CO2 Adsorption and Desorption by Waste Ion-Exchange Resin–Based Activated Carbon on Fixed Bed

The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO 2 adsorption. The effect of adsorption temperature, gas flow, CO 2 concentration, and adsorbent filling content on CO 2 adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO 2 d...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 9
Main Authors Wei, Mengqi, Zhao, Qiuyue
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 02.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO 2 adsorption. The effect of adsorption temperature, gas flow, CO 2 concentration, and adsorbent filling content on CO 2 adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO 2 desorption performances of WIRAC were researched. In the adsorption process, with the increase of adsorption temperature, the CO 2 adsorption capacity and adsorption rate decrease; as the gas flow increases, the CO 2 adsorption capacity decreases, but the adsorption rate increases; with the increase of CO 2 concentration and adsorbent filling content, the CO 2 adsorption capacity and adsorption rate both increase. In the desorption process, the higher the desorption temperature and the smaller the sweep gas flow, the higher the CO 2 purity of product gas and the longer the desorption time. In order to make sure the adsorbent be used efficiently and the higher CO 2 concentration of product gas, the adsorption and desorption conditions selected should be a suitable choice.
AbstractList The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO 2 adsorption. The effect of adsorption temperature, gas flow, CO 2 concentration, and adsorbent filling content on CO 2 adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO 2 desorption performances of WIRAC were researched. In the adsorption process, with the increase of adsorption temperature, the CO 2 adsorption capacity and adsorption rate decrease; as the gas flow increases, the CO 2 adsorption capacity decreases, but the adsorption rate increases; with the increase of CO 2 concentration and adsorbent filling content, the CO 2 adsorption capacity and adsorption rate both increase. In the desorption process, the higher the desorption temperature and the smaller the sweep gas flow, the higher the CO 2 purity of product gas and the longer the desorption time. In order to make sure the adsorbent be used efficiently and the higher CO 2 concentration of product gas, the adsorption and desorption conditions selected should be a suitable choice.
The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO2 adsorption. The effect of adsorption temperature, gas flow, CO2 concentration, and adsorbent filling content on CO2 adsorption properties of WIRAC and the effect of desorption temperature and sweep gas flow on CO2 desorption performances of WIRAC were researched. In the adsorption process, with the increase of adsorption temperature, the CO2 adsorption capacity and adsorption rate decrease; as the gas flow increases, the CO2 adsorption capacity decreases, but the adsorption rate increases; with the increase of CO2 concentration and adsorbent filling content, the CO2 adsorption capacity and adsorption rate both increase. In the desorption process, the higher the desorption temperature and the smaller the sweep gas flow, the higher the CO2 purity of product gas and the longer the desorption time. In order to make sure the adsorbent be used efficiently and the higher CO2 concentration of product gas, the adsorption and desorption conditions selected should be a suitable choice.
Author Zhao, Qiuyue
Wei, Mengqi
Author_xml – sequence: 1
  givenname: Mengqi
  surname: Wei
  fullname: Wei, Mengqi
– sequence: 2
  givenname: Qiuyue
  surname: Zhao
  fullname: Zhao, Qiuyue
BookMark eNp1kN1Kw0AQhRepYK19AO_yAqn7l93ksq2tFgoFKejdMvuTuqUmZTdIe-c7-IY-iWmrIoIwMHMGzmHmu0Sdqq4cQtcEDxjLi5vSVWE1oJiSgZRUEnyGupQWIs2K_Knza75A_RjXGGPCaMYJ7iI1XtBkaGMdto2vqwQqm9y6H6n3ySPExiWzukonO_MM1colDy766uPtfQTR2WRoGv8KTTuNIejW1NbU71o9cvYKnZewia7_1XtoOZ0sx_fpfHE3Gw_nqWEZb9L2C14SkTlBqDZWS5lnkoBgmludGeCcY4aBEsILzoHbQggNBS6tKHKRsx6anWJtDWu1Df4Fwl7V4NVxUYeVgtB4s3EKS1xyLEoptObY0ZwRy0xGwDKcF4K2WfKUZUIdY3ClMr6BA44mgN8ogtWBujpSVwfq6kS9dZI_zu9L_vd8Ah4lh2c
CitedBy_id crossref_primary_10_1021_acsomega_4c05978
crossref_primary_10_1021_acsomega_4c08014
crossref_primary_10_1007_s13399_024_05465_w
crossref_primary_10_1016_j_scitotenv_2023_169534
crossref_primary_10_1002_ghg_2263
crossref_primary_10_1007_s00226_024_01591_w
crossref_primary_10_1016_j_scitotenv_2024_177201
crossref_primary_10_1016_j_jece_2024_114952
crossref_primary_10_1016_j_fuel_2022_124175
crossref_primary_10_1007_s11356_024_35219_0
crossref_primary_10_1016_j_jenvman_2022_117020
Cites_doi 10.1016/j.seppur.2013.09.011
10.1016/j.seppur.2011.11.031
10.1016/j.jhazmat.2013.02.028
10.1016/j.apenergy.2013.01.017
10.1016/j.jcou.2016.06.002
10.1016/j.cej.2016.09.138
10.1021/ie200686q
10.1007/s10450-016-9787-8
10.1021/acs.energyfuels.6b02082
10.1021/acs.jced.6b00604
10.1016/j.carbon.2004.09.032
10.1016/j.ijggc.2013.01.046
10.1016/j.cej.2012.01.083
10.1007/s10008-013-2039-x
10.1016/j.apenergy.2013.01.062
10.1039/c0ee00064g
10.1016/s0008-6223(02)00091-x
10.1016/j.cej.2016.08.077
10.1039/c6ta09782k
10.1016/j.cej.2016.09.109
10.1016/s1001-0742(12)60017-5
10.1016/j.ijggc.2013.10.009
10.1016/j.apenergy.2016.01.085
10.1016/j.jcis.2011.01.103
10.1021/ie2022543
10.1007/s10450-016-9836-3
10.1016/j.seppur.2009.11.008
10.1002/ep.12743
10.1016/j.jaap.2012.12.019
10.1351/pac198557040603
10.1016/j.cej.2017.05.144
10.1080/07352680902776440
10.1016/j.cej.2016.07.041
10.1016/j.cej.2017.04.004
10.1021/ja01864a025
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2021.772710
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_070f406f76bb40e2831d3c51ad308962
10_3389_fenrg_2021_772710
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-3894f165e612bcdb778571a63b4db5ca444030a2114944a4d966ba90fd698683
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:30:58 EDT 2025
Tue Jul 01 03:00:22 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-3894f165e612bcdb778571a63b4db5ca444030a2114944a4d966ba90fd698683
OpenAccessLink https://doaj.org/article/070f406f76bb40e2831d3c51ad308962
ParticipantIDs doaj_primary_oai_doaj_org_article_070f406f76bb40e2831d3c51ad308962
crossref_citationtrail_10_3389_fenrg_2021_772710
crossref_primary_10_3389_fenrg_2021_772710
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-02
PublicationDateYYYYMMDD 2021-11-02
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-02
  day: 02
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Álvarez-Gutiérrez (B1) 2017; 307
Chen (B7) 2017; 308
Goel (B10) 2017; 62
Shi (B24) 2013; 25
Samanta (B22) 2012; 51
Wang (B26) 2012; 51
Liu (B18) 2017; 5
Brunauer (B5) 1940; 62
Botomé (B3) 2017; 321
Bratek (B4) 2002; 40
Delgado (B9) 2017; 326
Wei (B31) 2018; 37
Yang (B33) 2012
Bao (B2) 2011; 357
Wee (B30) 2013; 106
Kishor (B16) 2016; 30
Zhang (B35) 2013; 17
Caglayan (B6) 2013
Ozcan (B19) 2013; 19
Kierzkowska (B15) 2013; 15
Watabe (B29) 2013; 120
Zhang (B34) 2016; 22
Sanz-Pérez (B23) 2017; 308
Sing (B25) 1985; 54
Hoseinzadeh Hesas (B13) 2013; 100
Wang (B27) 2016; 168
Goel (B11) 2016; 16
Cheung (B8) 2013; 112
Gun’ko (B12) 2005; 43
Jiao (B14) 2016; 306
Wang (B28) 2011; 4
Plasynski (B20) 2009; 28
Krishna (B17) 2012; 87
Plaza (B21) 2010; 71
Wei (B32) 2016; 22
References_xml – volume: 120
  start-page: 20
  year: 2013
  ident: B29
  article-title: Isotherms and Isosteric Heats of Adsorption for CO2 in Amine-Functionalized Mesoporous Silicas
  publication-title: Separat. Purif. Technol.
  doi: 10.1016/j.seppur.2013.09.011
– volume: 87
  start-page: 120
  year: 2012
  ident: B17
  article-title: A Comparison of the CO2 Capture Characteristics of Zeolites and Metal-Organic Frameworks
  publication-title: Separat. Purif. Technol.
  doi: 10.1016/j.seppur.2011.11.031
– start-page: 19
  year: 2013
  ident: B6
  article-title: CO2 Adsorption on Chemically Modified Activated Carbon
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.02.028
– volume: 112
  start-page: 1326
  year: 2013
  ident: B8
  article-title: Adsorption Kinetics for CO2 on Highly Selective Zeolites NaKA and Nano-NaKA
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2013.01.017
– volume: 16
  start-page: 50
  year: 2016
  ident: B11
  article-title: Carbon Dioxide Adsorption on Nitrogen Enriched Carbon Adsorbents: Experimental, Kinetics, Isothermal and Thermodynamic Studies
  publication-title: J. CO2 Utilization
  doi: 10.1016/j.jcou.2016.06.002
– volume: 308
  start-page: 1065
  year: 2017
  ident: B7
  article-title: A New MOF-505@GO Composite with High Selectivity for CO 2/CH 4 and CO 2/N 2 Separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.138
– volume: 51
  start-page: 1438
  year: 2012
  ident: B22
  article-title: Post-Combustion CO2 Capture Using Solid Sorbents: A Review
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200686q
– volume: 22
  start-page: 385
  year: 2016
  ident: B32
  article-title: Preparation and Characterization of Waste Ion-Exchange Resin-Based Activated Carbon for CO2 Capture
  publication-title: Adsorption
  doi: 10.1007/s10450-016-9787-8
– volume: 30
  start-page: 9635
  year: 2016
  ident: B16
  article-title: Polyethylenimine Functionalized As-Synthesized KIT-6 Adsorbent for Highly CO2/N2 Selective Separation
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b02082
– volume: 62
  start-page: 214
  year: 2017
  ident: B10
  article-title: Prediction of Binary Gas Adsorption of CO2/N2 and Thermodynamic Studies on Nitrogen Enriched Nanostructured Carbon Adsorbents
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.6b00604
– volume: 43
  start-page: 1143
  year: 2005
  ident: B12
  article-title: Carbon Adsorbents from Waste Ion-Exchange Resins
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.09.032
– volume: 15
  start-page: 48
  year: 2013
  ident: B15
  article-title: Synthesis of Calcium-Based, Al2O3-Stabilized Sorbents for CO2 Capture Using a Co-Precipitation Technique
  publication-title: Int. J. Greenhouse Gas Control.
  doi: 10.1016/j.ijggc.2013.01.046
– start-page: 374
  year: 2012
  ident: B33
  article-title: Nitrogen-enriched Carbonaceous Materials with Hierarchical Micro-Mesopore Structures for Efficient CO2 Capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.01.083
– volume: 17
  start-page: 1749
  year: 2013
  ident: B35
  article-title: The Production of Activated Carbon from Cation Exchange Resin for High-Performance Supercapacitor
  publication-title: J. Solid State. Electrochem.
  doi: 10.1007/s10008-013-2039-x
– volume: 106
  start-page: 143
  year: 2013
  ident: B30
  article-title: A Review on Carbon Dioxide Capture and Storage Technology Using Coal Fly Ash
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2013.01.062
– volume: 4
  start-page: 42
  year: 2011
  ident: B28
  article-title: CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00064g
– volume: 40
  start-page: 2213
  year: 2002
  ident: B4
  article-title: Carbon Adsorbents from Waste Ion-Exchange Resin
  publication-title: Carbon
  doi: 10.1016/s0008-6223(02)00091-x
– volume: 307
  start-page: 249
  year: 2017
  ident: B1
  article-title: Kinetics of CO2 Adsorption on Cherry Stone-Based Carbons in CO2/CH4 Separations
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.077
– volume: 5
  start-page: 418
  year: 2017
  ident: B18
  article-title: One-Pot Carbonization Enrichment of Nitrogen in Microporous Carbon Spheres for Efficient CO2 Capture
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/c6ta09782k
– volume: 308
  start-page: 1021
  year: 2017
  ident: B23
  article-title: Reuse and Recycling of Amine-Functionalized Silica Materials for CO 2 Adsorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.109
– volume: 25
  start-page: 188
  year: 2013
  ident: B24
  article-title: Adsorption of Naphthalene onto a High-Surface-Area Carbon from Waste Ion Exchange Resin
  publication-title: J. Environ. Sci.
  doi: 10.1016/s1001-0742(12)60017-5
– volume: 19
  start-page: 530
  year: 2013
  ident: B19
  article-title: Process Integration of a Ca-Looping Carbon Capture Process in a Cement Plant
  publication-title: Int. J. Greenhouse Gas Control.
  doi: 10.1016/j.ijggc.2013.10.009
– volume: 168
  start-page: 282
  year: 2016
  ident: B27
  article-title: Adsorption and Regeneration Study of Polyethylenimine-Impregnated Millimeter-Sized Mesoporous Carbon Spheres for Post-combustion CO2 Capture
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2016.01.085
– volume: 357
  start-page: 504
  year: 2011
  ident: B2
  article-title: Kinetic Separation of Carbon Dioxide and Methane on a Copper Metal-Organic Framework
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2011.01.103
– volume: 51
  start-page: 3048
  year: 2012
  ident: B26
  article-title: Development of Carbon-Based "Molecular Basket" Sorbent for CO2 Capture
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2022543
– volume: 22
  start-page: 1129
  year: 2016
  ident: B34
  article-title: Influence of Activated Carbon in Zeolite X/Activated Carbon Composites on CH4/N2 Adsorption Separation Ability
  publication-title: Adsorption
  doi: 10.1007/s10450-016-9836-3
– volume: 71
  start-page: 102
  year: 2010
  ident: B21
  article-title: Developing almond Shell-Derived Activated Carbons as CO2 Adsorbents
  publication-title: Separat. Purif. Technol.
  doi: 10.1016/j.seppur.2009.11.008
– volume: 37
  start-page: 703
  year: 2018
  ident: B31
  article-title: CO2adsorption and Desorption Performance of Waste Ion-Exchange Resin-Based Activated Carbon
  publication-title: Environ. Prog. Sustain. Energ.
  doi: 10.1002/ep.12743
– volume: 100
  start-page: 1
  year: 2013
  ident: B13
  article-title: The Effects of a Microwave Heating Method on the Production of Activated Carbon from Agricultural Waste: A Review
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2012.12.019
– volume: 54
  start-page: 603
  year: 1985
  ident: B25
  article-title: Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface Area and Porosity
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
– volume: 326
  start-page: 117
  year: 2017
  ident: B9
  article-title: Comparison and Evaluation of Agglomerated MOFs in Biohydrogen Purification by Means of Pressure Swing Adsorption (PSA)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.144
– volume: 28
  start-page: 123
  year: 2009
  ident: B20
  article-title: Progress and New Developments in Carbon Capture and Storage
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680902776440
– volume: 306
  start-page: 9
  year: 2016
  ident: B14
  article-title: Improvement of Adsorbent Materials for CO 2 Capture by Amine Functionalized Mesoporous Silica with Worm-Hole Framework Structure
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.041
– volume: 321
  start-page: 614
  year: 2017
  ident: B3
  article-title: Preparation and Characterization of a Metal-Rich Activated Carbon from CCA-Treated wood for CO 2 Capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.004
– volume: 62
  start-page: 1723
  year: 1940
  ident: B5
  article-title: On a Theory of the van der Waals Adsorption of Gases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01864a025
SSID ssj0001325410
Score 2.230693
Snippet The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO 2 adsorption. The effect of adsorption temperature, gas flow, CO 2...
The waste ion-exchange resin–based activated carbon (WIRAC) was utilized for CO2 adsorption. The effect of adsorption temperature, gas flow, CO2 concentration,...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms breakthrough curve
CO2 adsorption
desorption
fixed bed
waste ion-exchange resin–based activated carbon
Title CO2 Adsorption and Desorption by Waste Ion-Exchange Resin–Based Activated Carbon on Fixed Bed
URI https://doaj.org/article/070f406f76bb40e2831d3c51ad308962
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykx7ET5xf5OBJqGuapB_HbWxMQQWZuFvIpwykk23CvPkf_If-Et-kdfSkF6GHpiQlffKmz_u0yfsidFFwSTXjNGLaphFz1mcDdDoqUkOcKahNwiKa27t09MhuJnzSSPXl14RV4YEr4Dpgkg5Ix2WpUiy2wIbEUM2JNDTOi-rtC5zXEFPh6woF4UPq35igwoqOg-F4Bj2YkCtwKDO_Y7ZBRI14_YFYhjtou_YIcbfqyS7asOUe2mrECdxHon-f4K5ZzOZhgmNQ_xgE409RveMnCaOFr2dlNFhVe3nxg11My6-Pzx7wlMFdHfKYwVlfzhU0gmM4XUG5Z80BGg8H4_4oqjMjRJpytozggZgjKbfgnyhtVJblPCMypYoZxbVkjMHklSDuWMGYZAZEjZJF7Exa5GlOD1GrnJX2CGHn8kwbkmkLukkSlcfWOu0sdTlzgFYbxT8oCV1HDffJK14EqAcPrAjACg-sqIBto8t1k9cqZMZvlXse-nVFH-06XAAbELUNiL9s4Pg_bnKCNn2_wj7D5BS1lvM3ewYOx1KdB9v6BmDJ0WE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+Adsorption+and+Desorption+by+Waste+Ion-Exchange+Resin%E2%80%93Based+Activated+Carbon+on+Fixed+Bed&rft.jtitle=Frontiers+in+energy+research&rft.au=Mengqi+Wei&rft.au=Mengqi+Wei&rft.au=Qiuyue+Zhao&rft.date=2021-11-02&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.772710&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_070f406f76bb40e2831d3c51ad308962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon