CO2 Adsorption and Desorption by Waste Ion-Exchange Resin–Based Activated Carbon on Fixed Bed
The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO 2 adsorption. The effect of adsorption temperature, gas flow, CO 2 concentration, and adsorbent filling content on CO 2 adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO 2 d...
Saved in:
Published in | Frontiers in energy research Vol. 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
02.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO
2
adsorption. The effect of adsorption temperature, gas flow, CO
2
concentration, and adsorbent filling content on CO
2
adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO
2
desorption performances of WIRAC were researched. In the adsorption process, with the increase of adsorption temperature, the CO
2
adsorption capacity and adsorption rate decrease; as the gas flow increases, the CO
2
adsorption capacity decreases, but the adsorption rate increases; with the increase of CO
2
concentration and adsorbent filling content, the CO
2
adsorption capacity and adsorption rate both increase. In the desorption process, the higher the desorption temperature and the smaller the sweep gas flow, the higher the CO
2
purity of product gas and the longer the desorption time. In order to make sure the adsorbent be used efficiently and the higher CO
2
concentration of product gas, the adsorption and desorption conditions selected should be a suitable choice. |
---|---|
AbstractList | The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO
2
adsorption. The effect of adsorption temperature, gas flow, CO
2
concentration, and adsorbent filling content on CO
2
adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO
2
desorption performances of WIRAC were researched. In the adsorption process, with the increase of adsorption temperature, the CO
2
adsorption capacity and adsorption rate decrease; as the gas flow increases, the CO
2
adsorption capacity decreases, but the adsorption rate increases; with the increase of CO
2
concentration and adsorbent filling content, the CO
2
adsorption capacity and adsorption rate both increase. In the desorption process, the higher the desorption temperature and the smaller the sweep gas flow, the higher the CO
2
purity of product gas and the longer the desorption time. In order to make sure the adsorbent be used efficiently and the higher CO
2
concentration of product gas, the adsorption and desorption conditions selected should be a suitable choice. The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO2 adsorption. The effect of adsorption temperature, gas flow, CO2 concentration, and adsorbent filling content on CO2 adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO2 desorption performances of WIRAC were researched. In the adsorption process, with the increase of adsorption temperature, the CO2 adsorption capacity and adsorption rate decrease; as the gas flow increases, the CO2 adsorption capacity decreases, but the adsorption rate increases; with the increase of CO2 concentration and adsorbent filling content, the CO2 adsorption capacity and adsorption rate both increase. In the desorption process, the higher the desorption temperature and the smaller the sweep gas flow, the higher the CO2 purity of product gas and the longer the desorption time. In order to make sure the adsorbent be used efficiently and the higher CO2 concentration of product gas, the adsorption and desorption conditions selected should be a suitable choice. |
Author | Zhao, Qiuyue Wei, Mengqi |
Author_xml | – sequence: 1 givenname: Mengqi surname: Wei fullname: Wei, Mengqi – sequence: 2 givenname: Qiuyue surname: Zhao fullname: Zhao, Qiuyue |
BookMark | eNp1kN1Kw0AQhRepYK19AO_yAqn7l93ksq2tFgoFKejdMvuTuqUmZTdIe-c7-IY-iWmrIoIwMHMGzmHmu0Sdqq4cQtcEDxjLi5vSVWE1oJiSgZRUEnyGupQWIs2K_Knza75A_RjXGGPCaMYJ7iI1XtBkaGMdto2vqwQqm9y6H6n3ySPExiWzukonO_MM1colDy766uPtfQTR2WRoGv8KTTuNIejW1NbU71o9cvYKnZewia7_1XtoOZ0sx_fpfHE3Gw_nqWEZb9L2C14SkTlBqDZWS5lnkoBgmludGeCcY4aBEsILzoHbQggNBS6tKHKRsx6anWJtDWu1Df4Fwl7V4NVxUYeVgtB4s3EKS1xyLEoptObY0ZwRy0xGwDKcF4K2WfKUZUIdY3ClMr6BA44mgN8ogtWBujpSVwfq6kS9dZI_zu9L_vd8Ah4lh2c |
CitedBy_id | crossref_primary_10_1021_acsomega_4c05978 crossref_primary_10_1021_acsomega_4c08014 crossref_primary_10_1007_s13399_024_05465_w crossref_primary_10_1016_j_scitotenv_2023_169534 crossref_primary_10_1002_ghg_2263 crossref_primary_10_1007_s00226_024_01591_w crossref_primary_10_1016_j_scitotenv_2024_177201 crossref_primary_10_1016_j_jece_2024_114952 crossref_primary_10_1016_j_fuel_2022_124175 crossref_primary_10_1007_s11356_024_35219_0 crossref_primary_10_1016_j_jenvman_2022_117020 |
Cites_doi | 10.1016/j.seppur.2013.09.011 10.1016/j.seppur.2011.11.031 10.1016/j.jhazmat.2013.02.028 10.1016/j.apenergy.2013.01.017 10.1016/j.jcou.2016.06.002 10.1016/j.cej.2016.09.138 10.1021/ie200686q 10.1007/s10450-016-9787-8 10.1021/acs.energyfuels.6b02082 10.1021/acs.jced.6b00604 10.1016/j.carbon.2004.09.032 10.1016/j.ijggc.2013.01.046 10.1016/j.cej.2012.01.083 10.1007/s10008-013-2039-x 10.1016/j.apenergy.2013.01.062 10.1039/c0ee00064g 10.1016/s0008-6223(02)00091-x 10.1016/j.cej.2016.08.077 10.1039/c6ta09782k 10.1016/j.cej.2016.09.109 10.1016/s1001-0742(12)60017-5 10.1016/j.ijggc.2013.10.009 10.1016/j.apenergy.2016.01.085 10.1016/j.jcis.2011.01.103 10.1021/ie2022543 10.1007/s10450-016-9836-3 10.1016/j.seppur.2009.11.008 10.1002/ep.12743 10.1016/j.jaap.2012.12.019 10.1351/pac198557040603 10.1016/j.cej.2017.05.144 10.1080/07352680902776440 10.1016/j.cej.2016.07.041 10.1016/j.cej.2017.04.004 10.1021/ja01864a025 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2021.772710 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_070f406f76bb40e2831d3c51ad308962 10_3389_fenrg_2021_772710 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c354t-3894f165e612bcdb778571a63b4db5ca444030a2114944a4d966ba90fd698683 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:30:58 EDT 2025 Tue Jul 01 03:00:22 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-3894f165e612bcdb778571a63b4db5ca444030a2114944a4d966ba90fd698683 |
OpenAccessLink | https://doaj.org/article/070f406f76bb40e2831d3c51ad308962 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_070f406f76bb40e2831d3c51ad308962 crossref_citationtrail_10_3389_fenrg_2021_772710 crossref_primary_10_3389_fenrg_2021_772710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-02 |
PublicationDateYYYYMMDD | 2021-11-02 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Álvarez-Gutiérrez (B1) 2017; 307 Chen (B7) 2017; 308 Goel (B10) 2017; 62 Shi (B24) 2013; 25 Samanta (B22) 2012; 51 Wang (B26) 2012; 51 Liu (B18) 2017; 5 Brunauer (B5) 1940; 62 Botomé (B3) 2017; 321 Bratek (B4) 2002; 40 Delgado (B9) 2017; 326 Wei (B31) 2018; 37 Yang (B33) 2012 Bao (B2) 2011; 357 Wee (B30) 2013; 106 Kishor (B16) 2016; 30 Zhang (B35) 2013; 17 Caglayan (B6) 2013 Ozcan (B19) 2013; 19 Kierzkowska (B15) 2013; 15 Watabe (B29) 2013; 120 Zhang (B34) 2016; 22 Sanz-Pérez (B23) 2017; 308 Sing (B25) 1985; 54 Hoseinzadeh Hesas (B13) 2013; 100 Wang (B27) 2016; 168 Goel (B11) 2016; 16 Cheung (B8) 2013; 112 Gun’ko (B12) 2005; 43 Jiao (B14) 2016; 306 Wang (B28) 2011; 4 Plasynski (B20) 2009; 28 Krishna (B17) 2012; 87 Plaza (B21) 2010; 71 Wei (B32) 2016; 22 |
References_xml | – volume: 120 start-page: 20 year: 2013 ident: B29 article-title: Isotherms and Isosteric Heats of Adsorption for CO2 in Amine-Functionalized Mesoporous Silicas publication-title: Separat. Purif. Technol. doi: 10.1016/j.seppur.2013.09.011 – volume: 87 start-page: 120 year: 2012 ident: B17 article-title: A Comparison of the CO2 Capture Characteristics of Zeolites and Metal-Organic Frameworks publication-title: Separat. Purif. Technol. doi: 10.1016/j.seppur.2011.11.031 – start-page: 19 year: 2013 ident: B6 article-title: CO2 Adsorption on Chemically Modified Activated Carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.02.028 – volume: 112 start-page: 1326 year: 2013 ident: B8 article-title: Adsorption Kinetics for CO2 on Highly Selective Zeolites NaKA and Nano-NaKA publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2013.01.017 – volume: 16 start-page: 50 year: 2016 ident: B11 article-title: Carbon Dioxide Adsorption on Nitrogen Enriched Carbon Adsorbents: Experimental, Kinetics, Isothermal and Thermodynamic Studies publication-title: J. CO2 Utilization doi: 10.1016/j.jcou.2016.06.002 – volume: 308 start-page: 1065 year: 2017 ident: B7 article-title: A New MOF-505@GO Composite with High Selectivity for CO 2/CH 4 and CO 2/N 2 Separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.138 – volume: 51 start-page: 1438 year: 2012 ident: B22 article-title: Post-Combustion CO2 Capture Using Solid Sorbents: A Review publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200686q – volume: 22 start-page: 385 year: 2016 ident: B32 article-title: Preparation and Characterization of Waste Ion-Exchange Resin-Based Activated Carbon for CO2 Capture publication-title: Adsorption doi: 10.1007/s10450-016-9787-8 – volume: 30 start-page: 9635 year: 2016 ident: B16 article-title: Polyethylenimine Functionalized As-Synthesized KIT-6 Adsorbent for Highly CO2/N2 Selective Separation publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b02082 – volume: 62 start-page: 214 year: 2017 ident: B10 article-title: Prediction of Binary Gas Adsorption of CO2/N2 and Thermodynamic Studies on Nitrogen Enriched Nanostructured Carbon Adsorbents publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.6b00604 – volume: 43 start-page: 1143 year: 2005 ident: B12 article-title: Carbon Adsorbents from Waste Ion-Exchange Resins publication-title: Carbon doi: 10.1016/j.carbon.2004.09.032 – volume: 15 start-page: 48 year: 2013 ident: B15 article-title: Synthesis of Calcium-Based, Al2O3-Stabilized Sorbents for CO2 Capture Using a Co-Precipitation Technique publication-title: Int. J. Greenhouse Gas Control. doi: 10.1016/j.ijggc.2013.01.046 – start-page: 374 year: 2012 ident: B33 article-title: Nitrogen-enriched Carbonaceous Materials with Hierarchical Micro-Mesopore Structures for Efficient CO2 Capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.083 – volume: 17 start-page: 1749 year: 2013 ident: B35 article-title: The Production of Activated Carbon from Cation Exchange Resin for High-Performance Supercapacitor publication-title: J. Solid State. Electrochem. doi: 10.1007/s10008-013-2039-x – volume: 106 start-page: 143 year: 2013 ident: B30 article-title: A Review on Carbon Dioxide Capture and Storage Technology Using Coal Fly Ash publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2013.01.062 – volume: 4 start-page: 42 year: 2011 ident: B28 article-title: CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00064g – volume: 40 start-page: 2213 year: 2002 ident: B4 article-title: Carbon Adsorbents from Waste Ion-Exchange Resin publication-title: Carbon doi: 10.1016/s0008-6223(02)00091-x – volume: 307 start-page: 249 year: 2017 ident: B1 article-title: Kinetics of CO2 Adsorption on Cherry Stone-Based Carbons in CO2/CH4 Separations publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.077 – volume: 5 start-page: 418 year: 2017 ident: B18 article-title: One-Pot Carbonization Enrichment of Nitrogen in Microporous Carbon Spheres for Efficient CO2 Capture publication-title: J. Mater. Chem. A. doi: 10.1039/c6ta09782k – volume: 308 start-page: 1021 year: 2017 ident: B23 article-title: Reuse and Recycling of Amine-Functionalized Silica Materials for CO 2 Adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.109 – volume: 25 start-page: 188 year: 2013 ident: B24 article-title: Adsorption of Naphthalene onto a High-Surface-Area Carbon from Waste Ion Exchange Resin publication-title: J. Environ. Sci. doi: 10.1016/s1001-0742(12)60017-5 – volume: 19 start-page: 530 year: 2013 ident: B19 article-title: Process Integration of a Ca-Looping Carbon Capture Process in a Cement Plant publication-title: Int. J. Greenhouse Gas Control. doi: 10.1016/j.ijggc.2013.10.009 – volume: 168 start-page: 282 year: 2016 ident: B27 article-title: Adsorption and Regeneration Study of Polyethylenimine-Impregnated Millimeter-Sized Mesoporous Carbon Spheres for Post-combustion CO2 Capture publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2016.01.085 – volume: 357 start-page: 504 year: 2011 ident: B2 article-title: Kinetic Separation of Carbon Dioxide and Methane on a Copper Metal-Organic Framework publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2011.01.103 – volume: 51 start-page: 3048 year: 2012 ident: B26 article-title: Development of Carbon-Based "Molecular Basket" Sorbent for CO2 Capture publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2022543 – volume: 22 start-page: 1129 year: 2016 ident: B34 article-title: Influence of Activated Carbon in Zeolite X/Activated Carbon Composites on CH4/N2 Adsorption Separation Ability publication-title: Adsorption doi: 10.1007/s10450-016-9836-3 – volume: 71 start-page: 102 year: 2010 ident: B21 article-title: Developing almond Shell-Derived Activated Carbons as CO2 Adsorbents publication-title: Separat. Purif. Technol. doi: 10.1016/j.seppur.2009.11.008 – volume: 37 start-page: 703 year: 2018 ident: B31 article-title: CO2adsorption and Desorption Performance of Waste Ion-Exchange Resin-Based Activated Carbon publication-title: Environ. Prog. Sustain. Energ. doi: 10.1002/ep.12743 – volume: 100 start-page: 1 year: 2013 ident: B13 article-title: The Effects of a Microwave Heating Method on the Production of Activated Carbon from Agricultural Waste: A Review publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2012.12.019 – volume: 54 start-page: 603 year: 1985 ident: B25 article-title: Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface Area and Porosity publication-title: Pure Appl. Chem. doi: 10.1351/pac198557040603 – volume: 326 start-page: 117 year: 2017 ident: B9 article-title: Comparison and Evaluation of Agglomerated MOFs in Biohydrogen Purification by Means of Pressure Swing Adsorption (PSA) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.144 – volume: 28 start-page: 123 year: 2009 ident: B20 article-title: Progress and New Developments in Carbon Capture and Storage publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680902776440 – volume: 306 start-page: 9 year: 2016 ident: B14 article-title: Improvement of Adsorbent Materials for CO 2 Capture by Amine Functionalized Mesoporous Silica with Worm-Hole Framework Structure publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.041 – volume: 321 start-page: 614 year: 2017 ident: B3 article-title: Preparation and Characterization of a Metal-Rich Activated Carbon from CCA-Treated wood for CO 2 Capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.004 – volume: 62 start-page: 1723 year: 1940 ident: B5 article-title: On a Theory of the van der Waals Adsorption of Gases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01864a025 |
SSID | ssj0001325410 |
Score | 2.230693 |
Snippet | The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO
2
adsorption. The effect of adsorption temperature, gas flow, CO
2... The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO2 adsorption. The effect of adsorption temperature, gas flow, CO2 concentration,... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | breakthrough curve CO2 adsorption desorption fixed bed waste ion-exchange resin–based activated carbon |
Title | CO2 Adsorption and Desorption by Waste Ion-Exchange Resin–Based Activated Carbon on Fixed Bed |
URI | https://doaj.org/article/070f406f76bb40e2831d3c51ad308962 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykx7ET5xf5OBJqGuapB_HbWxMQQWZuFvIpwykk23CvPkf_If-Et-kdfSkF6GHpiQlffKmz_u0yfsidFFwSTXjNGLaphFz1mcDdDoqUkOcKahNwiKa27t09MhuJnzSSPXl14RV4YEr4Dpgkg5Ix2WpUiy2wIbEUM2JNDTOi-rtC5zXEFPh6woF4UPq35igwoqOg-F4Bj2YkCtwKDO_Y7ZBRI14_YFYhjtou_YIcbfqyS7asOUe2mrECdxHon-f4K5ZzOZhgmNQ_xgE409RveMnCaOFr2dlNFhVe3nxg11My6-Pzx7wlMFdHfKYwVlfzhU0gmM4XUG5Z80BGg8H4_4oqjMjRJpytozggZgjKbfgnyhtVJblPCMypYoZxbVkjMHklSDuWMGYZAZEjZJF7Exa5GlOD1GrnJX2CGHn8kwbkmkLukkSlcfWOu0sdTlzgFYbxT8oCV1HDffJK14EqAcPrAjACg-sqIBto8t1k9cqZMZvlXse-nVFH-06XAAbELUNiL9s4Pg_bnKCNn2_wj7D5BS1lvM3ewYOx1KdB9v6BmDJ0WE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+Adsorption+and+Desorption+by+Waste+Ion-Exchange+Resin%E2%80%93Based+Activated+Carbon+on+Fixed+Bed&rft.jtitle=Frontiers+in+energy+research&rft.au=Mengqi+Wei&rft.au=Mengqi+Wei&rft.au=Qiuyue+Zhao&rft.date=2021-11-02&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.772710&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_070f406f76bb40e2831d3c51ad308962 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |