X_ad246c crossref_primary_10_1002_adma_201301197 crossref_primary_10_1039_C5PY01959A crossref_primary_10_1117_1_OE_57_2_026119 crossref_primary_10_1007_s10895_018_2262_z crossref_primary_10_3390_c8030040 crossref_primary_10_3390_nano12091421 crossref_primary_10_1016_j_radphyschem_2013_05_024 crossref_primary_10_1016_j_talanta_2013_11_085 crossref_primary_10_3390_nanomanufacturing1030009 crossref_primary_10_1039_C5RA17637A crossref_primary_10_1016_j_mtcomm_2022_104946 crossref_primary_10_2174_2211738511666230901160530 crossref_primary_10_1007_s11468_014_9784_2 crossref_primary_10_1186_s12951_015_0109_1 crossref_primary_10_1016_j_jcis_2015_01_010 crossref_primary_10_1016_j_apt_2018_02_011 crossref_primary_10_1109_JPROC_2016_2624340 crossref_primary_10_1016_j_aca_2023_341474 crossref_primary_10_1016_j_bios_2019_111439 crossref_primary_10_1364_OE_24_028113 crossref_primary_10_1155_2021_5530709 crossref_primary_10_1016_j_bios_2022_114722 crossref_primary_10_1016_j_optlastec_2024_110882 crossref_primary_10_1039_D3NR04362B crossref_primary_10_30699_ijmm_14_6_512 crossref_primary_10_1016_j_ijpharm_2024_124920 crossref_primary_10_1364_OE_22_00A800 crossref_primary_10_1021_acs_jpcc_2c08441 crossref_primary_10_3390_ma7075169 crossref_primary_10_1007_s00604_020_04339_y crossref_primary_10_1111_jace_15909 crossref_primary_10_3390_polym10020189 crossref_primary_10_1007_s10562_019_03079_w crossref_primary_10_1016_j_cclet_2022_04_004 crossref_primary_10_1007_s40242_019_8370_8 crossref_primary_10_1021_acs_inorgchem_9b03393 crossref_primary_10_1002_smll_202100817 crossref_primary_10_1007_s11468_016_0212_7 crossref_primary_10_1021_acs_chemrev_7b00037 crossref_primary_10_1016_j_colsurfa_2022_128496 crossref_primary_10_1039_C9CC00356H crossref_primary_10_3390_s23239618 crossref_primary_10_1016_j_bios_2015_07_041 crossref_primary_10_1016_j_nanoso_2020_100498 crossref_primary_10_1021_ac300278p crossref_primary_10_3390_min14121224 crossref_primary_10_1016_j_aca_2013_07_035 crossref_primary_10_3390_nano12091529 crossref_primary_10_1002_masy_201600069 crossref_primary_10_1016_j_actbio_2023_07_016 crossref_primary_10_1039_C9RE00469F crossref_primary_10_1002_app_48653 crossref_primary_10_1039_C9TB01989H crossref_primary_10_1515_zna_2023_0210 crossref_primary_10_1039_D4RA06191H crossref_primary_10_3233_JCB_15013 crossref_primary_10_1016_j_aca_2020_06_005 crossref_primary_10_1016_j_bbcan_2021_188621 crossref_primary_10_1039_C6LC01049K crossref_primary_10_1080_21691401_2017_1305393 crossref_primary_10_1007_s00604_019_4057_6 crossref_primary_10_1039_C8AN00508G crossref_primary_10_1109_RBME_2020_3035273 crossref_primary_10_1088_2632_959X_ad6f31 crossref_primary_10_1016_j_jphotochem_2020_113083 crossref_primary_10_1021_acs_chemrev_1c00044 crossref_primary_10_1021_acs_jced_7b00925 crossref_primary_10_1016_j_apsoil_2014_08_007 crossref_primary_10_1007_s00253_019_10261_y crossref_primary_10_1016_j_msec_2014_10_064 crossref_primary_10_1039_D1CB00055A crossref_primary_10_1016_j_snr_2023_100148 crossref_primary_10_1007_s11468_024_02429_8 crossref_primary_10_1016_j_cis_2014_06_005 crossref_primary_10_1021_la500979p crossref_primary_10_1039_D2RA00348A crossref_primary_10_1021_acs_chemmater_6b01796 crossref_primary_10_1016_j_colsurfa_2020_124450 crossref_primary_10_1002_cvde_201507177 crossref_primary_10_2478_msp_2020_0015 crossref_primary_10_1016_j_aca_2014_02_017 crossref_primary_10_1039_C7RA00900C crossref_primary_10_1039_D3NR01972A crossref_primary_10_20964_2020_11_15 crossref_primary_10_55544_jrasb_2_1_23 crossref_primary_10_1002_adom_201400375 crossref_primary_10_1007_s11468_023_02000_x crossref_primary_10_3390_mi14091717 crossref_primary_10_1007_s00216_019_02172_8 crossref_primary_10_1109_TNANO_2022_3191782 crossref_primary_10_1088_1361_6463_aa5e21 crossref_primary_10_1002_asia_201301398 crossref_primary_10_1177_1753425912465099 crossref_primary_10_1080_00914037_2018_1429438 crossref_primary_10_1088_0022_3727_48_42_424005 crossref_primary_10_1016_j_trac_2020_116014 crossref_primary_10_1021_bc500035y crossref_primary_10_1590_0001_3765201720170800 crossref_primary_10_3389_fchem_2025_1521089 crossref_primary_10_3390_app10020475 crossref_primary_10_1016_j_nantod_2018_04_003 crossref_primary_10_1002_adma_201501754 crossref_primary_10_1039_C5RA19388E crossref_primary_10_7717_peerj_12540 crossref_primary_10_1021_acs_accounts_8b00371 crossref_primary_10_1007_s11468_014_9771_7 crossref_primary_10_1016_j_optmat_2013_12_045 crossref_primary_10_1016_j_jscs_2017_12_008 crossref_primary_10_3390_ma17051153 crossref_primary_10_1039_C5TB00587F crossref_primary_10_1021_acs_analchem_5b01192 crossref_primary_10_1016_j_aca_2020_08_028 crossref_primary_10_1016_j_matdes_2025_113650 crossref_primary_10_1021_acs_langmuir_5b01473 crossref_primary_10_1016_j_cis_2019_102037 crossref_primary_10_1021_acsnano_5b06904 crossref_primary_10_1080_10420150_2022_2163719 crossref_primary_10_1115_1_4042377 crossref_primary_10_3390_s19030640 crossref_primary_10_1016_j_molliq_2019_04_017 crossref_primary_10_3390_ijms21093085 crossref_primary_10_1007_s00216_020_02887_z crossref_primary_10_1039_c3tb21859g crossref_primary_10_3390_app11051982 crossref_primary_10_1016_j_microc_2025_112730 crossref_primary_10_3390_polym10040407 crossref_primary_10_1016_j_aca_2015_05_052 crossref_primary_10_1039_C1AN15888K crossref_primary_10_1016_j_cis_2020_102239 crossref_primary_10_1021_acsomega_1c07022 crossref_primary_10_1088_1757_899X_805_1_012006 crossref_primary_10_1109_JPHOT_2017_2722543 crossref_primary_10_20964_2020_01_85 crossref_primary_10_3390_app12168263 crossref_primary_10_1039_C6NR07520G crossref_primary_10_1007_s12541_023_00935_z crossref_primary_10_1016_j_saa_2025_125864 crossref_primary_10_3390_v12060582 crossref_primary_10_1016_j_matlet_2011_09_048 crossref_primary_10_1016_j_bios_2017_04_028 crossref_primary_10_1016_j_jpba_2017_06_062 crossref_primary_10_1016_j_jlumin_2019_116974 crossref_primary_10_1002_smtd_202101619 crossref_primary_10_1007_s10971_014_3603_2 crossref_primary_10_1039_D1CP02271G crossref_primary_10_1039_c3cs60479a crossref_primary_10_1039_C4NR04825C crossref_primary_10_1007_s00396_013_3037_3 crossref_primary_10_1016_j_snb_2012_09_073 crossref_primary_10_1016_j_optlastec_2018_06_063 crossref_primary_10_1007_s11082_014_9976_1 crossref_primary_10_1021_acs_jpcc_0c00384 crossref_primary_10_1016_j_snb_2018_01_166 crossref_primary_10_1039_C7TB03309E crossref_primary_10_1103_PhysRevApplied_8_024033 crossref_primary_10_1016_j_nanoso_2020_100639 crossref_primary_10_1016_j_bios_2020_112046 crossref_primary_10_1021_acsami_2c21586 crossref_primary_10_1021_ed400782p crossref_primary_10_1021_acs_nanolett_6b02378 crossref_primary_10_1007_s11051_012_1403_6 crossref_primary_10_1016_j_jes_2016_08_015 crossref_primary_10_1088_1742_6596_1622_1_012066 crossref_primary_10_1063_1_4931759 crossref_primary_10_3390_bios11020029 crossref_primary_10_1016_j_snb_2013_03_039 crossref_primary_10_1016_j_talanta_2018_05_021 crossref_primary_10_1007_s13404_017_0216_x crossref_primary_10_1016_j_ab_2015_11_004 crossref_primary_10_1016_j_spmi_2017_05_002 crossref_primary_10_1021_acs_jpclett_1c02167 crossref_primary_10_1016_j_talanta_2020_121437 crossref_primary_10_1186_s40486_017_0056_8 crossref_primary_10_1002_mds3_10003 crossref_primary_10_1016_j_addr_2018_10_005 crossref_primary_10_1007_s11468_023_01814_z crossref_primary_10_1021_acsami_7b01228 crossref_primary_10_1016_j_sna_2021_112821 crossref_primary_10_15407_ujpe65_6_468 crossref_primary_10_2174_1568026622666220401160121 crossref_primary_10_1021_acsnano_5b02864 crossref_primary_10_1002_marc_201700231 crossref_primary_10_1016_j_radphyschem_2022_110269 crossref_primary_10_1002_asia_202100885 crossref_primary_10_1016_j_optcom_2014_05_042 crossref_primary_10_1039_C7CP08085A crossref_primary_10_1021_acssensors_3c01549 crossref_primary_10_1039_C8AY01980K crossref_primary_10_1155_2015_756056 crossref_primary_10_3390_bios11080250 crossref_primary_10_1016_j_physe_2019_02_010 crossref_primary_10_1016_j_matchemphys_2017_02_009 crossref_primary_10_1016_j_mattod_2024_01_005 crossref_primary_10_1016_j_snb_2014_04_006 crossref_primary_10_1039_C9CC07511A crossref_primary_10_1038_srep09717 crossref_primary_10_1016_j_colsurfa_2014_04_057 crossref_primary_10_1016_j_jelechem_2018_02_025 crossref_primary_10_1039_C4AN01272K crossref_primary_10_1093_rb_rbae126 crossref_primary_10_1007_s11468_017_0517_1 crossref_primary_10_1080_10942912_2018_1534125 crossref_primary_10_1116_6_0001292 crossref_primary_10_1007_s13404_014_0153_x crossref_primary_10_1007_s11468_013_9563_5 crossref_primary_10_1016_j_smrv_2015_08_003 crossref_primary_10_1016_j_jpba_2018_06_021 crossref_primary_10_1002_ppsc_201400074 crossref_primary_10_1016_j_molstruc_2020_128599 crossref_primary_10_1149_2_0151413jes crossref_primary_10_1039_C5AN00497G crossref_primary_10_1142_S1793984416420010 crossref_primary_10_1016_j_jtice_2021_04_016 crossref_primary_10_1007_s12274_020_2957_8 crossref_primary_10_1007_s13204_013_0263_4 crossref_primary_10_1016_j_molliq_2022_120210 crossref_primary_10_4155_bio_15_4 crossref_primary_10_1021_acsabm_4c00069 crossref_primary_10_1021_acs_jafc_9b03400 crossref_primary_10_1016_j_bios_2018_03_025 crossref_primary_10_2217_nnm_2017_0258 crossref_primary_10_2116_analsci_20R005 crossref_primary_10_1016_j_saa_2015_09_012 crossref_primary_10_1021_cr2001178 crossref_primary_10_1016_j_microc_2021_107171 crossref_primary_10_1016_j_snb_2019_03_014 crossref_primary_10_1016_j_ijleo_2015_11_083 crossref_primary_10_1002_adma_201703704 crossref_primary_10_1007_s11426_016_5570_7 crossref_primary_10_3390_ma15103602 crossref_primary_10_1007_s00604_019_3904_9 crossref_primary_10_1016_j_pdpdt_2016_12_012 crossref_primary_10_1039_C8AN00307F crossref_primary_10_1002_slct_202402240 crossref_primary_10_1021_acsabm_9b00986 crossref_primary_10_1016_j_snb_2022_133284 crossref_primary_10_1039_D0CP06179D crossref_primary_10_1186_s40580_016_0090_x crossref_primary_10_1007_s11082_018_1726_3 crossref_primary_10_1186_s12951_022_01327_7 crossref_primary_10_1016_j_colsurfb_2018_10_025 crossref_primary_10_1080_00032719_2017_1373285 crossref_primary_10_1002_bab_1981 crossref_primary_10_1007_s00604_019_3574_7 crossref_primary_10_1007_s11468_012_9377_x crossref_primary_10_1016_j_trac_2018_07_003 crossref_primary_10_3390_chemistry5020061 crossref_primary_10_1002_adhm_202002186 crossref_primary_10_1016_j_pnmrs_2013_10_001 crossref_primary_10_1016_j_ab_2016_12_006 crossref_primary_10_1002_anie_202218369 crossref_primary_10_1007_s00604_017_2540_5 crossref_primary_10_1109_JPHOT_2016_2606640 crossref_primary_10_4028_p_k239ba crossref_primary_10_1016_j_mne_2024_100261 crossref_primary_10_1016_j_jcis_2013_08_002 crossref_primary_10_3390_nano13192697 crossref_primary_10_1080_10408347_2022_2049676 crossref_primary_10_1039_D3TB00103B crossref_primary_10_1016_j_trac_2017_12_006 crossref_primary_10_1007_s42341_021_00344_x crossref_primary_10_1007_s12274_021_3999_2 crossref_primary_10_3390_s17020236 crossref_primary_10_3390_bios7030031 crossref_primary_10_1021_acs_nanolett_0c02313 crossref_primary_10_1016_j_coelec_2018_06_003 crossref_primary_10_1021_acs_chemrev_6b00769 crossref_primary_10_1021_acs_analchem_7b00341 crossref_primary_10_1021_acs_langmuir_8b03904 crossref_primary_10_1039_C8NR03990A crossref_primary_10_1002_adfm_201909556 crossref_primary_10_1007_s11051_013_1900_2 crossref_primary_10_1016_j_cis_2024_103206 crossref_primary_10_1021_acs_langmuir_8b01600 crossref_primary_10_1021_acsanm_0c02126 crossref_primary_10_1016_j_electacta_2015_04_176 crossref_primary_10_1016_j_tips_2013_07_002 crossref_primary_10_1063_1_3701730 crossref_primary_10_1016_j_trac_2021_116376 |
Cites_doi | 10.1021/ac011127p 10.1021/bm061224y 10.1021/jp062536y 10.1016/j.aca.2004.10.007 10.1021/ja046628h 10.1039/a827241z 10.1021/ac015657x 10.1002/anie.200502481 10.1016/j.bios.2009.09.006 10.1021/la0104323 10.1049/el:19881004 10.1021/ar960016n 10.1021/ac011116w 10.1021/cr030067f 10.1021/ac0006627 10.1016/S0003-2670(01)01458-1 10.1021/jp074902z 10.1021/ac020542u 10.1021/la025563y 10.2147/nano.2006.1.1.51 10.1093/clinchem/34.8.1613 10.1021/ja992058n 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F 10.1006/abio.1998.2759 10.1021/cr030698+ 10.1016/0250-6874(83)85036-7 10.1021/jp9638090 10.1016/j.bios.2007.07.015 10.1021/cr990003y 10.1021/ja0281232 10.1021/jp0106606 10.1002/adma.200703181 10.1021/ja048678s 10.1021/ja801412b 10.1093/clinchem/45.9.1628 10.2217/17435889.2.1.113 10.1021/nl071729+ 10.1016/j.bios.2010.01.029 10.1002/andp.19083300302 10.1007/BF01498565 10.1039/b410399h 10.1002/anie.200502589 10.1021/la049172q 10.1136/thorax.58.3.266 10.1021/la800305j 10.1146/annurev.physchem.51.1.41 10.1021/ar030030h 10.1021/la990892k 10.1146/annurev.biochem.68.1.611 10.1021/cm020007a 10.1002/smll.200700920 10.1126/science.1077229 10.1021/am100107k 10.1021/jp909253w 10.1021/ac052143f 10.1021/jp061667w 10.1016/S0925-4005(01)00881-4 10.1021/ac049787s 10.1021/ja907069u 10.1073/pnas.0406115101 10.1021/ja049738x 10.1021/ac071062b 10.1021/la980870i 10.1021/ac050227i 10.1021/ac049741z 10.1364/OE.17.019041 10.1016/j.bios.2006.03.009 10.1021/jp9917648 10.1021/ja010437m 10.1021/la0355848 10.1021/ac049173n 10.1038/physci241020a0 10.1021/cr068107d 10.1126/science.275.5303.1102 10.1103/PhysRevLett.78.1667 10.1021/ac801046a 10.1016/j.elecom.2007.10.030 10.1021/ac0486746 10.1039/c39950001655 10.3322/CA.2007.0010 10.1021/ja047846d 10.1038/nnano.2009.235 10.1021/ac990321x 10.1126/science.277.5329.1078 10.1021/ac050109v 10.1143/JPSJ.17.975 10.1021/ja034775u 10.1021/ac0351769 10.1093/nar/30.8.1735 10.1257/jep.22.4.3 10.1021/cr030063a 10.1007/s11051-008-9424-x 10.1038/346818a0 10.1021/la981278w 10.1021/ac050957q 10.1021/jp984796o 10.1016/j.carres.2004.08.005 10.1002/chem.200501051 10.1364/AO.27.001160 10.1016/j.bios.2005.02.016 10.1364/OE.15.001745 10.1021/la100591h 10.1073/pnas.0509739103 10.1016/S0140-6736(98)07552-7 10.1039/df9511100055 10.1021/ac049943v 10.1021/jp9734033 10.1039/b402823f 10.1016/j.bioelechem.2004.12.002 10.1021/cm990315h 10.1021/cr0680282 10.1021/nl010073w 10.1039/C39940000801 10.1364/JOSAB.20.000741 10.1039/b719856f |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2011 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2011 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11468-011-9228-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1557-1963 |
EndPage | 506 |
ExternalDocumentID | 10_1007_s11468_011_9228_1 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9N PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7X Z7Y Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c354t-3cb56ff0e03a914c1e6eecf3164955e5b28ba5ac9aec77038ad3238d9e7ef4b83 |
IEDL.DBID | U2A |
ISSN | 1557-1955 |
IngestDate | Thu Apr 24 23:05:45 EDT 2025 Tue Jul 01 02:01:03 EDT 2025 Fri Feb 21 02:26:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Surface functionalization Surface plasmon resonance Gold nanoparticles Biosensing |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-3cb56ff0e03a914c1e6eecf3164955e5b28ba5ac9aec77038ad3238d9e7ef4b83 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1007_s11468_011_9228_1 crossref_citationtrail_10_1007_s11468_011_9228_1 springer_journals_10_1007_s11468_011_9228_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Plasmonics (Norwell, Mass.) |
PublicationTitleAbbrev | Plasmonics |
PublicationYear | 2011 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | AslamMFuLSuMVijayamohananKDravidVPNovel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticlesJ Mater Chem20041412179517971:CAS:528:DC%2BD2cXks1Ciur4%3D10.1039/b402823f NieSMEmerySRProbing single molecules and single nanoparticles by surface-enhanced Raman scatteringScience19972755303110211061:CAS:528:DyaK2sXhtlGlsL4%3D10.1126/science.275.5303.1102 KneippKWangYKneippHPerelmanLTItzkanIDasariRFeldMSSingle molecule detection using surface-enhanced Raman scattering (SERS)Phys Rev Lett1997789166716701:CAS:528:DyaK2sXhsV2jtb4%3D10.1103/PhysRevLett.78.1667 DemersLMMirkinCAMucicRCReynoldsRALetsingerRLElghanianRViswanadhamGA fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticlesAnal Chem20007222553555411:CAS:528:DC%2BD3cXnsVals70%3D10.1021/ac0006627 WangZDLeeJHLuYLabel-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzymeAdv Mater20082017326332671:CAS:528:DC%2BD1cXhtFCqs7rE10.1002/adma.200703181 WarkAWLeeHJQaviAJCornRMNanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensingAnal Chem20077917669767011:CAS:528:DC%2BD2sXosVCku7c%3D10.1021/ac071062b DarbhaGKSinghAKRaiUSYuEYuHTRayPCSelective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticlesJ Am Chem Soc200813025803880431:CAS:528:DC%2BD1cXms1GitbY%3D10.1021/ja801412b DingLHaoCXueYDJuHXA bio-inspired support of gold nanoparticles-chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cellsBiomacromolecules200784134113461:CAS:528:DC%2BD2sXkt1SisbY%3D10.1021/bm061224y LiuJWLuYAccelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detectionJ Am Chem Soc20041263912298123051:CAS:528:DC%2BD2cXnsVOntr0%3D10.1021/ja046628h ChenSJChangHTNile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregationAnal Chem20047613372737341:CAS:528:DC%2BD2cXjvFCgtL4%3D10.1021/ac049787s FoosEESnowAWTwiggMEAnconaMGThiol-terminated Di-, Tri-, and tetraethylene oxide functionalized gold nanoparticles: a water-soluble, charge-neutral clusterChem Mater2002145240124081:CAS:528:DC%2BD38XivFWisb8%3D10.1021/cm020007a MayeMMZhengWXLeibowitzFLLyNKZhongCJHeating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulationsLangmuir20001624904971:CAS:528:DyaK1MXntValtbg%3D10.1021/la990892k AstrucDDanielMCRuizJDendrimers and gold nanoparticles as exo-receptors sensing biologically important anionsChem Commun2004232637264910.1039/b410399h1:CAS:528:DC%2BD2cXhtVekt7rP GearheartLAPloehnHJMurphyCJOligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNAJ Phys Chem B20011055012609126151:CAS:528:DC%2BD3MXot1elt78%3D10.1021/jp0106606 YguerabideJYguerabideEELight-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. TheoryAnal Biochem199826221371561:CAS:528:DyaK1cXmsFOms7w%3D10.1006/abio.1998.2759 LiuJWLuYFast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticlesAngew Chem Int Ed200645190941:CAS:528:DC%2BD28XhslKgtQ%3D%3D10.1002/anie.200502589 ThanhNTKRosenzweigZDevelopment of an aggregation-based immunoassay for anti-protein A using gold nanoparticlesAnal Chem2002747162416281:CAS:528:DC%2BD38Xhs1Wks74%3D10.1021/ac011127p Rodriguez-LorenzoLAlvarez-PueblaRAde AbajoFJGLiz-MarzanLMSurface enhanced Raman scattering using star-shaped gold colloidal nanoparticlesJ Phys Chem C201011416733673401:CAS:528:DC%2BD1MXhsFGhtbvO10.1021/jp909253w KimKSDemberelnyambaDLeeHSize-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquidsLangmuir20042035565601:CAS:528:DC%2BD3sXhtVWisbjF10.1021/la0355848 SpadavecchiaJManeraMGQuarantaFSicilianoPRellaRSurface plamon resonance imaging of DNA based biosensors for potential applications in food analysisBiosens Bioelectron20052168949001:CAS:528:DC%2BD2MXhtFKhsbvL10.1016/j.bios.2005.02.016 MeiSHJLiuZJBrennanJDLiYFAn efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signalingJ Am Chem Soc200312524124201:CAS:528:DC%2BD38XpsVenuro%3D10.1021/ja0281232 OtsukaHAkiyamaYNagasakiYKataokaKQuantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol)J Am Chem Soc200112334822682301:CAS:528:DC%2BD3MXlsFygtLg%3D10.1021/ja010437m ZhangLMUttamchandaniDOptical chemical sensing employing surface-plasmon resonanceElectron Lett198824231469147010.1049/el:19881004 MalikovaNPastoriza-SantosISchierhornMKotovNALiz-MarzanLMLayer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactionsLangmuir2002189369436971:CAS:528:DC%2BD38XisVOhtbs%3D10.1021/la025563y ZhangSXWangNYuHJNiuYMSunCQCovalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensorBioelectrochemistry200567115221:CAS:528:DC%2BD2MXlsFCrtbc%3D10.1016/j.bioelechem.2004.12.002 GhoshSKPalTInterparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applicationsChem Rev200710711479748621:CAS:528:DC%2BD2sXht1yrt7zK10.1021/cr0680282 WangDYLaiBHYFeldmanARSenDA general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymesNucleic Acids Res2002308173517421:CAS:528:DC%2BD38Xjt1GhsL8%3D10.1093/nar/30.8.1735 EmorySRNieSScreening and enrichment of metal nanoparticles with novel optical propertiesJ Phys Chem B199810234934971:CAS:528:DyaK1cXhtVA%3D10.1021/jp9734033 LawrenceNSDeoRPWangJBiocatalytic carbon paste sensors based on a mediator pasting liquidAnal Chem20047613373537391:CAS:528:DC%2BD2cXjvVCks7Y%3D10.1021/ac049943v LinkSEl-SayedMASpectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorodsJ Phys Chem B199910340841084261:CAS:528:DyaK1MXlslGntrs%3D10.1021/jp9917648 LeeJSMirkinCAChip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticlesAnal Chem20088017680568081:CAS:528:DC%2BD1cXptVyrsL0%3D10.1021/ac801046a ZenJMKumarASChungCRA glucose biosensor employing a stable artificial peroxidase based on ruthenium purple anchored cinderAnal Chem20037511270327091:CAS:528:DC%2BD3sXjt1Kmtb4%3D10.1021/ac020542u PerraultSDChanWCWSynthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nmJ Am Chem Soc20091314717042170431:CAS:528:DC%2BD1MXhtlOksrvK10.1021/ja907069u MatsuiJAkamatsuKHaraNMiyoshiDNawafuneHTamakiKSugimotoNSPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticlesAnal Chem20057713428242851:CAS:528:DC%2BD2MXksVSqur0%3D10.1021/ac050227i EllingtonADSzostakJWInvitro selection of RNA molecules that bind specific ligandsNature199034662878188221:CAS:528:DyaK3MXitVGgsw%3D%3D10.1038/346818a0 MatsubaraKKawataSMinamiSOptical chemical sensor based on surface-plasmon measurementAppl Opt1988276116011631:CAS:528:DyaL1cXktFKgsbg%3D10.1364/AO.27.001160 LiedbergBNylanderCLundstromISurface-plasmon resonance for gas-detection and biosensingSens Actuators1983422993041:CAS:528:DyaL2cXnvV2kug%3D%3D XiangCLZouYJSunLXXuFDirect electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite filmElectrochem Commun200810138411:CAS:528:DC%2BD2sXhsVKrsbnJ10.1016/j.elecom.2007.10.030 BrockmanJMNelsonBPCornRMSurface plasmon resonance imaging measurements of ultrathin organic filmsAnnu Rev Phys Chem20005141631:CAS:528:DC%2BD3cXotlWktrg%3D10.1146/annurev.physchem.51.1.41 LeeKSEl-SayedMAGold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal compositionJ Phys Chem B20061103919220192251:CAS:528:DC%2BD28XptFahs7w%3D10.1021/jp062536y LawWCMarkowiczPYongKTRoyIBaevAPatskovskySKabashinAVHoHPPrasadPNWide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonicsBiosens Bioelectron20072356276321:CAS:528:DC%2BD2sXhtlWksb7E10.1016/j.bios.2007.07.015 AldayeFASleimanHFSequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticlesAngew Chem Int Ed20064514220422091:CAS:528:DC%2BD28XjsFChsb0%3D10.1002/anie.200502481 ChaiFWangCAWangTTLiLSuZMColorimetric detection of Pb2+ using glutathione functionalized gold nanoparticlesACS Appl Mater Interfaces201025146614701:CAS:528:DC%2BC3cXltlygtrg%3D10.1021/am100107k SunYGXiaYNShape-controlled synthesis of gold and silver nanoparticlesScience20022985601217621791:CAS:528:DC%2BD38XpsVSkt7Y%3D10.1126/science.1077229 FrensGControlled nucleation for regulation of particle-size in monodisperse gold suspensionsNature-Physical Science197324110520221:CAS:528:DyaE3sXns1ansg%3D%3D CampionAKambhampatiPSurface-enhanced Raman scatteringChem Soc Rev19982742412501:CAS:528:DyaK1cXjvVKjt78%3D10.1039/a827241z JiaJBWangBQWuAGChengGJLiZDongSJA method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel networkAnal Chem2002749221722231:CAS:528:DC%2BD38XitlCjur0%3D10.1021/ac011116w MartinMNBashamJIChandoPEahSKCharged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assemblyLangmuir20102610741074171:CAS:528:DC%2BC3cXkslKntLc%3D10.1021/la100591h LinkSEl-SayedMASize and temperature dependence of the plasmon absorption of colloidal gold nanoparticlesJ Phys Chem B199910321421242171:CAS:528:DyaK1MXivVart78%3D10.1021/jp984796o El-SayedMASome interesting properties of metals confined in time and nanometer space of different shapesAcc Chem Res20013442 SD Jayasena (9228_CR54) 1999; 45 VC Sanz (9228_CR107) 2005; 528 N Nath (9228_CR18) 2004; 76 GK Ahirwal (9228_CR86) 2010; 25 SR Emory (9228_CR21) 1998; 102 J Kimling (9228_CR34) 2006; 110 DS Wilson (9228_CR62) 1999; 68 G Frens (9228_CR32) 1972; 250 SHJ Mei (9228_CR55) 2003; 125 G Peng (9228_CR115) 2009; 4 HX Li (9228_CR58) 2004; 76 R Elghanian (9228_CR65) 1997; 277 A Henglein (9228_CR26) 1998; 14 KG Thomas (9228_CR41) 2003; 36 (9228_CR1) 1994 SX Zhang (9228_CR98) 2005; 67 S Link (9228_CR13) 1999; 103 J Kneipp (9228_CR82) 2005; 77 Y Mizukoshi (9228_CR22) 1997; 101 JQ Hu (9228_CR29) 2004; 126 WC Law (9228_CR78) 2007; 23 SM Nie (9228_CR4) 1997; 275 NR Jana (9228_CR45) 2001; 17 LA Gearheart (9228_CR56) 2001; 105 DY Wang (9228_CR63) 2002; 30 BK Jena (9228_CR103) 2006; 12 GK Darbha (9228_CR88) 2008; 130 N Mano (9228_CR101) 2005; 77 KW Huang (9228_CR89) 2010; 25 MA El-Sayed (9228_CR16) 2001; 34 JS Lee (9228_CR96) 2008; 80 CW Liu (9228_CR95) 2008; 19 M Aslam (9228_CR46) 2004; 14 SK Ghosh (9228_CR17) 2007; 107 JW Liu (9228_CR92) 2003; 125 EE Foos (9228_CR39) 2002; 14 GR Souza (9228_CR83) 2006; 103 J Matsui (9228_CR80) 2005; 77 ZD Wang (9228_CR93) 2008; 20 N Malikova (9228_CR48) 2002; 18 CC Huang (9228_CR69) 2005; 77 G Mie (9228_CR14) 1908; 25 HJ Chen (9228_CR2) 2008; 24 NL Rosi (9228_CR105) 2005; 105 M Brust (9228_CR36) 1994; 7 J Homola (9228_CR9) 2008; 108 BY Wu (9228_CR104) 2007; 22 A Jemal (9228_CR109) 2008; 58 YF Huang (9228_CR53) 2009; 11 JT Krug (9228_CR5) 1999; 121 M Phillips (9228_CR114) 1999; 353 JM Zen (9228_CR99) 2003; 75 WC Law (9228_CR79) 2009; 17 YG Sun (9228_CR25) 2002; 298 G Han (9228_CR43) 2007; 2 LM Demers (9228_CR67) 2000; 72 DM Cutler (9228_CR110) 2008; 22 H Otsuka (9228_CR49) 2001; 123 SD Perrault (9228_CR35) 2009; 131 JP Sylvestre (9228_CR51) 2004; 126 PK Sudeep (9228_CR40) 2002; 2 G Frens (9228_CR33) 1973; 241 J Spadavecchia (9228_CR74) 2005; 21 FA Aldaye (9228_CR52) 2006; 45 A Campion (9228_CR19) 1998; 27 Y Zhou (9228_CR27) 1999; 11 N Nath (9228_CR84) 2002; 74 L Rodriguez-Lorenzo (9228_CR6) 2010; 114 D Shenoy (9228_CR42) 2006; 1 KS Kim (9228_CR47) 2004; 20 B Liedberg (9228_CR73) 1983; 4 PP Markowicz (9228_CR77) 2007; 15 PN Njoki (9228_CR10) 2007; 111 TK Sau (9228_CR28) 2004; 126 J Turkevich (9228_CR31) 1951; 11 T Pons (9228_CR116) 2007; 7 MN Martin (9228_CR24) 2010; 26 MC Daniel (9228_CR8) 2004; 104 D Astruc (9228_CR106) 2004; 23 LM Zhang (9228_CR71) 1988; 24 F Battaglini (9228_CR100) 2000; 72 JM Slocik (9228_CR91) 2008; 4 MM Maye (9228_CR23) 2000; 16 NS Lawrence (9228_CR102) 2004; 76 KS Lee (9228_CR3) 2006; 110 R Kubo (9228_CR11) 1962; 17 M Brust (9228_CR37) 1995; 16 JW Liu (9228_CR59) 2004; 76 LA Porter (9228_CR38) 1998; 14 E Mariotti (9228_CR66) 2002; 453 BK Jena (9228_CR68) 2006; 78 AW Wark (9228_CR64) 2007; 79 C Burda (9228_CR7) 2005; 105 HP Ho (9228_CR76) 2001; 80 HZ Huang (9228_CR50) 2004; 339 HX Li (9228_CR57) 2004; 101 JW Liu (9228_CR90) 2004; 126 AD Ellington (9228_CR61) 1990; 346 S Link (9228_CR12) 1999; 103 K Matsubara (9228_CR70) 1988; 27 J Yguerabide (9228_CR15) 1998; 262 JM Brockman (9228_CR72) 2000; 51 HJ Oneill (9228_CR112) 1988; 34 JB Jia (9228_CR117) 2002; 74 CH Kuo (9228_CR30) 2004; 20 GS Wilson (9228_CR97) 2000; 100 CL Xiang (9228_CR87) 2008; 10 G Margheri (9228_CR75) 2003; 20 AK Banerjee (9228_CR111) 2003; 58 NR Jana (9228_CR44) 2001; 13 H Yu (9228_CR113) 2003; 1 and 2 L Ding (9228_CR81) 2007; 8 JW Liu (9228_CR60) 2006; 45 SJ Chen (9228_CR108) 2004; 76 K Kneipp (9228_CR20) 1997; 78 NTK Thanh (9228_CR85) 2002; 74 F Chai (9228_CR94) 2010; 2 |
References_xml | – reference: OneillHJGordonSMOneillMHGibbonsRDSzidonJPA computerized classification technique for screening for the presence of breath biomarkers in lung cancerClin Chem1988348161316181:CAS:528:DyaL1cXlvVKkt70%3D – reference: PonsTMedintzILSapsfordKEHigashiyaSGrimesAFEnglishDSMattoussiHOn the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticlesNano Lett2007710315731641:CAS:528:DC%2BD2sXhtVWisL7M10.1021/nl071729+ – reference: ZhouYWangCYZhuYRChenZYA novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperatureChem Mater1999119231023121:CAS:528:DyaK1MXkvF2qs7g%3D10.1021/cm990315h – reference: Rodriguez-LorenzoLAlvarez-PueblaRAde AbajoFJGLiz-MarzanLMSurface enhanced Raman scattering using star-shaped gold colloidal nanoparticlesJ Phys Chem C201011416733673401:CAS:528:DC%2BD1MXhsFGhtbvO10.1021/jp909253w – reference: ZenJMKumarASChungCRA glucose biosensor employing a stable artificial peroxidase based on ruthenium purple anchored cinderAnal Chem20037511270327091:CAS:528:DC%2BD3sXjt1Kmtb4%3D10.1021/ac020542u – reference: ManoNHellerADetection of glucose at 2 fM concentrationAnal Chem20057727297321:CAS:528:DC%2BD2cXhtVegtLvP10.1021/ac0486746 – reference: LinkSEl-SayedMASize and temperature dependence of the plasmon absorption of colloidal gold nanoparticlesJ Phys Chem B199910321421242171:CAS:528:DyaK1MXivVart78%3D10.1021/jp984796o – reference: CutlerDMAre we finally winning the war on cancer?J Econ Perspect200822432610.1257/jep.22.4.3 – reference: HuangKWYuCJTsengWLSensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsionBiosens Bioelectron20102559849891:CAS:528:DC%2BD1MXhsFyktL7J10.1016/j.bios.2009.09.006 – reference: NjokiPNLimIISMottDParkHYKhanBMishraSSujakumarRLuoJZhongCJSize correlation of optical and spectroscopic properties for gold nanoparticlesJ Phys Chem C20071114014664146691:CAS:528:DC%2BD2sXhtVChs7zI10.1021/jp074902z – reference: FrensGParticle-size and sol stability in metal colloidsKolloid-Z Z Polym197225077367411:CAS:528:DyaE3sXjsVejuw%3D%3D10.1007/BF01498565 – reference: WangZDLeeJHLuYLabel-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzymeAdv Mater20082017326332671:CAS:528:DC%2BD1cXhtFCqs7rE10.1002/adma.200703181 – reference: YguerabideJYguerabideEELight-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. TheoryAnal Biochem199826221371561:CAS:528:DyaK1cXmsFOms7w%3D10.1006/abio.1998.2759 – reference: SudeepPKIpeBIThomasKGGeorgeMVBarazzoukSHotchandaniSKamatPVFullerene-functionalized gold nanoparticles. A self-assembled photoactive antenna-metal nanocore assemblyNano Lett20022129351:CAS:528:DC%2BD3MXoslSnu7s%3D10.1021/nl010073w – reference: LeeJSMirkinCAChip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticlesAnal Chem20088017680568081:CAS:528:DC%2BD1cXptVyrsL0%3D10.1021/ac801046a – reference: WarkAWLeeHJQaviAJCornRMNanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensingAnal Chem20077917669767011:CAS:528:DC%2BD2sXosVCku7c%3D10.1021/ac071062b – reference: SchmidGClusters and colloids—from theory to applications1994WeinheimVCH – reference: BurdaCChenXBNarayananREl-SayedMAChemistry and properties of nanocrystals of different shapesChem Rev20051054102511021:CAS:528:DC%2BD2MXisVyquro%3D10.1021/cr030063a – reference: LiuCWHsiehYTHuangCCLinZHChangHTDetection of mercury(II) based on Hg2+–DNA complexes inducing the aggregation of gold nanoparticlesChem Commun2008192242224410.1039/b719856f1:CAS:528:DC%2BD1cXlsFOlt74%3D – reference: WangDYLaiBHYFeldmanARSenDA general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymesNucleic Acids Res2002308173517421:CAS:528:DC%2BD38Xjt1GhsL8%3D10.1093/nar/30.8.1735 – reference: LawWCYongKTBaevAHuRPrasadPNNanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorodsOpt Express2009172119041190461:CAS:528:DC%2BD1MXhtlSht73L10.1364/OE.17.019041 – reference: AhirwalGKMitraCKGold nanoparticles based sandwich electrochemical immunosensorBiosens Bioelectron2010259201620201:CAS:528:DC%2BC3cXks1Khtrg%3D10.1016/j.bios.2010.01.029 – reference: JanaNRGearheartLMurphyCJSeed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant templateAdv Mater20011318138913931:CAS:528:DC%2BD3MXntFWitb4%3D10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F – reference: ChaiFWangCAWangTTLiLSuZMColorimetric detection of Pb2+ using glutathione functionalized gold nanoparticlesACS Appl Mater Interfaces201025146614701:CAS:528:DC%2BC3cXltlygtrg%3D10.1021/am100107k – reference: NathNChilkotiALabel-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle sizeAnal Chem20047618537053781:CAS:528:DC%2BD2cXmt1Gnt7o%3D10.1021/ac049741z – reference: EmorySRNieSScreening and enrichment of metal nanoparticles with novel optical propertiesJ Phys Chem B199810234934971:CAS:528:DyaK1cXhtVA%3D10.1021/jp9734033 – reference: HengleinAMeiselDRadiolytic control of the size of colloidal gold nanoparticlesLangmuir19981426739273961:CAS:528:DyaK1cXnsVGntLc%3D10.1021/la981278w – reference: MatsuiJAkamatsuKHaraNMiyoshiDNawafuneHTamakiKSugimotoNSPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticlesAnal Chem20057713428242851:CAS:528:DC%2BD2MXksVSqur0%3D10.1021/ac050227i – reference: HanGGhoshPRotelloVMFunctionalized gold nanoparticles for drug deliveryNanomedicine2007211131231:CAS:528:DC%2BD2sXhvF2itrY%3D10.2217/17435889.2.1.113 – reference: LiuJWLuYAccelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detectionJ Am Chem Soc20041263912298123051:CAS:528:DC%2BD2cXnsVOntr0%3D10.1021/ja046628h – reference: XiangCLZouYJSunLXXuFDirect electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite filmElectrochem Commun200810138411:CAS:528:DC%2BD2sXhsVKrsbnJ10.1016/j.elecom.2007.10.030 – reference: AslamMFuLSuMVijayamohananKDravidVPNovel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticlesJ Mater Chem20041412179517971:CAS:528:DC%2BD2cXks1Ciur4%3D10.1039/b402823f – reference: AldayeFASleimanHFSequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticlesAngew Chem Int Ed20064514220422091:CAS:528:DC%2BD28XjsFChsb0%3D10.1002/anie.200502481 – reference: SouzaGRChristiansonDRStaquiciniFIOzawaMGSnyderEYSidmanRLMillerJHArapWPasqualiniRNetworks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agentsProc Natl Acad Sci USA20061035121512201:CAS:528:DC%2BD28Xhs1Ggtbw%3D10.1073/pnas.0509739103 – reference: KuboRElectronic properties of metallic fine particles 1J Phys Soc Jpn19621769759861:CAS:528:DyaF38XksVKgsL8%3D10.1143/JPSJ.17.975 – reference: LiuJWLuYA colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticlesJ Am Chem Soc200312522664266431:CAS:528:DC%2BD3sXjs1Gnsbw%3D10.1021/ja034775u – reference: KneippKWangYKneippHPerelmanLTItzkanIDasariRFeldMSSingle molecule detection using surface-enhanced Raman scattering (SERS)Phys Rev Lett1997789166716701:CAS:528:DyaK2sXhsV2jtb4%3D10.1103/PhysRevLett.78.1667 – reference: DingLHaoCXueYDJuHXA bio-inspired support of gold nanoparticles-chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cellsBiomacromolecules200784134113461:CAS:528:DC%2BD2sXkt1SisbY%3D10.1021/bm061224y – reference: SpadavecchiaJManeraMGQuarantaFSicilianoPRellaRSurface plamon resonance imaging of DNA based biosensors for potential applications in food analysisBiosens Bioelectron20052168949001:CAS:528:DC%2BD2MXhtFKhsbvL10.1016/j.bios.2005.02.016 – reference: SanzVCMenaMLGonzalez-CortesAYanez-SedenoPPingarronJMDevelopment of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes—application to the measurement of a bioelectrochemical polyphenols index in winesAnal Chim Acta200552811810.1016/j.aca.2004.10.0071:CAS:528:DC%2BD2MXkslOqsw%3D%3D – reference: PhillipsMGleesonKHughesJMBGreenbergJCataneoRNBakerLMcVayWPVolatile organic compounds in breath as markers of lung cancer: a cross-sectional studyLancet19993539168193019331:CAS:528:DyaK1MXktVKmsL8%3D10.1016/S0140-6736(98)07552-7 – reference: BrockmanJMNelsonBPCornRMSurface plasmon resonance imaging measurements of ultrathin organic filmsAnnu Rev Phys Chem20005141631:CAS:528:DC%2BD3cXotlWktrg%3D10.1146/annurev.physchem.51.1.41 – reference: KimKSDemberelnyambaDLeeHSize-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquidsLangmuir20042035565601:CAS:528:DC%2BD3sXhtVWisbjF10.1021/la0355848 – reference: JanaNRGearheartLMurphyCJSeeding growth for size control of 5–40 nm diameter gold nanoparticlesLangmuir20011722678267861:CAS:528:DC%2BD3MXntFKlu7w%3D10.1021/la0104323 – reference: JenaBKRajCREnzyme-free amperometric sensing of glucose by using gold nanoparticlesChem Eur J20061210270227081:CAS:528:DC%2BD28Xjt1Sqt7w%3D10.1002/chem.200501051 – reference: LiHXRothbergLJDNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticlesAnal Chem20047618541454171:CAS:528:DC%2BD2cXms1Cgs7c%3D10.1021/ac049173n – reference: KrugJTWangGDEmorySRNieSMEfficient Raman enhancement and intermittent light emission observed in single gold nanocrystalsJ Am Chem Soc199912139920892141:CAS:528:DyaK1MXlvVeqs7Y%3D10.1021/ja992058n – reference: RosiNLMirkinCANanostructures in biodiagnosticsChem Rev20051054154715621:CAS:528:DC%2BD2MXisVymsLk%3D10.1021/cr030067f – reference: FrensGControlled nucleation for regulation of particle-size in monodisperse gold suspensionsNature-Physical Science197324110520221:CAS:528:DyaE3sXns1ansg%3D%3D – reference: MarkowiczPPLawWCBaevAPrasadPNPatskovskySKabashinAVPhase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensingOpt Express2007154174517541:CAS:528:DC%2BD2sXisFagtro%3D10.1364/OE.15.001745 – reference: KuoCHChiangTFChenLJHuangMHSynthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfateLangmuir20042018782078241:CAS:528:DC%2BD2cXlvFGhsLo%3D10.1021/la049172q – reference: ThomasKGKamatPVChromophore-functionalized gold nanoparticlesAcc Chem Res200336128888981:CAS:528:DC%2BD3sXnsFelsbw%3D10.1021/ar030030h – reference: ChenHJKouXSYangZNiWHWangJFShape- and size-dependent refractive index sensitivity of gold nanoparticlesLangmuir20082410523352371:CAS:528:DC%2BD1cXltVyjs7c%3D10.1021/la800305j – reference: LawWCMarkowiczPYongKTRoyIBaevAPatskovskySKabashinAVHoHPPrasadPNWide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonicsBiosens Bioelectron20072356276321:CAS:528:DC%2BD2sXhtlWksb7E10.1016/j.bios.2007.07.015 – reference: WuBYHouSHYinFLiJZhaoZXHuangJDChenQAmperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrodeBiosens Bioelectron20072268388441:CAS:528:DC%2BD28XhtlalsbzJ10.1016/j.bios.2006.03.009 – reference: CampionAKambhampatiPSurface-enhanced Raman scatteringChem Soc Rev19982742412501:CAS:528:DyaK1cXjvVKjt78%3D10.1039/a827241z – reference: HuangYFLinYWLinZHChangHTAptamer-modified gold nanoparticles for targeting breast cancer cells through light scatteringJ Nanopart Res20091147757831:CAS:528:DC%2BD1MXktVGkurk%3D10.1007/s11051-008-9424-x – reference: SunYGXiaYNShape-controlled synthesis of gold and silver nanoparticlesScience20022985601217621791:CAS:528:DC%2BD38XpsVSkt7Y%3D10.1126/science.1077229 – reference: SlocikJMZabinskiJSPhillipsDMNaikRRColorimetric response of peptide-functionalized gold nanoparticles to metal ionsSmall2008455485511:CAS:528:DC%2BD1cXmvFWlt7Y%3D10.1002/smll.200700920 – reference: WilsonDSSzostakJWIn vitro selection of functional nucleic acidsAnnu Rev Biochem1999686116471:CAS:528:DyaK1MXlvFajtrg%3D10.1146/annurev.biochem.68.1.611 – reference: NathNChilkotiAA colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surfaceAnal Chem20027435045091:CAS:528:DC%2BD3MXptlKisL8%3D10.1021/ac015657x – reference: HoHPWuSYYangMCheungACApplication of white light-emitting diode to surface plasmon resonance sensorsSens Actuators, B2001802899410.1016/S0925-4005(01)00881-4 – reference: MartinMNBashamJIChandoPEahSKCharged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assemblyLangmuir20102610741074171:CAS:528:DC%2BC3cXkslKntLc%3D10.1021/la100591h – reference: EllingtonADSzostakJWInvitro selection of RNA molecules that bind specific ligandsNature199034662878188221:CAS:528:DyaK3MXitVGgsw%3D%3D10.1038/346818a0 – reference: ZhangSXWangNYuHJNiuYMSunCQCovalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensorBioelectrochemistry200567115221:CAS:528:DC%2BD2MXlsFCrtbc%3D10.1016/j.bioelechem.2004.12.002 – reference: LinkSEl-SayedMASpectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorodsJ Phys Chem B199910340841084261:CAS:528:DyaK1MXlslGntrs%3D10.1021/jp9917648 – reference: AstrucDDanielMCRuizJDendrimers and gold nanoparticles as exo-receptors sensing biologically important anionsChem Commun2004232637264910.1039/b410399h1:CAS:528:DC%2BD2cXhtVekt7rP – reference: PengGTischUAdamsOHakimMShehadaNBrozaYYBillanSAbdah-BortnyakRKutenAHaickHDiagnosing lung cancer in exhaled breath using gold nanoparticlesNat Nanotechnol20094106696731:CAS:528:DC%2BD1MXht1aqsLvM10.1038/nnano.2009.235 – reference: DanielMCAstrucDGold nanoparticles: assembly, supramolecular chemistry, quantum size-related properties, and applications toward biology, catalysis, and nanotechnologyChem Rev200410412933461:CAS:528:DC%2BD3sXpvFGlur0%3D10.1021/cr030698+ – reference: MargheriGGiorgettiESottiniSTociGNonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniquesJ Opt Soc Am B: Opt Phys20032047417511:CAS:528:DC%2BD3sXis1Cht74%3D10.1364/JOSAB.20.000741 – reference: NieSMEmerySRProbing single molecules and single nanoparticles by surface-enhanced Raman scatteringScience19972755303110211061:CAS:528:DyaK2sXhtlGlsL4%3D10.1126/science.275.5303.1102 – reference: LiedbergBNylanderCLundstromISurface-plasmon resonance for gas-detection and biosensingSens Actuators1983422993041:CAS:528:DyaL2cXnvV2kug%3D%3D – reference: DemersLMMirkinCAMucicRCReynoldsRALetsingerRLElghanianRViswanadhamGA fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticlesAnal Chem20007222553555411:CAS:528:DC%2BD3cXnsVals70%3D10.1021/ac0006627 – reference: HuJQZhangYLiuBLiuJXZhouHHXuYFJiangYXYangZLTianZQSynthesis and properties of tadpole-shaped gold nanoparticlesJ Am Chem Soc2004126319470947110.1021/ja049738x – reference: GearheartLAPloehnHJMurphyCJOligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNAJ Phys Chem B20011055012609126151:CAS:528:DC%2BD3MXot1elt78%3D10.1021/jp0106606 – reference: ElghanianRStorhoffJJMucicRCLetsingerRLMirkinCASelective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticlesScience19972775329107810811:CAS:528:DyaK2sXlsFSisb0%3D10.1126/science.277.5329.1078 – reference: SylvestreJPKabashinAVSacherEMeunierMLuongJHTStabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrinsJ Am Chem Soc200412623717671771:CAS:528:DC%2BD2cXktVSlsL4%3D10.1021/ja048678s – reference: JenaBKRajCRElectrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticlesAnal Chem20067818633263391:CAS:528:DC%2BD28XotFCrs7Y%3D10.1021/ac052143f – reference: PorterLAJiDWestcottSLGraupeMCzernuszewiczRSHalasNJLeeTRGold and silver nanoparticles functionalized by the adsorption of dialkyl disulfidesLangmuir19981426737873861:CAS:528:DyaK1cXntl2qtL0%3D10.1021/la980870i – reference: BattagliniFBartlettPNWangJHCovalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucoseAnal Chem20007235025091:CAS:528:DyaK1MXotVOmsr4%3D10.1021/ac990321x – reference: MariottiEMinunniMMasciniMSurface plasmon resonance biosensor for genetically modified organisms detectionAnal Chim Acta200245321651721:CAS:528:DC%2BD38XpvVWnsg%3D%3D10.1016/S0003-2670(01)01458-1 – reference: JemalASiegelRWardEHaoYPXuJQMurrayTThunMJCancer statistics, 2008CA Cancer J Clin2008582719610.3322/CA.2007.0010 – reference: MeiSHJLiuZJBrennanJDLiYFAn efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signalingJ Am Chem Soc200312524124201:CAS:528:DC%2BD38XpsVenuro%3D10.1021/ja0281232 – reference: JayasenaSDAptamers: an emerging class of molecules that rival antibodies in diagnosticsClin Chem1999459162816501:CAS:528:DyaK1MXlvFertrk%3D – reference: ShenoyDFuWLiJCrastoCJonesGDiMarzioCSridharSAmijiMSurface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and deliveryInt J Nanomedicine20061151571:CAS:528:DC%2BD28XhtFSjsrvN10.2147/nano.2006.1.1.51 – reference: WilsonGSHuYBEnzyme based biosensors for in vivo measurementsChem Rev20001007269327041:CAS:528:DC%2BD3cXjs1Ohur0%3D10.1021/cr990003y – reference: JiaJBWangBQWuAGChengGJLiZDongSJA method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel networkAnal Chem2002749221722231:CAS:528:DC%2BD38XitlCjur0%3D10.1021/ac011116w – reference: MayeMMZhengWXLeibowitzFLLyNKZhongCJHeating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulationsLangmuir20001624904971:CAS:528:DyaK1MXntValtbg%3D10.1021/la990892k – reference: LiuJWLuYFast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticlesAngew Chem Int Ed200645190941:CAS:528:DC%2BD28XhslKgtQ%3D%3D10.1002/anie.200502589 – reference: ZhangLMUttamchandaniDOptical chemical sensing employing surface-plasmon resonanceElectron Lett198824231469147010.1049/el:19881004 – reference: MizukoshiYOkitsuKMaedaYYamamotoTAOshimaRNagataYSonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solutionJ Phys Chem B199710136703370371:CAS:528:DyaK2sXlt1Kktro%3D10.1021/jp9638090 – reference: LiuJWLuYAdenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensorAnal Chem2004766162716321:CAS:528:DC%2BD2cXpvFGrug%3D%3D10.1021/ac0351769 – reference: MatsubaraKKawataSMinamiSOptical chemical sensor based on surface-plasmon measurementAppl Opt1988276116011631:CAS:528:DyaL1cXktFKgsbg%3D10.1364/AO.27.001160 – reference: SauTKMurphyCJRoom temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solutionJ Am Chem Soc200412628864886491:CAS:528:DC%2BD2cXlsF2msbk%3D10.1021/ja047846d – reference: ThanhNTKRosenzweigZDevelopment of an aggregation-based immunoassay for anti-protein A using gold nanoparticlesAnal Chem2002747162416281:CAS:528:DC%2BD38Xhs1Wks74%3D10.1021/ac011127p – reference: KneippJKneippHRiceWLKneippKOptical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticlesAnal Chem2005778238123851:CAS:528:DC%2BD2MXitVShsro%3D10.1021/ac050109v – reference: MalikovaNPastoriza-SantosISchierhornMKotovNALiz-MarzanLMLayer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactionsLangmuir2002189369436971:CAS:528:DC%2BD38XisVOhtbs%3D10.1021/la025563y – reference: HuangHZYangXRSynthesis of polysaccharide-stabilized gold and silver nanoparticles: a green methodCarbohydr Res200433915262726311:CAS:528:DC%2BD2cXotlSrtbs%3D10.1016/j.carres.2004.08.005 – reference: BanerjeeAKRabbittsPHGeorgeJLung cancer center dot 3: fluorescence bronchoscopy: clinical dilemmas and research opportunitiesThorax20035832662711:STN:280:DC%2BD3s7gtVektg%3D%3D10.1136/thorax.58.3.266 – reference: El-SayedMASome interesting properties of metals confined in time and nanometer space of different shapesAcc Chem Res20013442572641:CAS:528:DC%2BD3MXksVOgtQ%3D%3D10.1021/ar960016n – reference: ChenSJChangHTNile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregationAnal Chem20047613372737341:CAS:528:DC%2BD2cXjvFCgtL4%3D10.1021/ac049787s – reference: LawrenceNSDeoRPWangJBiocatalytic carbon paste sensors based on a mediator pasting liquidAnal Chem20047613373537391:CAS:528:DC%2BD2cXjvVCks7Y%3D10.1021/ac049943v – reference: HuangCCHuangYFCaoZHTanWHChangHTAptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptorsAnal Chem20057717573557411:CAS:528:DC%2BD2MXntVOksbw%3D10.1021/ac050957q – reference: YuHXuLCaoMFChenXWangPJiaoJWWangYLIEEEDetection volatile organic compounds in breath as markers of lung cancer using a novel electronic noseProc IEEE Sens20031 and 213331337 – reference: BrustMFinkJBethellDSchiffrinDJKielyCSynthesis and reactions of functionalized gold nanoparticlesJ Chem Soc, Chem Commun1995161655165610.1039/c39950001655 – reference: GhoshSKPalTInterparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applicationsChem Rev200710711479748621:CAS:528:DC%2BD2sXht1yrt7zK10.1021/cr0680282 – reference: OtsukaHAkiyamaYNagasakiYKataokaKQuantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol)J Am Chem Soc200112334822682301:CAS:528:DC%2BD3MXlsFygtLg%3D10.1021/ja010437m – reference: HomolaJSurface plasmon resonance sensors for detection of chemical and biological speciesChem Rev200810824624931:CAS:528:DC%2BD1cXhtFCiu7Y%3D10.1021/cr068107d – reference: TurkevichJStevensonPCHillierJA study of the nucleation and growth processes in the synthesis of colloidal goldDiscuss Faraday Soc195111557510.1039/df9511100055 – reference: KimlingJMaierMOkenveBKotaidisVBallotHPlechATurkevich method for gold nanoparticle synthesis revisitedJ Phys Chem B20061103215700157071:CAS:528:DC%2BD28XntVKgur4%3D10.1021/jp061667w – reference: LiHXRothbergLColorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticlesProc Natl Acad Sci USA20041013914036140391:CAS:528:DC%2BD2cXosVylsrY%3D10.1073/pnas.0406115101 – reference: FoosEESnowAWTwiggMEAnconaMGThiol-terminated Di-, Tri-, and tetraethylene oxide functionalized gold nanoparticles: a water-soluble, charge-neutral clusterChem Mater2002145240124081:CAS:528:DC%2BD38XivFWisb8%3D10.1021/cm020007a – reference: LeeKSEl-SayedMAGold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal compositionJ Phys Chem B20061103919220192251:CAS:528:DC%2BD28XptFahs7w%3D10.1021/jp062536y – reference: PerraultSDChanWCWSynthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nmJ Am Chem Soc20091314717042170431:CAS:528:DC%2BD1MXhtlOksrvK10.1021/ja907069u – reference: BrustMWalkerMBethellDSchiffrinDJWhymanRSynthesis of thiol-derivatized gold nanopaticles in a 2-phase liquid–liquid systemJ Chem Soc, Chem Commun1994780180210.1039/c39940000801 – reference: MieGArticles on the optical characteristics of turbid tubes, especially colloidal metal solutionsAnn Phys19082533774451:CAS:528:DyaD1cXhtFWqtQ%3D%3D10.1002/andp.19083300302 – reference: DarbhaGKSinghAKRaiUSYuEYuHTRayPCSelective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticlesJ Am Chem Soc200813025803880431:CAS:528:DC%2BD1cXms1GitbY%3D10.1021/ja801412b – volume: 74 start-page: 1624 issue: 7 year: 2002 ident: 9228_CR85 publication-title: Anal Chem doi: 10.1021/ac011127p – volume: 8 start-page: 1341 issue: 4 year: 2007 ident: 9228_CR81 publication-title: Biomacromolecules doi: 10.1021/bm061224y – volume: 110 start-page: 19220 issue: 39 year: 2006 ident: 9228_CR3 publication-title: J Phys Chem B doi: 10.1021/jp062536y – volume: 528 start-page: 1 issue: 1 year: 2005 ident: 9228_CR107 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2004.10.007 – volume: 126 start-page: 12298 issue: 39 year: 2004 ident: 9228_CR90 publication-title: J Am Chem Soc doi: 10.1021/ja046628h – volume: 27 start-page: 241 issue: 4 year: 1998 ident: 9228_CR19 publication-title: Chem Soc Rev doi: 10.1039/a827241z – volume: 74 start-page: 504 issue: 3 year: 2002 ident: 9228_CR84 publication-title: Anal Chem doi: 10.1021/ac015657x – volume: 45 start-page: 2204 issue: 14 year: 2006 ident: 9228_CR52 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200502481 – volume: 25 start-page: 984 issue: 5 year: 2010 ident: 9228_CR89 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2009.09.006 – volume: 17 start-page: 6782 issue: 22 year: 2001 ident: 9228_CR45 publication-title: Langmuir doi: 10.1021/la0104323 – volume: 24 start-page: 1469 issue: 23 year: 1988 ident: 9228_CR71 publication-title: Electron Lett doi: 10.1049/el:19881004 – volume: 34 start-page: 257 issue: 4 year: 2001 ident: 9228_CR16 publication-title: Acc Chem Res doi: 10.1021/ar960016n – volume: 74 start-page: 2217 issue: 9 year: 2002 ident: 9228_CR117 publication-title: Anal Chem doi: 10.1021/ac011116w – volume: 105 start-page: 1547 issue: 4 year: 2005 ident: 9228_CR105 publication-title: Chem Rev doi: 10.1021/cr030067f – volume: 72 start-page: 5535 issue: 22 year: 2000 ident: 9228_CR67 publication-title: Anal Chem doi: 10.1021/ac0006627 – volume: 453 start-page: 165 issue: 2 year: 2002 ident: 9228_CR66 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(01)01458-1 – volume: 111 start-page: 14664 issue: 40 year: 2007 ident: 9228_CR10 publication-title: J Phys Chem C doi: 10.1021/jp074902z – volume: 75 start-page: 2703 issue: 11 year: 2003 ident: 9228_CR99 publication-title: Anal Chem doi: 10.1021/ac020542u – volume: 18 start-page: 3694 issue: 9 year: 2002 ident: 9228_CR48 publication-title: Langmuir doi: 10.1021/la025563y – volume: 1 start-page: 51 issue: 1 year: 2006 ident: 9228_CR42 publication-title: Int J Nanomedicine doi: 10.2147/nano.2006.1.1.51 – volume: 34 start-page: 1613 issue: 8 year: 1988 ident: 9228_CR112 publication-title: Clin Chem doi: 10.1093/clinchem/34.8.1613 – volume: 121 start-page: 9208 issue: 39 year: 1999 ident: 9228_CR5 publication-title: J Am Chem Soc doi: 10.1021/ja992058n – volume: 13 start-page: 1389 issue: 18 year: 2001 ident: 9228_CR44 publication-title: Adv Mater doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F – volume: 262 start-page: 137 issue: 2 year: 1998 ident: 9228_CR15 publication-title: Anal Biochem doi: 10.1006/abio.1998.2759 – volume: 104 start-page: 293 issue: 1 year: 2004 ident: 9228_CR8 publication-title: Chem Rev doi: 10.1021/cr030698+ – volume: 4 start-page: 299 issue: 2 year: 1983 ident: 9228_CR73 publication-title: Sens Actuators doi: 10.1016/0250-6874(83)85036-7 – volume: 101 start-page: 7033 issue: 36 year: 1997 ident: 9228_CR22 publication-title: J Phys Chem B doi: 10.1021/jp9638090 – volume: 23 start-page: 627 issue: 5 year: 2007 ident: 9228_CR78 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2007.07.015 – volume: 100 start-page: 2693 issue: 7 year: 2000 ident: 9228_CR97 publication-title: Chem Rev doi: 10.1021/cr990003y – volume: 125 start-page: 412 issue: 2 year: 2003 ident: 9228_CR55 publication-title: J Am Chem Soc doi: 10.1021/ja0281232 – volume: 105 start-page: 12609 issue: 50 year: 2001 ident: 9228_CR56 publication-title: J Phys Chem B doi: 10.1021/jp0106606 – volume: 20 start-page: 3263 issue: 17 year: 2008 ident: 9228_CR93 publication-title: Adv Mater doi: 10.1002/adma.200703181 – volume: 126 start-page: 7176 issue: 23 year: 2004 ident: 9228_CR51 publication-title: J Am Chem Soc doi: 10.1021/ja048678s – volume: 130 start-page: 8038 issue: 25 year: 2008 ident: 9228_CR88 publication-title: J Am Chem Soc doi: 10.1021/ja801412b – volume: 45 start-page: 1628 issue: 9 year: 1999 ident: 9228_CR54 publication-title: Clin Chem doi: 10.1093/clinchem/45.9.1628 – volume: 2 start-page: 113 issue: 1 year: 2007 ident: 9228_CR43 publication-title: Nanomedicine doi: 10.2217/17435889.2.1.113 – volume: 7 start-page: 3157 issue: 10 year: 2007 ident: 9228_CR116 publication-title: Nano Lett doi: 10.1021/nl071729+ – volume: 25 start-page: 2016 issue: 9 year: 2010 ident: 9228_CR86 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2010.01.029 – volume: 25 start-page: 377 issue: 3 year: 1908 ident: 9228_CR14 publication-title: Ann Phys doi: 10.1002/andp.19083300302 – volume: 250 start-page: 736 issue: 7 year: 1972 ident: 9228_CR32 publication-title: Kolloid-Z Z Polym doi: 10.1007/BF01498565 – volume: 23 start-page: 2637 year: 2004 ident: 9228_CR106 publication-title: Chem Commun doi: 10.1039/b410399h – volume: 45 start-page: 90 issue: 1 year: 2006 ident: 9228_CR60 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200502589 – volume: 20 start-page: 7820 issue: 18 year: 2004 ident: 9228_CR30 publication-title: Langmuir doi: 10.1021/la049172q – volume: 58 start-page: 266 issue: 3 year: 2003 ident: 9228_CR111 publication-title: Thorax doi: 10.1136/thorax.58.3.266 – volume: 24 start-page: 5233 issue: 10 year: 2008 ident: 9228_CR2 publication-title: Langmuir doi: 10.1021/la800305j – volume: 51 start-page: 41 year: 2000 ident: 9228_CR72 publication-title: Annu Rev Phys Chem doi: 10.1146/annurev.physchem.51.1.41 – volume-title: Clusters and colloids—from theory to applications year: 1994 ident: 9228_CR1 – volume: 36 start-page: 888 issue: 12 year: 2003 ident: 9228_CR41 publication-title: Acc Chem Res doi: 10.1021/ar030030h – volume: 16 start-page: 490 issue: 2 year: 2000 ident: 9228_CR23 publication-title: Langmuir doi: 10.1021/la990892k – volume: 68 start-page: 611 year: 1999 ident: 9228_CR62 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.68.1.611 – volume: 14 start-page: 2401 issue: 5 year: 2002 ident: 9228_CR39 publication-title: Chem Mater doi: 10.1021/cm020007a – volume: 4 start-page: 548 issue: 5 year: 2008 ident: 9228_CR91 publication-title: Small doi: 10.1002/smll.200700920 – volume: 298 start-page: 2176 issue: 5601 year: 2002 ident: 9228_CR25 publication-title: Science doi: 10.1126/science.1077229 – volume: 2 start-page: 1466 issue: 5 year: 2010 ident: 9228_CR94 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am100107k – volume: 114 start-page: 7336 issue: 16 year: 2010 ident: 9228_CR6 publication-title: J Phys Chem C doi: 10.1021/jp909253w – volume: 78 start-page: 6332 issue: 18 year: 2006 ident: 9228_CR68 publication-title: Anal Chem doi: 10.1021/ac052143f – volume: 110 start-page: 15700 issue: 32 year: 2006 ident: 9228_CR34 publication-title: J Phys Chem B doi: 10.1021/jp061667w – volume: 80 start-page: 89 issue: 2 year: 2001 ident: 9228_CR76 publication-title: Sens Actuators, B doi: 10.1016/S0925-4005(01)00881-4 – volume: 76 start-page: 3727 issue: 13 year: 2004 ident: 9228_CR108 publication-title: Anal Chem doi: 10.1021/ac049787s – volume: 131 start-page: 17042 issue: 47 year: 2009 ident: 9228_CR35 publication-title: J Am Chem Soc doi: 10.1021/ja907069u – volume: 101 start-page: 14036 issue: 39 year: 2004 ident: 9228_CR57 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0406115101 – volume: 126 start-page: 9470 issue: 31 year: 2004 ident: 9228_CR29 publication-title: J Am Chem Soc doi: 10.1021/ja049738x – volume: 79 start-page: 6697 issue: 17 year: 2007 ident: 9228_CR64 publication-title: Anal Chem doi: 10.1021/ac071062b – volume: 14 start-page: 7378 issue: 26 year: 1998 ident: 9228_CR38 publication-title: Langmuir doi: 10.1021/la980870i – volume: 77 start-page: 4282 issue: 13 year: 2005 ident: 9228_CR80 publication-title: Anal Chem doi: 10.1021/ac050227i – volume: 76 start-page: 5370 issue: 18 year: 2004 ident: 9228_CR18 publication-title: Anal Chem doi: 10.1021/ac049741z – volume: 17 start-page: 19041 issue: 21 year: 2009 ident: 9228_CR79 publication-title: Opt Express doi: 10.1364/OE.17.019041 – volume: 22 start-page: 838 issue: 6 year: 2007 ident: 9228_CR104 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2006.03.009 – volume: 103 start-page: 8410 issue: 40 year: 1999 ident: 9228_CR13 publication-title: J Phys Chem B doi: 10.1021/jp9917648 – volume: 123 start-page: 8226 issue: 34 year: 2001 ident: 9228_CR49 publication-title: J Am Chem Soc doi: 10.1021/ja010437m – volume: 20 start-page: 556 issue: 3 year: 2004 ident: 9228_CR47 publication-title: Langmuir doi: 10.1021/la0355848 – volume: 76 start-page: 5414 issue: 18 year: 2004 ident: 9228_CR58 publication-title: Anal Chem doi: 10.1021/ac049173n – volume: 241 start-page: 20 issue: 105 year: 1973 ident: 9228_CR33 publication-title: Nature-Physical Science doi: 10.1038/physci241020a0 – volume: 108 start-page: 462 issue: 2 year: 2008 ident: 9228_CR9 publication-title: Chem Rev doi: 10.1021/cr068107d – volume: 275 start-page: 1102 issue: 5303 year: 1997 ident: 9228_CR4 publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 78 start-page: 1667 issue: 9 year: 1997 ident: 9228_CR20 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.78.1667 – volume: 80 start-page: 6805 issue: 17 year: 2008 ident: 9228_CR96 publication-title: Anal Chem doi: 10.1021/ac801046a – volume: 10 start-page: 38 issue: 1 year: 2008 ident: 9228_CR87 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2007.10.030 – volume: 77 start-page: 729 issue: 2 year: 2005 ident: 9228_CR101 publication-title: Anal Chem doi: 10.1021/ac0486746 – volume: 16 start-page: 1655 year: 1995 ident: 9228_CR37 publication-title: J Chem Soc, Chem Commun doi: 10.1039/c39950001655 – volume: 58 start-page: 71 issue: 2 year: 2008 ident: 9228_CR109 publication-title: CA Cancer J Clin doi: 10.3322/CA.2007.0010 – volume: 126 start-page: 8648 issue: 28 year: 2004 ident: 9228_CR28 publication-title: J Am Chem Soc doi: 10.1021/ja047846d – volume: 4 start-page: 669 issue: 10 year: 2009 ident: 9228_CR115 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2009.235 – volume: 72 start-page: 502 issue: 3 year: 2000 ident: 9228_CR100 publication-title: Anal Chem doi: 10.1021/ac990321x – volume: 277 start-page: 1078 issue: 5329 year: 1997 ident: 9228_CR65 publication-title: Science doi: 10.1126/science.277.5329.1078 – volume: 77 start-page: 2381 issue: 8 year: 2005 ident: 9228_CR82 publication-title: Anal Chem doi: 10.1021/ac050109v – volume: 17 start-page: 975 issue: 6 year: 1962 ident: 9228_CR11 publication-title: J Phys Soc Jpn doi: 10.1143/JPSJ.17.975 – volume: 125 start-page: 6642 issue: 22 year: 2003 ident: 9228_CR92 publication-title: J Am Chem Soc doi: 10.1021/ja034775u – volume: 76 start-page: 1627 issue: 6 year: 2004 ident: 9228_CR59 publication-title: Anal Chem doi: 10.1021/ac0351769 – volume: 30 start-page: 1735 issue: 8 year: 2002 ident: 9228_CR63 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.8.1735 – volume: 22 start-page: 3 issue: 4 year: 2008 ident: 9228_CR110 publication-title: J Econ Perspect doi: 10.1257/jep.22.4.3 – volume: 105 start-page: 1025 issue: 4 year: 2005 ident: 9228_CR7 publication-title: Chem Rev doi: 10.1021/cr030063a – volume: 11 start-page: 775 issue: 4 year: 2009 ident: 9228_CR53 publication-title: J Nanopart Res doi: 10.1007/s11051-008-9424-x – volume: 346 start-page: 818 issue: 6287 year: 1990 ident: 9228_CR61 publication-title: Nature doi: 10.1038/346818a0 – volume: 14 start-page: 7392 issue: 26 year: 1998 ident: 9228_CR26 publication-title: Langmuir doi: 10.1021/la981278w – volume: 77 start-page: 5735 issue: 17 year: 2005 ident: 9228_CR69 publication-title: Anal Chem doi: 10.1021/ac050957q – volume: 103 start-page: 4212 issue: 21 year: 1999 ident: 9228_CR12 publication-title: J Phys Chem B doi: 10.1021/jp984796o – volume: 339 start-page: 2627 issue: 15 year: 2004 ident: 9228_CR50 publication-title: Carbohydr Res doi: 10.1016/j.carres.2004.08.005 – volume: 12 start-page: 2702 issue: 10 year: 2006 ident: 9228_CR103 publication-title: Chem Eur J doi: 10.1002/chem.200501051 – volume: 27 start-page: 1160 issue: 6 year: 1988 ident: 9228_CR70 publication-title: Appl Opt doi: 10.1364/AO.27.001160 – volume: 21 start-page: 894 issue: 6 year: 2005 ident: 9228_CR74 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2005.02.016 – volume: 15 start-page: 1745 issue: 4 year: 2007 ident: 9228_CR77 publication-title: Opt Express doi: 10.1364/OE.15.001745 – volume: 26 start-page: 7410 issue: 10 year: 2010 ident: 9228_CR24 publication-title: Langmuir doi: 10.1021/la100591h – volume: 103 start-page: 1215 issue: 5 year: 2006 ident: 9228_CR83 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0509739103 – volume: 353 start-page: 1930 issue: 9168 year: 1999 ident: 9228_CR114 publication-title: Lancet doi: 10.1016/S0140-6736(98)07552-7 – volume: 11 start-page: 55 year: 1951 ident: 9228_CR31 publication-title: Discuss Faraday Soc doi: 10.1039/df9511100055 – volume: 76 start-page: 3735 issue: 13 year: 2004 ident: 9228_CR102 publication-title: Anal Chem doi: 10.1021/ac049943v – volume: 102 start-page: 493 issue: 3 year: 1998 ident: 9228_CR21 publication-title: J Phys Chem B doi: 10.1021/jp9734033 – volume: 14 start-page: 1795 issue: 12 year: 2004 ident: 9228_CR46 publication-title: J Mater Chem doi: 10.1039/b402823f – volume: 67 start-page: 15 issue: 1 year: 2005 ident: 9228_CR98 publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2004.12.002 – volume: 1 and 2 start-page: 1333 year: 2003 ident: 9228_CR113 publication-title: Proc IEEE Sens – volume: 11 start-page: 2310 issue: 9 year: 1999 ident: 9228_CR27 publication-title: Chem Mater doi: 10.1021/cm990315h – volume: 107 start-page: 4797 issue: 11 year: 2007 ident: 9228_CR17 publication-title: Chem Rev doi: 10.1021/cr0680282 – volume: 2 start-page: 29 issue: 1 year: 2002 ident: 9228_CR40 publication-title: Nano Lett doi: 10.1021/nl010073w – volume: 7 start-page: 801 year: 1994 ident: 9228_CR36 publication-title: J Chem Soc, Chem Commun doi: 10.1039/C39940000801 – volume: 20 start-page: 741 issue: 4 year: 2003 ident: 9228_CR75 publication-title: J Opt Soc Am B: Opt Phys doi: 10.1364/JOSAB.20.000741 – volume: 19 start-page: 2242 year: 2008 ident: 9228_CR95 publication-title: Chem Commun doi: 10.1039/b719856f |
SSID | ssj0044464 |
Score | 2.4777007 |
Snippet | Nanoparticle technology plays a key role in providing opportunities and possibilities for the development of new generation of sensing tools. The targeted... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 491 |
SubjectTerms | Biochemistry Biological and Medical Physics Biophysics Biotechnology Chemistry Chemistry and Materials Science Nanotechnology |
Title | A Review on Functionalized Gold Nanoparticles for Biosensing Applications |
URI | https://link.springer.com/article/10.1007/s11468-011-9228-1 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfQiWhXro-zBk7KQZHfyOMbSWhU9WainsK9IoSRi6sVf7-ZlLajgIbfJQia78_q-mQW4cKUruJd6VAdBSjl3NJWOiCgKEUqN9qkQ3YdHfzLldzOcNX3cRct2byHJylKvmt2qLqGypBd5nk19NqGLNnUveVxTL27NL7f5TQUlIwbUjRBbKPOnJdad0ToSWjmY8R7sNpEhietfuQ8bJuvB9rC9kK0HWxVbUxUHcBuTuqZP8oyMrWeqC3rzD6PJTb7QxNpMmww3nDdi41JyPc-LkquevZD4G2Z9CNPx6Gk4oc2dCFQx5EvKlEQ_TR3jMBG5XLnGN0alzGY99lsNSi-UAoWKhFGBPc2h0Mx6ZR2ZwKRchuwIOlmemWMgofQdIVFphhH3RSpZIFAjelLZpRnrg9MqJ1HNwPDy3opFshp1XOozsfpMSn0mbh8uv155radl_CV81Wo8aQ5O8bv0yb-kT2GnLv6WZLAz6Czf3s25jR6WcgDd-Ob5fjSods0nd7O9Ag |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFH5oRepFXLGuc9CLEkhmyXLwUKu1dTtZ6C3OFhEkFVsR_Tv-UV82a0EFDz3k9jKElzdv-755A7DvKU9ymlDHBEHicO4aR7kycoSUoTICnxzRvb7xOz1-0Rf9GfiozsLkbPcKksw99fiwW35KKGvpRZRi6VMyKS_t2yvWacPj7in-1ANK22e3rY5TXiXgaCb4yGFaCT9JXOsyGXlce9a3VicMi4VICCsUDZUUUkfS6gA3QSgNw2BmIhvYhKuQ4bqzMIe5R5htnR5tVu6eYz2VQ9dCBI6Hi1XQ6U-fPBn8JpHXPKC1l2CxzERJszCdZZix6QrUW9UFcCswn7ND9XAVuk1SYAhkkJI2RsKigfjwbg05Hzwagj4ai--SY0cwDyYnD4Nhxo1P70nzG0a-Br2pKG4daukgtRtAQuW7UgltmIi4LxPFAimMEFRpXJqxBriVcmJdDijP7sl4jMejlTN9xqjPONNn7DXg8OuVp2I6x1_CR5XG43KjDn-X3vyX9B7UO7fXV_FV9-ZyCxaKxnNGRNuG2uj5xe5g5jJSu7nlELibtql-Artj-ck |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NQEB604nIRV9x9B70ooclbshw81KVaNzxY6C2-LVIoqdiK6J_yLzrZrIIKHjzkNhnCZObN8s3MA9jxlCc5TahjgiBxOHeNo1wZOULKUBmBT47oXl37Z21-3hGdMXirZmHybvcKkixmGrItTemw_mCS-mjwLZ8Yysp7EaWYBpVdlRf25RlztsFB6xh_8C6lzZPbozOnvFbA0UzwocO0En6SuNZlMvK49qxvrU4YJg6REFYoGioppI6k1QEaRCgNQ8dmIhvYhKuQId9xmODZ8DEaUJs2qqOfY26Vw9hCBI6HzCoY9btP_uoIv6KwuXNrzsFsGZWSRqFG8zBm0wWYPqoug1uAybxTVA8WodUgBZ5A-ilpolcsiondV2vIab9nCJ7XmIiX_XYEY2Jy2O0Psj759J40PuHlS9D-F8EtQy3tp3YFSKh8VyqhDRMR92WiWCCFEYIqjawZWwW3Ek6sy2Xl2Z0ZvXi0ZjmTZ4zyjDN5xt4q7H288lBs6viNeL-SeFwa7eBn6rU_UW_D1M1xM75sXV-sw0xRg8560jagNnx8spsYxAzVVq44BO7-W1PfAYjq_fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Functionalized+Gold+Nanoparticles+for+Biosensing+Applications&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Zeng%2C+Shuwen&rft.au=Yong%2C+Ken-Tye&rft.au=Roy%2C+Indrajit&rft.au=Dinh%2C+Xuan-Quyen&rft.date=2011-09-01&rft.pub=Springer+US&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1007%2Fs11468-011-9228-1&rft.externalDocID=10_1007_s11468_011_9228_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon |